
L2chain: Towards High-performance, Confidential and Secure
Layer-2 Blockchain Solution for Decentralized Applications

Zihuan Xu

The Hong Kong University of Science and Technology

Hong Kong SAR, China

zxuav@cse.ust.hk

Lei Chen

The Hong Kong University of Science and Technology

Hong Kong SAR, China

leichen@cse.ust.hk

ABSTRACT
With the rapid development of blockchain, the concept of decentral-

ized applications (DApps), built upon smart contracts, has attracted

much attention in academia and industry. However, significant is-

sues w.r.t. system throughput, transaction confidentiality, and the

security guarantee of the DApp transaction execution and order

correctness hinder the border adoption of blockchain DApps.

To address these issues, we propose L2chain, a novel blockchain

framework aiming to scale the system through a layer-2 network

where DApps process transactions in the layer-2 network and only

the system state digest, acting as the state integrity proof, is main-

tained on-chain. To achieve high performance, we introduce the

split-execute-merge (SEM) transaction processing workflow with

the help of the RSA accumulator, allowing DApps to lock and up-

date a part of the state digest in parallel. We also design a witness

cache mechanism for DApp executors to reduce the transaction

processing latency. To fulfill confidentiality, we leverage the trusted

execution environment (TEE) for DApps to execute encrypted trans-

actions off-chain. To ensure transaction execution and order cor-

rectness, we propose a two-step execution process for DApps to

prevent attacks (i.e., rollback attacks) from subverting the state tran-

sition. Extensive experiments have demonstrated that L2chain can

achieve 1.5X to 42.2X and 7.1X to 8.9X throughput improvements

in permissioned and permissionless settings respectively.

PVLDB Reference Format:
Zihuan Xu and Lei Chen. L2chain: Towards High-performance,

Confidential and Secure Layer-2 Blockchain Solution for Decentralized

Applications. PVLDB, 16(4): 986 - 999, 2022.

doi:10.14778/3574245.3574278

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/xzhflying/L2chain.

1 INTRODUCTION
Blockchain is an append-only structure of linked blocks, containing

transactions issued by participants who do not trust each other.

Consensus protocols ensure the security and reliability of the global

view of the on-chain data. With the rapid development, it has

evolved from original UTXO-based model which only supports

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.

doi:10.14778/3574245.3574278

cryptocurrencies (e.g., Bitcoin [49]) to account-based model, sup-

porting Turing-complete transactions with smart contracts (e.g.,
Ethereum [61]). In particular, smart contracts can represent service

level agreements (SLAs) among participants, empowering the de-
centralized applications (DApps) where data and SLAs are recorded

in contracts without a centralized service provider. It has been used

in many scenarios such as finance [59], healthcare [47], crowdsourc-

ing [32, 41], data sharing [26], federated learning [43], etc..

However, low throughput and scalability issues hinder the devel-

opment of blockchain-based DApps where the consensus protocol

is the main bottleneck [23]. For instance, proof-of-work (PoW) [49],

as a widely used protocol in permissionless chains where any node

can freely join or leave, can only commit tens of transactions per

second (tps), while PBFT [18] in permissioned chains with known

node identities can achieve hundreds of tps [24]. In addition, privacy

is another not well-addressed issue. Specifically, DApps can work

individually or collaborate to complete one workflow and some

DApps may use confidential logic and data to process transactions.

Meanwhile, DApps users may care about their privacy, requiring

executing transactions without exposing the details to DApp nodes.

What’s more, it is essential to ensure transactions are successfully

executed in the correct order with the resistance to malicious be-

havior trying to subvert the system security. Thus, in summary, we

need to fulfill three requirements of blockchain-based DApps:

(1) High Performance. The transaction processing should have

high performance in terms of high throughput and low latency.

(2) High Confidentiality. Both intra- and inter- DApp transac-

tions can be processed without exposing detailed information.

(3) High Security. Transactions processed by each DApp should

be correctly executed in an correct order to obtain the final result.

Recently, the concept of layer-2 (L2) solution, building upon a

layer-1 (L1) blockchain, has been proposed to improve the DApps’

performance. It is regarded as an orthogonal solution to enhance

the consensus protocols of blockchains [9]. Specifically, L2 solution

enables DApps to parallelly execute transactions off-chain through

authenticated and private communication channels. Additionally,

it only finalizes the execution result of a transaction batch on-chain

once, without recording every single transaction. Thus, compared

with a pure L1 chain, L2 solution performs much fewer on-chain

consensus, dramatically improving throughput and scalability.

However, existing L2 solutions are still immature and fail to

address aforementioned three requirements simultaneously. In par-

ticular, existing solutions can be categorized into two types. One

is to rely on decentralized channels where participants first lock
the on-chain collateral and establish private communication chan-

nels to exchange authenticated state transitions off-chain. After

986

https://doi.org/10.14778/3574245.3574278
https://github.com/xzhflying/L2chain
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574278
https://www.acm.org/publications/policies/artifact-review-and-badging-current

987

High confidentiality: For each DApp, some data can only be

visible internally and only record the data hash on-chain for in-

tegrity check. Examples are product cost price in Table 1 and user

purchased product in Table 2. For DApp users, some transactions

content needs to be even hidden from DApp executors. Such as a

user’s current balance required in transaction 4○ and 5○.

High security: Two criteria of the transaction need to be ensured:

Execution correctness needs to be publicly verifiable. For exam-

ple, without exposing user’s balance, DApps need to ensure that𝑈𝐴

has sufficient balance to purchase 𝑃1 and 𝑈𝐴’s balance is correctly

deducted after executing transaction 5○.

Order correctness to enforce DApps can only execute transac-

tions in a determined order to prevent rollback attacks where the

malicious obtains valid but outdated states to 1) cause state inconsis-

tency between L1 and L2, affecting the system security. 2) rollback

to outdated states to detect confidential transaction content.

Intuitively, we can encrypt states and transactions and let DApp

executors decrypt the inputs and execute transactions in a black
box that outputs updated encrypted states. Such that executors can-

not learn anything from the inputs and outputs. However, DApps’

marginal conditions (e.g., indicating invalid inputs) can leak side

information. Specifically, a rollback attacker can solely execute un-

committed self-made transactions together with user transactions

to trigger marginal conditions, breaking privacy. Here we illustrate

how a rollback attack can lead to state inconsistency and break

confidentiality based on workflow 2 in Example 2.1.

State inconsistency: Transactions 4○ and 5○ represent the state

change of𝑈 ′
𝐴
𝑠 balance where both $100 and $80, which have been

signed by retailer DApp executors, are valid. After internally pro-

cessing 5○ and 𝑈𝐴 receiving the product, a colluded executor tries

to finalize𝑈 ′
𝐴
𝑠 balance still as $100. However, L1 validators cannot

detect the obsolescence, since they did not join in the workflow

directly, leading to the state inconsistency between L1 and L2.

Break confidentiality: Suppose DApp executes transactions in a

“black box”, taking in encrypted 𝑈𝐴’s balance and product price,

then outputting a deducted balance (if sufficient). If one can rollback

the system state and feed the “black box” with different transactions,

the encrypted user balance can be detected by continually inputting

dummy product price until the box outputs “insufficient”.

To fulfill these requirements simultaneously, we introduce L2chain.

2.2 Layer-2 Blockchain Scaling
The L2 solution is built upon an L1 chain to reduce disseminat-

ing and consensus costs by off-loading transaction execution and

part of order workloads to L2 nodes and only using the L1 chain

for disputes [30]. Particularly, an accumulator (e.g., Merkle tree)

maintains system states and its digest of current state values (e.g.,
Merkle tree root) denoted by 𝐷 is recorded on the L1 chain. Users

use 𝐷 to authenticate if a state value is currently valid by checking

its membership of 𝐷 . To process transactions, there are three steps:

(1) Off-chain execution. L2 executors obtain the latest digest 𝐷

and an ordered transaction batch 𝐵 to perform a state transition

𝐷′ ← 𝑆𝑇𝐹 (𝐷, 𝐵), producing an updated digest 𝐷′.
(2) Execution correctness proof. L2 executors then generate a

proof 𝜋 ← 𝑃𝑅𝐹 (𝐷, 𝐵, 𝐷′), proving that by executing transac-

tions 𝐵, the state digest can be correctly updated to 𝐷′.

(3) Finalization on-chain. Finally, L2 executors invoke an L1

transaction, updating the on-chain state digest from 𝐷 to 𝐷′

with the proof 𝜋 . According to the verification result through a

function {0, 1} ← 𝑉𝑅𝐹 (𝐷, 𝐵, 𝐷′, 𝜋), L1 validators either com-

mit the L1 transaction on-chain or abort it.

By doing so, user transactions only need to be transmitted and

ordered among involved L2 executors and only one L1 transaction,

representing an L2 batch execution result, is processed on-chain. It

enhances the system by easing the consensus bottleneck.

2.3 Trusted Execution Environment (TEE)
Trusted Execution Environment (TEE) is a hardware solution pro-

viding an isolated memory area with the guarantee of confidential-
ity and integrity of data and codes running inside the area even if

the entire platform is compromised. Examples are Intel’s Software

Guard Extensions (SGX) [5, 36, 46] and ARM TrustZone (TZ) [53].

Take SGX as an example. Every time to initialize the code run-

time, SGX checks whether the hash of loaded code and data matches

the developer’s signature. During the run-time, SGX can prove to

others that the specific code is executed correctly (a.k.a. remote at-
testation [5]). Specifically, a private key 𝑠𝑘 is embedded in each SGX

enclave, and the corresponding public key 𝑝𝑘 is publicly known. Ev-

ery time to produce an execution result of the loaded code, it signs

with 𝑠𝑘 . Thus, remote nodes can use 𝑝𝑘 to verify the computation

integrity. In addition, with the secretly embedded keys, TEE can

also achieve data sealing which enables both the input and output

data of the TEE can remain encrypted and only be decrypted inside

a TEE ensuring the confidentiality of data as well.

2.4 RSA Accumulator
The RSA accumulator [17, 40] represents the members in a mul-

tiset 𝑆 with a digest 𝐷 where 𝐷 = 𝑔Π∀𝑠∈𝑆𝐻𝑝 (𝑠) ∈ G and 𝐻𝑝 () is
a hash-to-prime function. In particular, 𝐷 is a member of an RSA

quotient group [52] G (Z×
𝑁
/{±1} where 𝑁 is the production of

two prime numbers) which has a fixed member 𝑔 as the generator.

Such that, the accumulator digest 𝐷 is an integer with an unknown

order inG. The basic functions of an RSA accumulator include addi-

tion, removal, membership proof/verification and non-membership

proof/verification of an element. Recently, Boneh et al. [11] expends
the basic functions to support batch-based processing where the

Shamir’s Trick [58] plays an important role.

Shamir’s Trick. Given a group element 𝐷 and its x-th and y-th

roots𝐷𝑥 , 𝐷𝑦
, Shamir’s Trick can be used to compute the (xy)-th root

of 𝐷 . We define 𝑆𝑇 (𝐷𝑥 , 𝐷𝑦) → 𝐷𝑥𝑦
where 𝑆𝑇 () first computes

the Bezout coefficients 𝑎 and 𝑏 of 𝑥 and 𝑦, such that 𝑎𝑥 + 𝑏𝑦 =

1, then outputs (𝐷𝑥)𝑏 (𝐷𝑦)𝑎 as the result of 𝐷𝑥𝑦
. 𝑆𝑇 (𝐷𝑥 , 𝐷𝑦) is

more efficient than directly computing 𝐷𝑥𝑦
because it has fewer

exponentiation operations.

Given the multiset 𝑆 with digest 𝐷𝑡 at time 𝑡 , we now define the

function of the RSA accumulator we need in this work as follows:

(1) 𝑨𝒅𝒅(𝑫𝒕 , 𝑺, 𝑬) → {𝑫𝒕+1, 𝑺
⋃︁

𝑬 } : add a batch 𝐸 of elements

into 𝑆 and obtain the updated digest 𝐷𝑡+1 = 𝐷
Π∀𝑒∈𝐸𝐻𝑝 (𝑒)
𝑡 .

(2) 𝑫𝒆𝒍 (𝑫𝒕 , 𝑺, 𝑬) → {𝑫𝒕+1, 𝑺 − 𝑬 } : delete a batch 𝐸 of elements

from 𝑆 and obtain the updated digest 𝐷𝑡+1 = 𝐷
1/Π∀𝑒∈𝐸𝐻𝑝 (𝑒)
𝑡 .

988

(3) 𝑴𝒆𝒎𝑷 (𝑫𝒕 , 𝑺, 𝑬) → 𝒘𝑬 : a prover tries to convince to a verifier
that all elements in 𝐸 are valid members of 𝑆 by providing a

witness𝑤𝐸 = 𝑔Π∀𝑒∈𝑆,𝑒∉𝐸𝐻𝑝 (𝑒)
. Note that,𝑤𝐸 is exactly the same

as 𝐷𝑡+1 after deleting 𝐸 from 𝑆 .

(4) 𝑴𝒆𝒎𝑽 (𝑫𝒕 ,𝒘𝑬 , 𝑬) → {0, 1} : a verifier verifies if 𝐸 ⊂ 𝑆

by checking if (𝑤𝐸)Π∀𝑒∈𝐸𝐻𝑝 (𝑒) = 𝐷𝑡 . Note that, with larger

Π∀𝑒∈𝐸𝐻𝑝 (𝑒), 𝑀𝑒𝑚𝑉 needs more exponentiation operations.

However, the cost can be bounded within a constant by using

the Wesolowski proof [60], for more details please refer to [11].

Keep witnesses. Both deletion and membership proof of an ele-

ment 𝑒 require to compute 𝐻𝑝 (𝑒)-th root of the digest 𝐷𝑡 . How-

ever, without the RSA trapdoor, one has to reconstruct the digest

from scratch i.e., 𝐷𝑡+1 = 𝑔Π∀𝑠∈ (𝑆−{𝑒})𝐻𝑝 (𝑠)
which is time-costly [11].

Thus, by pre-computing and storing the witness𝑤𝑖 (∀𝑒𝑖 ∈ 𝑆,𝑤𝑖 =

𝑔Π∀𝑒∈𝑆,𝑒≠𝑒𝑖𝐻𝑝 (𝑒) = 𝐷
1/𝐻𝑝 (𝑒𝑖)
𝑡), deletion and membership proof can

be efficiently performed. Moreover, when elements of 𝑆 change, the

witness𝑤𝑖 of element 𝑒𝑖 can be updated in the following cases:

(1) A new element 𝑒∗ is added to 𝑆 : The new witness is𝑤
𝐻𝑝 (𝑒∗)
𝑖

.

(2) An element 𝑒∗ is deleted from 𝑆 : After the deletion of 𝑒∗,
we can obtain the updated digest 𝐷𝑡+1 = 𝐷

1/𝐻𝑝 (𝑒∗)
𝑡 of 𝑆 . Thus,

we can update each 𝑒𝑖 ’s witness by 𝑆𝑇 (𝑤𝑖 , 𝐷𝑡+1).

2.5 Related Works
Next, we briefly review typical related DApp systems, from the

perspectives of performance, confidentiality and security.

Performance. Existing DApp systems can be categorized in:

Permissionless: Ethereum [61], as the pioneer to support DApps

with smart contracts, uses PoW [49] as the consensus protocol with

only tens of tps. Improvements are achieved by layer-2 paradigm.

Plasma [54] and zkSync [45] achieve hundreds of tps. However,

their transaction validation strategies (e.g., optimistic rollup [16]

for Plasma and zero-knowledge proof [28] for zkSync) introduce

high latency from tens minutes to even days.

Permissioned: Fabric [6] uses PBFT [18] and Quorum [19] uses

IBFT [1] and Raft [51] to reach consensus among authorized nodes.

Besides, protocols such as Tendermint [15], HotStaff [64], SBFT

[31] also use message exchange to tolerant Byzantine faults (BFT)

with hundreds of tps. However, existing systems aim to reach global

consensus at once and do not provide flexibility for DApps to adopt

self-desired protocols (e.g., Paxos [38] and Raft for crash failure

tolerance (CFT)), limit the overall performance.

Hybrid consensus: For flexibility, some systems allow multiple

consensus protocols to coexist. Corda [56] supports pluggable pro-

tocols of DApps. While, CAPER [4], Multichain [29], cross-chain

swap [34] and deal [35] maintain different views of chains with

different protocols. However, the challenge is to deal with the cross-

chain/app transactions which will be discussed later.

Confidentiality. Transactions on Ethereum are publicly avail-

able without confidentiality. Meanwhile, Plasma, zkRollup, and

zkSync shift workloads to L2 centralized but untrusted processors.

Although user transactions are private to L1 nodes, they are still

available to L2 processors. Fabric introduces channels with Pri-

vate Data Collections [7] to isolate DApps and their transactions.

However, the channel structure is static, facing the challenge of

cross-app transactions. While, Quorum, Corda, CAPER, Multichain,

cross-chain swap, and deal make private transactions only visi-

ble to chosen participants. Precisely, transactions are encrypted or

recorded in a private chain, and can only be decrypted or viewed

by nodes with legitimate. However, in our motivation scenario,

transaction executors, which are participants of the above systems,

can also be malicious. Thus, our goal is more strict: making the

private transactions only visible to authorized codes (SLAs).

Security. Typical systems such as Ethereum, Fabric, Quorum, Mul-

tichain, Corda and CAPER rely on consensus nodes to replay and

validate transaction execution and order correctness. Meanwhile,

L2 solutions embed the transaction batch execution and order re-

sults in one L1 transaction. It inevitably brings long latency to

either run cryptography algorithms or wait for the protocol com-

pletion. Moreover, for cross-app transactions, tedious efforts are

required. Systems that statically divide DApp states (e.g., Fabric,
Plasma, and zkSync) need to reform a new consortium or transform

states between DApps. While, CAPER, cross-chain swap and deal

use specially designed protocols to ensure the atomic transaction

commit of cross-app transactions within a bounded time.

Our work is also related to TEE-based blockchains. For instance,

Teechain [42] uses TEE to secure the payment network. [21] uses

TEE to improve the efficiency of BFT consensus protocol. Slim-

Chain [62] designs a stateless chain by using the TEE to decou-

ple transaction execution and ordering, reducing the computation

and storage bottleneck of the L1 validators. Although a stateless

chain also executes transactions off-chain, each execution result

still needs to be serialized by every validator which does not relieve

the consensus bottleneck. Differently, an L2 architecture scales the

system by improving the block space utilization. In addition, none

of them focus on our motivation scenario, providing three features

simultaneously. While [14] relieve the TEE rollback attack in BFT

consensus-based systems only, which does not fit in our scenario

where DApps can choose arbitrary consensus mechanisms.

In summary, in existing systems, DApps cannot share states

flexibly with high throughput. Meanwhile, it lacks user privacy

protection from malicious L2 nodes. Also, TEE-based chains cannot

withstand the rollback attack well to retain transaction execution

and order security. L2chain aims to address all of these issues.

3 L2CHAIN OVERVIEW
In this section, we first introduce our design goals, challenges and

threat model. Then we provide an overview of the L2chain.

3.1 Design Goals and Challenges
We summarize our design goals with their technique challenges:

• To achieve high performance (3 goals):
(1) Batch-based Layer-2 Processing: Transactions are processed
in batches in an L2 network with execution results on-chain.

(2) Balanced Storage: L1 validators only maintain cryptogra-

phy digests of states to validate transactions execution results.

Meanwhile, L2 executors only maintain states that they need.

(3) Parallel Transaction Processing: DApp transactions without

dependency on each other can be processed in parallel.

• To achieve high confidentiality (1 goal):
(4) Confidential Transaction Execution: DApp transactions and

private data are executed and maintained off-chain by related

989

990

991

(6) Executors generate an L1 merge transaction 𝑡𝑥𝑇𝑚𝑒𝑟 , containing

the hash of block 𝐵 with 𝑡𝑥𝑇
𝑠𝑝𝑙

, updated digest 𝐷
′
𝑇
and TEE sig-

nature 𝜋𝑇
𝑇𝐸𝐸_𝑒𝑥𝑒

. After validation, L1 validators record 𝑡𝑥𝑇𝑚𝑒𝑟

on-chain which completes the process.

In particular, the entire workflow is divided into three phases.

Split-phase (steps 1∽3): L2 executors collect L2 transactions
and categorize them into intra- and inter- DApp. In each period,

executors order different transactions separately among involved

DApp executors by running consensus protocols determined in the

on-chain SLAs to form an L2 transaction batch. Ordered batch is

organized into a Merkle tree to preserve the order information, and

involved nodes sign on the tree root as the consensus evidence.

Then, executors simulate the transaction batch in the TEE to obtain

read/write sets with the TEE signature 𝜋𝑇
𝑇𝐸𝐸_𝑠𝑖𝑚

(detailed in Sec. 6),

based on which generate an L1 split transaction defined as follows:

Definition 4.1 (Split transaction). Given an ordered layer-2

transaction batch 𝑇 organized in a Merkle tree with root 𝑇𝑟𝑜𝑜𝑡 , its

read/write set 𝑆𝑇 signed by TEE with 𝜋𝑇
𝑇𝐸𝐸_𝑠𝑖𝑚

, and the current

available layer-1 states 𝑆𝑎𝑣𝑙 with digest 𝐷𝑎𝑣𝑙 , a split transaction

is defined as a tuple 𝑡𝑥𝑇
𝑠𝑝𝑙

= (𝑆𝑇 , 𝐷𝑇 ,𝑤𝑇 ,𝑇𝑟𝑜𝑜𝑡 , 𝜋
𝑇
𝑇𝐸𝐸_𝑠𝑖𝑚

) where
𝐷𝑇 =

∏︁
∀𝑆𝑖 ∈𝑆𝑇 𝐻𝑝 ({𝑆𝑖 , 𝑆𝑖 .𝑣}),𝑤𝑇 = 𝑀𝑒𝑚𝑃 (𝐷𝑎𝑣𝑙 , 𝑆𝑎𝑣𝑙 , 𝑆𝑇).

The split transaction 𝑡𝑥𝑇
𝑠𝑝𝑙

is then sent to L1 validators who

check: 1) if the DApp has the authority to access states in 𝑆𝑇 ac-

cording to contract SLAs. 2) if 𝐷𝑎𝑣𝑙 = 𝑒𝑥𝑝 (𝑤𝑇 , 𝐷𝑇), which is the

membership check that 𝑆𝑇 is in the current available state values

𝑆𝑎𝑣𝑙 (i.e.,𝑀𝑒𝑚𝑉 (𝐷𝑎𝑣𝑙 ,𝑤𝑇 , 𝑆𝑇)). If all checks pass, validators packs
𝑡𝑥𝑇

𝑠𝑝𝑙
in an L1 block. As discussed in Sec. 2.4, generating the witness

𝑤𝑇 for 𝑆𝑇 can be computation and storage costly. Thus, in Sec. 5,

we propose witnesses cache to minimize such an overhead cost.

Conflict elimination: As DApps concurrently process L2 trans-

actions, conflicts may occur in two aspects: ➊ Across L2 batches
where two L1 split transactions of two L2 batches try to split the

digests consisting of the same state simultaneously. Such conflicts

are resolved by L1 validators. Specifically, in each L1 block, each

available L1 state can only be split once (appear in one split transac-

tion). Otherwise the entire block is invalid, making it nonprofitable

for the validator. Meanwhile, in systems with non-deterministic

L1 consensus protocols, the issue that two validators generate con-

flicting blocks based on the same available L1 states is similar to

the public chain fork problem which can be resolved by the longest

chain rule [49]. ➋ Within an L2 batch where two L2 transactions

have conflicts (e.g., an inter-DApp transaction reading the state

updating by an intra-DApp transaction). Since each L2 batch is still

serially processed in the L2 network, to order an L2 batch in the

split phase, each transaction is simulated (detailed in Sec. 6) and

consent among related executors to prevent invalid state access.

Execute-phase (steps 4 and 5): After the split transaction 𝑡𝑥𝑇
𝑠𝑝𝑙

of states 𝑆𝑇 has been recorded in an on-chain block 𝐵, layer-2

executors can obtain the block header 𝐻𝐵 . In particular, the valid

𝑡𝑥𝑇
𝑠𝑝𝑙

is essential to execute transactions, thus we need to check: 1)

the validity of layer-1 consensus proof Π𝑐𝑜𝑛 , indicating 𝐵 is a valid

on-chain block, where Π𝑐𝑜𝑛 is determined by the layer-1 consensus

protocol (detailed in Sec. 6). 2) If 𝑡𝑥𝑇
𝑠𝑝𝑙

is a valid member of 𝐵, by

checking the Merkle hash root 𝐻𝑠𝑝𝑙𝑖𝑡 of all split transactions in 𝐵.

We leverage the TEE to execute transactions. Specifically, the in-

puts of TEE are transactions𝑇 , the read/write sets 𝑆𝑇 , the split trans-

action 𝑡𝑥𝑇
𝑠𝑝𝑙

of𝑇 , and the header𝐻𝐵 of block containing 𝑡𝑥𝑇
𝑠𝑝𝑙

. Then

TEE executes transactions to update states in 𝑆𝑇 to 𝑆
′
𝑇
(detailed in

Sec. 6). Finally, TEE outputs the digest𝐷
′
𝑇
=
∏︁
∀𝑆𝑖 ∈𝑆

′
𝑇

𝐻𝑝 ({𝑆𝑖 , 𝑆𝑖 .𝑣})
of updated states 𝑆

′
𝑇
and a proof Π𝑇

𝑇𝐸𝐸_𝑒𝑥𝑒
, indicating transactions

𝑇 are correctly executed to obtain 𝐷
′
𝑇
.

Merge-phase (step 6): To complete the SEM process, executors

generate an L1 merge transaction to merge the digests of updated

states in 𝑆
′
𝑇
and current L1 available states to make 𝑆

′
𝑇
be accessed

by other DApps. We define the merge transaction as follow:

Definition 4.2 (Merge transaction). Given the hash 𝐵ℎ𝑎𝑠ℎ of

block containing the split transaction 𝑡𝑥𝑇
𝑠𝑝𝑙

of ordered transactions

𝑇 , and the updated digest 𝐷′
𝑇
with its execution correctness proof

𝜋𝑇
𝑇𝐸𝐸_𝑒𝑥𝑒

, a merge transaction is a tuple 𝑡𝑥𝑇𝑚𝑒𝑟 = {𝐵ℎ𝑎𝑠ℎ, 𝐻 (𝑡𝑥𝑇𝑠𝑝𝑙),
𝐷′
𝑇
, 𝜋𝑇

𝑇𝐸𝐸_𝑒𝑥𝑒
} where 𝐻 (𝑡𝑥𝑇

𝑠𝑝𝑙
) is the hash of 𝑡𝑥𝑇

𝑠𝑝𝑙
.

Layer-1 validators process the merge transaction 𝑡𝑥𝑇𝑚𝑒𝑟 in fol-

lowing steps: 1) obtain 𝑡𝑥𝑇
𝑠𝑝𝑙

from the block with hash 𝐵ℎ𝑎𝑠ℎ and

check its integrity through 𝐻 (𝑡𝑥𝑇
𝑠𝑝𝑙
). 2) verify 𝜋𝑇

𝑇𝐸𝐸_𝑒𝑥𝑒
based on

𝐻 (𝑡𝑥𝑇
𝑠𝑝𝑙
) and 𝐷

′
𝑇
. 3) if all checks pass, pack 𝑡𝑥𝑇𝑚𝑒𝑟 into a layer-1

block with the updated available states digest 𝐷𝑎𝑣𝑙 (detailed next).

Aggregate multiple split and merge transactions: A layer-1

block can contain multiple split and merge transactions. Thus, their

effects to the current available states digest 𝐷𝑎𝑣𝑙 need to be aggre-

gated and recorded in the block. Specifically, for two split transac-

tions 𝑡𝑥1
𝑠𝑝𝑙

and 𝑡𝑥2
𝑠𝑝𝑙

, a validator checks if 𝑡𝑥1
𝑠𝑝𝑙

.𝑆1
⋂︁
𝑡𝑥2

𝑠𝑝𝑙
.𝑆2 = ∅. If

not, it means state contention exists. Thus, one of them is discarded

randomly
2
. After resolving all state contentions of split transac-

tions, we continue updating 𝐷𝑎𝑣𝑙 by 𝐷𝑎𝑣𝑙 := 𝑆𝑇 (𝐷𝑎𝑣𝑙 , 𝑡𝑥
𝑖
𝑠𝑝𝑙

.𝑤𝑇)
for each split transactions 𝑡𝑥𝑖

𝑠𝑝𝑙
, and 𝐷𝑎𝑣𝑙 := 𝑒𝑥𝑝 (𝐷𝑎𝑣𝑙 , 𝑡𝑥

𝑗
𝑚𝑒𝑟 .𝐷

′
𝑇
)

for each merge transaction 𝑡𝑥
𝑗
𝑚𝑒𝑟 . Finally, the validator organizes

split and merge transactions into two Merkle trees with hash roots

𝐻𝑠𝑝𝑙𝑖𝑡 and 𝐻𝑚𝑒𝑟𝑔𝑒 separately, and record 𝐷𝑎𝑣𝑙 in the block as well.

Pipeline to reduce the latency: Compared with the pure L1

architecture, SEM introduces an additional on-chain transaction

to commit the L2 batch execution results, which brings extra la-

tency, exacerbating data contention and delaying successive batch

processing. To relieve this issue, we can pipeline the digest split

and merge phases. Specifically, by allowing transmitting merge

transactions in the L2 network, executors can combine the merge

of updated digests with the split of to-be-processed state digest into

one on-chain transaction. We detail in an example as follows:

Example 4.3. Suppose current L1 available digest 𝐷𝑎𝑣𝑙 repre-

sents states 𝑆1∽𝑆8, then executors in 𝐷𝐴𝑝𝑝1 split 𝑆1∽𝑆3 with di-

gest 𝐷1 (now L1 available digest becomes 𝐷1

𝑎𝑣𝑙
where 𝐷𝑎𝑣𝑙 =

𝑒𝑥𝑝 (𝐷1

𝑎𝑣𝑙
, 𝐷1)) and process an L2 batch𝑇1 to update 𝑆1∽𝑆3 with the

outcome digest 𝐷∗
1
. With pipeline, instead of 𝐷𝐴𝑝𝑝1 executors in-

voke an L1merge transaction 𝑡𝑥
𝑇1
𝑚𝑒𝑟 for𝐷

∗
1
immediately, they propa-

gate 𝑡𝑥
𝑇1
𝑚𝑒𝑟 in the L2 network. Assume now an L2 batch𝑇2 of𝐷𝐴𝑝𝑝2

2
For simplicity, in this work, we do not consider concurrent state access.

992

993

optimal cache group count 𝜏 . Suppose there are 𝑛 accessible states

for an executor and the cost of adding one state into the digest is 𝛼 .

Without the witness cache, the average time cost to generate the

RSA membership witness for states is 𝑐𝑜𝑠𝑡1 = 𝛼 (𝑛 − 1)∑︁ 𝑓𝑖 . On the

other hand, with 𝜏 witness caches, the amortized witness generation

cost can be bounded by 𝛼 (𝑛𝜏 − 1)
∑︁

𝑓𝑖 . Meanwhile, suppose the cost

of updating one witness based on one on-chain block is 𝛽 , the

average cache update cost is 𝛽𝜏 . In total, the average cost of using

the witness cache is 𝑐𝑜𝑠𝑡2 = 𝛼 (𝑛𝜏 − 1)
∑︁

𝑓𝑖 + 𝛽𝜏 . Thus, to find the

optimial cache group count is to maximize 𝑐𝑜𝑠𝑡1 − 𝑐𝑜𝑠𝑡2 = 𝛼 (𝑛 −

1)∑︁ 𝑓𝑖 − 𝛼 (𝑛𝜏 − 1)
∑︁

𝑓𝑖 − 𝛽𝜏 which is achieved when 𝜏 =

√︃
𝛼𝑛

∑︁
𝑓𝑖

𝛽
.

Dynamic programming-based algorithm. To solve the wit-

ness cache optimization problem, the basic idea is to sort states

based on the access frequency in descending order and use dynamic

programming to determine the optimal partition points to form 𝜏

cache groups. We first propose a lemma.

Lemma 5.4. For the optimal partition of the ordered witness caches
𝐶𝑖 (𝑖 ∈ [1, 𝜏]), ∀|𝐶𝑖 | < |𝐶 𝑗 |, the smallest state access frequency in 𝐶𝑖
is greater than or equal to the highest frequency in 𝐶 𝑗 .

Due to limited space, we refer the proof to our technical re-

port [63]. With this lemma, we propose a dynamic programming-

based algorithm to optimize the cache organization:

Algorithm details: As shown in Algo. 1, we sort states based

on access frequencies. Then we create a 3D (i, j, k) array with ∞
as the default value (line 1). These dimensions represent: 𝑖: the

state list position in making partition decision, 𝑗 : cardinality of

the largest cache group, 𝑘 : the number of unformed caches. Values

of the dimension 𝑘 = 0 are initialized in line 3, calculated by the

witness generation cost of the last cache group. Then, we recursively

compute all entries starting from the dimension (0, 𝑗, 𝑘) and find

the minimum value as the optimal objective value (lines 5-9). Each

time, we compare the cost to decide whether to form a new cache

group including states from 𝑖 to 𝑖 + 𝑗 . Finally, 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛()
can produce the optimal partition based on the computed table

𝑡 (𝑖, 𝑗, 𝑘). Due to space limit, we omit the details.

Complexity analysis. To sort 𝑛 states based on the access fre-

quency, the time complexity is 𝑂 (𝑛 log𝑛). To compute all entries

of the DP table, it takes 𝑂 (𝑛2𝜏). Thus, the overall time complexity

of Algo. 1 is 𝑂 (𝑛2𝜏).
Dynamic change of access frequencies. Since the access fre-
quency of executors to each state can change dramatically after

a period, we need to re-organize the cache to minimize the av-

erage witness generation cost as well. To handle the dynamic is-

sue, for each cache group 𝐶𝑖 order by the cardinality in accend-

ing order, we record its cardinality |𝐶𝑖 |, highest ℎ𝑖𝑔ℎ(𝐶𝑖) and low-

est 𝑙𝑜𝑤 (𝐶𝑖) access frequencies of its inside states as well as the

average access frequency 𝑓¯ of all states. When access frequen-

cies of states 𝑆∗ change, we first reassign 𝑆∗ to caches such that

∀𝑆𝑖 ∈ 𝐶 𝑗 , 𝑓𝑖 ∈ [𝑙𝑜𝑤 (𝐶 𝑗), ℎ𝑖𝑔ℎ(𝐶 𝑗)] holds. Then, starting from𝐶1 to

𝐶𝜏 , for each𝐶𝑖 , we continue reassigning the states in𝐶𝑖 with lowest

access frequency to𝐶𝑖+1 until ∀𝑆 𝑗 ∈ 𝐶𝑖 , (|𝐶𝑖 | −1)
∑︁

𝑓𝑗 ≤ 𝑛
𝜏 (

𝑛
𝜏 −1) 𝑓¯ .

The time complexity of such method is 𝑂 (𝑚𝜏 log 𝑛
𝜏) where 𝑚 is

the number of updated access frequencies, which is far less than

repartition all caches from scratch. Similar to the analysis in the

optimal cache group count selection, with 𝛼 as the cost of adding

one element into the accumulator, such reassignment strategy en-

sures that the upper bound of the average witness generation cost

is 𝛼 (𝑛𝜏 − 1)∑︁ 𝑓𝑖 which is the exception cost by using the cache

mechanism. Meanwhile, executors can also choose to rerun the

Algo. 1 periodically to seek for the optimal cache organization.

Algorithm 1: DP-based cache organization optimization

Input :State addresses 𝑆𝑖 , 𝑖 ∈ [1, 𝑛] with access frequency

𝑓𝑖 , cache group count 𝜏 .

1 Sort 𝑆𝑖 based on 𝑓𝑖 in the descending order;

2 t(i, j, k)← initialize a 𝑛 × 𝑛 × 𝜏 3D array with∞ by default;

3 for 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑛] do
4 t(i,j,0) = (𝑛 − 𝑖 − 1)∑︁∀𝑙∈[(𝑛−𝑖),𝑛] 𝑓𝑙 ;
5 for 𝑘 ∈ [1, 𝜏] do
6 for 𝑖 from 𝑛 − 2 to 0 do
7 for 𝑗 from 𝑛−𝑖

𝑘+1 to 0 do
8 partition = t(i+j, j, k-1) + (𝑗 − 1) ·∑︁𝑖+𝑗

𝑙=𝑖
𝑓𝑙 ;

9 non_partition = t(i, j+1, k);

10 t(i, j, k) = min(partition, non_partition);

11 opt-cost = find minimum value in 𝑡 (0, 𝑗, 𝜏), ∀𝑗 ∈ [1, 𝑛];
12 OutputPartition();

6 LAYER-2 TWO-STEP EXECUTION
In this section, we detail the two-step L2 DApp transaction exe-

cution in the SEM process. It aims to prevent the rollback attack,

resulting in transaction content leakage and state inconsistency.

Basic idea: As described in Sec. 3.2, we divide the execution into

two steps. The first step is simulation in the split-phase. Since we

target an account-based model where general-purpose transactions

can affect arbitrary states and be encrypted for privacy, their read-

/write sets cannot be known in advance. Meanwhile, we need to

enforce TEEs only executing ordered transactions based on com-

mitted input states to prevent the rollback attack. Thus, we use the

simulation step to obtain read/write sets and finalize the order of

transaction batch in the L2 network to produce a corresponding

L1 split transaction 𝑡𝑥𝑇𝑚𝑒𝑟 . Once 𝑡𝑥
𝑇
𝑚𝑒𝑟 is committed on-chain, the

execute-phase is for executors to execute 𝑇 to obtain the result.

Algorithm 2: Transaction simulation (in TEE)

Input :Ordered transactions 𝑇 with its Merkle root 𝑇𝑟𝑜𝑜𝑡
and aggregated signature 𝜎𝑇𝑟𝑜𝑜𝑡 , local states 𝑆 .

1 if 𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝑇𝑟𝑜𝑜𝑡 , 𝜎𝑇𝑟𝑜𝑜𝑡) 𝑓 𝑎𝑖𝑙𝑒𝑑 then abort;
2 if 𝑜𝑟𝑑𝑒𝑟_𝑐ℎ𝑒𝑐𝑘 (𝑇,𝑇𝑟𝑜𝑜𝑡) 𝑓 𝑎𝑖𝑙𝑒𝑑 then abort;
3 𝑆𝑇 ← 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 (𝑇, 𝑆);
4 𝐷𝑇 ,¬𝐷𝑇 ← 𝑤𝑖𝑡𝑛𝑒𝑠𝑠_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑆𝑇); // see Sec. 5
5 𝜋𝑇

𝑇𝐸𝐸_𝑠𝑖𝑚
← 𝑇𝐸𝐸.𝑠𝑖𝑔𝑛(< 𝑇𝑟𝑜𝑜𝑡 , 𝑆𝑇 , 𝐷𝑇 ,¬𝐷𝑇 >);

6 return < 𝑆𝑇 , 𝐷𝑇 , 𝜋
𝑇
𝑇𝐸𝐸_𝑠𝑖𝑚

>

Step 1: Simulation. As introduced in Sec. 4, during the split-phase,

involved DApp executors order an L2 transaction batch 𝑇 by run-

ning the predetermined L2 consensus protocol and organize 𝑇 into

a Merkle tree with root 𝑇𝑟𝑜𝑜𝑡 . Algo. 2 shows the simulation step

where TEE first verifies the input validity (lines 1-2) by checking:

994

995

7 EXPERIMENTAL STUDY
In this section, we evaluate L2chain by comparing with the follow-

ing baselines in both permissioned and permissionless scenarios:

• Quorum: a variant of Ethereum with confidentiality by encod-

ing and making the private transactions only visible to related

nodes. Meanwhile, it supports pluggable consensus protocols

with both Raft and IBFT for a permissioned setting and Ethash

(the Ethereum PoW protocol) for a permissionless setting.

• CAPER-based: a cross-DApp permissioned blockchain. We

compare its hierarchical global consensus protocol [4] where

each DApp maintains the ledger in its own view and process

private transactions internally by local consensus protocols.

Meanwhile, the global consensus protocol ensures the global

view consistency and deals with cross-app transactions.

• SlimChain: an off-chain parallel transaction processing sys-

tem where off-chain proposers execute each transaction in

TEEs to update the state digest and on-chain validators aggre-

gate results into blocks.

7.1 Experiment Settings
DApp and workloads. We use the KVStore smart contract of the

BLOCKBENCH [24]macro benchmark as theworkload logic of each

DApp. Specifically, it reads/writes the key-value pairs of system

states. We use the YCSB workload [3] with different percentage of

read/write transactions (i.e., read-write with 50% read and write

transactions, read-only and write-only workloads). Meanwhile, to

capture the cross-app transactions, we first uniformly assign state

addresses in the workload to each DApp. Then we randomly group

two read/write operations to form one transaction such that it either

read/write states within one DApp or across two DApps.

Systemnodes.We control system nodes by the DApp count. Specif-

ically, each DApp has four nodes, referring to executors in L2chain,

proposers (also acting as storage nodes) in SlimChain, and chain

nodes, maintaining the ledger in CAPER and Quorum. For a fair

comparison, we set validators in L2chain and SlimChain with the

same number of DApp nodes. Then, we connect one client to each

DApp to send workloads. In addition, to evaluate L2chain’s fault-

tolerant ability compared with a pure L1 solution, at the beginning

of each block interval, we manually control each node in Quorum

and L2chain to be temporally crash with the probability of 𝜙 .

Consensus protocol. To capture a permissioned setting, we use

Raft consensus protocol to 1) maintain the L1 blockchain ledger

in Quorum and L2chain. 2) achieve local consensus among DApp

nodes of CAPER and L2chain executors. Meanwhile, to capture

a permissionless setting, we use PoW to maintain the blockchain

ledger of Quorum, SlimChain and L2chain while remaining Raft as

the protocol in L2 network of L2chain.

Witness cache. Each L2chainDApp executormaintains thewitness

cache proposed in Sec. 5. We vary the parameter of cache group

count 𝜏 according to Table 2 to evaluate the performance in different

settings. Besides, since the witness group is independent from each

other, we use multi-thread (16 by default) to accelerate the witness

generation and witness cache update after processing each L1 block.

Other parameters. As pointed out in [8], block time, indicating

how often to form a new block, does not affect the throughput but

higher time leads to higher latency. Thus, we adopt the default time:

1s for Raft and 10s for PoW. Similarly, for on-chain block size and

L2chain batch capacity, larger capacity leads to higher throughput

and latency. Thus, we fix block size and L2 batch capacity to 256,

approximating the average transaction count in Ethereum [2]. In

addition, we fix the overall state count to 2
26

based on unique

Ethereum addresses [2] and make them available to every DApps.

Table 2: System Parameters
Parameters Values

Number of DApps 4, 8, 16, 32
Percentage of cross-app transactions 0%, 20%, 80%, 100%
Number of witness cache group 𝜏 256, 512, 1024, 2048
Threads to maintain witness caches 4, 8, 16, 32
DApp node failure rate 𝜙 0%, 10%, 20%, 30%

Metrics and environments. We vary parameters in Table 2 with

default values in bold to evaluate system throughput and latency.

Precisely, throughput measures the number of transactions that

can be finalized on the main blockchain (or the global consensus

is achieved in CAPER) in a unit of time. Meanwhile, latency mea-

sures the breakdown average transaction processing time, including

transaction execution, consensus (with network message propaga-

tion time), and overhead cost which includes transaction encryption

and decryption in Quorum and SlimChain and RSA accumulator

operations (e.g., membership witness generation/verification and

witness cache update) in L2chain. Note that we eliminate the wait-

ing time for transactions to be processed at the DApp node side as

we measure the peak throughput by making the system saturated,

inevitably leading to a long waiting time.

We conduct the experiments on Microsoft Azure with the Stan-

dard_DC16s_v3
3
machines with 1500 Mbps network bandwidth.

7.2 Experimental Results
Overall Performance. Figures 8, 9 and 10 show the experimental

results where L2chain can always achieve the highest throughput.

In a permissioned setting, compared with CAPER and Raft Quorum

(Quorum-R), Raft L2chain (L2chain-R) improves the throughput by

1.5X to 2.6X and 21.9X to 42.2X, respectively. In a permissionless

setting, PoW L2chain (L2chain-P) can achieve 7.1X to 8.9X and

1.7X to 2.2X higher throughput than PoW Quorum (Quorum-P)
and SlimChain (Slim-P). For the latency, L2chain can save 63% to

75% processing time compared with Raft Quorum. However, due to

the overhead cost of RSA accumulator and cross-DApp consensus,

L2chain exposes higher latency of 2.7X to 3.2X than CAPER, 1.2X

to 1.6X than PoW Quorum, and 1.3X to 1.7X than PoW SlimChain.

Moreover, as shown in Fig. 11b the overhead cost can be reduced by

the multi-thread technique. In addition, we also evaluate L2chain’s

fault tolerance ability by varying the DApp node failure rate and

discuss the trade-offs of L2chain versus an L1 solution. Due to a

limited space, we refer more details in our technical report [63].

Impact of the DApps count.As shown in Fig. 8, the throughput of
all permissioned systems decreases with more DApps. Meanwhile,

the throughput improvement of L2chain increases from 26.8X to

42.2X compared with Raft Quorum, 1.9X to 2.4X compared with

CAPER. While, the latency of L2chain decreases from 75% to 65%

compared with Raft Quorum, 3.2X to 3.0X overhead compared with

3
https://docs.microsoft.com/en-us/azure/virtual-machines/dcv3-series

996

997

REFERENCES
[1] 2018. Istanbul BFT. https://github.com/ethereum/EIPs/issues/650.

[2] 2022. Ethereum Charts and Statistics. https://etherscan.io/charts.

[3] 2022. YCSB. https://github.com/brianfrankcooper/YCSB.

[4] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Caper: a

cross-application permissioned blockchain. Proceedings of the VLDB Endowment
12, 11 (2019), 1385–1398.

[5] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. ACM New York, NY, USA.

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-

man, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating

system for permissioned blockchains. In Proceedings of the thirteenth EuroSys
conference. 1–15.

[7] Nathan Aw. 2018. Private Data Collections: A High-Level Overview.

https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-

high-level-overview.

[8] Arati Baliga, I Subhod, Pandurang Kamat, and Siddhartha Chatterjee. 2018.

Performance evaluation of the quorum blockchain platform. arXiv preprint
arXiv:1809.03421 (2018).

[9] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. 2017. Consensus in the age of

blockchains. arXiv preprint arXiv:1711.03936 (2017).
[10] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids on steroids:

SGX-based high performance BFT. In Proceedings of the Twelfth European Con-
ference on Computer Systems. 222–237.

[11] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching techniques for accumu-

lators with applications to iops and stateless blockchains. In Annual International
Cryptology Conference. Springer.

[12] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and

Howard Wu. 2020. Zexe: Enabling decentralized private computation. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE.

[13] Marcus Brandenburger, Christian Cachin, Rüdiger Kapitza, and Alessandro

Sorniotti. 2018. Blockchain and trusted computing: Problems, pitfalls, and a

solution for hyperledger fabric. arXiv preprint arXiv:1805.08541 (2018).
[14] Marcus Brandenburger, Christian Cachin, Rüdiger Kapitza, and Alessandro

Sorniotti. 2019. Trusted computing meets blockchain: Rollback attacks and

a solution for hyperledger fabric. In 2019 38th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 324–32409.

[15] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph.D. Dissertation. University of Guelph.

[16] V. Buterin. 2018. On-Chain Scaling to Potentially 500 TX/SEC Through Mass TX

Validation. https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-

throughmass-tx-validation/3477.

[17] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic accumulators and appli-

cation to efficient revocation of anonymous credentials. In Annual international
cryptology conference. Springer, 61–76.

[18] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In

OSDI, Vol. 99. 173–186.
[19] J. P. M. Chase. 2018. Quorum: A permissioned implementation of ethereum.

https://github.com/jpmorganchase/quorum.

[20] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.

Attested append-only memory: Making adversaries stick to their word. ACM
SIGOPS Operating Systems Review 41, 6 (2007), 189–204.

[21] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. 2019. Towards scaling blockchain systems via sharding. In

Proceedings of the 2019 international conference on management of data. 123–140.
[22] Christian Decker and Roger Wattenhofer. 2015. A fast and scalable payment

network with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems. Springer, 3–18.

[23] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and

Ji Wang. 2018. Untangling blockchain: A data processing view of blockchain

systems. IEEE transactions on knowledge and data engineering 30, 7 (2018), 1366–

1385.

[24] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-

Lee Tan. 2017. Blockbench: A framework for analyzing private blockchains. In

Proceedings of the 2017 ACM International Conference on Management of Data.
1085–1100.

[25] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2017.

PERUN: Virtual Payment Channels over Cryptographic Currencies. IACR Cryptol.
ePrint Arch. 2017 (2017), 635.

[26] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and

Ravi Ramamurthy. 2019. BlockchainDB: A shared database on blockchains.

Proceedings of the VLDB Endowment 12, 11 (2019), 1597–1609.

[27] K. Floersch. 2019. Ethereum Smart Contracts in L2: Optimistic Rollup.

https://medium.com/plasma-group/ethereum-smartcontracts-in-l2-optimistic-

rollup-2c1cef2ec537.

[28] Alex Gluchowski. 2019. Zk rollup: scaling with zero-knowledge proofs. https:

//pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf.

[29] G. Greenspan. 2015. Multichain private blockchain-white paper. http://www.

multichain.com/download/MultiChain-White-Paper.pdf.

[30] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and

Arthur Gervais. 2020. Sok: Layer-two blockchain protocols. In International
Conference on Financial Cryptography and Data Security. Springer, 201–226.

[31] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.

Sbft: a scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/I-
FIP international conference on dependable systems and networks (DSN). IEEE,
568–580.

[32] Siyuan Han, Zihuan Xu, Yuxiang Zeng, and Lei Chen. 2019. Fluid: A blockchain

based framework for crowdsourcing. In Proceedings of the 2019 international
conference on management of data. 1921–1924.

[33] Mike Hearn. 2013. Micro-payment channels implementation now in bitcoinj.

[34] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 2018
ACM symposium on principles of distributed computing. 245–254.

[35] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2021. Cross-chain deals and

adversarial commerce. The VLDB Journal (2021), 1–19.
[36] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan

Del Cuvillo. 2013. Using innovative instructions to create trustworthy software

solutions. HASP@ ISCA 11, 10.1145 (2013), 2487726–2488370.

[37] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and

Arthur Gervais. 2018. Commit-chains: Secure, scalable off-chain payments.

Cryptology ePrint Archive, Report 2018/642 (2018).
[38] Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79–103.

[39] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. 2009. TrInc:

Small Trusted Hardware for Large Distributed Systems.. In NSDI, Vol. 9. 1–14.
[40] Jiangtao Li, Ninghui Li, and Rui Xue. 2007. Universal accumulators with efficient

nonmembership proofs. In International Conference on Applied Cryptography and
Network Security. Springer, 253–269.

[41] Ming Li, Jian Weng, Anjia Yang, Wei Lu, Yue Zhang, Lin Hou, Jia-Nan Liu, Yang

Xiang, and Robert H Deng. 2018. Crowdbc: A blockchain-based decentralized

framework for crowdsourcing. IEEE Transactions on Parallel and Distributed
Systems 30, 6 (2018), 1251–1266.

[42] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Pe-

ter Pietzuch. 2019. Teechain: a secure payment network with asynchronous

blockchain access. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 63–79.

[43] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.

2019. Blockchain and federated learning for privacy-preserved data sharing in

industrial IoT. IEEE Transactions on Industrial Informatics 16, 6 (2019), 4177–4186.
[44] Ben Lynn. 2007. On the implementation of pairing-based cryptosystems. Ph.D.

Dissertation. Stanford University Stanford.

[45] matter labs. 2019. zkSync: scaling and privacy engine for Ethereum. https:

//zksync.io.

[46] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions

and software model for isolated execution. Hasp@ isca 10, 1 (2013).
[47] Matthias Mettler. 2016. Blockchain technology in healthcare: The revolution

starts here. In 2016 IEEE 18th international conference on e-health networking,
applications and services (Healthcom). IEEE, 1–3.

[48] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. 2017.

Sprites: Payment channels that go faster than lightning. CoRR, abs/1702.05812
(2017).

[49] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[50] Raiden network homepage. 2019. Raiden network.

[51] Diego Ongaro and John Ousterhout. 2014. In search of an understandable

consensus algorithm. In 2014 USENIX Annual Technical Conference (Usenix ATC
14). 305–319.

[52] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. 2020. Scaling

verifiable computation using efficient set accumulators. In 29th USENIX Security
Symposium (USENIX Security 20). 2075–2092.

[53] Sandro Pinto and Nuno Santos. 2019. Demystifying arm trustzone: A compre-

hensive survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1–36.
[54] Joseph Poon and Vitalik Buterin. 2017. Plasma: Scalable autonomous smart

contracts. White paper (2017), 1–47.
[55] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments.

[56] I. Grigg R. G. Brown, J. Carlyle and M. Hearn. 2016. Corda: An introduction.

https://docs.corda.net/en/pdf/corda-introductory-whitepaper.pdf.

[57] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.

Trusted execution environment: what it is, and what it is not. In 2015 IEEE

998

https://github.com/ethereum/EIPs/issues/650
https://etherscan.io/charts
https://github.com/brianfrankcooper/YCSB
https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-high-level-overview
https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-high-level-overview
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-throughmass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-throughmass-tx-validation/3477
https://github.com/jpmorganchase/quorum
https://medium.com/plasma-group/ethereum-smartcontracts-in-l2-optimistic-rollup-2c1cef2ec537
https://medium.com/plasma-group/ethereum-smartcontracts-in-l2-optimistic-rollup-2c1cef2ec537
https: //pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
https: //pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
http://www.multichain.com/download/MultiChain-White-Paper. pdf
http://www.multichain.com/download/MultiChain-White-Paper. pdf
https://zksync.io
https://zksync.io
https://docs.corda.net/en/pdf/corda-introductory-whitepaper.pdf

Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 57–64.
[58] Adi Shamir. 1983. On the generation of cryptographically strong pseudorandom

sequences. ACM Transactions on Computer Systems (TOCS) 1, 1 (1983), 38–44.
[59] Philip Treleaven, Richard Gendal Brown, and Danny Yang. 2017. Blockchain

technology in finance. Computer 50, 9 (2017), 14–17.
[60] Benjamin Wesolowski. 2019. Efficient verifiable delay functions. In Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 379–407.

[61] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[62] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. 2021. SlimChain: scaling

blockchain transactions through off-chain storage and parallel processing. Pro-
ceedings of the VLDB Endowment 14, 11 (2021), 2314–2326.

[63] Zihuan Xu and Lei Chen. 2022. L2chain, Towards High-performance, Confi-

dential and Secure Layer-2 Blockchain Solution for Decentralized Applications

(Technical Report). https://github.com/xzhflying/L2chain/blob/main/technical_

report.pdf.

[64] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2018. HotStuff: BFT consensus in the lens of blockchain. arXiv preprint
arXiv:1803.05069 (2018).

999

https://github.com/xzhflying/L2chain/blob/main/technical_report.pdf
https://github.com/xzhflying/L2chain/blob/main/technical_report.pdf

