L2chain: Towards High-performance, Confidential and Secure
Layer-2 Blockchain Solution for Decentralized Applications

Zihuan Xu
The Hong Kong University of Science and Technology
Hong Kong SAR, China
zxuav@cse.ust.hk

ABSTRACT

With the rapid development of blockchain, the concept of decentral-
ized applications (DApps), built upon smart contracts, has attracted
much attention in academia and industry. However, significant is-
sues w.r.t. system throughput, transaction confidentiality, and the
security guarantee of the DApp transaction execution and order
correctness hinder the border adoption of blockchain DApps.

To address these issues, we propose L2chain, a novel blockchain
framework aiming to scale the system through a layer-2 network
where DApps process transactions in the layer-2 network and only
the system state digest, acting as the state integrity proof, is main-
tained on-chain. To achieve high performance, we introduce the
split-execute-merge (SEM) transaction processing workflow with
the help of the RSA accumulator, allowing DApps to lock and up-
date a part of the state digest in parallel. We also design a witness
cache mechanism for DApp executors to reduce the transaction
processing latency. To fulfill confidentiality, we leverage the trusted
execution environment (TEE) for DApps to execute encrypted trans-
actions off-chain. To ensure transaction execution and order cor-
rectness, we propose a two-step execution process for DApps to
prevent attacks (i.e., rollback attacks) from subverting the state tran-
sition. Extensive experiments have demonstrated that L2chain can
achieve 1.5X to 42.2X and 7.1X to 8.9X throughput improvements
in permissioned and permissionless settings respectively.

PVLDB Reference Format:

Zihuan Xu and Lei Chen. L2chain: Towards High-performance,
Confidential and Secure Layer-2 Blockchain Solution for Decentralized
Applications. PVLDB, 16(4): 986 - 999, 2022.
doi:10.14778/3574245.3574278

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/xzhflying/L2chain.

1 INTRODUCTION

Blockchain is an append-only structure of linked blocks, containing
transactions issued by participants who do not trust each other.
Consensus protocols ensure the security and reliability of the global
view of the on-chain data. With the rapid development, it has
evolved from original UTXO-based model which only supports

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574278

986

Lei Chen
The Hong Kong University of Science and Technology
Hong Kong SAR, China
leichen@cse.ust.hk

cryptocurrencies (e.g., Bitcoin [49]) to account-based model, sup-
porting Turing-complete transactions with smart contracts (e.g.,
Ethereum [61]). In particular, smart contracts can represent service
level agreements (SLAs) among participants, empowering the de-
centralized applications (DApps) where data and SLAs are recorded
in contracts without a centralized service provider. It has been used
in many scenarios such as finance [59], healthcare [47], crowdsourc-
ing [32, 41], data sharing [26], federated learning [43], etc..
However, low throughput and scalability issues hinder the devel-
opment of blockchain-based DApps where the consensus protocol
is the main bottleneck [23]. For instance, proof-of-work (PoW) [49],
as a widely used protocol in permissionless chains where any node
can freely join or leave, can only commit tens of transactions per
second (tps), while PBFT [18] in permissioned chains with known
node identities can achieve hundreds of tps [24]. In addition, privacy
is another not well-addressed issue. Specifically, DApps can work
individually or collaborate to complete one workflow and some
DApps may use confidential logic and data to process transactions.
Meanwhile, DApps users may care about their privacy, requiring
executing transactions without exposing the details to DApp nodes.
What’s more, it is essential to ensure transactions are successfully
executed in the correct order with the resistance to malicious be-
havior trying to subvert the system security. Thus, in summary, we
need to fulfill three requirements of blockchain-based DApps:
(1) High Performance. The transaction processing should have
high performance in terms of high throughput and low latency.
High Confidentiality. Both intra- and inter- DApp transac-
tions can be processed without exposing detailed information.
High Security. Transactions processed by each DApp should
be correctly executed in an correct order to obtain the final result.

@
®)

Recently, the concept of layer-2 (L2) solution, building upon a
layer-1 (L1) blockchain, has been proposed to improve the DApps’
performance. It is regarded as an orthogonal solution to enhance
the consensus protocols of blockchains [9]. Specifically, L2 solution
enables DApps to parallelly execute transactions off-chain through
authenticated and private communication channels. Additionally,
it only finalizes the execution result of a transaction batch on-chain
once, without recording every single transaction. Thus, compared
with a pure L1 chain, L2 solution performs much fewer on-chain
consensus, dramatically improving throughput and scalability.

However, existing L2 solutions are still immature and fail to
address aforementioned three requirements simultaneously. In par-
ticular, existing solutions can be categorized into two types. One
is to rely on decentralized channels where participants first lock
the on-chain collateral and establish private communication chan-
nels to exchange authenticated state transitions off-chain. After

https://doi.org/10.14778/3574245.3574278
https://github.com/xzhflying/L2chain
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574278
https://www.acm.org/publications/policies/artifact-review-and-badging-current

the closure of channels, the final collateral state is recorded on-
chain. Examples are payment channels for efficient token transfer
in cryptocurrencies [22, 33, 50, 55] and state channels, supporting
general-purpose state transitions [25, 48]. However, since each
channel solely processes transactions without the guarantee of L1
consensus protocols, it is possible that malicious nodes can subvert
the predetermined execution order, resulting in incorrect system

states which fail to fulfill the security requirement [30].

The other is to rely on a centralized but untrusted executor. Ex-
ample works are commit-chains [37, 54] where an executor collects
and executes transactions off-chain and commits the updated states
periodically as checkpoints to an L1 on-chain smart contract, which
allows users to verify the transaction execution correctness and
challenge the misbehavior of the executor. Besides, with the help
of verifiable computation and zero-knowledge proof (ZKP), rollup
protocols [16, 27, 28] improve the commit-chains by recording the
verifiable execution correctness proof of L2 transactions on-chain,
ensuring the data availability and reducing the need for users to
monitor the executors’ behavior. However, centralized processing
exposes the transaction details to an untrusted third party, failing
to comply with the confidential requirement. Meanwhile, due to
the contention of different DApp executors on the L1 state digest
and the high computational cost of the ZKP, to finalize the process-
ing result of L2 transactions on the L1 chain, it is restricted to be
serialized with high latency (e.g., tens of minutes in zkSync [45]).

To achieve high performance, confidentiality, and security si-
multaneously, in this paper, we propose a novel layer-2 framework
named L2chain. Specifically, to achieve high performance, we
introduce split-execute-merge (SEM), a novel transaction process-
ing workflow to enable the parallel processing of L2 transactions
and we use the RSA accumulator [17, 40] to organize system states,
enabling flexible state sharing among DApps. Given a transaction
batch, L2 DApp executors first split the global state RSA accumula-
tor to obtain the digest of states appearing in the transaction batch’s
read/write sets. Then execute transactions to update the partial di-
gest. Finally, L1 validators merge the updated digest back to the
global RSA accumulator. Besides, we design a cache mechanism and
related optimizations for DApp executors to reduce the transaction
processing latency. To achieve high confidentiality, we leverage
the trusted execution environment (TEE) [57] for DApp executors
to execute encrypted user transactions off-chain. Meanwhile, we
only maintain the system state digest on the L1 chain without
explicitly recording any L2 transaction information. To achieve
high security, we introduce the two-step execution process at the
DApp executor-side. Executors first simulate the transaction batch
to obtain the read/write sets and use TEEs to verify and sign on the
transaction order determined in the L2 network by DApp specified
consensus protocols. Once such information is finalized on the L1
chain, executors then execute transactions based on the finalized
order, ensuring the order correctness to prevent the rollback attack
[14], violating the determined execution order.

We summarize our contributions as follows:

(1) We present L2chain, a novel layer-2 blockchain framework,
offering high performance with flexible state sharing among
DApps, transaction confidentiality with stricter privacy and
security guarantee to prevent the rollback attack. To the best
of our knowledge, this is the first work of its kind.

987

(2) We propose split-execute-merge, a novel transaction processing
workflow, and two-step (TEE) execution at the DApp executor-
side. It ensures both transaction confidentiality and execution
correctness. Meanwhile, it can withstand the rollback attack.

(3) We introduce the cache witness mechanism with optimizations,
assisting layer-2 DApp executors in using the RSA accumulator
in transaction processing in L2chain efficiently.

(4) We implement a prototype and conduct extensive experiments
to evaluate the performance of L2chain. Results show that
L2chain can improve the throughput by 7.1X to 8.9X in a per-
missionless setting and 1.5X to 42.2X in a permissioned setting.

The rest of paper is organized as follows. We motivate our work
and introduce related concepts and works in Sec. 2. Sec. 3 overviews
L2chain. Sec. 4 presents state organization and transaction process-
ing in L2chain. Sec. 5 introduces the RSA witness cache mechanism
with optimizations. Sec. 6 details the transaction execution steps.
We evaluate L2chain in Sec. 7 and conclude our paper in Sec. 8.

2 BACKGROUND AND RELATED WORKS

In this section, we first provide a supply-chain example to motivate
our work. Then we introduce main concepts related to our solutions.

Finally, we discuss the novelty against related works.
_____ Table 1: Product Orders

Product Info : Status

e
, @ps (1) Cost price: : (1) Order (R4) be & De
| $15 1 2)-> Shipping (Mg, Da)
1

P - Dy
e ! @->Delivered (D,) App2: Delivery

@ My: put{Os, Psh Mg, Da: put{Oz shipping} @ Ry: put{Os3, Delivered}
- ,

’.-_a o,

05 |

ﬁ I » Dy get{0s}
Ry .
My mMB @ 4 PUL{03, cost Price:$15, Order), My: getfo,) @
"x‘i . get{Ua} H l E Re
e (@) g putlUn 2001 Ra9 Ra g,
App3: Manufacturer @ o put{Ua 80 Py} App1: Retailer
g © T mbezpuches
m @ User : User Balance : Product ID :
[Up] iz T
Users Uy (@$100 (by default)| @ P, i

15) $80 (R4) |

Figure 1: Example in a supply chain scenario
21

Example 2.1. In Fig. 1, there are three DApps: retailer, delivery

and manufacturer. Each has three nodes (executors) to provide
corresponding services. In this example, there are two workflows:
Workflow 1: All DApps jointly maintain Table 1, recording the
product order status. Suppose inter-app transactions)@ achieve
the business logic that (D: retailer R4 places an order O3 with the
cost price of $15 and sets the status as “Order”; (2): after getting
the O3, manufacturer Mg puts the product P into this order and
assigns delivery Dy to ship the product; 3): once receiving the
product, R4 modifies the status of O3 to “Delivered”;
Workflow 2: The retailer DApp maintains Table 2, recording the
product purchase information of users. Suppose intra-app trans-
actions @ and (B achieve the business logic that @: user U4 sends
her/his current balance and buys the product P; in $20; (5): after
verifying that Ux’s balance is sufficient, retailer R4 updates Uys’s
balance and records the balance state on-chain.

Motivation Example

Suppose we use blockchain to maintain the data without a third-
party, the three requirements mentioned in Sec. 1 become essential:
High performance: Since workflows 1 and 2 access different states
(order O3 and user balance Uy) without any dependency, transac-
tions can be processed in parallel to improve the performance.

High confidentiality: For each DApp, some data can only be
visible internally and only record the data hash on-chain for in-
tegrity check. Examples are product cost price in Table 1 and user
purchased product in Table 2. For DApp users, some transactions
content needs to be even hidden from DApp executors. Such as a
user’s current balance required in transaction (4) and (5).

High security: Two criteria of the transaction need to be ensured:

Execution correctness needs to be publicly verifiable. For exam-
ple, without exposing user’s balance, DApps need to ensure that Uy
has sufficient balance to purchase P; and Uy4’s balance is correctly
deducted after executing transaction (5).

Order correctness to enforce DApps can only execute transac-
tions in a determined order to prevent rollback attacks where the
malicious obtains valid but outdated states to 1) cause state inconsis-
tency between L1 and L2, affecting the system security. 2) rollback
to outdated states to detect confidential transaction content.

Intuitively, we can encrypt states and transactions and let DApp
executors decrypt the inputs and execute transactions in a black
box that outputs updated encrypted states. Such that executors can-
not learn anything from the inputs and outputs. However, DApps’
marginal conditions (e.g., indicating invalid inputs) can leak side
information. Specifically, a rollback attacker can solely execute un-
committed self-made transactions together with user transactions
to trigger marginal conditions, breaking privacy. Here we illustrate
how a rollback attack can lead to state inconsistency and break
confidentiality based on workflow 2 in Example 2.1.

State inconsistency: Transactions @) and () represent the state
change of U;‘s balance where both $100 and $80, which have been
signed by retailer DApp executors, are valid. After internally pro-
cessing (5) and U4 receiving the product, a colluded executor tries
to finalize U;\s balance still as $100. However, L1 validators cannot
detect the obsolescence, since they did not join in the workflow
directly, leading to the state inconsistency between L1 and L2.

Break confidentiality: Suppose DApp executes transactions in a
“black box”, taking in encrypted Uy’s balance and product price,
then outputting a deducted balance (if sufficient). If one can rollback
the system state and feed the “black box” with different transactions,
the encrypted user balance can be detected by continually inputting
dummy product price until the box outputs “insufficient”.

To fulfill these requirements simultaneously, we introduce L2chain.

2.2 Layer-2 Blockchain Scaling

The L2 solution is built upon an L1 chain to reduce disseminat-
ing and consensus costs by off-loading transaction execution and
part of order workloads to L2 nodes and only using the L1 chain
for disputes [30]. Particularly, an accumulator (e.g., Merkle tree)
maintains system states and its digest of current state values (e.g.,
Merkle tree root) denoted by D is recorded on the L1 chain. Users
use D to authenticate if a state value is currently valid by checking
its membership of D. To process transactions, there are three steps:

(1) Off-chain execution. L2 executors obtain the latest digest D
and an ordered transaction batch B to perform a state transition
D’ « STF(D, B), producing an updated digest D’.

(2) Execution correctness proof. L2 executors then generate a
proof = « PRF(D, B, D’), proving that by executing transac-
tions B, the state digest can be correctly updated to D’.

988

(3) Finalization on-chain. Finally, L2 executors invoke an L1
transaction, updating the on-chain state digest from D to D’
with the proof . According to the verification result through a
function {0,1} « VRF(D, B, D’, r), L1 validators either com-
mit the L1 transaction on-chain or abort it.

By doing so, user transactions only need to be transmitted and
ordered among involved L2 executors and only one L1 transaction,
representing an L2 batch execution result, is processed on-chain. It
enhances the system by easing the consensus bottleneck.

2.3 Trusted Execution Environment (TEE)

Trusted Execution Environment (TEE) is a hardware solution pro-
viding an isolated memory area with the guarantee of confidential-
ity and integrity of data and codes running inside the area even if
the entire platform is compromised. Examples are Intel’s Software
Guard Extensions (SGX) [5, 36, 46] and ARM TrustZone (TZ) [53].

Take SGX as an example. Every time to initialize the code run-
time, SGX checks whether the hash of loaded code and data matches
the developer’s signature. During the run-time, SGX can prove to
others that the specific code is executed correctly (a.k.a. remote at-
testation [5]). Specifically, a private key sk is embedded in each SGX
enclave, and the corresponding public key pk is publicly known. Ev-
ery time to produce an execution result of the loaded code, it signs
with sk. Thus, remote nodes can use pk to verify the computation
integrity. In addition, with the secretly embedded keys, TEE can
also achieve data sealing which enables both the input and output
data of the TEE can remain encrypted and only be decrypted inside
a TEE ensuring the confidentiality of data as well.

2.4 RSA Accumulator

The RSA accumulator [17, 40] represents the members in a mul-
tiset S with a digest D where D = gHVSGSHP(S) € G and Hy() is
a hash-to-prime function. In particular, D is a member of an RSA
quotient group [52] G (Z;Q/{il} where N is the production of
two prime numbers) which has a fixed member g as the generator.
Such that, the accumulator digest D is an integer with an unknown
order in G. The basic functions of an RSA accumulator include addi-
tion, removal, membership proof/verification and non-membership
proof/verification of an element. Recently, Boneh et al. [11] expends
the basic functions to support batch-based processing where the
Shamir’s Trick [58] plays an important role.
Shamir’s Trick. Given a group element D and its x-th and y-th
roots D, DY, Shamir’s Trick can be used to compute the (xy)-th root
of D. We define ST(D*, DY) — D*Y where ST() first computes
the Bezout coefficients a and b of x and y, such that ax + by =
1, then outputs (DX)b(DY)@ as the result of D*Y. ST(D*, DY) is
more efficient than directly computing D*Y because it has fewer
exponentiation operations.

Given the multiset S with digest D; at time ¢, we now define the
function of the RSA accumulator we need in this work as follows:

(1) Add(D¢,S,E) = {D¢+1,SUE]} : add a batch E of elements

into S and obtain the updated digest Dy4+1 = D?VEEEHP (e).

(2) Del(Dy¢,S,E) — {D¢+1,S — E} : delete a batch E of elements

from S and obtain the updated digest D41 = D;/HVEEEHP(e).

(3) MemP (D¢, S, E) — wg :aprover tries to convince to a verifier
that all elements in E are valid members of S by providing a
witness wg = gllveesetHp (¢) Note that, wg is exactly the same
as Dy, after deleting E from S.

(4) MemV (D¢, wg,E) — {0,1} : a verifier verifies if E C S
by checking if (wE)HVeGEHP(e) = D;. Note that, with larger
MyeegHp(e), MemV needs more exponentiation operations.
However, the cost can be bounded within a constant by using
the Wesolowski proof [60], for more details please refer to [11].

Keep witnesses. Both deletion and membership proof of an ele-
ment e require to compute Hy(e)-th root of the digest D;. How-
ever, without the RSA trapdoor, one has to reconstruct the digest
from scratch i.e, Dsyq = gHVsE(S*(fDHP(S) which is time-costly [11].
Thus, by pre-computing and storing the witness w; (Ve; € S, w;
D:/Hp (e

gHVeES’E*EiHP(e) =)), deletion and membership proof can
be efficiently performed. Moreover, when elements of S change, the
witness w; of element e; can be updated in the following cases:

H,
(1) Anew element ex is added to S: The new witness is w; ‘D(E*).

(2) An element ex is deleted from S: After the deletion of ex,

we can obtain the updated digest Dy41 = D;/Hp(e*) of S. Thus,
we can update each e;’s witness by ST (wj, Dr41).

2.5 Related Works

Next, we briefly review typical related DApp systems, from the
perspectives of performance, confidentiality and security.
Performance. Existing DApp systems can be categorized in:

Permissionless: Ethereum [61], as the pioneer to support DApps
with smart contracts, uses PoW [49] as the consensus protocol with
only tens of tps. Improvements are achieved by layer-2 paradigm.
Plasma [54] and zkSync [45] achieve hundreds of tps. However,
their transaction validation strategies (e.g., optimistic rollup [16]
for Plasma and zero-knowledge proof [28] for zkSync) introduce
high latency from tens minutes to even days.

Permissioned: Fabric [6] uses PBFT [18] and Quorum [19] uses
IBFT [1] and Raft [51] to reach consensus among authorized nodes.
Besides, protocols such as Tendermint [15], HotStaff [64], SBFT
[31] also use message exchange to tolerant Byzantine faults (BFT)
with hundreds of tps. However, existing systems aim to reach global
consensus at once and do not provide flexibility for DApps to adopt
self-desired protocols (e.g., Paxos [38] and Raft for crash failure
tolerance (CFT)), limit the overall performance.

Hybrid consensus: For flexibility, some systems allow multiple
consensus protocols to coexist. Corda [56] supports pluggable pro-
tocols of DApps. While, CAPER [4], Multichain [29], cross-chain
swap [34] and deal [35] maintain different views of chains with
different protocols. However, the challenge is to deal with the cross-
chain/app transactions which will be discussed later.
Confidentiality. Transactions on Ethereum are publicly avail-
able without confidentiality. Meanwhile, Plasma, zkRollup, and
zkSync shift workloads to L2 centralized but untrusted processors.
Although user transactions are private to L1 nodes, they are still
available to L2 processors. Fabric introduces channels with Pri-
vate Data Collections [7] to isolate DApps and their transactions.
However, the channel structure is static, facing the challenge of
cross-app transactions. While, Quorum, Corda, CAPER, Multichain,

989

cross-chain swap, and deal make private transactions only visi-
ble to chosen participants. Precisely, transactions are encrypted or
recorded in a private chain, and can only be decrypted or viewed
by nodes with legitimate. However, in our motivation scenario,
transaction executors, which are participants of the above systems,
can also be malicious. Thus, our goal is more strict: making the
private transactions only visible to authorized codes (SLAs).
Security. Typical systems such as Ethereum, Fabric, Quorum, Mul-
tichain, Corda and CAPER rely on consensus nodes to replay and
validate transaction execution and order correctness. Meanwhile,
L2 solutions embed the transaction batch execution and order re-
sults in one L1 transaction. It inevitably brings long latency to
either run cryptography algorithms or wait for the protocol com-
pletion. Moreover, for cross-app transactions, tedious efforts are
required. Systems that statically divide DApp states (e.g., Fabric,
Plasma, and zkSync) need to reform a new consortium or transform
states between DApps. While, CAPER, cross-chain swap and deal
use specially designed protocols to ensure the atomic transaction
commit of cross-app transactions within a bounded time.

Our work is also related to TEE-based blockchains. For instance,
Teechain [42] uses TEE to secure the payment network. [21] uses
TEE to improve the efficiency of BFT consensus protocol. Slim-
Chain [62] designs a stateless chain by using the TEE to decou-
ple transaction execution and ordering, reducing the computation
and storage bottleneck of the L1 validators. Although a stateless
chain also executes transactions off-chain, each execution result
still needs to be serialized by every validator which does not relieve
the consensus bottleneck. Differently, an L2 architecture scales the
system by improving the block space utilization. In addition, none
of them focus on our motivation scenario, providing three features
simultaneously. While [14] relieve the TEE rollback attack in BFT
consensus-based systems only, which does not fit in our scenario
where DApps can choose arbitrary consensus mechanisms.

In summary, in existing systems, DApps cannot share states
flexibly with high throughput. Meanwhile, it lacks user privacy
protection from malicious L2 nodes. Also, TEE-based chains cannot
withstand the rollback attack well to retain transaction execution
and order security. L2chain aims to address all of these issues.

3 L2CHAIN OVERVIEW

In this section, we first introduce our design goals, challenges and
threat model. Then we provide an overview of the L2chain.

3.1 Design Goals and Challenges
We summarize our design goals with their technique challenges:

e To achieve high performance (3 goals):
(1) Batch-based Layer-2 Processing: Transactions are processed
in batches in an L2 network with execution results on-chain.
(2) Balanced Storage: L1 validators only maintain cryptogra-
phy digests of states to validate transactions execution results.
Meanwhile, L2 executors only maintain states that they need.
(3) Parallel Transaction Processing: DApp transactions without
dependency on each other can be processed in parallel.

e To achieve high confidentiality (1 goal):
(4) Confidential Transaction Execution: DApp transactions and
private data are executed and maintained off-chain by related

L2 executors where L1 chain only records the state digest for
integrity check. Meanwhile, DApp users can invoke confiden-
tial transactions, which even prevents DApp executors from
detecting its specific operations on states.
e To achieve high security (1 goal):

(5) Secure Off-chain Execution: Every L2 executors can correctly
execute a transaction batch in a predetermined order to guar-
antee system security and withstand the rollback attack.

Threat Model: Note that nodes in both layers of L2chain may
perform maliciously. Here, we introduce our threat model.

Malicious Layer-1 Validators: As the maintainer of the ledger
recording system state digest, a validator may be crash or malicious
to subvert the ledger consistency. Thus, L2chain inherits existing
blockchain design with consensus protocols to withstand malicious
validators. Moreover, as validators only process state digests, no
private information is leaked to validators.

Malicious Layer-2 Executors: There are two malicious behav-

iors: 1) deviating from the SLAs (executing wrong codes) to propose
incorrect results poisoning the on-chain digest. 2) do not follow
the correct order to execute transactions (i.e., rollback attack), caus-
ing L1 and L2 state inconsistency and breaking the user privacy
(as illustrated in Sec. 2.1). Existing designs cannot prevent such
malicious L2 executors, which is our primary effort.
Challenges: To achieve our design goals, we face three challenges.
Firstly, L1 validators no longer have system states and actual L2
transaction contents. Thus, when DApps parallelly propose execu-
tion results of transaction batches, it is challenging for validators to
resolve the update contention on the on-chain state digest where
potential conflict may exist. Secondly, to keep transactions private
from both L1 and L2 nodes, as shown in Sec. 2.1, it is challenging to
overcome the rollback attack, breaking the confidentiality guaran-
tee even with an execution black box (e.g., TEE). The third challenge
is ensuring state consistency between L1 and L2 networks. Because
transactions are only executed by involved DApps in an L2 network,
it is challenging to synchronize the transaction execution order in
both L1 and L2 networks to produce consistent states.

3.2 Current Limitations

In this section, we analyze the limitations of the current L2 archi-
tecture and propose our solution roadmap.

Current L2-based solution would be: 1) Executors obtain the

latest L1 states and an L2 transaction batch; 2) Order and execute
the batch off-chain with encrypted inputs in a TEE to update states
with an execution proof. 3) Writes an L1 transaction, stipulating
that the result can only be committed if no intermediate update to
involved states. However, two aspects limit this solution:
Aspect 1: Space Cost and Data Contention. Most L2 systems
accumulate states into a Merkle Patricia Trie (MPT) [61] shown
in Fig. 2 where an extension or branch node records an address
prefix, indexing to states, and a leaf node stores the state value.
Meanwhile, each node contains a hash value of its serialized child
node hashes. Each L1 block has an MPT root, acting as the state
digest. L1 validators maintain the digest in two ways:

Stateful validators (with high space cost) to store all states (en-
crypted if privacy is required) and construct the latest world state

990

digest for each block. Thus, in step 3, L2 executors must include pre-
vious and updated values of each affected state in an L1 transaction
for validators to further process, exposing high space costs. With
a limited block capacity, the throughput improvement is marginal
compared with a pure L1 chain. Because due to the consensus bottle-
neck restricting committed blocks per second, the more committed
transactions in a block, the higher the throughput is.

Stateless validators (exposing high data contention) to stores the
latest digest only [11, 12, 28, 62]. Executors process L2 batches and
include the updated digest in a succinct L1 transaction, dramati-
cally improving block space utilization. However, widely used MPT
accumulators can cause high data contention on the digest (MPT
root) and force processing L2 batches serially. For example, in Fig. 2,
states with values v; -~ v3 belong to DApps A; ~ A3 respectively.
When updating v1, to obtain updated MPT root, A; executors re-
quire ng’s latest hash. Thus, A1 and Ay cannot independently access
ns and ne in parallel which will produce two conflicting roots.

For high performance, an ideal way is to remain validators state-
less and reduce the state digest contention. Our idea is to organize
states in an RSA accumulator and let executors proactively split the
digest of affected states in an L2 batch from the world state digest,
then merge the updated digest back after processing. We call it split-
execute-merge (SEM) and detail in Sec. 4 with the optimization to
minimize the RSA witness generation cost for executors in Sec. 5.

System States

h(ny) = h(a3f]h(nz)) Extension Node

Key Value Key: a3f
23702405 " I Branch Node l
23fef206 v n, ‘ h(nz) = h(0]h(n3)|e|h(ns)) Leaf Node
23102602 vs ofifz]. elf
h(ny) = h(2|h(ns)|f|h(ne))
e | h(13) = h(2602[3) *Tolal2].]elrf
Key:2602 vy —

\
h(ns) = h(206[v;)
Key: 206

h(ns) = h(405|v)

ne
Key: 405 2

n
5 v,

Figure 2: An Example of the Merkle Patricia Trie

Aspect 2: Uncontrollable Execution Order. The more critical
problem is that the executor can execute user transactions without
any audit or restriction. Existing L2 solutions follow the Order-
Execute-Validate (OEV) processing model to order transactions
on-chain first and let replicas execute and validate results to update
local states. However, there is no strict restriction to prevent execu-
tors from deviating from the protocol in the execution phase. As
described in Sec. 2.1, a malicious executor can replay the execution
based on the same input states with uncommitted artifact transac-
tions in an arbitrary order to detect the TEE side information. Such
a rollback attack can easily break transaction privacy.

To overcome this issue, based on the SEM architecture, we pro-
pose two-step execution in Sec. 6 to first determine input states
and finalize the transaction order on the L1 chain, then restrict an
executor can only execute ordered transactions in a TEE.

3.3 System Overview

Fig. 3 shows the basic architecture of the L2chain.

Layer-1 blockchain. As the fundamental part of L2chain, an L1
blockchain maintains the authentication of system states shared
by DApps built upon the chain. In addition, L1 validators maintain
the chain ledger by appending blocks with L1 transactions through
consensus protocols. We adopt the account-based model [61] where

each state is an address-value pair. In the rest of paper, we use S; to
denote a state address and S;.v to be its value. We remain L1 chain to
be stateless and organize states into an RSA accumulator introduced
in Sec. 2.4 with its digest recorded on-chain. Compared with the
MPT, the RSA accumulator eliminates the unnecessary structural
information of the data and can be easily divided into multiple ho-
mogeneous accumulators of state subsets. Specifically, given a state
set S, forall S; € S, we use a hash-to-prime function Hy, () to convert
the address-value pair {S;, S;.v} into a prime number and add it
into the RSA accumulator with digest D = gl1vsies Hp ({5::5i-0})

a Example Smart Contract of DApp-3)
contract DApp3 {
mapping(address => string) public
function stateChange (address addr){...}
function verifyL.2Consensus (bytes32 sigs) {...} Contract TRN, | ;
) - pocihoyidivtors 3 SN

M. [Layer-1transactions 1
N

"_4 Split TXN, | |Merge TXN, |1 '~
17 1

Layer-2 Decentralized Applications (DApps)
intra DApp TXN, intra DApp TXN, intra DApp TXN,
inter DApp TXN,
D,

inter DApp TXN, inter DApp TXN,
D. DA

App-1 Executors

pp-2 Executors App-3 Executors/

Figure 3: L2chain System Architecture

Layer-2 decentralized applications. The L2 network consists
of multiple DApps established by deploying smart contracts with
service-level agreements (SLAs) on-chain by L1 transactions (we do
not specially discuss the DApp initialization transaction in the rest
of the paper for concise). In particular, SLAs stipulate the business
logic and which on-chain states can be accessed or updated by a
DApp. Besides, the contract also records what consensus protocols
to use and how to verify the consensus result!, represented by
executable codes and exposing as a contract ABI, for specified intra-
and inter- DApp operations. Meanwhile, each L2 DApp executor
equips with TEE-enabled CPUs and maintains (encrypted in privacy
protection mode) state values that the executor can access.

Layer-1 and Layer-2 Transactions. We divide transactions into
L1 and L2 based on where they are processed. We first define the
L2 DApp transaction generated by DApp users, whose processing
throughput and latency are the main criteria of the system.

Definition 3.1. Layer-2 DApp transaction is denoted by a tuple
tx = (addrs, op, o) where addrs represents input state addresses.
op is the operation on the inputs and o is the initiator signature.

A DApp transaction can be intra- or inter- DApp, depending
on whether the read/write sets and involved executors are within
one DApp or across multiple DApps. Compared with intra-DApp
transactions which can be directly processed within a DApp, pro-
cessing inter-DApp transactions has two distinct steps. @ Deploy
cross-app SLAs on the L1 chain. To enable a new paradigm of
inter-DApp transactions, new SLAs must be registered on the L1
chain where involved DApps jointly establish a smart contract,
stipulating which states can be accessed by each DApp and what is
the L2 network consensus protocol, etc.. @ Execute inter-DApp
transactions in the L2 network. We detail the differences between
the intra- and inter-DApp transaction execution in Sec. 6.

The execution results and corresponding correctness proofs of
off-chain processed L2 transaction are collected in L1 transactions

!E.g., for communication-based protocols, it is to verify the participants’ signatures.

991

for L1 validators to update the blockchain ledger. Specifically, L1
transactions are categorized into split and merge transactions to
support our SEM workflow which will be detailed in Sec. 4.

Hspui | Hmerge T H

o '

———————————————————————— m H

| Addresses: Sy L N MKT MKT Block hash: Buasn ! ! (optional) :

. State Digest: Dy P mer | | tXier State Digest: Dr_| ;|| DApp |

‘ Me i : | contract |

1 RSA witness: w | Split ge Split TXN hash: [1] H

:wr J ion |

. 1 Transaction Transaction \, H(txD) | Etra"FaCt‘”".

1| TXNs Merkle Root: Tyoo¢ |1 . TeE signaturer |1| + field !

T — Actual contents of red fields are b e |

! |_TEE signature: gz sim |1 TTEE ex: 1| e !
,,,,,,,,,,,,,)

stored off-chain (layer-2)

Figure 4: Layer-1 Blockchain Structure

Layer-1 Blockchain Structure. Fig. 4 shows the L1 ledger struc-
ture where L1 transactions are organized into linked blocks with a
fixed capacity. Specifically, each block contains the content hash
of itself and its previous block. II¢o, indicates the block has be
consented by L1 validators. For instance, if PoW is the L1 consensus
protocol, Iy is the block nonce and for PBFT/Raft, 1o, is the
aggregated signatures of validators. For L1 split and merge trans-
actions, we organize them into two Merkle trees and record the
Merkle hash root H i, and Hmerge in the block header. In addition,
each block contains an RSA accumulator digest D,,;, representing
the system states S, that are currently NOT accessed by any DApp
(detailed in Sec. 4). Besides, a block also has an optional field for
DApp smart contracts and corresponding deploying transactions.

4 SPLIT-EXECUTE-MERGE WORKFLOW

In this section, we introduce the split-execute-merge (SEM) work-
flow to process transactions in L2chain based on the Fig. 5.

Validators °
Form a layer-1 block with l/_ Order
Split/’ TXNs Layer-1 split/
C
Layer-1 Blockchain . . - - @us TXNs

Layer-2 DApps Obtain B o Execute & generate / ‘ 7 /
1 the Merge TXN | Merge TXN D) si ‘
G Order intra-/inter- DApp TXNs l"”w - ne J\

v 30 oo
I ! ! <A
! :Inter—DApp: Imra-DApp:
! 1Consensus | Consensus ."'
| 1 1 O(Batch T
'
A

! 1
_ Executors __Executors n Executor Example

Local Storage o Collect &
authorize

Layer-2 TXNs

Figure 5: L2chain transaction processing workflow

(1) A DApp user invokes an L2 transaction tx which is authenti-
cated by DApp executors and collected into a batch T.

DApp executors order transaction batch T within involved
DApp nodes through the predetermined consensus protocol.
Then organize T in a Merkle tree with root T4 and obtain an
aggregated signature o7, , on Troo: signed by executors.
DApp executors simulate T in the TEE to obtain its read/write

)

3

@ sets St with a TEE signature H%EE <im» then generate an L1
split transaction txz;)l to split the aigest Dr of St from the
digest D,y (in the latest L1 block) of available L1 states Sg,;.

(4) After txsT ; @ppearing in an L1 block B, L2 executors can obtain

B’s block header Hg with L1 consensus proof I¢op.

(5) With the input of T, T’s read/write set St e,md Hpg, L2 executors
execute T and obtain the updated digest D, of St with the TEE

; T
execution correctness proof TTEE exe'

(6) Executors generate an L1 merge transaction tx/.,,,., containing
the hash of block B with txsTp ;> updated digest D/T and TEE sig-

T

nature 7% .- After validation, L1 validators record txy,,,

TEE_ex
on-chain which completes the process.

In particular, the entire workflow is divided into three phases.
Split-phase (steps 1-3): L2 executors collect L2 transactions
and categorize them into intra- and inter- DApp. In each period,
executors order different transactions separately among involved
DApp executors by running consensus protocols determined in the
on-chain SLAs to form an L2 transaction batch. Ordered batch is
organized into a Merkle tree to preserve the order information, and
involved nodes sign on the tree root as the consensus evidence.
Then, executors simulate the transaction batch in the TEE to obtain
read/write sets with the TEE signature 77.'% EE sim (detailed in Sec. 6),
based on which generate an L1 split transaction defined as follows:

Definition 4.1 (Split transaction). Given an ordered layer-2
transaction batch T organized in a Merkle tree with root Tyoo¢, its
. . . T
read/write set St signed by TEE with 77, E sim’ and the current
available layer-1 states S,,; with digest D, a split transaction

is defined as a tuple txsTPI = (St, D1, wr, Troot> n%EE—sim) where
Dr = HVSieST Hp({sis Si-v}), wr = MemP(Dgqyp, Saol, ST)-

The split transaction thTpl
check: 1) if the DApp has the authority to access states in St ac-
cording to contract SLAs. 2) if D,,; = exp(wr, D), which is the
membership check that St is in the current available state values
Saol (i-e, MemV (D g1, wr, ST)). If all checks pass, validators packs
l‘xsTIJ ; inan L1 block. As discussed in Sec. 2.4, generating the witness
wr for St can be computation and storage costly. Thus, in Sec. 5,
we propose witnesses cache to minimize such an overhead cost.
Conflict elimination: As DApps concurrently process L2 trans-
actions, conflicts may occur in two aspects: @ Across L2 batches
where two L1 split transactions of two L2 batches try to split the
digests consisting of the same state simultaneously. Such conflicts
are resolved by L1 validators. Specifically, in each L1 block, each
available L1 state can only be split once (appear in one split transac-
tion). Otherwise the entire block is invalid, making it nonprofitable
for the validator. Meanwhile, in systems with non-deterministic
L1 consensus protocols, the issue that two validators generate con-
flicting blocks based on the same available L1 states is similar to
the public chain fork problem which can be resolved by the longest
chain rule [49]. @ Within an L2 batch where two L2 transactions
have conflicts (e.g., an inter-DApp transaction reading the state
updating by an intra-DApp transaction). Since each L2 batch is still
serially processed in the L2 network, to order an L2 batch in the
split phase, each transaction is simulated (detailed in Sec. 6) and
consent among related executors to prevent invalid state access.

Execute-phase (steps 4 and 5): After the split transaction txsTp .
of states St has been recorded in an on-chain block B, layer-2
executors can obtain the block header Hg. In particular, the valid
txsT ;s essential to execute transactions, thus we need to check: 1)

is then sent to L1 validators who

the validity of layer-1 consensus proof Il¢op,, indicating B is a valid
on-chain block, where Il;,p, is determined by the layer-1 consensus
protocol (detailed in Sec. 6). 2) If txsTpl is a valid member of B, by

checking the Merkle hash root Hgyy;; of all split transactions in B.

992

We leverage the TEE to execute transactions. Specifically, the in-
puts of TEE are transactions T, the read/write sets St, the split trans-
action txsTp . of T, and the header Hp of block containing thTP I Then

TEE executes transactions to update states in St to S’T (detailed in
Sec. 6). Finally, TEE outputs the digest D/T =11 vSies, Hp ({5, Si.0})

T
TEE_exe’

T are correctly executed to obtain D'T.

Merge-phase (step 6): To complete the SEM process, executors
generate an L1 merge transaction to merge the digests of updated
states in S/T and current L1 available states to make S/T be accessed
by other DApps. We define the merge transaction as follow:

of updated states S'T and a proof IT indicating transactions

Definition 4.2 (Merge transaction). Given the hash By}, of
block containing the split transaction txsTP ; of ordered transactions

T, and the updated digest D7. with its execution correctness proof
a merge transaction is a tuple tx;,., = {Bpashs H(txspl),

} where H(tx!) is the hash of txL .
spl spl

T
”TEEfexe’
r T
DI TEE exe
Layer-1 validators process the merge transaction tx} .. in fol-
lowing steps: 1) obtain txsTp ; from the block with hash By, and
check its integrity through H (thTp 1)- 2) verify 7'[77: EE exe based on
H(txsTpl) and D'T. 3) if all checks pass, pack tx,Tner into a layer-1
block with the updated available states digest D,,; (detailed next).
Aggregate multiple split and merge transactions: A layer-1
block can contain multiple split and merge transactions. Thus, their
effects to the current available states digest D,,; need to be aggre-
gated and recorded in the block. Specifically, for two split transac-
tions tx! andtx? ,avalidator checks if tx! .S; N x2Sy =0.1f
spl spl spl spl
not, it means state contention exists. Thus, one of them is discarded
randomly?. After resolving all state contentions of split transac-
tions, we continue updating D,,; by Dy = ST(D gy, tx;pl.wT)

for each split transactions txipl’ and Dy == exp(Dgyrs txf;ler.D’T)

for each merge transaction tx;,,,. Finally, the validator organizes
split and merge transactions into two Merkle trees with hash roots
Hgpjir and Hmerge separately, and record D,y in the block as well.

Pipeline to reduce the latency: Compared with the pure L1
architecture, SEM introduces an additional on-chain transaction
to commit the L2 batch execution results, which brings extra la-
tency, exacerbating data contention and delaying successive batch
processing. To relieve this issue, we can pipeline the digest split
and merge phases. Specifically, by allowing transmitting merge
transactions in the L2 network, executors can combine the merge
of updated digests with the split of to-be-processed state digest into
one on-chain transaction. We detail in an example as follows:

Example 4.3. Suppose current L1 available digest D,,; repre-
sents states S;-Ss, then executors in DApp; split S;-S3 with di-
gest D1 (now L1 available digest becomes D}wl where D,,; =

exp(D! | D)) and process an L2 batch T; to update S; ~S3 with the

avl’

outcome digest D}. With pipeline, instead of DApp; executors in-
voke an L1 merge transaction tx,ﬁer for D} immediately, they propa-

gate tx,Tnler in the L2 network. Assume now an L2 batch T, of DApp»

ZFor simplicity, in this work, we do not consider concurrent state access.

needs to access S; and Sg. Once receiving tx,T,}er, DApp; executors
can recover the latest L1 available digest Drzwl exp(D} D)

avl’

and generate a split transaction txsT;Jl for S; and Sg. Finally, DAppa

executors invoke one L1 transaction, combining tx,T,}e, and txsT;J I

5 WITNESSES CACHE AND OPTIMIZATION

As we discussed in Sec. 4, given the current available states S,,;
with the digest D,,;, to process a transaction batch T ,accessing
states St, layer-2 executors needs to provide the witness wr
MemP(D g1, Saors ST) Which is the membership proof of St € Sy
However, existing witness generation methods cannot achieve high
efficiency in both computation and storage.

Specifically, one way to generate wr is to reconstruct the di-
gest of states in S, — St (e, gHVSiE(Savl‘ST)HP({si’s"'v})). This
method not only breaks the privacy where executors need to keep
all address-value pairs, including states without the access permis-
sions, but also has high computation cost where exponentiation
operations are proportional to the number of system states.

The other way is to pre-compute and cache the membership wit-

ness w; = Dl/HP({Si’Si'U}) based on the latest D,,; for each state
Si and the wr is computed by recursively performing the Shamir’s
Trick for all w; where S; € St (i.e, VS; € Sy, wr = ST(wr, w;)).
However, caching witness for every state is storage-costly. What’s
worse, every time D,,; changes due to a newly committed L1 block,
all witnesses need to update which is computationally heavy. To
reduce the overhead cost, we introduce the witnesses cache mecha-
nism for L2 executors in L2chain.

5.1 Witness Cache

Our basic idea is to let DApp executors to individually partition
their accessible system states into a constant number of groups
based on their access frequency f; (e.g., times per block) to each
state S;. For each group of states, executor maintains a witness,
which is an integer in the RSA group. For a group of states S” with
witness wg, the witness wi/of each individual state S; € S’ can be
obtained by w; wgvsjes ’SﬁtsiHP(Sj). By doing so, the cached
witnesses can have bounded storage and update costs. We then
formally define the witness cache as follows:

Definition 5.1 (Witness Cache). We partition system states into
7 groups denoted by C; (i € [1, r]) where 7 is an executor-defined
constant and the index i denotes the ascending order of the group

cardinality. Given the digest D, of the current available states, the
1/Mlys;ec; Hp (Sj)

executor caches a witness wc, = ol

for each group.

Update Witnesses. To update cached witnesses after D,,; changes

due to a newly appended L1 block, we first deal with L1 split trans-

actions, splitting St with digest Dr and witness wr from S,,;:

(1) For a cache group C; where C; () St = 0, the updated witness
is computed as w¢, = ST(wc,, wr).

(2) For a cache group C; where C; (St =S’ # 0, the updated wit-

Hvs,-es’Hp({Si,Si-ﬂ})’ wr).

Then we deal with the merging of St with digest Dt to S,,;.

ness is computed as we, = ST((wc,)

(1) For a cache group C; where C; () St = 0, the updated witness
is computed as wc, = exp(wc,, D1).

993

(2) For a cache group C; where C; (St = S’ # 0, the updated wit-
ness is computed as we, = exp(wc;, D1 /Iys,es' Hp ({S, Si.0})).
Note that, the lazy loading strategy can also prevent frequent
cache updates where executors aggregate updated digests and wit-
nesses in each block and refresh a witness cache only when accessed.
Here we provide a concrete example of the witness cache:

Table 1: Example of states with access frequencies (/block).

51:0.3 52:0‘2 5320.1 54:0.5 55:0.3 5620.9 5720 5820.5
SQ:OAS 51020.3 51120 51220.1 51320 51420 515:0 51520.6
I - - R -
Witness p/ Tli-y Hp((SuSev)) pY Mims Ho((SeSivh) 1/ Tlizg Hp((SiSiv)) Dl/l‘l.’ﬁﬂﬂp((s.-:i.v))

avl avl avl avl
State
St S2 S3 Si S5 S¢ S; Sg Sg Sio Si1 Siz Siz Sia Sis Sie

Content

Figure 6: A feasible witness cache organization

Example 5.2. Table 1 shows the access frequencies to states S;
to S16 of a DApp executor who sets 7 = 4. A feasible cache organi-
zation is shown in Fig. 6. Suppose currently all states are available
and D,y = gHngP({Si’S"‘“}). Assume a new layer-1 block, contain-
ing a split transaction thT ; Where thTpl.DT = Hp({S1,S51.0}) and
1/Hp ({S1,51.0})

T —
tx" wr = Daul

spl”
executor can update the cache by: 1) for C1, we, = (wc,)HP({S“S1 o},
2) for C; in Cy ~ Cy, we, = ST(we,, Dorp(150512))
merge transaction tx.,,, with the updated digest D7 of S; is on-

D/T_

, splits S1 from the available states. The

). Later, a

chain. Executor updates the cache for all C; by: we, = (wc,) EXmer-

5.2 Witness Cache Optimization

We now consider the optimization of witness cache. Specifically,
while the witness storage and update costs are bounded by the
cache group count 7, the cache organization can affect the average
witness generation cost. Because, each executor has different ac-
cess frequencies to each state. Thus, in this subsection, we define
the witness cache optimization problem for each individual execu-
tor to organize their local cache to minimize the average witness
generation cost when generating split transactions.
Average witness generation cost is measured by the summation
of the executor access frequency to each state times the number of
required exponentiation operations to generate the membership
witness for each state (i.e., cache group cardinality minus one).
For instance, in Example 5.2, to generate the membership witness
for 51, the executor needs to compute (wc,)HP({SZ’SZ'”} VHp ({53.55.03)
with two exponentiation operations, determined by |C1| — 1. Thus,
the average witness generation cost of the executor is computed as
2%(03+0.2+0.1)+3*(0.54+03+09+0)+3=(0.5+0.8+0.3+
0)+4%(0.1+0+0+0+0.6) =13.9. Our goal is to minimize such a
cost. Thus, we define the witness cache optimization problem as:

Definition 5.3 (Witness cache optimization problem.). Given
the executor’s access frequency f; to each state S;, the number of
witness cache groups 7, our goal is to determine a partition of states
into 7 caches such that to minimize ».7_, (|Ci| — 1) - szjeci fi-

Optimal cache group count 7. Before giving the solution to
the optimization problem, we first discuss how to determine the

optimal cache group count 7. Suppose there are n accessible states
for an executor and the cost of adding one state into the digest is a.
Without the witness cache, the average time cost to generate the
RSA membership witness for states is cost; = a(n — 1) 3] fi. On the
other hand, with 7 witness caches, the amortized witness generation
cost can be bounded by a(% — 1) ¥ f;. Meanwhile, suppose the cost
of updating one witness based on one on-chain block is f, the
average cache update cost is fi7. In total, the average cost of using
the witness cache is cost = a(2 — 1) ¥ fi + fr. Thus, to find the
optimial cache group count is to maximize cost; — costy = a(n —
)X fi—a(%-1) X f; = pr which is achieved when 7 = mTzﬁ.

Dynamic programming-based algorithm. To solve the wit-
ness cache optimization problem, the basic idea is to sort states
based on the access frequency in descending order and use dynamic
programming to determine the optimal partition points to form
cache groups. We first propose a lemma.

LEMMA 5.4. For the optimal partition of the ordered witness caches
Ci(i € [1,7]), VICi| < |Cjl, the smallest state access frequency in C;
is greater than or equal to the highest frequency in C;.

Due to limited space, we refer the proof to our technical re-
port [63]. With this lemma, we propose a dynamic programming-
based algorithm to optimize the cache organization:

Algorithm details: As shown in Algo. 1, we sort states based
on access frequencies. Then we create a 3D (i, j, k) array with co
as the default value (line 1). These dimensions represent: i: the
state list position in making partition decision, j: cardinality of
the largest cache group, k: the number of unformed caches. Values
of the dimension k = 0 are initialized in line 3, calculated by the
witness generation cost of the last cache group. Then, we recursively
compute all entries starting from the dimension (0, j, k) and find
the minimum value as the optimal objective value (lines 5-9). Each
time, we compare the cost to decide whether to form a new cache
group including states from i to i + j. Finally, OutputPartition()
can produce the optimal partition based on the computed table
t(i, j, k). Due to space limit, we omit the details.

Complexity analysis. To sort n states based on the access fre-
quency, the time complexity is O(nlogn). To compute all entries
of the DP table, it takes O(n?7). Thus, the overall time complexity
of Algo. 1 is O(n?7).

Dynamic change of access frequencies. Since the access fre-
quency of executors to each state can change dramatically after
a period, we need to re-organize the cache to minimize the av-
erage witness generation cost as well. To handle the dynamic is-
sue, for each cache group C; order by the cardinality in accend-
ing order, we record its cardinality |C;|, highest high(C;) and low-
est low(C;) access frequencies of its inside states as well as the
average access frequency f of all states. When access frequen-
cies of states S* change, we first reassign S* to caches such that
VS;i € Cj, fi € [low(Cj), high(Cj)] holds. Then, starting from C; to
Cr, for each C;, we continue reassigning the states in C; with lowest
access frequency to Ciy1 until VS € Ci, (ICi|-1) X fj < Z(2-1)f.
The time complexity of such method is O(mrlog %) where m is
the number of updated access frequencies, which is far less than
repartition all caches from scratch. Similar to the analysis in the
optimal cache group count selection, with « as the cost of adding

994

one element into the accumulator, such reassignment strategy en-
sures that the upper bound of the average witness generation cost
is a(2 - 1) ¥ fi which is the exception cost by using the cache
mechanism. Meanwhile, executors can also choose to rerun the
Algo. 1 periodically to seek for the optimal cache organization.

Algorithm 1: DP-based cache organization optimization

Input :State addresses S;,i € [1, n] with access frequency
fi, cache group count 7.
1 Sort S; based on f; in the descending order;
2 t(i, j, k) « initialize a n X n X 7 3D array with co by default;
3 forie [1,n],j€[1,n] do
| tj,0) = (n =i = 1) Dvie[(n-i)n] fi5
for k € [1,7] do
6 for i fromn —2to0 do
for j from ﬁ to 0 do
8 partition = t(i+j, j, k-1) + (j — 1) - 2]
9 non_partition = t(i, j+1, k);

'S

=

=

i+j
o s

t(i, j, k) = min(partition, non_partition);

opt-cost = find minimum value in ¢(0, j, 7), Vj € [1,n];
OutputPartition();

-
oy

-
1Y)

6 LAYER-2 TWO-STEP EXECUTION

In this section, we detail the two-step L2 DApp transaction exe-
cution in the SEM process. It aims to prevent the rollback attack,
resulting in transaction content leakage and state inconsistency.
Basic idea: As described in Sec. 3.2, we divide the execution into
two steps. The first step is simulation in the split-phase. Since we
target an account-based model where general-purpose transactions
can affect arbitrary states and be encrypted for privacy, their read-
/write sets cannot be known in advance. Meanwhile, we need to
enforce TEEs only executing ordered transactions based on com-
mitted input states to prevent the rollback attack. Thus, we use the
simulation step to obtain read/write sets and finalize the order of
transaction batch in the L2 network to produce a corresponding
L1 split transaction ¢xL,,. Once txJ,, is committed on-chain, the
execute-phase is for executors to execute T to obtain the result.

Algorithm 2: Transaction simulation (in TEE)

:Ordered transactions T with its Merkle root Tz
and aggregated signature oT,40¢, local states S.
if verify(Troot, 0Troot) failed then abort;

if order_check(T, Tyo0r) failed then abort;

St « simulate(T, S);

4 Dr,—~Dr « witness_generation(St); // see Sec. 5

nYTﬂEEisim «— TEE.sign(< Troot, ST, DT, D1 >);

return < St, Dr,

Input

-

)

w

>

o

T
TEE_sim

Step 1: Simulation. As introduced in Sec. 4, during the split-phase,
involved DApp executors order an L2 transaction batch T by run-
ning the predetermined L2 consensus protocol and organize T into
a Merkle tree with root Tyoo¢. Algo. 2 shows the simulation step
where TEE first verifies the input validity (lines 1-2) by checking:

1) if T is consented by related executors through the aggregated
signature 07,00¢; 2) if input T is in a correct order by reconstructing
the transaction Merkle tree and check if the produced root matches
the signed root Tyo0;. Then, TEE simulates T based on the local
states to obtain the state addresses St to be read/wrote (line 3).
Next, the executor generates the digest D7 of St and the witness
—Dr, indicating St is a valid member of current available L1 states
(line 4). Note that, line 4 can be done outside the TEE. Finally, TEE
signs on the tuple of < Tyoos, ST, D1, =DT > as the authority proof.
Step 2: Execution After the split transaction txsTp ; of T is commit-

ted on-chain in a block with header Hg, executors can execute T
to update states. As shown in Algo. 3, executors first verifies the
input validity (lines 1-4) by checking: 1) if the block B with content
Beontent is valid through IT¢op. For instance, Hg contains three hash
values H(B), H(B’) and H(Bcontent) where B’ is B’s previous block.
In a PoW-based L1 chain, Hp also contains the PoW difficulty dif f
and a nonce, regarded as the II;y,, provided by the validator. TEE
verifies I1op by checking if H(B)=H(H(B")|H(Bcontent)| Hcon)) <
dif f. Meanwhile, in a PBFT or Raft-based chain, II¢,, is an aggre-
gated signature signed on Hp by validators which can be directly
verified in a TEE; 2) if the split transaction thTp . is a valid member
of the block through Merkle branch proof; 3) if T is in a correct
order by the same way in the simulation step. If all checks pass, TEE
executes T on states St € thT . and obtain the updated state digest
D7, (lines 5-6). Finally, TEE signs on the tuple of split transaction

hash and updated digest, proving the execution correctness and the
signature is used to generate a merge transaction.

Algorithm 3: Transaction execution (in TEE)

Input :Ordered transactions T with its split transaction
txsTp ;» and corresponding block header Hp.

[

Meon, Hsplir < Hp; if IIcop, is invalid then abort;

xSTpl,HSplit) failed then abort;

N}

if integrity_check(t
ST, Troot < tprI;
if order_check(T, Tyo0:) failed then abort;
5 St « execute(T, S1);

[Tvs;esy Hp ({SiuSi-0})

©w

'S

6§ Dj—g
; T ’ .
« TEE.sign(< H(txspl)’DT >);

T
ﬂTEE_exe

T
”TEE_exe

return < D’T, >

®

Inter-DApp transactions: As TEE provides a trusted subsystem,
preventing replicas from equivocating, we adopt the hybrid fault
model consensus [10, 20, 39] in the cross-DApp simulation and exe-
cution protocol to process the inter-DApp transaction tx in a batch
T. Fig. 7 is an example with DApps Ag—~Az where Ap and Az have
one executor Eg o (prenominated as the coordinator) and E; o respec-
tively, and A; has three executors E1,0E1,2. @ Prepare: The coordi-
nator sends tx to all involved executors. @ Commit: Each E; j simu-
lates/executes tx based on local values of states S; ; in A; and broad-
casts the tuple <S; ;,D; j,7; j> where Di,j:HVseSi,j Hp({s,s.0}) and
s.v is the original/updated value of s in the simulation/execution
step, and 7; ; is the TEE signature. © Reply: Each E; ; verifies if VA;,
> % executors commit the same S; j and D ;. If so, E; ; replies to
the coordinator and if in the execution step, E; j updates its local

995

states. @ Aggregate: Once the coordinator receives replies from all
DApps, to generate a split/merge transaction, it obtains St=J S; j,
Dr/D%. =[] D j and ﬂlj:EE_sim/HYT"EE_exe by aggregating 7; j in sim-
ulation/execution steps (e.g., Boneh-Lynn-Shacham (BLS) [44], an
aggregation-friendly signature, can be used). Note that, to recover
from a failure coordinator, a view change protocol is required for
others to replace the failure coordinator. Due to the limited space,
we refer more details in [10].

Ao (Eoo) %
Ay (1)

Ay (Eq1)

Ay (Evp)

Az (E2,0) Prepare Commit Reply

Figure 7: Cross-DApp simulation and execution protocol

Security Analysis. Next, we analysis how the two-step execution
mechanism can prevent the rollback attack.

For the Deterministic Layer-1 Consensus (e.g., PBFT/Raft)
where after reaching consensus, no fork from the newly appended
block can be generated anymore, the rollback attack is strictly
prevented. Suppose the batch T has been executed once based on
read/write set St with digest D recorded in an on-chain split trans-
action txsTpl, To obtain a deviated execution result, attackers must

generate another split transaction txsT' with different transactions

pl

(order) T’ but the same set St and digest Dt. There are two cases:

1) If the merge transaction txI of tx! is on-chain, tx! , cannot
mer spl spl

be committed. Because states in St have been updated, resulting in

invalidity to split the same digest D from available L1 state digest
T . . T .

D4y 2) If txp,e, is not on-chain yet, txspl is also invalid. Because

Dr has been split from D,,; and not merged back yet.
For the Non-deterministic Layer-1 Consensus (e.g., PoW),

txsT[;l can exist in a fork block with the same block height as the

block containing txsTp ;- Thus, the rollback attack cannot be strictly
prevented [13]. While, L2chain makes the attacker harder to per-
form such an attack. Because each execution attempt requires the
attacker to generate a valid block containing a split transaction.
Thus, L2chain aligns rollback attack difficulty with possessing vot-
ing resources in a non-deterministic consensus. For states with
many possible values, a rollback attack is as hard as a 51% attack.

Liveness Analysis. We can view liveness issues from the abnor-
mality in two granularity. 1) Abnormal executors: < % executors in
a DApp is abnormal (e.g., slow, deny-of-service or perform mali-
ciously). As TEEs strictly prevent invalid state and digest updates,
they can tolerate crash or Byzantine failures of < % executors in
each DApp. Thus, such a case cannot throttle the system. 2) Ab-
normal DApps: > % executors in a DApp is abnormal. In security
analysis, we demonstrate the hardness of a malicious DApp to sub-
vert the system. However, without any restriction, an abnormal
DApp, (deliberately) delaying the state update and digest merge af-
ter splitting a digest from the L1 chain raises the liveness issue. Thus,
one possible solution is to set a dynamic parameter A, stipulating
that the digest in a split transaction will be invalid (automatically
merged back) after A blocks. Such a A can be dynamically changed
based on the expected processing speed of DApps. Moreover, an L2
incentive mechanism can also help promote decentralized executors
working for a DApp, which is orthogonal to the L2 architecture.

7 EXPERIMENTAL STUDY

In this section, we evaluate L2chain by comparing with the follow-
ing baselines in both permissioned and permissionless scenarios:

e Quorum: a variant of Ethereum with confidentiality by encod-
ing and making the private transactions only visible to related
nodes. Meanwhile, it supports pluggable consensus protocols
with both Raft and IBFT for a permissioned setting and Ethash
(the Ethereum PoW protocol) for a permissionless setting.

o CAPER-based: a cross-DApp permissioned blockchain. We
compare its hierarchical global consensus protocol [4] where
each DApp maintains the ledger in its own view and process
private transactions internally by local consensus protocols.
Meanwhile, the global consensus protocol ensures the global
view consistency and deals with cross-app transactions.

e SlimChain: an off-chain parallel transaction processing sys-
tem where off-chain proposers execute each transaction in
TEEs to update the state digest and on-chain validators aggre-
gate results into blocks.

7.1 Experiment Settings

DApp and workloads. We use the KVStore smart contract of the
BLOCKBENCH [24] macro benchmark as the workload logic of each
DApp. Specifically, it reads/writes the key-value pairs of system
states. We use the YCSB workload [3] with different percentage of
read/write transactions (i.e., read-write with 50% read and write
transactions, read-only and write-only workloads). Meanwhile, to
capture the cross-app transactions, we first uniformly assign state
addresses in the workload to each DApp. Then we randomly group
two read/write operations to form one transaction such that it either
read/write states within one DApp or across two DApps.

System nodes. We control system nodes by the DApp count. Specif-
ically, each DApp has four nodes, referring to executors in L2chain,
proposers (also acting as storage nodes) in SlimChain, and chain
nodes, maintaining the ledger in CAPER and Quorum. For a fair
comparison, we set validators in L2chain and SlimChain with the
same number of DApp nodes. Then, we connect one client to each
DApp to send workloads. In addition, to evaluate L2chain’s fault-
tolerant ability compared with a pure L1 solution, at the beginning
of each block interval, we manually control each node in Quorum
and L2chain to be temporally crash with the probability of ¢.
Consensus protocol. To capture a permissioned setting, we use
Raft consensus protocol to 1) maintain the L1 blockchain ledger
in Quorum and L2chain. 2) achieve local consensus among DApp
nodes of CAPER and L2chain executors. Meanwhile, to capture
a permissionless setting, we use PoW to maintain the blockchain
ledger of Quorum, SlimChain and L2chain while remaining Raft as
the protocol in L2 network of L2chain.

Witness cache. Each L2chain DApp executor maintains the witness
cache proposed in Sec. 5. We vary the parameter of cache group
count 7 according to Table 2 to evaluate the performance in different
settings. Besides, since the witness group is independent from each
other, we use multi-thread (16 by default) to accelerate the witness
generation and witness cache update after processing each L1 block.
Other parameters. As pointed out in [8], block time, indicating
how often to form a new block, does not affect the throughput but
higher time leads to higher latency. Thus, we adopt the default time:

996

1s for Raft and 10s for PoW. Similarly, for on-chain block size and
L2chain batch capacity, larger capacity leads to higher throughput
and latency. Thus, we fix block size and L2 batch capacity to 256,
approximating the average transaction count in Ethereum [2]. In
addition, we fix the overall state count to 22° based on unique
Ethereum addresses [2] and make them available to every DApps.

Table 2: System Parameters
Parameters Values
Number of DApps 4, 8,16, 32
Percentage of cross-app transactions 0%, 20%, 80%, 100%
Number of witness cache group 256, 512, 1024, 2048
Threads to maintain witness caches 4,8, 16, 32
DApp node failure rate ¢ 0%, 10%, 20%, 30%

Metrics and environments. We vary parameters in Table 2 with
default values in bold to evaluate system throughput and latency.
Precisely, throughput measures the number of transactions that
can be finalized on the main blockchain (or the global consensus
is achieved in CAPER) in a unit of time. Meanwhile, latency mea-
sures the breakdown average transaction processing time, including
transaction execution, consensus (with network message propaga-
tion time), and overhead cost which includes transaction encryption
and decryption in Quorum and SlimChain and RSA accumulator
operations (e.g., membership witness generation/verification and
witness cache update) in L2chain. Note that we eliminate the wait-
ing time for transactions to be processed at the DApp node side as
we measure the peak throughput by making the system saturated,
inevitably leading to a long waiting time.

We conduct the experiments on Microsoft Azure with the Stan-
dard_DC16s_v3? machines with 1500 Mbps network bandwidth.

7.2 Experimental Results

Overall Performance. Figures 8, 9 and 10 show the experimental
results where L2chain can always achieve the highest throughput.
In a permissioned setting, compared with CAPER and Raft Quorum
(Quorum-R), Raft L2chain (L2chain-R) improves the throughput by
1.5X to 2.6X and 21.9X to 42.2X, respectively. In a permissionless
setting, PoW L2chain (L2chain-P) can achieve 7.1X to 8.9X and
1.7X to 2.2X higher throughput than PoW Quorum (Quorum-P)
and SlimChain (Slim-P). For the latency, L2chain can save 63% to
75% processing time compared with Raft Quorum. However, due to
the overhead cost of RSA accumulator and cross-DApp consensus,
L2chain exposes higher latency of 2.7X to 3.2X than CAPER, 1.2X
to 1.6X than PoW Quorum, and 1.3X to 1.7X than PoW SlimChain.
Moreover, as shown in Fig. 11b the overhead cost can be reduced by
the multi-thread technique. In addition, we also evaluate L2chain’s
fault tolerance ability by varying the DApp node failure rate and
discuss the trade-offs of L2chain versus an L1 solution. Due to a
limited space, we refer more details in our technical report [63].

Impact of the DApps count. As shown in Fig. 8, the throughput of
all permissioned systems decreases with more DApps. Meanwhile,
the throughput improvement of L2chain increases from 26.8X to
42.2X compared with Raft Quorum, 1.9X to 2.4X compared with
CAPER. While, the latency of L2chain decreases from 75% to 65%
compared with Raft Quorum, 3.2X to 3.0X overhead compared with

3https://docs.microsoft.com/en-us/azure/virtual-machines/dcv3-series

CAPER. It implies L2chain has better scalability in the permissioned
setting. However, the throughput improvement of L2chain com-
pared with PoW Quorum and SlimChain does not have a notable
change. Because the main bottleneck is still the L1 chain PoW pro-
tocol whose performance is not affected by the DApp count.

L2chain-R Slim-P

Quorum-R Quorum-R Quorum-P Consensus
CAPER Quorum-P L2chain-P CAPER Slim-P Execution
I 1500F 13091 1345 o1 L2chain-R L2chain-P Overhead
[=8 1223 293
<1200 _30r s %
= w
2 900r g 203
2 s 664 32016,:7 Y 122 5 15.0
2 600F S8 sor g 137 g2l add: 05
2 <10k 10.2}. 10.7 1) 0.9} 41
= 300 246 239 33 20| 8 58 6 6.9 73
= 0 52| 282l a5 sB2Y 3a 7R aa) o820 0 18. 2.0 2.2 2.4
4 8 16 32 4 8 16 32
(a) Number of DApps (b) Number of DApps
Figure 8: Varying the number of DApps
Quorum-R L2chain-R Slim-p Quorum-R Quorum-P Consensus
CAPER Quorum-P L2chain-P CAPER Slim-p Execution
5 1500F 451 1388 L2chain-R L2chain-P Overhead
[=% 1246
= L 1172 [
:1200 o _.20| 163 6s 172 18.1
S 900t un 15.5 138 2 15.3 e f
2 750 515' 1057 105 107 10
10.8 10.7 .
2 600r 522 s S1o0f =4 19.2 24 &
2 © 5.6 5.8 5.9
= 300 264 257 220 200 8 sp| 3 s 5 Z;
= o sa| 352k s o2h 57 51PE sy L0 o 177 19’ 207 221

0%

20% 80%

100%

0%

20%

80% 100%

(a) % of Cross-app TXNs (b) % of Cross-app TXNs

Figure 9: Varying the percentage of cross-app transactions

Impact of the cross-app transaction percentage. Because CA-
PER and L2chain process cross-app transactions by reaching a local
consensus with Raft among DApps, as shown in Fig. 9, with a
larger cross-app transaction percentage, they have lower through-
put and higher latency due to the raising local consensus costs.
However, PoW Quorum and SlimChain do not distinguish whether
a transaction is cross-app or not. They directly update and record
the on-chain state once. Moreover, compared with CAPER, the
throughput improvement of L2chain increases from 1.5X to 2.6X.
Because every cross-app transaction in CAPER needs to reach a
global consensus once, while L2chain processes DApp transactions
in batches and only achieves global consensus twice (to record split
and merge transactions on the L1 chain) for each batch.

Impact of the workload. Fig. 10 varies the percentage of read-
/write operations in the workload. For read-only workload, all sys-
tems can achieve over 14k tps since there is no consensus cost.
With more write transactions, all system throughput decreases. For
the processing latency, L2chain has a similar consensus cost to
CAPER, PoW-based Quorum and SlimChain. However, L2chain has
10X more overhead cost than Quorum and 8X than SlimChain. The
difference is mainly brought by the usage of the RSA accumulator
in L2chain. It also shows the necessity of the proposed witness
cache mechanism in L2chain to reduce the overhead cost further.
Impact of witness cache group and processing threads counts.
Fig. 11 shows the L2chain overhead cost, consisting of RSA accu-
mulator witness generation (Wit-gen) and witness cache update
(Wit-upd) to process layer-1 split or merge transactions. Specifi-
cally, with more cache groups, the cache update cost increases while
the witness generation cost decreases. Because each witness cache
represents fewer states, reducing the exponential operations to gen-
erate a membership witness for each individual state. As analyzed

997

in Sec. 5.2, the optimal cache group count exists (2° in our experi-
ments) when achieving the balance between two costs. Meanwhile,
as shown in previous experiments, in a permissioned setting, most
of the L2chain latency comes from the overhead cost, which can
affect the throughput dramatically. In contrast, the consensus cost
is still the bottleneck in a permissionless setting. In addition, since
each witness cache is independent, as shown in Fig. 11b, increasing
the processing thread can reduce the overhead cost near-linearly.

Quorum-R L2chain-R Slim-P Quorum-R Quorum-P Consensus
CAPER Quorum-P L2chain-P CAPER Slim-P Execution
—~1n4 L2chain-R L2chain-P 1 Overhead
» 104 [16.8k 16.8k
s 20|
g o M2k k1o 1212 o 167
210%F 756 610 <150 147 17 iy]:,E
5 257 27 g o7, I oa
S o[4Sk 14.0 121 111 @ 10F
g10% 55 ® 56 59
45 9 sk X
= 30.1 g .
19.4 195 23
G 040105040505
read-only read-write write-only read-only read-write write-only
(a) Workloads (b) Workloads

Figure 10: Results of different workloads

3 L2chain-R Wit-upd —4— L2chain-R-tps
L2chain-P 00X Wit-gen —e— L2chain-P-tps

3 L2chain-R Wit-upd —4— L2chain-R-tps
L2chain-P 00X Wit-gen —e— L2chain-P-tps

20, 1500 20,
_— i
@1sf - ’1200\% D15} 1454
B 1900 5 B
§10' 9.9310:83 E_ ElO»
= 1600 @ *
[} 516 52 5 0
3 5f Az d8t 377412 e 1300 g 3 5
0 ZH 29 210 211 0 0 4

(a) Cache group count (b) Number of threads

Figure 11: Varying cache group count and processing thread

8 CONCLUSIONS

In this paper, we design a novel layer-2 blockchain framework
namely L2chain to scale the decentralized applications with the
guarantees of transaction execution confidentiality and order cor-
rectness. We leverage the RSA accumulator and TEE to propose
the split-execute-merge workflow and two-step execution to pro-
cess transactions. Specifically, L2chain maintains the global system
states digest on a layer-1 chain and let layer-2 DApp executors
to split a partial digest of a state subset, then privately execute
transactions in batches to update the digest. We also design the
witness cache and its organization optimization to further reduce
the latency. Extensive experiment results show that L2chain can
achieve 1.5X to 42.2X and 7.1X to 8.9X throughput improvements
in permissioned and permissionless settings respectively.

ACKNOWLEDGMENTS

Lei CHEN is supported by the National Key Research and Develop-
ment Program of China (2022YFE0200500), National Key Research
and Development Program of China Grant No. 2018 AAA0101100,
the Hong Kong RGC GRF Project 16213620, CRF Project C6030-18G,
C1031-18G, C5026-18G, AOE Project AoE/E-603/18, RIF Project
R6020-19, Theme-based project TRS T41-603/20R, China NSFC No.
61729201, Guangdong Basic and Applied Basic Research Founda-
tion 2019B151530001, Hong Kong ITC ITF grants PRP/004/22FX
, Microsoft Research Asia Collaborative Research Grant, HKUST-
Webank joint research lab grants and HKUST Global Strategic Part-
nership Fund (2021 SJTU-HKUST).

REFERENCES

[10]

[11]

[12]

[13]

[14]

[17]

(18]
[19]

[20]

[21]

[22

[23]

[24]

[25]

[26]

2018. Istanbul BFT. https://github.com/ethereum/EIPs/issues/650.

2022. Ethereum Charts and Statistics. https://etherscan.io/charts.

2022. YCSB. https://github.com/brianfrankcooper/YCSB.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Caper: a
cross-application permissioned blockchain. Proceedings of the VLDB Endowment
12, 11 (2019), 1385-1398.

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. ACM New York, NY, USA.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the thirteenth EuroSys
conference. 1-15.

Nathan Aw. 2018. Private Data Collections: A High-Level Overview.
https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-
high-level-overview.

Arati Baliga, I Subhod, Pandurang Kamat, and Siddhartha Chatterjee. 2018.
Performance evaluation of the quorum blockchain platform. arXiv preprint
arXiv:1809.03421 (2018).

Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-
Corry, Sarah Meiklejohn, and George Danezis. 2017. Consensus in the age of
blockchains. arXiv preprint arXiv:1711.03936 (2017).

Johannes Behl, Tobias Distler, and Riidiger Kapitza. 2017. Hybrids on steroids:
SGX-based high performance BFT. In Proceedings of the Twelfth European Con-
ference on Computer Systems. 222-237.

Dan Boneh, Benedikt Biinz, and Ben Fisch. 2019. Batching techniques for accumu-
lators with applications to iops and stateless blockchains. In Annual International
Cryptology Conference. Springer.

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. 2020. Zexe: Enabling decentralized private computation. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE.

Marcus Brandenburger, Christian Cachin, Ridiger Kapitza, and Alessandro
Sorniotti. 2018. Blockchain and trusted computing: Problems, pitfalls, and a
solution for hyperledger fabric. arXiv preprint arXiv:1805.08541 (2018).

Marcus Brandenburger, Christian Cachin, Ridiger Kapitza, and Alessandro
Sorniotti. 2019. Trusted computing meets blockchain: Rollback attacks and
a solution for hyperledger fabric. In 2019 38th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 324-32409.

Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph.D. Dissertation. University of Guelph.

V. Buterin. 2018. On-Chain Scaling to Potentially 500 TX/SEC Through Mass TX
Validation. https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-
throughmass- tx-validation/3477.

Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials. In Annual international
cryptology conference. Springer, 61-76.

Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In
OSDI, Vol. 99. 173-186.

J. P. M. Chase. 2018. Quorum: A permissioned implementation of ethereum.
https://github.com/jpmorganchase/quorum.

Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.
Attested append-only memory: Making adversaries stick to their word. ACM
SIGOPS Operating Systems Review 41, 6 (2007), 189-204.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards scaling blockchain systems via sharding. In
Proceedings of the 2019 international conference on management of data. 123-140.
Christian Decker and Roger Wattenhofer. 2015. A fast and scalable payment
network with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems. Springer, 3-18.

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and
Ji Wang. 2018. Untangling blockchain: A data processing view of blockchain
systems. IEEE transactions on knowledge and data engineering 30, 7 (2018), 1366
1385.

Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-
Lee Tan. 2017. Blockbench: A framework for analyzing private blockchains. In
Proceedings of the 2017 ACM International Conference on Management of Data.
1085-1100.

Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2017.
PERUN: Virtual Payment Channels over Cryptographic Currencies. IACR Cryptol.
ePrint Arch. 2017 (2017), 635.

Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and
Ravi Ramamurthy. 2019. BlockchainDB: A shared database on blockchains.
Proceedings of the VLDB Endowment 12, 11 (2019), 1597-1609.

998

[27]

(28]
[29]

[30

[42

[43

[44]

[45

[46]

K. Floersch. 2019. Ethereum Smart Contracts in L2: Optimistic Rollup.
https://medium.com/plasma-group/ethereum-smartcontracts-in-12-optimistic-
rollup-2c1cef2ec537.

Alex Gluchowski. 2019. Zk rollup: scaling with zero-knowledge proofs. https:
//pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf.
G. Greenspan. 2015. Multichain private blockchain-white paper. http://www.
multichain.com/download/MultiChain- White-Paper.pdf.

Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and
Arthur Gervais. 2020. Sok: Layer-two blockchain protocols. In International
Conference on Financial Cryptography and Data Security. Springer, 201-226.
Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
Sbft: a scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/I-
FIP international conference on dependable systems and networks (DSN). IEEE,
568-580.

Siyuan Han, Zihuan Xu, Yuxiang Zeng, and Lei Chen. 2019. Fluid: A blockchain
based framework for crowdsourcing. In Proceedings of the 2019 international
conference on management of data. 1921-1924.

Mike Hearn. 2013. Micro-payment channels implementation now in bitcoinj.
Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 2018
ACM symposium on principles of distributed computing. 245-254.

Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2021. Cross-chain deals and
adversarial commerce. The VLDB Journal (2021), 1-19.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using innovative instructions to create trustworthy software
solutions. HASP@ ISCA 11, 10.1145 (2013), 2487726-2488370.

Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and
Arthur Gervais. 2018. Commit-chains: Secure, scalable off-chain payments.
Cryptology ePrint Archive, Report 2018/642 (2018).

Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79-103.
Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. 2009. TrInc:
Small Trusted Hardware for Large Distributed Systems.. In NSDI, Vol. 9. 1-14.
Jiangtao Li, Ninghui Li, and Rui Xue. 2007. Universal accumulators with efficient
nonmembership proofs. In International Conference on Applied Cryptography and
Network Security. Springer, 253-269.

Ming Li, Jian Weng, Anjia Yang, Wei Lu, Yue Zhang, Lin Hou, Jia-Nan Liu, Yang
Xiang, and Robert H Deng. 2018. Crowdbc: A blockchain-based decentralized
framework for crowdsourcing. IEEE Transactions on Parallel and Distributed
Systems 30, 6 (2018), 1251-1266.

Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Giin Sirer, and Pe-
ter Pietzuch. 2019. Teechain: a secure payment network with asynchronous
blockchain access. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 63-79.

Yunlong Lu, Xiaochong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.
2019. Blockchain and federated learning for privacy-preserved data sharing in
industrial IoT. IEEE Transactions on Industrial Informatics 16, 6 (2019), 4177-4186.
Ben Lynn. 2007. On the implementation of pairing-based cryptosystems. Ph.D.
Dissertation. Stanford University Stanford.

matter labs. 2019. zkSync: scaling and privacy engine for Ethereum. https:
//zksync.io.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. Hasp@ isca 10, 1 (2013).

Matthias Mettler. 2016. Blockchain technology in healthcare: The revolution
starts here. In 2016 IEEE 18th international conference on e-health networking,
applications and services (Healthcom). IEEE, 1-3.

Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. 2017.
Sprites: Payment channels that go faster than lightning. CoRR, abs/1702.05812
(2017).

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

Raiden network homepage. 2019. Raiden network.

Diego Ongaro and John Ousterhout. 2014. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference (Usenix ATC
14). 305-319.

Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. 2020. Scaling
verifiable computation using efficient set accumulators. In 29th USENIX Security
Symposium (USENIX Security 20). 2075-2092.

Sandro Pinto and Nuno Santos. 2019. Demystifying arm trustzone: A compre-
hensive survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1-36.

Joseph Poon and Vitalik Buterin. 2017. Plasma: Scalable autonomous smart
contracts. White paper (2017), 1-47.

Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable
off-chain instant payments.

I Grigg R. G. Brown, J. Carlyle and M. Hearn. 2016. Corda: An introduction.
https://docs.corda.net/en/pdf/corda-introductory-whitepaper.pdf.

Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted execution environment: what it is, and what it is not. In 2015 IEEE

https://github.com/ethereum/EIPs/issues/650
https://etherscan.io/charts
https://github.com/brianfrankcooper/YCSB
https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-high-level-overview
https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-high-level-overview
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-throughmass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-throughmass-tx-validation/3477
https://github.com/jpmorganchase/quorum
https://medium.com/plasma-group/ethereum-smartcontracts-in-l2-optimistic-rollup-2c1cef2ec537
https://medium.com/plasma-group/ethereum-smartcontracts-in-l2-optimistic-rollup-2c1cef2ec537
https: //pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
https: //pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
http://www.multichain.com/download/MultiChain-White-Paper. pdf
http://www.multichain.com/download/MultiChain-White-Paper. pdf
https://zksync.io
https://zksync.io
https://docs.corda.net/en/pdf/corda-introductory-whitepaper.pdf

[58]
[59]

[60]

[61]

Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 57-64.

Adi Shamir. 1983. On the generation of cryptographically strong pseudorandom
sequences. ACM Transactions on Computer Systems (TOCS) 1, 1 (1983), 38-44.
Philip Treleaven, Richard Gendal Brown, and Danny Yang. 2017. Blockchain
technology in finance. Computer 50, 9 (2017), 14-17.

Benjamin Wesolowski. 2019. Efficient verifiable delay functions. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 379-407.

Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

999

[62]

[63]

[64]

Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. 2021. SlimChain: scaling
blockchain transactions through off-chain storage and parallel processing. Pro-
ceedings of the VLDB Endowment 14, 11 (2021), 2314-2326.

Zihuan Xu and Lei Chen. 2022. L2chain, Towards High-performance, Confi-
dential and Secure Layer-2 Blockchain Solution for Decentralized Applications
(Technical Report). https://github.com/xzhflying/L2chain/blob/main/technical
report.pdf.

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2018. HotStuff: BFT consensus in the lens of blockchain. arXiv preprint
arXiv:1803.05069 (2018).

https://github.com/xzhflying/L2chain/blob/main/technical_report.pdf
https://github.com/xzhflying/L2chain/blob/main/technical_report.pdf

