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ABSTRACT
Web records are structured data on a Web page that embeds records

retrieved from an underlying database according to some templates.

Mining data records on theWeb enables the integration of data from

multiple Web sites for providing value-added services. Most exist-

ing works on Web record extraction make two key assumptions:

(1) records are retrieved from databases with uniform schemas and

(2) records are displayed in a linear structure on a Web page. These

assumptions no longer hold on the modern Web. A Web page may

present records of diverse entity types with different schemas and

organize records hierarchically, in nested structures, to show richer

relationships among records. In this paper, we revisit these assump-

tions and modify them to reflect Web pages on the modern Web.

Based on the reformulated assumptions, we introduce the concept

of invariant inWeb data records and proposeMiria (Mining record
invariant), a bottom-up, recursive approach to construct the Web

records from the invariants. The proposed approach is both effec-

tive and efficient, consistently outperforming the state-of-the-art

Web record extraction methods on modern Web pages.
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1 INTRODUCTION
Structured data is an important type of information on the Web.

Such data is often in the form of records retrieved from underlying

databases and displayed on Web pages according to some templates

[13, 28]. We follow past literature and call them data records [59].
Mining data records on the Web is useful because it enables one

to integrate data from multiple Web sites and provide value-added

services, e.g., comparative shopping and meta-querying [14–17, 19].

There is a rich literature on extracting data records fromWeb pages,

dating back to the early days of the Web [21]. With very few excep-

tions that focus on HTML template extraction [41], the fully auto-

matic approaches reported in the literature make, either explicitly

or implicitly, two key assumptions: (1) uniform schema assumption

– that records are drawn from a database with a uniform schema
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and (2) linear structure assumption – that records are displayed in

a linear structure on a Web page. Under such assumptions, data

records extraction becomes a frequent pattern extraction exercise,

where records are expected to be encoded in the HTML code using

very similar HTML tags. That is commonly accompanied by some

similarity measure on the HTML tag tree (or DOM tree) structure

of a Web page, such as tag path (the tag sequence from the root of

the DOM tree to a node) [22, 40, 56], subtree [1, 48, 59], and sibling

nodes [50]. However, similarity-based methods do not work well

on records with heterogeneous schemas or nesting structures. With

the advent of Web 2.0, the structure variations of Web records have

become much more common, making existing record extraction

methods less effective on modern Web pages. As we will report in

Section 5.3.1, the performance of several existing methods varies

between 45% and 94% on modern Web pages.

To ease discussion in this work, we will refer to the traditional,

older Web as Web 1.0 and the modern Web as Web 2.0. We ob-

serve two main factors that introduce unprecedented structure

variations in Web 2.0 records: schema heterogeneity and nonlinear

(nested) structures. Schema heterogeneity refers to the situation

where records in the same data region of a Web page have different

numbers of data fields and data types.

Consider results produced by search engines. Twenty years ago,

results produced by search engines in response to a query were a

list of records wrapped in a uniform structure with metadata fields

such as page title, URL, and page snippets, as shown in Figure 1a.

Nowadays, popular search engines such as Bing tailor the presenta-

tion of records to fit the content of the underlying Web pages and

provide data fields according to the media type of its content. As

an illustration, Figure 1b shows three search records returned by

Bing for the query “Einstein”. Each record contains the traditional

resource URL, page title, and content snippet, but their layouts and

content structures are very different because Bing customizes their

appearance and the displayed data fields according to their types.

In this example, the first record is for a health company’s main

page, and it contains navigation links on the page; the second is

for an encyclopedia page which contains some questions and their

answers about Einstein; the last is for a regular Web document.

Modern e-commerce Web sites, like Amazon, exhibit similar behav-

ior because they accommodate varied types of products, which are

rendered differently, as shown in Figure 1d; the returned products

include a book, a TV episode, and food.

Nonlinear Web records are Web records with hierarchically

nested structures. The nested structure of records was first in-

troduced by social media via comments and replies (a reply to

a comment becomes the child of that comment) and then borrowed

by Web sites to render the list of records in a more compact way.

For example, Google uses it to combine records retrieved from the

same Web site, as shown in Figure 1c where record 1 and record
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(a) TBDW dataset example [57]. (b) Search results from Bing. (c) Search results from Google. (d) Search results from Amazon.

Figure 1: Examples of Web 1.0 and Web 2.0 records.

2 are from the same Web site, and the latter is nested under the

former.

A few solutions emerged to address some of the above issues. For

instance, MiBAT (Mining data records Based on Anchor Trees) [50]

assumes that data records on a page must share some attributes,

such as the posting date of a comment. While this assumption

is intuitive, such attributes are domain-specific, may be difficult

to detect, and may not even exist. For example, some Web sites

may label a comment’s posting date as “just now,” which is not

a date. Another method is STEM [22], which uses a prefix tree

of HTML tag path to reduce noise structures introduced by the

complex data fields, so the records are more regularly structured.

However, this method only considers linear records, and the prefix

tree cannot handle nested records. There are also solutions that

focus on records with user-generated content [26, 27], such as

comments and postings, and thus they can leverage domain-specific

features to help locate records and determine boundaries [5, 11, 29].

However, these are not generic record extraction solutions.

Despite the heterogeneity and non-linearity of Web records, Web

records on the same result page still exhibit common elements. For

example, the three records in Figure 1d all have a rating and a

price. Our solution is predicated on the presence of common record

elements which we refer to as record invariants. We observe two

types of invariants, and here we illustrate them with the running

example shown in Figure 2. We use E to denote the DOM tree of this
example for the rest of this paper. The example contains three records

that present the challenges we mentioned previously: Record 1

contains an image, while Record 3 is nested under Record 2. But

still, one can easily observe some common structures among the

three records: The titles are expressed with subtrees (under nodes

𝑖4, 𝑖18, and 𝑖26) of identical structures. We call the occurrence of

such a pattern as invariant subtree. Moreover, we observe that

the paths from the occurrences of the invariant subtree to the

corresponding records’ top nodes (𝑖2, 𝑖16, and 𝑖24) have the same

sequence of HTML tags. We call the occurrence of such a path

pattern as invariant path. The invariants may be part of the data

(e.g., a common attribute) or of the rendering HTML template.

Our goal is to mine such invariants automatically and use them to

reconstruct the records.

To this end, we propose Miria (Mining record invariant), a
bottom-up algorithm that turns a DOM tree into a sequence to

search for invariant subtrees based on frequent sequential patterns

and then recovers the Web records by matching invariant paths.

Extracting Web records based on sequential pattern matching has

been explored in several works [8, 22, 40, 53]. However, they all

require Web records to observe the uniform schema and linear

structure assumptions. More specifically, most of these methods

encode a node using its tag path [22, 40, 53], which hampers their

ability to detect patterns among nested Web records because their

tag paths can be very different. In contrast, we propose to encode a

node using the subtree structure under a node, eliminating the varia-

tion introduced by nested structures (the same subtree structure

will have the same code value). Furthermore, to recover a record

from an occurrence of a pattern, existing methods involve some

similarity measurements on the encoding sequence [8, 22], which

is sensitive to structure variations. In contrast, Miria tries to align

Web records by their invariant subtrees and invariant paths, avoid-

ing enforcing record-level similarity comparison. The proposed

algorithm achieves accurate and consistent performance across

multiple datasets, both old and new, empirically proving that it can

cope with diverse types of Web records on the modern Web.

We make the following contributions in this work:

• We show that the assumptions followed by traditional Web

record extraction tools are outdated on the modern Web and

propose new ones that are more reflective of today’s Web.

• We define Web record invariants and propose novel algo-

rithms usingmethods inspired by signal processing literature

to mine such invariants from Web pages.

• We propose a bottom-up approach for mining Web data

records. To the best of our knowledge, ours is the first such

approach; all existing approaches are top-down.

• We conduct extensive experimental studies and show that

our approach is both effective and efficient, outperforming

the state-of-the-art (SOTA) Web record extraction methods.

2 RELATEDWORK
The existing approaches for Web record extraction can be classified

by the level of automation: manual approaches, semi-automatic

approaches, and automatic approaches.
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Record 1

Image of Einstein

Advertisement

Record 2

... Einstein ...

Record 3

... Einstein ...

(a) Rendered page.

<span> 
Advertisement

i15

<li>i2

<ul>i1

<div>i3

<div>
class=“title”

i4

<a>
href=“page1.html”
i5

<span> 
Record 1

i6

<HTML tag> 
attribute name 1=“value of attribute 1”

…
attribute name 𝑛=“value of attribute 𝑛”

element text

node index

<div>
class=“title”

i18

< a >
href=“page2.html”
i19

<li>i16

<div>i17

<div>
class =“content”
i21 <ul>i23

<li>i24
<p>

... Einstein ...
i22

< span > 
Record 2

i20 <div>
class=“title”

i26

<div>i25

<a> 
href=“page3.html”
i27

<span> 
Record 3

i28

<a>
href=“ad.html”

i14

< div > 
class=“ad”

i13<ul>i12

<ul>i31

<div>
class=“content”
i7

<span>i9

<img>
src=“portrait.jpg”
i10

<h3>
Image of Einstein
i11 <div>

class=“content”
i29

<p>
... Einstein ...

i30

<a>
href=“page1.html”

i8

Container 
Node

Invariant 
Subtree

Invariant Path

1 2

3

(b) The DOM tree of this example, denoted as E throughout this paper.

Figure 2: A running example of three Web records with heterogeneous contents and nested structures. Record boundaries are
marked with red dotted lines.

Manual approaches aim at writing specialized tools to extract

Web records from a limited number of Web pages [18, 33]. They

require manual inspection of Web pages and their source code.

Then one writes a specialized program in the form of overfitted

rules (e.g., XPath expressions) to target specific parts of the HTML

source code. Manual approaches may achieve the most accurate

results, but they are not scalable and require domain expertise to

compose the rules.

Semi-automatic approaches usually involve supervised or semi-

supervised learning as they require human-labeled examples to

learn extraction rules and synthesize wrappers for annotated web-

sites [7, 34, 44]. These approaches are generally centered around

the topic of wrapper induction, where the major challenges include

the efficient generation of wrappers [32, 62], the robustness against

structural variation of website templates [42, 47], and the mainte-

nance of the wrappers when websites change templates [35, 43].

The automatic approaches focus on detecting frequent patterns

based on the fact that Web records from the same logical table

share very similar structure patterns both visually (as rendered on

the target Web page) and in their underlying HTML source codes.

Automatic solutions target two extraction scenarios in general:

extract multiple list-like records from a single Web page and extract

one record from a detailed page with access to multiple pages of

the same template [6, 41]. This paper is focused on the former, and

we present a number of relevant works here.

There are HTML tags that are designed to format lists in Web

pages, such as <ul> and <ol>. Thus, some works are dedicated to

extracting records using these tags [3, 10, 20, 45, 54, 61], but they do

not generalize well across the Web. Most approaches apply various

pattern mining algorithms to locate record regions within a page by

analyzing the DOM trees, such as repeating tags [2, 21], repeating

tag paths [8, 22, 24, 30, 40, 52], and repeating subtrees [36, 59]. The

three patterns inspire the three different node encoding schemes

that we will discuss in Section 4.2. To extract each record from

a record region, a key task is determining the record boundaries.

Existing methods generally define certain similarity measurements

to compute the boundaries and align the records. Naturally, record

alignment can be performed on the tree structure, with tag path

alignment [52], sibling alignment [50], or tree alignment [37, 59, 60].

The similarity may also be performed on a sequential data structure,

where the DOM tree is transformed into a sequence/string [8, 22,

40, 53]. Reducing tree data structures to sequence data structures

introduces the opportunity of applying sequential pattern mining

techniques to the Web record extraction problem, and our method

also follows this approach.

Apart from the DOM tree structure, some works leverage the

visual layout in the rendered Web page [4, 23, 49]. There are also

hybrid methods that combine the two [38, 63]. These methods tend

to be less efficient because they are throttled by the page rendering

process in tools like Selenium, which complicates the system design

and reduces their robustness by introducing an extra CSS render

engine into the process.

3 RECORD EXTRACTION REVISITED
We start the formal presentation of the problem in this section.

We first discuss the underlying assumptions in mining Web data

records. We then show that these assumptions no longer hold for

modern Web pages. Finally, we revise these assumptions to meet

the design of modern Web pages. The discussion in this section

assumes that the extraction algorithms use the HTML source code

as the primary input for mining.

3.1 Assumptions in Mining Web Data Records
The literature on mining Web data records makes three main as-

sumptions (some explicitly, others implicitly) about the way data

records are represented in the HTML code of a Web page. We exam-

ine these assumptions below and explain with supporting examples

why it is violated on the modern Web.

Assumption 1.Web pages are organized in regions. The region

that contains Web records is called a data region. A data region is

“continuous” and presents data records about “similar” entities that

have the same schema.
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Assumption 2.Web records in the same data region are repre-

sented using “almost" the same sequence of HTML tags.

Assumption 3. A set of Web records in a data region are repre-

sented as child sub-trees of the “same” parent node in the HTML

DOM tree.

The “continuous” condition in Assumption 1 was almost uni-

versally satisfied in Web 1.0, where the ad industry had yet to

understand the full potential of digital advertisement [39]. The

common violation of the “continuous” assumption is the (strategic)

insertion of ads between records. The “similar” requirement was

based on the observation that Web sites would return records about

entities sharing the same schema in response to a query. This is

violated nowadays becauseWeb sites use increasingly sophisticated

retrieval algorithms that go beyond the classic query-record simi-

larity search and include additional dimensions of relevance, such

as market basket analysis [55]. Thus, most Web sites today con-

tain records of diverse entity types in response to a query. Figure

1d shows some of the records returned by Amazon for the query

“Einstein”. The list includes books, a TV show, and food items.

Informally, the “almost” condition in Assumption 2 is a conse-

quence of the similarity condition in Assumption 1. If data records

follow the same schema, one expects their representations in the

HTML source code to be identical modulo small variations, like

the absence of one or two attributes (for instance, the absence of

Edition in a book record – usually due to the presence of a Null

value in that attribute in the database.) This condition is clearly

violated when the records are of different entity types. For instance,

the records of Einstein Health and Britannica returned by Bing in

response to “Einstein” (Figure 1b) have different sets of attributes:

the record of Einstein Health contains the main navigation links

of the website, such as “Career” and “Patient Portal”, whereas the

record of Britannica contains several questions and answers about

Einstein. This is because Bing is able to distinguish between the

records’ industry types and include attributes specific to each type.

Assumption 3 states that a set of similar Web records are formed

by some child sub-trees of the same parent node. This was satisfied

inWeb 1.0 because a recordwas not expected to be a child of another

record. This, however, changed in Web 2.0, where there may be

hierarchical relationships between records. Hence, the descendant

records of a record cannot all share a common parent node. Some

Web sites use hierarchical relations to convey specific semantics.

For example, in social media, a reply to a post becomes the child of

that post, and search engines like Google use it to combine records

on a topic retrieved from the same Web site, as shown in Figure 1c

where Record 1 and Record 2 are from the same Web site, and the

latter is nested under the former.

These differences are also fueled by the emergence of novel data

management technologies. During Web 1.0, web databases were

relational; hence one expected the records to inherit the schema of

the underlying tables. Today many web databases are not relational

[25]. For example, Google’s Big Table [9] and Amazon’s DynamoDB

[12] are not relational and can better accommodate records with

diverse schemas.

index tag path tag path code
i1 ul 1
i2 ul/li 2
i3 ul/li/div 3
… … …
i16 ul/li 2
… … …
i31 ul/li/ul/li/div/ul 20

Figure 3: Tag path code sequence of E (Figure 2b).

3.2 A Picture is Worth a Thousand Words
The previous section provided a qualitative analysis of the differ-

ences betweenWeb 1.0 andWeb 2.0 records. In this section, we give

a quantitative argument of the changes triggered by the violations

of those assumptions.

We need a way to capture the observation that the presence of

structured content in a Web page (aka data region) must exhibit

an overall structural consistency, even in the presence of noise,

so that it looks somewhat organized to a visual inspection. We

draw inspiration from visual data mining with signal processing

techniques [31]. Intuitively, suppose we can map Web records to

cycles in a signal. If these assumptions are well satisfied, then we

expect to see a signal with regular cycles (patterns). Otherwise,

we should see little regularity in the cycles of the signal. We take

the structure of the DOM tree of a Web page and flatten it into a

sequence of integers, then plot it into a graph. More specifically,

each node is represented by its tag path, which is the string obtained
by concatenating the HTML tags of the nodes on the path from

the root node to the node in the DOM tree. For example, Figure 3

shows the tag paths of the nodes of E. We can assign a code for

each unique tag path, then we get a sequence of tag path codes for

the tree, as shown at the bottom of Figure 3. Details of the process

can be found in [22, 40, 53].

Using tag path codes, we generate the sequential signal of data

regions. We compare the sequential signals of data regions from

Web 1.0 against those from Web 2.0. As representatives of Web 1.0

pages, we use samples from the TBDW dataset [57], which was

collected in 2003 and widely used as a benchmark dataset for Web

record extraction (see more details in Section 5.1). We randomly

choose 1 page from three Web sites (1, 25, and 50) that are at the

beginning, the middle, and the end of the dataset. As representatives

of Web 2.0 records, we collected three datasets of Web records in

2021 from Google, Amazon, and news comments, respectively (see

Section 5.1 for details). We take a random page from each of them.

Note that we do not plot the sequential signal of the entire Web

pages but only that of the main data region.

Figure 4 shows the plots. The plots of the samples from the

TBDW dataset are on the left, and those from our dataset are on the

right. One observes that the data regions of pages sampled from

the TBDW dataset have neat repeating patterns, indicating that

there is little structure variation among records. Specifically, the

962



Figure 4: Signals of tag path codes of Web 1.0 (left column)
and Web 2.0 records (right column).

sequential signal of tbdw-1 has a strict repeating pattern because

there is no structure variation among its records; the sequential

signals of tbdw-25 and tbdw-50 are not strictly periodic, but the

irregular variations are minimal. In contrast, it is difficult to tell

any periodical patterns in the sequential signals of the data regions

of the modern Web pages. Consider the examples from Google and

comments which contain an arch in their sequences. This indicates

the presence of nested records: Web records under the same parent

node will share some common tag path codes, but for those nested

Web records, their tag path codes are very different from the non-

nested ones. Such behavior is not encountered in the samples from

the TBDW dataset.

3.3 Assumptions Revisited
We showed in the previous section that the assumptions guiding

the existing Web data record extraction algorithms no longer hold.

Thus, they need to be revisited to catch up with the complex HTML

structures on the modern Web. For that, we need to distinguish

between a data record and aWeb record. AWeb record has two parts:

the data part, which includes the HTML tags that directly enclose

the data record retrieved from a database, and the non-data part,

which includes the tags for interaction purposes (e.g., Add to Cart

button) and the tags for formatting purpose. For example, the data

part of the second record in Figure 1d includes the tags that contain

the cover image, “Little Einsteins Volume 1”, “2005 | TV-Y | CC”,

“929”, “$1.99”, and “$12.99”; the non-data part includes the tags that

form the product ratings (which will expand into the distribution

of ratings when the mouse pointer is hovering on them) and all the

non-displayable tags that help format the record.

Our premise when revising Assumptions 1 and 2 is that one can

no longer expect data records as a whole to exhibit high similar-

ity, but one nonetheless must expect Web records to share some

common subtree structures. If one is able to identify such subtrees,

then we contend that one is able to reconstruct the Web records

and extract the data with high accuracy. We call such a subtree an

invariant subtree.

Definition 3.1 (Invariant Subtree). An invariant subtree is a sub-

tree structure that presents and serves the same purposes in every

Web record from the same logical table.

Invariant subtrees occur at multiple levels in Web records. The

first level is the data part – even though data records may have

different schemas in general, they may still share some attributes,

like Product Price in an e-commerce Web site or the Posting Date

of a user post on a social media platform. A Web record template

generally represents the same attribute using the same tag sequence.

The second level is the non-data part, which usually follows a

template that is not sensitive to the type of data record. For instance,

records in e-commerce Web sites have an Add to Cart button, and

records from Google have an “About this result” button irrespective

of their types. In addition, Web records tend to have consistent

HTML formatting. For example, in Figure 1c, all the page titles are

formatted with a <h3> tag along with an <a> tag. The invariant

subtrees from the non-data part help us recover Web records even

if their data records are from very different schemas. Thus the

similarity condition in Assumptions 1 and 2 becomes:

Assumption 4. Web records in a data region of aWeb page contain

one or more (non-trivial) invariant subtrees.

Recall from the previous section that the presence of nested

records in data regions is the main offender of Assumption 3. The

reason is that nested records in a data region can form a tree of an

arbitrary depth and thus Web records are not all children of the

same parent. Consequently, we can no longer look for one node

in the DOM tree as the sole point of reference to guide record

detection. Instead, we need to look for multiple such points of

reference. Because Web records correspond to subtrees in a DOM

tree, their root nodes are natural candidates, and we refer to the

root node of a Web record as its container node.

Definition 3.2 (Container Node). The container node of a Web

record is the highest node in a DOM tree such that all the data

fields of this record are descendants of the node, and no data fields

of other records are among its descendants unless the record is

nested.

For example, nodes 𝑖2, 𝑖16, and 𝑖24 of E are the container nodes of
the three records. Note that node 𝑖16 is the container node of Record

2, and it only contains the data fields of Record 2 and Record 3, but

the latter is nested under the former. Using Web record container

nodes as reference points, we can define invariant path.

Definition 3.3 (Invariant Path). For Web records in the same data

region, there exists one invariant subtree such that the paths from

the record container nodes to the occurrences of the invariant

subtree have the same sequence of tags for all records. We call the

occurrence of such a repeating path an invariant path.

For example, the three occurrences of the invariant subtree in E
have the same tag path to their container nodes, i.e., <div>, <li>.
Note that even though Record 3 is nested under Record 2, its path

from its container node to its invariant subtree is the same as that

of Record 2. There may be more than one invariant subtree present

among a set of Web records, and we only require one of them to

have an invariant path. We replace Assumption 3 with:
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Assumption 5. Web records in a data region of aWeb page contain

one or more invariant paths.

Finally, to cope with the “continuous” requirement in Assump-

tion 1 in the presence of breaks, we assume that a data region is a

collection of Web records sharing invariant subtrees and invariant

paths. This allows us to omit ad sections or other types of sections

inserted between the data region’s records. With these assumptions,

we propose a bottom-up approach to detect Web records in data

regions. We can apply our approach recursively to identify all the

data regions in a Web page. To our knowledge, all previous Web

records extraction algorithms are top-down. This does not include

wrapper induction approaches which can be both top-down and

bottom-up, and more recent ones are hybrid [47], combining the

benefits of the two approaches.

3.4 Notations
Before we dive into the details of our solution, we introduce a few

notations that help the presentation. We model the DOM tree of an

HTML document by an ordered tree (i.e., a directed acyclic graph

with a designated root), and an ordering is specified for the children

of each node. Given a DOM tree 𝐷 , we assign each node an index

using its depth-first traversal order starting from 1, and we refer to

the 𝑖th node of 𝐷 by 𝐷𝑖 . We use 𝐷 (𝑖) to refer to the subtree of 𝐷

rooted at node 𝑖 . Thus 𝐷 (1) is the same as 𝐷 . We denote a subtree

relationship by 𝐷 (𝑖) ⊂ 𝐷 ( 𝑗), with the meaning that the tree 𝐷 (𝑖)
rooted at node 𝑖 is a subtree of𝐷 ( 𝑗) rooted at node 𝑗 . For an ordered
set 𝐴 (such as an array or an ordered tree), we use 𝐴𝑖 to refer to

its 𝑖th element and 𝐴[𝑖 : 𝑗] to refer to the sub-sequence of 𝐴 that

starts from 𝐴𝑖 and ends at 𝐴 𝑗 .

4 APPROACH
With Assumptions 4 and 5, we present Miria, a bottom-up Web

record extraction algorithm that detects records by first finding

invariant subtrees and then matching invariant paths to the corre-

sponding record container nodes.

We provide an overview of Miria below and then present the

detailed procedures step by step:

(1) Perform DFS on the DOM tree to transform it into an ordered

node sequence (Section 4.1).

(2) Encode each node into an integerwith an appropriate scheme

(Section 4.2).

(3) Search invariant subtrees by mining frequent patterns on

the code sequence (Section 4.3).

(4) AlignWeb records vertically by matching the invariant paths

from the invariant subtrees to record container nodes (Sec-

tion 4.4).

(5) If there are gaps among sibling Web records, align them hori-

zontally by matching their preceding and following subtrees

(Section 4.5).

4.1 Flatten The Tree
We start by converting a DOM tree into a sequence to reveal the

repeating structure patterns of Web records. Note that detecting

a pattern requires the definition of equality between any pair of

nodes on the sequence. So, we need to have a way to encode the

nodes so that we can compare nodes based on their encoded values.

Figure 5: The NES of E (Figure 2b), encoded by 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 ,
𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 , and 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 , respectively. The red rectangles
show the boundary of the records. The record container
nodes are marked by orange circles, and the nodes of invari-
ant subtrees are marked by gray squares. The bright yellow
line in themiddle figure highlights a pattern that spans over
the record boundary.

We encode a node with a function 𝑓 , and we write the encoding

produced by 𝑓 as 𝐸𝑛𝑐𝑜𝑑𝑒𝑓 (∗), where the input may be a node or a

tree (the output is a single code for the former and a code sequence

for the latter).

Definition 4.1 (Node Encoding Sequence (NES)). The NES of a tree
𝐷 is a sequence of codes obtained by a node encoding function.

We assign a positive integer to each unique node encoding in the

sequence, and thus the NES becomes a sequence of positive integers.

More specifically, during the NES constructing process, if we meet a

node encoding for the first time, we assign the next unused integer

(starting from 1) to the node encoding; otherwise, we use the integer

that was assigned to the node encoding previously.

4.2 NES Construction
Our definition of NES is a generalization of the Web Page Se-
quence (WPS) [22] which is a sequence of nodes encoded by

their HTML tag path, and we denote such encoding scheme by

𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 .

Definition 4.2 (HTML Tag Path Encoding (𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 )). Given a

DOM tree 𝐷 , the 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 of a node 𝑥 ∈ 𝐷 is the tag path from

the root of 𝐷 to 𝑥 .

For example, the 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 for E𝑖6 is:

𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 (E𝑖6) =< ul, li, div, div, a, span > (1)

Apparently, 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 represents a node by its ancestor infor-

mation. However, such an encoding scheme is not a good choice

when there are nested structures. For example, we hope the three

occurrences of the invariant subtree of E have the same code, but

that cannot be satisfied if we encode a node using its tag path (see

Figure 3). This situation motivates the problem: how to encode a

node so that all occurrences of an invariant subtree will have the

same encoding while distinguishable from irrelevant nodes?
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A naive solution is simply encoding a node by its tag. However,

some tags are widely used in HTML documents, such as <div> and
<span>, which can easily lead to false matching on an NES, i.e.,

matching with some patterns in the background noise, especially

when the pattern is short. To reduce the chance of false matching,

we enhance the tag of a node by including its attribute names, and
we call it the signature of a node.

Definition 4.3 (Signature Encoding (𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 )). The 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺
of a node 𝑥 is a tuple starting with the tag of 𝑥 and followed by its

assigned attribute names in alphabetical order.

For example, the 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 of E𝑖3 and E𝑖4 are:

𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 (E𝑖3) =< div >, 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 (E𝑖4) =< div, class > (2)

We use attribute names instead of attribute values because we

want similar nodes to have the same encoding, and often attribute

values are unique to a node, such as id and href. For example, if we

use attribute values, then 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 (E𝑖5), 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 (E𝑖19), and
𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 (E𝑖27) would not have the same encoding value because

their href values are different. Apart from encoding a node by its

signature, we also propose encoding a node by its structure. In fact,

when we discuss similar structures of records, we implicitly assume

that two nodes are equal if their subtree structures are the same.

Definition 4.4 (Structure Encoding (𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 )). Given a DOM

tree 𝐷 , the 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 of a node 𝑥 ∈ 𝐷 is a code that identifies

𝐷 (𝑥)’s structure, which is defined recursively as:

𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 (𝑥) ≔ ⟨𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 (𝑥), 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥))⟩ (3)

Where 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥)) is the code array of 𝑥 ’s direct chil-

dren.

The 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 represents a node by its signature and its chil-

dren’s structure encoding (if any). We can find subtrees with the

same structure by looking up their structure encoding identifier.

In the trivial case where no structure variation exists, we can find

Web records by building a histogram of structure encoding on a

DOM tree with heuristic filters such as record size and text length.

On choosing the node encoding scheme of the NES, we have

two fundamental concerns: pattern recall and pattern precision.

A higher pattern recall means more Web records being matched

by a frequent pattern, while a higher pattern precision means less

background noise being matched by a frequent pattern. We show

the NES of E in Figure 5, constructed using 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 , 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 ,

and 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 , respectively. The horizontal axis is the sequence

index, while the vertical axis is the node encoding identifier. Each

dot in a sequence stands for a node, where the record container

nodes are marked by orange circles, and the nodes of invariant

subtrees are marked by gray squares. We see that for the NES using

𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 , the third record does not match with any previous

record because its tag path is deeper due to nesting. The NES using

𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 presents the most regular pattern, with all three records

completely or partially matched. However, the three occurrences

of the invariant subtree (E(𝑖4), E(𝑖18), and E(𝑖26)), the content

snippet field of Record 1 (E(𝑖7)), and the advertisement (E(𝑖13)), all
share the same code sequence: ⟨4, 5, 6⟩. At first glance, it seems that

the NES with 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 shows a very slight sign of pattern signal.

But one may notice how the sequence reflects the tree structure:

nodes with the same code value have the same tree structure. By

choosing a proper size filter – 3 in this case – we get ⟨3, 2, 1⟩ as
the most frequent pattern, and it only matches with the invariant

subtree in each record (E(𝑖4), E(𝑖18), and E(𝑖26)) and the adver-

tisement (E(𝑖13)). The advertisement will be discarded later when

matching the invariant path.

It is obvious that if the target Web records share at least one

invariant subtree, then both 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 and 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 can produce

NES that has perfect pattern recall, whereas the NES encoded by

𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 will have perfect pattern recall only if the Web records

are linear. The main reason of their difference in pattern recall is

that the code assigned by 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 is dependent on the ancestors

of a node.

Definition 4.5 (Constant Node Encoding). Given a DOM tree 𝐷 , a

node encoding function 𝑓 is a constant node encoding function if

𝐸𝑛𝑐𝑜𝑑𝑒𝑓 (𝐷) is determined only by nodes in 𝐷 .

Lemma 1. If Web records share at least one invariant subtree, then

a constant node encoding function has perfect pattern recall.

A frequent pattern has higher discriminative power in matching

records if the encoding function has less probability of encoding

collision, i.e., the probability that a node 𝑥 has the same encoding

with a random node 𝑦, where 𝑥 and 𝑦 are from the same DOM tree

𝐷 . Let 𝑁𝑡𝑎𝑔 and 𝑁𝑎𝑡𝑡 denote the number of unique tags and the

number of unique attribute names, respectively. Let 𝑑 denote the

depth of 𝑥 and 𝑠 denote the size of 𝐷 (𝑥). For simplicity, we assume

that the tags and attribute names have uniform distributions. Then

we can estimate the probability of encoding collision for the three

encoding schemes:

𝑃 (𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 ) =
1

𝑁𝑡𝑎𝑔𝑁𝑎𝑡𝑡
(4)

𝑃 (𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 ) =
𝑃 (𝑑𝑒𝑝𝑡ℎ(𝑥) = 𝑑𝑒𝑝𝑡ℎ(𝑦))

𝑁𝑑
𝑡𝑎𝑔

(5)

𝑃 (𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅) =
𝑃 (𝑙𝑎𝑦𝑜𝑢𝑡 (𝐷 (𝑥)) = 𝑙𝑎𝑦𝑜𝑢𝑡 (𝐷 (𝑦)))

(𝑁𝑡𝑎𝑔𝑁𝑎𝑡𝑡 )𝑠
(6)

where 𝑃 (𝑑𝑒𝑝𝑡ℎ(𝑥) = 𝑑𝑒𝑝𝑡ℎ(𝑦)) is the probability that 𝑥 and 𝑦 have

the same depth, and 𝑃 (𝑙𝑎𝑦𝑜𝑢𝑡 (𝐷 (𝑥)) = 𝑙𝑎𝑦𝑜𝑢𝑡 (𝐷 (𝑦))) is the proba-
bility that there is an one-to-one top-down mapping between 𝐷 (𝑥)
and 𝐷 (𝑦). Obviously, encoding collision is more likely to happen

for 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 , while the chance for the other two decreases ex-

ponentially by the node depth (Equation 5) or the corresponding

subtree size ( Equation 6). Moreover, the chance of layout equiva-

lence is smaller than depth equivalence; thus, structure encoding is

expected to perform better in pattern precision.

The NES of a DOM tree, with any of the node encoding schemes

mentioned above, can be constructed in𝑂 (𝑁 ) time using depth-first

traversal, where𝑁 is the size of the target DOM tree. As an example,

we show the construction process of NES using 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 in Al-

gorithm 1. We first initialize the NES as an empty array and assign

two empty maps for the node signature identifier and structure

identifier, respectively (lines 1 - 3). Then we call the dfs procedure,

inside which we first assign the two identifiers for each child by

calling dfs recursively. Then we assign the node signature and

structure encoding identifiers for the current node (lines 8 - 18),

and we append the latter to the NES array.
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Algorithm 1: Constructing NES using structure encoding.

1 Function NES_Using_Structure_Encoding(tree)
33 𝑁𝐸𝑆 ←empty array

55 𝑠𝑖𝑔𝐼𝑑𝑀𝑎𝑝 ←empty map

77 𝑠𝑡𝑟𝑢𝑐𝐼𝑑𝑀𝑎𝑝 ←empty map

99 dfs(𝑡𝑟𝑒𝑒 .root(), NES, sigIdMap, strucIdMap)
1111 return 𝑁𝐸𝑆

12 Procedure dfs(node, NES, sigIdMap, strucIdMap)
1414 foreach 𝑐ℎ𝑖𝑙𝑑 ∈ children of 𝑛𝑜𝑑𝑒 do
1616 dfs(𝑐ℎ𝑖𝑙𝑑 , 𝑁𝐸𝑆 , 𝑠𝑖𝑔𝐼𝑑𝑀𝑎𝑝 , 𝑠𝑡𝑟𝑢𝑐𝐼𝑑𝑀𝑎𝑝)

1818 𝑠𝑖𝑔← node signature of 𝑛𝑜𝑑𝑒

2020 if 𝑠𝑖𝑔 ∉ 𝑠𝑖𝑔𝐼𝐷𝑀𝑎𝑝 then
2222 𝑠𝑖𝑔𝐼𝐷𝑀𝑎𝑝 (𝑠𝑖𝑔) ← |𝑠𝑖𝑔𝐼𝐷𝑀𝑎𝑝 |
2424 𝑠𝑖𝑔𝐼𝑑 ← 𝑠𝑖𝑔𝐼𝑑𝑀𝑎𝑝 (𝑠𝑖𝑔)
2626 𝑠𝑡𝑟𝑢𝑐 ← empty array

2828 𝑠𝑡𝑟𝑢𝑐 .append(𝑠𝑖𝑔𝐼𝑑)

3030 foreach 𝑐ℎ𝑖𝑙𝑑 ∈ children of 𝑛𝑜𝑑𝑒 do
3232 𝑠𝑡𝑟𝑢𝑐 .append(structure encoding ID of 𝑐ℎ𝑖𝑙𝑑)

3434 if 𝑠𝑡𝑟𝑢𝑐 ∉ 𝑠𝑡𝑟𝑢𝑐𝐼𝑑𝑀𝑎𝑝 then
3636 𝑠𝑡𝑟𝑢𝑐𝐼𝑑𝑀𝑎𝑝 (𝑠𝑡𝑟𝑢𝑐) ← |𝑠𝑡𝑟𝑢𝑐𝐼𝑑𝑀𝑎𝑝 |
3838 𝑠𝑡𝑟𝑢𝑐𝐼𝑑 ← 𝑠𝑡𝑟𝑢𝑐𝐼𝑑𝑀𝑎𝑝 (𝑠𝑡𝑟𝑢𝑐)
4040 𝑁𝐸𝑆 .append(𝑠𝑡𝑟𝑢𝑐𝐼𝐷)

4.3 Frequent Pattern Detection
4.3.1 Pattern Mining. With Assumption 4 and Lemma 1, we have

a systematic way to locate Web records by detecting frequent sub-

strings (i.e., continuous subsequences) in an NES constructed by a

constant encoding function. The frequent substring mining prob-

lem is a classic pattern mining problem and can be solved by using

a suffix tree. The suffix tree is a compressed trie of all the suffixes

of a given string. It enables fast implementations of many impor-

tant string operations, such as searching for repeated substrings or

common substrings. We can build a suffix tree using the Ukkonen’s

algorithmwith𝑂 (𝑁 ) time complexity [58]. For illustration, we built

a suffix tree for the 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 NES of E (the second sub-figure of

Figure 5), and we show the first three branches of the suffix tree

in Figure 6. In the figure, the red circle is the root, black circles are

internal nodes, and white circles are leaf nodes. Each edge is labeled

by a substring. Concatenating the edge labels from the root to a

leaf node produces a suffix of the original string. We can find the

number of substrings with a given suffix by counting the number

of leaf nodes under the internal node reached by the path start-

ing with the suffix. For example, the figure shows that there are

four substrings starting with ⟨1⟩ and three substrings starting with

⟨2, 3, 4, 5, 6, 4⟩. Note that the $ symbol denotes the end of the string.

To mine frequent patterns, we need to set a threshold for the

pattern frequency 𝐹𝑡ℎ and a threshold for the pattern length 𝐿𝑡ℎ .

We first traverse the suffix tree and find internal nodes that: 1) the

length of the substring concatenated from the edges on its path

to the root is greater than 𝐿𝑡ℎ and 2) there are more than 𝐹𝑡ℎ leaf

nodes under the internal node. If we set 𝐹𝑡ℎ = 2 and 𝐿𝑡ℎ = 3, we can

get the following frequent patterns from Figure 6: ⟨1, 2, 3, 4, 5, 6, 4⟩,
⟨2, 3, 4, 5, 6, 4⟩, ⟨2, 3, 4, 5, 6, 4, 9, 1⟩, ⟨3, 4, 5, 6, 4⟩, ⟨3, 4, 5, 6, 4, 9, 1⟩.

5,6,7,8,1,4,5,6,2,3,4,5,6,4,9,1,2,3,4,5,6,4,9,1,$

1 4,5,6,2,3,4,5,6,4,9,1,2,3,4,5,6,4,9,1,$

5,6,7,8,1,4,5,6,2,3,4,5,6,4,9,1,2,3,4,5,6,4,9,1,$

2,3,4,5,6,4,9,1,$

5,6,7,8,1,4,5,6,2,3,4,5,6,4,9,1,2,3,4,5,6,4,9,1,$

2,3,4,5,6,4,9,1,$

Figure 6: The first three branches of the suffix tree con-
structed from the 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 NES of Figure 5

One notices that there may be redundant patterns because some

patterns are substrings of other patterns. To remove redundancy,

we will only keep closed patterns, as defined below.

Definition 4.6 (Super-pattern and Sub-pattern). Given two pat-

terns 𝑝1 and 𝑝2, where 𝑝2 is a substring of 𝑝1, we say 𝑝1 is a

super-pattern of 𝑝2, and 𝑝2 is a sub-pattern of 𝑝1.

Definition 4.7 (Closed Pattern). A pattern 𝑝 is a closed pattern if

any super-pattern of 𝑝 has less support (i.e., frequency) than 𝑝 .

Take the above patterns as an example, < 1, 2, 3, 4, 5, 6, 4 > (with

two supports) is a super-pattern of < 2, 3, 4, 5, 6, 4 > (with three

supports), and both are closed patterns because they do not have

any super-pattern with equal support. The pattern < 3, 4, 5, 6, 4 >

(with three supports), however, is not a closed pattern because it

has a super-pattern < 2, 3, 4, 5, 6, 4 > that has equal supports of 3.

A closed pattern is a minimal representation of its super-patterns

without losing their support information [51]. In other words, we

are still able to locate all the records with only closed patterns.

Moreover, a closed pattern has more discriminative power than its

sub-patterns in matching records, and the search space is signifi-

cantly reduced by selecting closed patterns.

Thus, in the above patterns, we will keep the three closed pat-

terns: ⟨1, 2, 3, 4, 5, 6, 4⟩, ⟨2, 3, 4, 5, 6, 4⟩, ⟨2, 3, 4, 5, 6, 4, 9, 1⟩.

4.3.2 Pattern Reduction. So far, it is guaranteed that there is at

least one pattern for Web records in the same data region. However,

a pattern may span across the boundary of records, which
makes it difficult, if not impossible, to decide the correct record

container node in our following step. For example, the closed pat-

tern ⟨1, 2, 3, 4, 5, 6, 4⟩ has two occurrences in the 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 NES of

Figure 5 (highlighted by yellow lines), starting at indexes 1 and 23,

respectively, and they span over the boundaries of the correspond-

ing records (marked in red rectangles). In this step, our goal is to

reduce the length of a candidate pattern such that every occur-
rence of the pattern is within one and only one Web record.

Given a pattern 𝑝 mined from NES𝐴 that is derived from a DOM

tree 𝐷 , let 𝑂 denote 𝑝’s occurrences on 𝐴, and let 𝐿𝐶𝐴(𝑜𝑖), 𝑜𝑖 ∈ 𝑂 ,
be a function that returns the lowest common ancestor of 𝑜𝑖’s

corresponding nodes in 𝐷 . We determine if we should reduce 𝑝’s

length by Lemma 2.

Lemma 2. If 𝑜𝑖, 𝑜 𝑗 ∈ 𝑂,𝑜𝑖 ≠ 𝑜 𝑗 , and 𝐿𝐶𝐴(𝑜𝑖) = 𝐿𝐶𝐴(𝑜 𝑗), then 𝑜𝑖
and 𝑜 𝑗 span over multiple records on 𝐴.

Proof. We prove the statement by contradiction. Suppose
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Algorithm 2: Pattern reduction process.

input :A pattern 𝑝 .

output :A reduced pattern.

1 𝑝 ′ ← ∅;
2 for 𝑖:=1 to length(𝑝) step 1 do
3 for 𝑗 :=length(𝑝) to 𝑖 step -1 do
4 𝑂 ← the occurrences of 𝑝 [𝑖 : 𝑗];
5 if |{𝐿𝐶𝐴(𝑜𝑖), 𝑜𝑖 ∈ 𝑂}| = |𝑂 | then
6 if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝 [𝑖 : 𝑗]) > 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝 ′) then
7 𝑝 ′ ← 𝑝 [𝑖 : 𝑗];
8 break;
9 return 𝑝 ′;

Algorithm 3: Align Web records vertically by matching

the paths from anchor trees to record container nodes.

input :a set of anchor trees 𝐴
output :a set of record container nodes

1 𝐶 ← 𝐴;

2 while |𝐶 | > 0 do
3 𝑃 ← ∅;
4 foreach 𝑐 ∈ 𝐶 do
5 𝑝 ← the parent node of 𝑐;

6 if ∀𝑦 ∈ 𝐶,𝑦 ⊂ 𝑝 then
7 return C;

8 add 𝑝 to 𝑃 ;

9 𝐺 ← 𝑃 divided into groups such that the nodes in the

same group have the same signature;

10 𝐶 ← the largest group of 𝐺 ;

11 return 𝐶;

1) 𝐿𝐶𝐴(𝑜𝑖) = 𝐿𝐶𝐴(𝑜 𝑗), and
2) 𝑟𝑜𝑖 and 𝑟𝑜 𝑗 are two different Web records containing 𝑜𝑖 and

𝑜 𝑗 , respectively.

If 𝑟𝑜𝑖 ⊄ 𝑟𝑜 𝑗 and 𝑟𝑜 𝑗 ⊄ 𝑟𝑜𝑖 , then obviously, 𝐿𝐶𝐴(𝑜𝑖) ≠ 𝐿𝐶𝐴(𝑜 𝑗).
Else, without loss of generality, assume that 𝑟𝑜𝑖 ⊂ 𝑟𝑜 𝑗 , because

𝑜 𝑗 does not span over multiple records, we have 𝑜 𝑗 ∩ 𝑟𝑜𝑖 = ∅,
so 𝐿𝐶𝐴(𝑜 𝑗) ∉ 𝑟𝑜𝑖 . Since 𝑜𝑖 ⊂ 𝑟𝑜𝑖 , we have 𝐿𝐶𝐴(𝑜𝑖) ∈ 𝑟𝑜𝑖 , thus

𝐿𝐶𝐴(𝑜𝑖) ≠ 𝐿𝐶𝐴(𝑜 𝑗). □

Lemma 2 gives the sufficient but not the necessary condition for

patterns that span multiple records. In practice, we found that the

condition is accurate in detecting such patterns. We show our pro-

cess for pattern reduction in Algorithm 2, where we keep shrinking

𝑝 until we meet the condition |{𝐿𝐶𝐴(𝑜𝑖), 𝑜𝑖 ∈ 𝑂}| = |𝑂 |, and we

return the largest sub-pattern 𝑝 ′ that satisfies our condition. After
pattern reduction, we apply the pattern length threshold one more

time to evict trivial patterns produced by the reduction process.

Applying Algorithm 2, the above three closed patterns are re-

duced to ⟨2, 3, 4, 5, 6, 4⟩, ⟨2, 3, 4, 5, 6, 4, 9, 1⟩. In the presence of mul-

tiple frequent patterns in one data region (patterns are from the

same data region, and their occurrences are interleaving), we will

keep the one with the most support, and thus ⟨2, 3, 4, 5, 6, 4⟩ is the
final frequent pattern for this example.

4.4 Vertical Alignment
Our last step is to find record container nodes using the pattern

candidates. We use a pattern’s occurrences as anchors to align

Web records by matching potential invariant paths. We start the

matching process from the anchor trees defined below.

Definition 4.8 (Anchor Tree). Given a DOM tree 𝐷 and its NES,

for each occurrence 𝑜 of a frequent pattern 𝑝 derived from the NES,

𝐷 (𝐿𝐶𝐴(𝑜)) is an anchor tree.

Take 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 (E) in Figure 5 as an example (yellow dashed line

with star markers), the pattern ⟨3, 2, 1⟩ has 4 occurrences starting at
indexes 4, 13, 18, and 26, respectively. By mapping the indexes back

to E in Figure 2b, we see that the corresponding anchor trees are

E(𝑖4), E(𝑖13), E(𝑖18), and E(𝑖26). An anchor tree is either derived

from an invariant subtree of aWeb record or some background noise

that happens to have the same structure as an invariant subtree,

such as E(𝑖13) in this case.

By Assumption 5, we can find the record container nodes by

matching the ancestors of anchor trees. We show the process in

Algorithm 3. Starting from a group of anchor trees, we initialize

the record container nodes with the root nodes of the anchor trees.

Inside the loop, we find the parent node for each container node and

check if we have reached the lowest common ancestor of current

container nodes, which means we have reached the boundary node

of the record group and should stop (lines 5 - 8). Otherwise, we

collect the parent nodes and regroup them by their node signatures

(lines 9 - 11). Note that a group of anchor trees is not necessarily

formed by an invariant subtree, and an invariant path may not exist

for the group. Thus when we group them by their parent nodes,

we will have multiple groups if there are different parent node

signatures (line 11). Then we update the container nodes with the

largest group and go into the next iteration (line 12).

For example, if we use the frequent pattern ⟨3, 2, 1⟩ from the

NES of 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 (E), then the record container nodes will be ini-

tialized by ⟨E𝑖4,E𝑖13,E𝑖18,E𝑖26⟩. In the first iteration, the container

nodes are updated to ⟨E𝑖3,E𝑖1,E𝑖17,E𝑖25⟩. They will be split into

two groups: ⟨E𝑖3,E𝑖17,E𝑖25⟩ and ⟨E𝑖1⟩ because E𝑖1 has a different
node signature from the others, and we select the larger group. In

the next iteration, the group is updated to ⟨E𝑖3,E𝑖17,E𝑖25⟩. In the

last iteration, the parent node of E𝑖2, i.e., E𝑖1, is the lowest common

ancestor of all the container nodes, and thus we exit the loop. We

return the final record container nodes ⟨E𝑖2,E𝑖16,E𝑖24⟩.

4.5 Horizontal Alignment
So far, we have assumed that a Web record is embedded in a single

subtree. This is a safe assumption for Web 2.0 records (the authors

never encountered a violation on the modernWeb). However, in the

Web 1.0 era, a record may be presented by multiple continuous sub-

trees. For example, a record from a search engine may contain one

subtree for the page title, followed by another subtree displaying

the page content snippet. To handle this case, we add an optional

step of horizontal alignment to include the preceding and following

subtrees for the Web records detected in the last step.

Similar to the vertical alignment process, we align Web records

horizontally by matching their preceding sibling nodes, and we

show the process in Algorithm 4. We first construct an array from

each container node (line 1), and then we keep appending the
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Algorithm 4: Align Web records horizontally by matching

the preceding sibling nodes of record container nodes.

input :a set of record container nodes 𝐶

output :a set records where each record is a list of subtrees

1 𝑅 ← {[𝑐], 𝑐 ∈ 𝐶};
2 while |𝑅 | > 0 do
3 foreach 𝑟 ∈ 𝑅 do
4 𝑝 ← the preceding node of 𝑟0;

5 if 𝑝 = 𝑛𝑢𝑙𝑙 ∨ 𝑝 ∈ 𝐶 then
6 foreach 𝑟 ∈ 𝑅 do
7 append 𝑟 ’s following nodes that are

unclaimed to 𝑟 ;

8 return 𝑅;

9 insert 𝑝 to the top of 𝑟 ;

10 𝐺 ← 𝑅 divided into groups such that the preceding

nodes of nodes in the same group have the same

signature;

11 𝑅 ← the largest group of 𝐺 ;

12 return 𝑅;

preceding node to each array until there is no preceding node

available or the preceding node is also a container node (lines 4 -

11). Finally, for each array, we append the following sibling nodes

that are not claimed by any other array.

4.6 Time Complexity
Suppose the target DOM tree has 𝑁 nodes, and the height of the

tree is 𝐻 . Let 𝑁𝑝 be the number of patterns, 𝑁𝑜 be the average

number of occurrences per pattern, and 𝐿𝑝 be the average length

of a pattern. The time complexity of the NES construction step

and the frequent pattern mining step are both 𝑂 (𝑁 ). The pattern
reduction step has a quadratic running time w.r.t. 𝐿𝑝 , which is

generally smaller than 𝑁 by several orders and thus negligible. At

the record alignment step, for each pattern, there are at most 𝐻

matching iterations, and each iteration takes 𝑂 (𝑁𝑜 ) time. Thus

the running time in this step is 𝐻 · 𝑁𝑝 · 𝑁𝑜 , which is bounded by

𝑂 (𝐻𝑁 ) because 𝑁𝑝 · 𝑁𝑜 < 𝑁 . Overall, the running time of Miria

has a loose upper-bound of 𝑂 (𝐻𝑁 ). In practice, DOM trees tend

to grow horizontally rather than vertically for data regions. For

example, the DOM trees of the result Web pages of a search engine

have very similar tree heights irrespective of the number of records

in eachWeb page. In the five datasets we used in this paper (Section

5.1), their average tree heights are similar (ranging from 10 to 20)

while their average tree sizes are quite different (ranging from 400

to 5000). Hence, if we regard 𝐻 to be a constant or a small integer,

the solution has an almost linear running time of 𝑂 (𝑁 ) in practice.

This is confirmed by the efficiency experiments in Section 5.4.

5 EXPERIMENTS
Our evaluation centers around three questions: (1) does Miria out-

perform the SOTA? (2) does Miria cope with record heterogeneity

well? And (3) is the efficiency of Miria competitive compared to

that of the baselines?

We implement the method in Python and compare it with sev-

eral baselines (see below). We compare their effectiveness using

precision and recall. We evaluate them on multiple datasets, which

we believe are good representatives of Web pages fromWeb 1.0 and

Web 2.0. For efficiency, we compare the running time of Miria with

those of the baselines that are also implemented in Python. All the

experiments are performed on a PC with an Intel CPU@3.6 GHz

and 32 GB RAM@2666 MHz.

5.1 Datasets
We conduct our experiments on the following datasets. As a rep-

resentative of Web 1.0, we use the TBDW dataset [57]. It includes

114,540 results pages from 51 deep Web sites. It was created in

2003 and still serves as a benchmark. For Web 2.0 records, we use a

more recent dataset EX, which combines the EX1 and EX2 datasets

from [47]. The two datasets were annotated for record attribute

extraction (e.g., title, price). We annotated the corresponding record

container nodes of the target attributes and filtered out duplicate

pages. EX contains 82 pages from 72 websites across various do-

mains, but it does not contain nestedWeb records, and its records do

not present significant structure variation. Thus for this study, we

created more challenging datasets that represent i) the latest Web

programming paradigms and ii) Web pages with nested regions. We

constructed three datasets in April 2022. The AMAZON dataset

consists of product search results. We use the top 100 Amazon

searches of the year 2021 in the U.S. (www.semrush.com/blog/most-

searched-items-amazon), and we keep the first result page for each

query. To create the GOOGLE dataset, we use the top 300 queries

of the year 2021 in the U.S. (trends.google.com/trends/yis/2021/US);

we keep the first two result pages for each query. Google’s first page

is a good representative of modern Web pages with complex struc-

tures, including Twitter feeds, Google Map, and News, which are

interleaved between regular results. It also includes nested records.

The second page is not as complex, but it still includes many hard

cases. The COMMENT dataset consists of comments posted at

news outlets. It has 2,000 comment sections, each having at least

ten comments, uniformly distributed over 100 Web sites.

We manually create the XPATHs expressions for all the datasets

to label the record container elements in each Web site. We present

some basic statistics of these datasets in Table 1.

5.2 Baselines
We implement Miria with each of the three node encoding schemes

introduced in Section 4.2, and we compare it with four baselines:

DEPTA [59] is a widely referenced baseline in the literature.Mi-
BAT [50] is chosen because it includes the notion of domain-specific

invariant patterns. MiBAT looks for invariants in data records (e.g.,

common attributes), and it expects the invariants to be manually

defined. This requirement reduces our ability to test it against all

datasets. For AMAZON,we use the pattern of “$” followed by a num-

ber to define the attribute Price as an invariant. For GOOGLE, we de-

fine a pattern with the tags <a>, <h3> and <cite>. For COMMENT,

we use the attribute Post Date as the invariant. We do not evaluate

MiBAT on TBDW and EX since they are collected from multiple do-

mains, and we are not able to define an invariant pattern that works

for all of them. The methods proposed in Velloso et al. [53] and
PROSE [46] are chosen as representatives of the state-of-the-art

solutions. PROSE [46] is a program synthesis API from Microsoft.

The API (www.microsoft.com/en-us/research/group/prose/) allows
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Table 1: Statistics of the datasets.

dataset # Web sites # pages # records avg. pages/Web site (std.) avg. records/page (std.) avg. size (std.) avg. height (std.)

TBDW 51 255 2647 5 (0) 10.38 (17.93) 406.01 (293.89) 12.84 (14.20)

EX 72 82 4814 1.14 (0.39) 58.71 (188.09) 3429.95 (5665.83) 12.42 (4.87)

AMAZON 1 100 4834 100 (0) 48.34 (19.33) 5530.23 (1471.07) 20.05 (6.67)

GOOGLE 1 300 3155 300 (0) 10.52 (3.17) 1492.78 (801.16) 19.72 (9.567)

COMMENT 100 2000 60259 20 (0) 30.13 (27.58) 1088.61 (994.34) 13.36 (5.83)

Table 2: Precision (P), recall (R), and F1 for the Web record extraction task.

method

TBDW EX AMAZON GOOGLE COMMENT

R P F1 R P F1 R P F1 R P F1 R P F1

Miria

𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 0.92 0.87 0.89 0.97 0.82 0.87 0.99 0.73 0.84 1.00 0.12 0.21 0.97 0.70 0.81

𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 0.91 0.86 0.89 0.95 0.88 0.91 1.00 0.94 0.96 0.85 0.46 0.60 0.68 0.99 0.80

𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 0.96 0.92 0.94 0.95 0.92 0.93 0.95 0.95 0.95 0.93 0.93 0.93 0.96 0.95 0.95
DEPTA [59] 0.89 0.99 0.94 0.79 0.95 0.86 0.61 0.98 0.75 0.30 0.91 0.45 0.42 0.94 0.58

Velloso et al. [53] 0.94 0.92 0.93 0.78 0.97 0.86 0.80 0.94 0.87 0.41 0.90 0.56 0.47 0.90 0.61

MiBAT [50] n/a n/a n/a n/a n/a n/a 0.95 0.93 0.94 0.49 1.00 0.66 0.66 0.99 0.79

PROSE [46] 0.99 1.00 0.99 0.89 0.93 0.91 0.88 0.98 0.93 0.94 0.91 0.92 0.77 0.88 0.82

users to synthesize the Web table extraction program automatically

[46] without any example or semi-automatically with a few exam-

ples [47]. If no example is provided, the API will try to infer every

potential table from the target page, which is similar to Miria. We

compare Miria with this use case.

5.3 Accuracy Analysis
5.3.1 Record Accuracy. In this experiment, we measure the overall

accuracy of record extraction. Because a method may detect mul-

tiple groups of records in one page, we select the group that has

the most overlap with the annotated records. An output record is

considered correct if its displayable texts are completely matched

with a ground truth record.

Table 2 shows the average record recall, precision, and F1 score.

On the Web 1.0 dataset TBDW, the PROSE method has a nearly

perfect performance of 0.99 F1 score, followed by Miria with the

𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 encoding scheme and DETPA that both achieve an F1

score of 0.94. When it comes to Web 2.0 datasets, Miria achieves the

best F1 score, with 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 winning on the EX, GOOGLE, and

COMMENT datasets, and 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 winning on the AMAZON

dataset. We draw attention to the 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 ’s recall: it is near

perfect on the EX and AMAZON datasets but relatively poor on

the GOOGLE and COMMENT datasets. This is because 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃

cannot handle nested records, and there is no nested records in

the EX and AMAZON datasets. In contrast, the GOOGLE and the

COMMENT datasets contain 4.62% and 40.49% of nested records,

respectively. The performance of Miria remains steady across all

the datasets, but the baselines generally suffer significant recall

losses on the Web 2.0 records. MiBAT achieves a recall of 0.95

on the AMAZON dataset, which can be explained by the non-

nested structure of this dataset. It achieves perfect precision on

GOOGLE because the invariant pattern we chose appears in all

Web records. PROSE also has an outstanding recall on GOOGLE

(0.94). Noticeably, the method has a similar performance on the

Table 3: Anchor precision and recall.

𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅
precision 0.90 0.96 0.97

recall 0.98 0.85 0.98

Web 2.0 datasets as Miria. The tiebreaker is the COMMENT dataset,

where Miria outperforms PROSE (.95 versus .82 F1-scores). This

shows that PROSE does not cope well with nested records.

5.3.2 Anchor Accuracy. Anchor trees play a key role in Miria, and

the discovery of an anchor tree is the prerequisite for detecting a

Web record. We want to choose a node encoding scheme that has

enough generalization power to detect every targeted Web record

while avoiding producing invalid anchor trees that may introduce

false positives. Here we distinguish between the true and false

anchor trees: an anchor tree is a true anchor tree if it belongs to a

target Web record. Thus, given a group of records 𝑅, let 𝐴 be a set

of anchor trees derived from an invariant subtree of 𝑅, we define

the anchor recall and anchor precision of 𝐴 by:

anchor recall =
number of true anchor trees in 𝐴

|𝑅 | (7)

anchor precision =
number of true anchor trees in 𝐴

|𝐴| (8)

We measure the anchor tree recall and precision of the three

encoding methods on COMMENT and show the results in Table

3. We set 𝐿𝑡ℎ = 3, and if the labeled records of a page share multi-

ple frequent patterns, we choose the one with the largest support.

𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 has the best precision while 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺 has the worst,

which can be explained by the node encoding collision probabilities

given in Equations 4, 5, and 6. As for the recall, both 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝐼𝐺
and 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 achieve a near-perfect recall score of 0.98, and the

marginal loss is due to the pattern length threshold in producing an-

chor trees. The anchor trees produced by 𝐸𝑛𝑐𝑜𝑑𝑒𝐻𝑇𝑃 only covered

85% of the records due to the HTP variance in nested records.
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Figure 7: Distribution of processing time vs DOM tree size.
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Figure 8: Frequency and pattern length thresholds analysis.

5.4 Efficiency Analysis
We compare the efficiency of Miria (with 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 ) against Mi-

BAT and DEPTA. For fairness, all three methods are implemented

in Python. We test the methods on COMMENT and show their

distributions of the processing time against the size of the DOM

tree in Figure 7. Overall, Miria has the best running time, and it

shows a sub-linear increasing trend as the size of the DOM tree

increases. The running time of the other two methods has greater

variances, and MiBAT is the slowest due to the heavy overhead in

recognizing attributes with string pattern matching.

5.5 Sensitivity Analysis
We perform the sensitivity analysis of Miria with 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 to

study how the pattern length and frequency thresholds affect the

performance. We test the method on the COMMENT dataset with

𝐿𝑡ℎ varying from 1 to 10 and 𝐹𝑡ℎ varying from 2 to 10. We show

the results as a heat map in Figure 8. We observe that precision

has a strong positive correlation with 𝐿𝑡ℎ and 𝐹𝑡ℎ while recall has

a negative correlation, which conforms to our analysis of the two

parameters: longer pattern and higher frequency help to filter out

noise but impose a higher risk of missing records. However, we

notice that precision is much less sensitive to the two parameters

as the score ranges between 0.930 and 0.968, whereas recall ranges

between 0.727 and 0.963. Overall, the best F1 score is 0.954 with

𝐿𝑡ℎ and 𝐹𝑡ℎ both equal to 3.

5.6 Case Study
Figure 9 shows 3 synthetic examples that represent the cases where

Miria achieves perfect accuracy (a), has false positive (b) and false

negative (c), respectively. We use a small filled shape to represent

a node, and nodes of the same filled shape (despite different col-

ors) have the same node signature. A big empty shape represents a

(b) (c) (a)                              

Figure 9: Examples for Miria corresponding to accurate (
a), false positive ( b) and false negative ( c) extraction of
record container nodes.

subtree inside a true Web record, and different empty shapes repre-

sent different subtree structures. The subtrees formed by ⟨ , , ⟩
are the anchor trees detected from frequent patterns, and the star

shapes (i.e., , , ) are their corresponding container nodes.

Example (a) contains 3 Web records with nested structure. Miria

successfully detects all true container nodes ( ) while the baselines

tend to be confused by nested structures. Example (b) contains 2

Web records with a noise structure (such as a record divider) in

the middle, which happens to share a common subtree structure

and path with the true Web records. Without any rule to validate

a Web record (which is generally domain-specific), Miria would

output a false positive ( ). Example (c) contains 3 Web records

where the anchor tree of the middle one has an extra on its

path to the container node ( ), causing Miria to discard the record

in the vertical alignment process. Note that this case violates our

assumptions about the existence of an invariant path. It may happen

when a different style is applied to a Web record, such as an out-of-

stock item on a shopping page.

6 CONCLUSION
In this paper, we revisited theWeb record extraction problem on the

modern Web, where Web records may present significant structure

variations due to heterogeneous contents and nested structures.

Existing solutions heavily rely on structure similarity and thus can-

not handle the new challenges well. We proposed an effective and

efficient solution that locates Web records by mining the invariant

structures among records and then growing the invariant structures

into records. We transformed the DOM tree representation of aWeb

page into a sequence representation, converting the problem of iden-

tifying invariant structures into a frequent sequence pattern mining

problem. We analyzed various node encoding schemes to map a

tree node to a sequence code, both analytically and empirically.

Our experiment results on multiple datasets showed that compared

to the baselines, our proposed method with the 𝐸𝑛𝑐𝑜𝑑𝑒𝑆𝑇𝑅 node

encoding scheme has great advantages in extracting modern Web

records while remaining competitive in extracting Web 1.0 records.

We also showed that our method has linear running time in practice.

Given the diversity of data and presentation variations on the Web

today, there is a need for a renewed focus on designing novel Web

record extraction methods.
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