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ABSTRACT
We have made tremendous strides in providing tools for data scien-
tists to discover new tables useful for their analyses. But despite
these advances, the proper integration of discovered tables has been
under-explored. An interesting semantics for integration, called
Full Disjunction, was proposed in the 1980’s, but there has been
little progress in using it for data science to integrate tables culled
from data lakes. We provide ALITE, the first proposal for scalable
integration of tables that may have been discovered using join,
union or related table search. We empirically show that ALITE can
outperform previous algorithms for computing the Full Disjunction.
ALITE relaxes previous assumptions that tables share common at-
tribute names (which completely determine the join columns), are
complete (without null values), and have acyclic join patterns. To
evaluate ALITE, we develop and share three new benchmarks for
integration that use real data lake tables.
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1 INTRODUCTION
The number of public datasets has grown immensely in open data
platforms [56, 57, 78]. Also, individual corporations have a wealth of
data stored in their own data lakes. Analyzing and integrating such
datasets can help governments and enterprises in making decisions
and plans. Data scientists, as the main users of data, use different
techniques to discover datasets such as keyword search [11, 12, 58,
75] and table search (using the data within their table as a query)
[10, 28, 48, 50, 57, 80]. Such a process usually outputs a collection
of data lake tables that may enrich their analysis [56]. Existing
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techniques usually discover unionable [12, 41, 48, 57], joinable [26,
55, 75, 77, 78], and related tables [10, 19, 77].

Example 1. Consider the data lake tables about football stadiums
shown in Fig. 1. We have added a TID (Tuple ID) column in each
table to permit us to refer to tuples. Assume that a data scientist uses
table𝑇1 as a query table to search for the top-2 unionable tables [57]
and the top-2 joinable tables [78] from a data lake. Let 𝑇2 and 𝑇3
be the union search results and 𝑇4 and 𝑇5 be the join search results.
Join search finds tables that join on an indicated column (in this
case Location), but does not discover if there are other common
(integratable) columns. For simplicity, assume that the common
columns on these tables are already detected and have identical
column headers. Note that in practice this will not be the case.

After discovery, data scientists would often integrate the discov-
ered tables before analyzing and applying statistical tools. Such
integration not only extends their data but also allows them to
answer queries that go beyond a single table. Consider Tables 𝑇2,
𝑇3 and 𝑇4 in Fig. 1 and assume a football team has data scientists
assisting in finding a new coach. Specifically, the team looks for
an experienced coach who has handled teams playing in front of
large crowds in new stadiums. So, they may use queries such as
“coaches who coach teams having stadiums established after 2000,
that accommodate at least 50 thousand spectators”. The information
required here goes beyond a single table. In our example, one needs
(at least) to integrate𝑇2,𝑇3 and𝑇4 to obtain such facts, for example,
Dan Campbell who coaches the Detroit Lions that uses Ford
Field Stadium established in 2002 and having a capacity of 65k (𝑓7
in Fig. 2). Prior search methods do not address this “post-discovery”
phase and do not answer the important question of how to integrate
tables (relations) obtained by table search technique(s).

Example 2. The standard relational union operator needs all
tables to have exactly the same schema. However, this is not the case
even for union search results (where tables that union on a subset of
attributes can be retrieved) [57]. So to integrate the tables in Fig. 1,
one can project out non-common columns and union on only the
common columns. For𝑇1,𝑇2, and𝑇3, this would just leave Location.
For the joinable tables, a join on only Location of 𝑇1 with 𝑇4 leads
to tuples like 𝑡11 being omitted and the result has two Stadium
attributes. Worse, the natural join operator, i.e. 𝑇1 ⊲⊳ 𝑇4 ⊲⊳ 𝑇5,
returns an empty set because 𝑇4 and 𝑇5 do not have joining tuples.
The problem gets more complicated if we try to integrate all five
tables using these operators.
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TID Stadium Location Opened

t5 Soldier Field Chicago 1924

t6 Ford Field Michigan 2002

TID Stadium Location Team

t1 NRG Stadium Texas Houston Texans

t2 AT&T Stadium Texas Dallas Cowboys

t3 Paul Brown Ohio ±

t4 Sofi Stadium California Angeles Chargers

T1
TID Team Location Coach

t7 Houston Texans Texas Lovie Smith

t8 Green Bay Packers Wisconsin Matt LaFleur

t9 Detroit Lions Michigan Dan Campbell

TID Stadium Location Capacity

t10 NRG Stadium Texas ±

t11 Ford Field Michigan 65k

TID Stadium Location Team

t12 Lambeau Field Wisconsin Green Bay Packers

t13 ± Ohio Cleveland

t14 Sofi Stadium California ±

T2 T3

T5T4

OID TID Stadium Location Team Opened Coach Capacity

f1 {t1, t7, t10} NRG Stadium Texas Houston Texans Ʇ Lovie Smith Ʇ

f2 {t2} AT&T Stadium Texas Dallas Cowboys Ʇ Ʇ Ʇ

f3 {t3} Paul Brown Ohio ± Ʇ Ʇ 65.5k

f4 {t13} ± Ohio Cleveland Ʇ Ʇ Ʇ

f5 {t4} Sofi Stadium California Angeles Chargers Ʇ Ʇ Ʇ

f6 {t5} Soldier Field Chicago Ʇ 1924 Ʇ Ʇ

f7 {t6,t9,t11} Ford Field Michigan Detroit Lions 2002 Dan Campbell 65k

f8 {t8, t12} Lambeau Field Wisconsin Green Bay Packers Ʇ Matt LaFleur Ʇ

f10 {t3, t13} Paul Brown Ohio Cleveland Ʇ Ʇ 65.5k

f11 t14 Sofi Stadium California ± Ʇ Ʇ Ʇ

(a) T1 ⊎ T2 ⊎ T3 ⊎ T4 ⊎ T5

TID Stadium Location Team Opened Coach Capacity

t1 NRG Stadium Texas Houston Texans Ʇ Ʇ Ʇ

t2 AT&T Stadium Texas Dallas Cowboys Ʇ Ʇ Ʇ

t3 Paul Brown Ohio ± Ʇ Ʇ Ʇ

t4 Sofi Stadium California Angeles Chargers Ʇ Ʇ Ʇ

t5 Soldier Field Chicago Ʇ 1924 Ʇ Ʇ

t6 Ford Field Michigan Ʇ 2002 Ʇ Ʇ

t7 Ʇ Texas Houston Texans Ʇ Lovie Smith Ʇ

t8 Ʇ Wisconsin Green Bay Packers Ʇ Matt LaFleur Ʇ

t9 Ʇ Michigan Detroit Lions Ʇ Dan Campbell Ʇ

t10 NRG Stadium Texas Ʇ Ʇ Ʇ ±

t11 Ford Field Michigan Ʇ Ʇ Ʇ 65k

t12 Lambeau Field Wisconsin Green Bay Packers Ʇ Ʇ Ʇ

t13 ± Ohio Cleveland Ʇ Ʇ Ʇ

t14 Sofi Stadium California ± Ʇ Ʇ Ʇ

• FD(T1, T2, T3, T4 ,T5) = {f1, f2, f3, f4, f5, f6, f7, f8, f9}

• FDtuple-set(T1, T2, T3, T4, T5) = FD(T1, T2, T3, T4,T5) ∪ {f11}

• T1 ⊞ T2 ⊞ T3 ⊞ T4 ⊞ T5 = FD(T1, T2, T3, T4, T5) – {f4, f5} ∪ {f10, f11}

(b) Output tuples generated using different operators

Figure 1: Tables about football stadiums, their locations and home teams. The objective is to integrate the five tables. TID is not
a real data column and metadata like column headers may not be available in real data lake tables, but are used for illustration
purposes. The symbol ± represents null values present in the input tables (“missing nulls”).

Within the data integration literature, Full Disjunction (FD) [32]
has been understood as a natural way of assembling partial pieces of
information (facts) such that it maximizes the connections among
these facts [65]. Indeed, Rajamaran and Ullman describe FD as
a relation with nulls (denoted by ⊥) such that every set of join-
consistent tuples appears within an FD tuple, with a concrete value
or ⊥ in each attribute not found within the set of tuples [65]. Here,
join-consistent is defined as common attributes (attributes with the
same name), so this is effectively a natural FD. The widely known
outer-join [46, 66] is not associative (hence, the result may depend
on the order in which tables are integrated) and does not aim to
maximize the connections among the integrated tuples [32, 52].

Example 3. Outer-join and outer-union keep all tuples and
columns and pad non-matching tuples (respectively, columns) with
nulls [16, 46]. The outer-union of the tables from Fig. 1 is depicted
in Fig. 2(a). It does not maximally connect the facts in the original
tables. Here, ± indicates a missing value (missing null) in the orig-
inal tables and ⊥ represents a null introduced by the outer-union
operator (produced null). In particular, outer union includes partial
facts like 𝑡10 that are made redundant by more complete facts like
𝑡1. Similar observations can be made of the outer-join results. So,
Galindo-Legario defined the Full Disjunction (FD) [32]. Informally, it
removes redundant facts and produces, in this case, the first 8 tuples
(mustard colored) of Fig. 2(b). FD can be viewed as an associative
version of outer join [17] and has been used to integrate information
across relational tables [17, 59] and web tables [59]. Notice in this
example, FD uses information from all five tables so it is important
to be able to compute FD over (possibly large) sets of tables.

But using FD in data lakes poses several important challenges: 1)
We cannot rely on common attributes having the same name as in
our example. Instead, wemust discover what the common attributes
are [56]. We will use schema matching for this purpose [63]. Notice
that we are not given just two schemas that need to be matched,
rather we have a set of tables all of which could potentially share
attributes with some or many of the other tables. Hence, we will
use holistic schema matching [64]. 2) We cannot assume that inte-
grated datasets are complete (that is, they may actually contain null
values or partial facts). 3) Prior work on Full Disjunction has been
done on relatively small relations (with only 1000 or so tuples per
relation [17]) or assumes the common attributes form graphs with
specific acyclic structures [65]. To the best of our knowledge, the
only work on using FD on larger datasets requires that all joins be
done on attributes having key-to-foreign-key relationships [59], a
strict requirement that makes the technique only applicable within

well-designed enterprise scenarios, not the possibly messy tables
retrieved from data lakes commonly used in data science.

We assume data scientists use table discovery algorithms to
identify a set of tables that they wish to integrate. Regardless of
the search technique, we wish to find the best way to integrate
the tables. Specifically, we propose a table integration technique
ALITE (Align and Integrate) that first applies schema matching
to identify common columns in a set of tables to be integrated.
Matched columns are given the same integration ID. We then apply
a natural FD over the tables using integration IDs as attribute names.

Contributions. (1) To the best of our knowledge, we introduce
the problem of integrating data lake tables obtained using table dis-
covery algorithms. (2) We propose a new holistic schema matching
algorithm for sets of tables that outperforms the state-of-the-art
matchers on the real data lake tables in our integration benchmarks.
(3) We compare the FD used as the integration semantics in ALITE
to several other semantics and show the difference and superiority
of FD. Empirically, we show FD’s superiority for a downstreaming
task of entity resolution [44]. (4) We propose a novel algorithm
to compute the FD by using complementation and subsumption
operators in a novel way. We show that the use of these operators
permits optimizations that make the computation faster than the
state-of-the-art techniques, in practice. Specifically, ALITE scales
better than the state-of-the-art FD algorithms on data lake tables,
which are typically large and may have complex join graphs. (5)
We introduce and share several open data integration benchmarks.

2 PRELIMINARIES
We now provide the building blocks for integrating tables in a
data lake setting, namely, specifying the notation and the basic
integration operators, after which we formally define the problem.

Table 1: Symbols used in this paper and their definitions

Symbol Definition Symbol Definition
T (𝑛= |T |) Set of Tables 𝑟 Set of tuples

𝑇 (𝑇𝑖 ) Table (the 𝑖th table in T ) 𝑡 [𝐴] Value of 𝑡 on the column 𝐴

𝐴 (𝑇 .𝐴) Column (Column 𝐴 in table 𝑇 ) S (𝑠 = |S|) Set of all input tuples
𝑚𝑖 Arity of Table 𝑇𝑖 F (𝑓 = |F |) Set of output tuples
A(𝑇 ) Schema (set of columns) of 𝑇 ± Null denoting a missing value
𝑡 Tuple ⊥ Null produced by an operator

Notation. Table 1 summarizes the used notation. For any opera-
tor, let S (and its size 𝑠) and F (and its size 𝑓 ) denote the collective
set of all input and output tuples, respectively. We use two types of
nulls: ± denotes a missing null i.e., missing value from an incom-
plete input relation to be integrated and ⊥ denotes a produced null,
a null value that is introduced by an operator during integration.
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TID Stadium Location Team Opened Coach Capacity

t1 NRG Stadium Texas Houston Texans Ʇ Ʇ Ʇ

t2 AT&T Stadium Texas Dallas Cowboys Ʇ Ʇ Ʇ

t3 Paul Brown Ohio ± Ʇ Ʇ Ʇ

t4 Sofi Stadium California Angeles Chargers Ʇ Ʇ Ʇ

t5 Soldier Field Chicago Ʇ 1924 Ʇ Ʇ

t6 Ford Field Michigan Ʇ 2002 Ʇ Ʇ

t7 Ʇ Texas Houston Texans Ʇ Lovie Smith Ʇ

t8 Ʇ Wisconsin Green Bay Packers Ʇ Matt LaFleur Ʇ

t9 Ʇ Michigan Detroit Lions Ʇ Dan Campbell Ʇ

t10 NRG Stadium Texas Ʇ Ʇ Ʇ ±

t11 Ford Field Michigan Ʇ Ʇ Ʇ 65k

t12 Lambeau Field Wisconsin Green Bay Packers Ʇ Ʇ Ʇ

t13 ± Ohio Cleveland Ʇ Ʇ Ʇ

t14 Sofi Stadium California ± Ʇ Ʇ Ʇ

TID Stadium Location Opened

t5 Soldier Field Chicago 1924

t6 Ford Field Michigan 2002

TID Stadium Location Team

t1 NRG Stadium Texas Houston Texans

t2 AT&T Stadium Texas Dallas Cowboys

t3 Paul Brown Ohio ±

t4 Sofi Stadium California Angeles Chargers

T1
TID Team Location Coach

t7 Houston Texans Texas Lovie Smith

t8 Green Bay Packers Wisconsin Matt LaFleur

t9 Detroit Lions Michigan Dan Campbell

TID Stadium Location Capacity

t10 NRG Stadium Texas ±

t11 Ford Field Michigan 65k

TID Stadium Location Team

t12 Lambeau Field Wisconsin Green Bay Packers

t13 ± Ohio Cleveland

t14 Sofi Stadium California ±

T2 T3

T5T4

OID TIDs Stadium Location Team Opened Coach Capacity

f1 {t1, t7, t10} NRG Stadium Texas Houston Texans Ʇ Lovie Smith ±

f2 {t2} AT&T Stadium Texas Dallas Cowboys Ʇ Ʇ Ʇ

f3 {t3} Paul Brown Ohio ± Ʇ Ʇ Ʇ

f4 {t13} ± Ohio Cleveland Ʇ Ʇ Ʇ

f5 {t4} Sofi Stadium California Angeles Chargers Ʇ Ʇ Ʇ

f6 {t5} Soldier Field Chicago Ʇ 1924 Ʇ Ʇ

f7 {t6,t9,t11} Ford Field Michigan Detroit Lions 2002 Dan Campbell 65k

f8 {t8, t12} Lambeau Field Wisconsin Green Bay Packers Ʇ Matt LaFleur Ʇ

f9 {t3, t13} Paul Brown Ohio Cleveland Ʇ Ʇ Ʇ

f10 t14 Sofi Stadium California ± Ʇ Ʇ Ʇ

(a) T1 ⊎ T2 ⊎ T3 ⊎ T4 ⊎ T5

• FD(T1, T2, T3, T4 ,T5) = {f1, f2, f3, f4, f5, f6, f7, f8}

• FDtuple-set(T1, T2, T3, T4, T5) = FD(T1, T2, T3, T4,T5) ∪ {f10}

• T1 ⊞ T2 ⊞ T3 ⊞ T4 ⊞ T5 = FD(T1, T2, T3, T4, T5) – {f3, f4} ∪ {f9, f10}

(b) Output tuples generated using different operators

Figure 2: Result of integrating the tables in Fig. 1 using different techniques. The table in (a) is the result of outer unioning the
five tables. The table in (b) is the union of tuples obtained using FD (first eight tuples in mustard), a variant called tuple-set FD
(which is the FD plus 𝑓10), and Complement Union (⊞). A unique Output ID (OID) is provided for each output tuple for clarity.

Example 4. Consider Table 𝑇1 of Fig. 1. The schema of 𝑇1 is
A(𝑇1) = {𝑆𝑡𝑎𝑑𝑖𝑢𝑚, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑇𝑒𝑎𝑚}. Tuple 𝑡3 = {Paul Brown, Ohio,
±} has attribute value 𝑡3 [𝑆𝑡𝑎𝑑𝑖𝑢𝑚] = Paul Brown and a missing
null on the Team column, i.e., 𝑡3 [𝑇𝑒𝑎𝑚] = ±.

2.1 Finding Common Columns
Our running example is unrealistic as common (or in relational
terms join-consistent) columns from different tables have the same
name and columns that are not common have different names. This
is not the case in most realistic examples. Hence, we begin by using
schema matching to assign integration ids to columns such that two
matched columns will have the same id and two columns that are
not matched will have different ids. We will ensure no two columns
in the same table share an integration id. Accordingly, we will set
A(𝑇 ) to be the set of integration ids of 𝑇 ’s columns (Section 4).

2.2 Integration Operators
We assume that the reader is familiar with the elementary relational
algebra operators like union (∪), join (⊲⊳) and outer join( ⊲⊳ ) [66]
based on which, we now introduce some (less well known) opera-
tors that we use as components of an integration solution.

Outer Union (⊎) is an extension to the union operator. It unions
tables even if they do not have the same schema [16]. The outer
union between𝑇1 and𝑇2 is denoted by𝑇1⊎𝑇2. For each𝐴 ∈ A(𝑇1)−
A(𝑇2), we pad𝑇2 with a new column𝐴 containing nulls (specifically
⊥). Similarly, for each 𝐴 ∈ A(𝑇2) − A(𝑇1), we pad 𝑇1 with a new
column 𝐴 containing nulls. We then union the padded relations.

Example 5. The outer union of the tables in Fig. 1 is shown in
Fig. 2(a). Here, the input size (|S| = 14) is the same as the output
size (|F | = 14) but the output may be smaller if there are duplicates.

Subsumption (𝛽). Given two different tuples 𝑡1 and 𝑡2 having
the same schema, the tuple 𝑡1 (subsuming tuple) subsumes 𝑡2 (sub-
sumed tuple), denoted by 𝑡1 ⊐ 𝑡2, if all the non-null values of 𝑡2 are
equal to that of 𝑡1 on the respective columns and 𝑡1 has fewer null
values (either missing or produced) than 𝑡2 [7, 32]. We denote the
subsumption operation using 𝛽 where 𝛽 (𝑟 ) contains all tuples of 𝑟
that are not subsumed by another tuple in 𝑟 . Applying subsumption
to the outer union result is called the minimum union (


) [32].

An example of minimal union (


) of tables in Fig. 1 is the set

{𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡11, 𝑡12, 𝑡13} in Fig. 2. This is because the
tuple 𝑡10 is subsumed by 𝑡1 and 𝑡14 is subsumed by 𝑡4. Here, the size
of the input (|S| = 14) is larger than the output (|F | = 12).

Complementation (𝜅). Two different tuples 𝑡1 and 𝑡2 having
the same schema complement each other if: 1) there is at least
one column 𝐴 on which they have equal and non-null values; 2)
for every column 𝐴 where both tuples are non-null, the tuples
must have the same value on 𝐴; 3) there is at least one column
𝐴 on which 𝑡1 is non-null and 𝑡2 is null (missing or produced);
and 4) there is at least one column 𝐴 on which 𝑡2 is non-null and
𝑡1 is null (missing or produced) [7, 9]. The complementation of
𝑡1 and 𝑡2 is a tuple 𝑡3 where for any column 𝐴, 𝑡3 [𝐴] = 𝑡1 [𝐴]
if either 𝑡1 [𝐴] is non-null or both 𝑡1 [𝐴] and 𝑡2 [𝐴] are non-null
(hence, equal). Otherwise, if 𝑡2 [𝐴] is non-null 𝑡3 [𝐴] = 𝑡2 [𝐴]. For
the case where both values are null, if 𝑡1 [𝐴] = 𝑡2 [𝐴] = ⊥ then
𝑡3 [𝐴] = ⊥ otherwise (at least one of the nulls is missing) 𝑡3 [𝐴] =
±. The complementation operator (𝜅) replaces all complemented
pairs of tuples with their complementation. Note that a tuple that
results from complementation could be complemented by other
tuples so the complementation operator is the iterative result of
applying complementation to a relation until it contains no further
complementing tuples. Applying complementation over a set of
outer unioned tuples, is known as complement union (⊞).

Example 6. In Table(a) of Fig. 2, tuples 𝑡3 and 𝑡13 complement
each other. Their complementation is denoted as 𝑓9 in Fig. 2(b), i.e.,
𝜅 (𝑡3, 𝑡13) = 𝑓9. So complementation can overcombine tuples that do
not agree on all their common attributes. In this example, 𝑇5 asserts
that Cleveland is a team in Ohio with an unknown stadium while
𝑇1 asserts that Paul Brown is a stadium in Ohio. But we do not
definitively know that Paul Brown is the stadium of Cleveland.
The complement union of the tables in Fig. 1, i.e., 𝑇1 ⊞𝑇2 ⊞ · · · ⊞𝑇5
is the set of tuples in Table (b) of Fig. 2 excluding tuples {𝑓3, 𝑓4}.
Note that complementation union may not remove all subsumable
tuples (e.g. 𝑓10, which can be subsumed by 𝑓5, is not complemented
by 𝑓5 since the fourth condition of complementation is not met).

2.3 Full Disjunction
The operators of the previous section offer possible semantics for
integrating tables. In 1994, Galindo-Legario proposed a different se-
mantics called Full Disjunction (FD) [32]. His proposal is essentially
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a commutative, associative form of outer-join. We will now define
the terms that we need to define FD. We say that 𝑡1 ∈ 𝑇1 and 𝑡2 ∈ 𝑇2
are connected tuples if their schemas overlap, i.e.,A(𝑇1)∩A(𝑇2) ≠ ∅.
As in outer join, two connected tuples 𝑡1 ∈ 𝑇1 and 𝑡2 ∈ 𝑇2 can be
integrated (or joined) if and only if 𝑡1 [𝐴] = 𝑡2 [𝐴], 𝑡1 [𝐴] ≠ ± and
𝑡2 [𝐴] ≠ ±, ∀𝐴 ∈ A(𝑇1) ∩ A(𝑇2). The tuples generated after an
integration are referred to as integrated tuples. When more than two
tables are involved, the integration can be viewed as an iterative
process in which an integrated tuple can be further integrated with
another connected tuple, following the same conditions as before.
Finally, as in outer join, if an input tuple 𝑡 can not be integrated with
other tuples, it will be padded by produced nulls (⊥) and considered
as an integrated tuple. Note that integrating those tuples that have
missing nulls on their common columns may produce semantically
incorrect tuples. Consider tuples 𝑡3 from 𝑇1, and 𝑡13 from 𝑇5, while
they share the value Ohio on Location, the value of Stadium is
known in 𝑡3 (Paul Brown), it is unknown in 𝑡13. Therefore, we will
not integrate these tuples. Notably, FD was later proposed as the
right semantics for integrating data [65].

Example 7. The FD of the five tables from Fig. 1 is the set of tuples
{𝑓1, ..., 𝑓8} depicted in mustard in Fig. 2(b). Unlike complementation
union (Example 6), FD does not overcombine tuples 𝑡3 and 𝑡13 since
Team in 𝑡3 is unknown. Hence, it contains 𝑓3 and 𝑓4 after integration
and does not produce 𝑓9. Also, 𝑓10 is subsumed by 𝑓5.

FD has been shown to produce what has been called maximally
integrated tuples [40].

Definition 8 (Maximally Integrated Tuple). Given a set of in-
tegrated tuples 𝑟 . Any tuple 𝑡 ∈ 𝑟 is said to be a maximally integrated
tuple if it is not subsumed by any other tuple(s) of 𝑟 [40].

We follow Kanza and Sagiv [40] by defining FD based on maxi-
mally integrated tuples.

Definition 9 (Full Disjunction (FD)). The Full Disjunction of
the tables𝑇1,𝑇2, . . .𝑇𝑛 , with input tuples S, is the set of all maximally
integrated tuples that can be generated from S.

In Section 5, we will introduce an algorithm that computes FD
based on Definition 9. The FD definition we use [40] is based on
tuples [32], rather than tuple-sets (FDtuple-set) [17, 18]. FDtuple-set
applies subsumption based on the set of tuples from which an
integrated tuple is produced (call the tuple-set) [18]. Subsumption is
only applied between two tuples if the tuple-set of one is a superset
of the tuple-set of the other. Note that FDtuple-set yields a set of
maximally integrated tuples, but might contain integrated tuples
that subsume each other, as we discuss in the next example.

Example 10. Fig. 2(b) illustrates the difference between FD and
FDtuple-set. To understand the subsumption in FDtuple-set, first con-
sider integrated tuples 𝑓3 and 𝑓9 whose tuple-sets are {𝑡3} and {𝑡3, 𝑡13},
respectively (depicted in the TIDs column in Fig. 2). The tuple-set
of 𝑓9 contains all tuples in the tuple-set of 𝑓3. Therefore, under
FDtuple-set, 𝑓9 subsumes 𝑓3. However, if we consider 𝑓5 and 𝑓10 having
tuple-sets {𝑡4} and {𝑡14}, respectively, neither is a superset of the other.
Therefore, FDtuple-set does not perform subsumption on these two
tuples and returns both. In contrast, the tuple 𝑓10, is not produced
by FD as it gets subsumed by 𝑓5.

2.4 Solution Overview
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Figure 3: An overview of ALITE.

We introduced and formally defined our problem of integrating
data lake tables. Fig. 3 illustrates the entire ALITE pipeline that
we propose as a solution. We assume that we are given a set of
tables. The first step (Fig. 3 left part) is to assign each column with
a column header which we call an Integration ID (Section 4). After
assigning such IDs, the tables are annotated (Figure 3 middle part).
We can then apply FD to integrate the tables (Section 5).

3 RELATEDWORK
We now discuss related work mainly revolving around assigning
the column integration IDs and applying FD.

Assigning Column Integration IDs. The problem of assigning
column integration IDs aims at providing correspondences between
columns that can be integrated. In a traditional database setting,
this problem is usually referred to as schema matching [63], a long-
standing problem of identifying correspondences among database
attributes. Numerous algorithmic attempts have been suggested
over the years for handling the matching problem, e.g., COMA [25],
Similarity Flooding [53], BigGorilla [15], and ADnEV [69]. A com-
mon assumption for most of this work is the existence of consistent
and complete metadata, an unrealistic assumption in data lake ta-
bles [56]. Recently, Koutras et al. explored the use of traditional
schema matching methods in the scope of data lakes [45]. However,
the work covered is limited to finding pairs of matching columns
whereas, our objective is to assign integration IDs to a set of tables
to be integrated in a holistic manner. Holistic schema matching,
i.e., matching a set of schemas at the same time, has received some
attention in the literature [35, 61, 70], mainly revolving around
web tables and assuming metadata is reliable and complete. Some
work [3, 61] uses a clustering-based approach. However, contrary
to the clustering-based approach we will suggest (Section 4), they
use schema information rather than data values. Recall that data
lake tables generally lack reliable metadata [29, 56].

Other related work includes unionable [12, 41, 48, 57], join-
able [26, 55, 75, 77–79], and related [10, 19, 77] table search, for
which the designed methods are usually based on column relation-
ships. For example, in order to find unionable tables, TUS [57] first
aims at finding unionable columns. Similarly, Bogatu et al. [10]
assesses table relatedness by assessing their attribute relatedness.
Our work uses a similar methodology to TUS [57] based on column
embeddings. But here we make use of an embedding that was de-
signed for tables, namely, TURL [23]. We are also, to the best of our
knowledge, the first to make use of TURL [23] for holistic matching
of data lake tables.
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Full Disjunction. Full disjunction (FD) was initially defined by
Galindo-Legaria as an associative alternative for the outer join op-
erator [32]. Galindo-Legaria used algebraic relationships to express
the outer join in terms of inner join and minimum union, which
is known as join-disjunctive form or Full Disjunction (FD) [32].
The inner joins between each table pair, triple, etc., are computed.
The resulting tuples are then outer-unioned and the subsumable
tuples are removed to get the FD. Rajaraman and Ullman showed
that a fixed ordering of outer joins can give the FD iff the input
tables form a 𝛾-acylic hypergraph. Hence, for the 𝛾-acylic case, the
FD can be computed in linear time in the output size [65]. Kanza
and Sagiv showed that FD can be computed for any arbitrary set
of tables in 𝑂 (𝑛5𝑠2 𝑓 2) time [40] where, recall 𝑛 is the number of
input tables, 𝑠 is the total number of input tuples, and 𝑓 is the
number of FD output tuples. This is the first work to show that
FD can be computed for any set of tables in polynomial time in
input-output complexity [74]. Other work computes the FDtuple-set,
rather than FD [17, 18]. Cohen and Sagiv introduced an algorithm
that computes k FDtuple-set tuples in a given ranking order [18]
and improved the worst-case time complexity over Kanza and Sa-
giv [40] to compute the full results. Cohen et al. also proposed
an algorithm called BICOMNLOJ that computes each FDtuple-set
tuple with polynomial delay [17]. As we want to integrate all input
tables, we compute the full FD result instead of a partial result. The
worst-case time complexity of BICOMNLOJ to compute full FD is
linear in the output size which is an improvement over the prior
work [18]. Note that both INCREMENTALFD [18] and BICOMNLOJ
[17] perform subsumption in terms of tuple-sets (FDtuple-set) rather
than actual tuples. Hence, they may produce subsumable tuples
in their FDtuple-set result (specifically, they may produce a proper
superset of the FD). Note that, when there are no missing values
(±) and subsumable tuples in the input relations, these algorithms
compute the FD [32]. As data lake tables may contain many missing
values and subsumable tuples, we use FD. Our experiments (Sec-
tion 6) show that in real data lakes the difference between the FD
and the FDtuple-set [17, 18] can be substantial and that the original
definition of FD, which maximally integrates tuples, is preferred.

Recently, Paganelli et al. [59] revised Cohen and Sagiv’s INCRE-
MENTALFD [18] and Cohen et al.’s BICOMNLOJ [17] to compute
the FD in a distributed environment. They also introduced a new
algorithm called ParaFD that outperforms INCREMENTALFD and
BICOMNLOJ while computing FD using multiple machines. ParaFD
first finds all the spanning trees in the scheme graph of the input
table schemas. Then, it applies outer join based on Hash-star join
to integrate tables following the order on each spanning trees by
using Primary Key-Foreign Key relationships. Finally, it applies
subsumption to obtain the FD. ParaFD allows missing nulls but it
can be used only for sets of relational tables on which all joins are
key to foreign-key joins. We consider the general case of arbitrary
joins. To modify ParaFD for arbitrary joins, one needs to use full
outer join without Hash-star join over each spanning tree. But for
real data lake tables forming complex scheme graphs, the number
of spanning trees can be very large. For instance, for a complete
scheme graph (i.e. each table is connected to each of the other ta-
bles) having n tables, the number of spanning trees may be on the
order of 𝑛𝑛−2 [1]. One needs to apply outer join over each spanning

tree making ParaFD inefficient and similar to the baseline suggested
by Galindo-Legaria [32].

Other research considers integrating data from relational and
web tables and handling conflicts between the data values [6–9].
Bleiholder et al. introduced complement union operator that inte-
grates tuples under uncertainty (a conflict between a null value and
a non-null value) [9]. In the absence of missing nulls (±), the com-
plement union operator is the same as FD. Yet, in the common case
of tables with missing nulls, complement union may over-combine
the tuples having null values on the join columns (see Example 6).

4 ASSIGNING COLUMN INTEGRATION IDS
We now explain the first stage of ALITE, namely assigning inte-
gration IDs to the columns of the input tables. We assume that
the schemas A(𝑇 ) = 𝐴1, 𝐴2, . . . , 𝐴𝑚 of all the tables 𝑇 ∈ T are
opaque [39]. So, our goal, in this stage, is to annotate the columns
with integration IDs. An integration ID 𝑝 (𝐴) ∈ P is associated with
each column. The same integration ID can be associated with a set
of columns – these column match (and will be integrated). We now
formally define the column integration ID assignment problem.

Definition 11 (Integration ID Assignment Problem). Given
a set of input tables T = {𝑇1,𝑇2, . . .𝑇𝑛}, the column integration ID
assignment problem is to assign each column an integration ID in P
such that columns in the same table get distinct integration IDs.
∀𝑇 ∈ T 𝐴 ∈ A(𝑇 ), 𝐴′ ∈ A(𝑇 ) ∧𝐴 ≠ 𝐴′ 𝑝 (𝐴) = 𝑝 (𝐴′)
As discussed in Section 3, this problem can also be seen as a

variation of holistic schema matching [70]. Specifically, it can be
seen as a 1 : 1matching constraint, in which an attribute can match
at most one attribute from each of the other tables and cannot be
matched with an attribute from the same table.

Finding Column Integration IDs with ALITE.We now aim
to find column integration IDs by positioning the problem as clus-
tering over the columns. In order to apply clustering over columns,
we use their values (assuming the metadata is missing or unreli-
able) to create embeddings over which a clustering algorithm can
be applied. Formally, a column𝐴 is embedded into a numeric vector
𝑣𝑒𝑐 (𝐴), allowing the creation of a similarity matrix. Obtaining an
embedding for data lake columns is far from trivial. TUS [57], for
example, uses embeddings from fastText [38], a word embedding
method based on natural text representations, to assess column
unionability of string columns. Recently, Deng et al., have proposed
TURL that creates embeddings based on a representation of each
table [23]. In this work, we explore the use of TURL to represent
columns of data lake tables. Once the embeddings for the columns
are set, we need to define a similarity/distance measure to be used
in the clustering algorithm (in our experiments we use euclidean
distance). Having defined the embeddings and the distance mea-
sure, we follow a hierarchical clustering methodology to create the
clusters out of which the column integration IDs are obtained. We
ensure that the clustering algorithm does not allow columns from
the same table to be assigned to the same cluster. Hierarchical clus-
tering works iteratively. First, each data point (in our case attribute)
is assigned with a cluster. Then, at each iteration the two closest
clusters (by some metric) are merged to generate a new cluster. The
algorithm terminates when all the data points are assigned to the
same cluster. The hierarchical clustering result is usually described
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using a dendrogram, which is a type of tree that illustrates the
different clusters that can be generated at each iteration [47]. Using
the dendrogram, we select a specific cluster as we discuss next.

Selecting the Number of Integration IDs. An important pa-
rameter in any clustering algorithm is the number of clusters [34],
which, in our case corresponds to the number of column integra-
tion IDs. While traditional approaches assume that the number of
clusters is a given parameter, an alternative is to tie this number to
clustering quality [43]. Several clustering quality evaluation meth-
ods exist in the literature based on inter-cluster and intra-cluster
distances [13, 22, 67]. The objective, which we also share in this pa-
per, is to cluster similar columns together (i.e., reduce intra-cluster
distance) and avoid similar columns in different clusters (i.e., in-
crease inter-cluster distance). We follow an approach similar to
the elbow method [5] to determine the number of clusters that
maximizes some (unsupervised) clustering quality measure. In the
experiments we use the well-known Silhouette Coefficient [67].1

We also need to define the scope of this search, i.e., what are the
possible values for the number of clusters. Recall that the columns
from the same input table cannot be assigned to the same cluster.
Therefore, if𝑚1,𝑚2 . . .𝑚𝑛 are the number of columns in the input
tables 𝑇1,𝑇2 . . .𝑇𝑛 , the minimum number of clusters is given by
max(𝑚1,𝑚2 . . .𝑚𝑛). Also, themaximumnumber of clusters is given
by

𝑛
𝑖=1𝑚𝑖 . The latter represents the case when each input column

forms a separate cluster and the bound can be even tighter if we
know that the scheme graph of the input tables is connected. We
show a figure that zooms in the left part of Fig. 3 and summarizes
the Column Integration ID assignment in our technical report [42].

Example 12. Consider Fig. 1, we need to assign integration IDs to
the columns of tables. Here, we expect to have six clusters, each for
{Stadium, Location, Team, Opened, Coach, Capacity} as our column
labels show the ground truth. We use a clustering algorithm that
computes the clustering quality score starting from the minimum
number of clusters (3), to the maximum (15). Recall TID is not a
real column and was added so we can clearly refer to tuples. The
Silhouette coefficient over the TURL embeddings is computed for all
values from 3 to 15 and plotted in our technical report [42]. It starts
from 3 and has a maximum at 6 . Then it decreases monotonically
from 7 to 15. Hence, we would pick 6 as the optimal number of clusters
and the clustering created in this simple example does reflect the
ground truth – e.g., the four Stadium attributes are assigned the
same integration ID, and the single Opened attribute is assigned a
different integration ID not shared by other columns.

5 INTEGRATING TABLES
Once we find the column integration IDs, ALITE uses them to
integrate the tables using a novel algorithm for computing Full
Disjunction. We show that our algorithm is correct and in practice,
is faster than existing algorithms.

5.1 ALITE FD Algorithm
The input of Algorithm 1 is a set of tables T to be integrated
with each column labeled with its integration ID. The two main
properties the algorithm uses are that the output is composed of
1Additional details are available in a technical report [42].

Algorithm 1: ALITE Full Disjunction

1 Input: T = {𝑇1,𝑇2, . . .𝑇𝑛 }, a set of tables with integration IDs as
column names

2 Output: FD(T) , the Natural Full Disjunction of T
3 T ← GenerateLabeledNulls(T)
4 𝑈ou ← 𝑇1 ⊎𝑇2 ⊎ · · · ⊎𝑇𝑛 //Apply outer union ⊎
5 𝑈comp ← Complement(𝑈ou ) //Apply complementation 𝜅
6 𝑈comp ← RemoveLabeledNulls(𝑈comp)
7 𝑇 ′ ← 𝛽 (𝑈comp ) //Apply subsumption 𝛽

8 Output𝑇 ′

all maximally integrated tuples over the input tuples (Definition 9)
and should not contain subsumable tuples. ALITE’s pseudo code is
provided in Algorithm 1. We make use of the following property:
complementation (Line 5) over the outer union (Line 4) generates all
maximally integrated tuples if the input relations contain no null
values. Of course, our data lake tables will contain null values (±) so
we begin by replacing these with distinct labeled nulls (Line 3). We
then apply complementation treating the labeled nulls as distinct so
they cannot be equated.We can then replace all distinct labeled nulls
with the same missing value (±) (Line 6) and apply subsumption
(Line 7) as a final step to compute the FD. Next, we will explain
each step in detail.

1. Generating Labeled Nulls. Complementation produces all
maximally integrated tuples only if the input tables have no null
values (±). Hence, to prevent over-jealous combining of tuples, we
replace nulls (±), with distinct labeled nulls which are not equal to
each other, to ±, ⊥, or any constant (non-null) in any table. This
avoids undesirable complementation (and generates only integrated
tuples). Specifically, the first step of Algorithm 1 (Line 3) is to replace
missing nulls in the input tables with the distinct labeled nulls and
store them in a set 𝑁 . This step ensures that the complementation
will not integrate tuples having null values on join columns.

Example 13. We use our running example (Fig. 1) throughout the
description of the algorithm for clarity. Since we have four missing
nulls in the tables (one each on 𝑇1 and 𝑇4 and two in 𝑇5), we replace
them with four distinct labeled nulls. After replacement, they are
treated similar to other non-null values.

2. Outer union. Now we outer union all the input tables and
store the resulting tuples in a set𝑈ou (Line 4). The outer union of
the tables in Fig. 1 is shown in Fig. 2(a). Next, Line 5 passes the set of
outer unioned tuples (𝑈ou) and the total number of tables (𝑛) to Al-
gorithm 2 which uses complementation to return all the maximally
integrated tuples along with (possibly) subsumable tuples.

3. Complementation Step (Algorithm 2). The objective of
this step is to generate all the maximally integrated tuples. First, we
prepare two sets to perform the complementation:𝑈temp and𝑈comp,
and initialize both to𝑈ou. Later on,𝑈comp holds the complementa-
tion result. We start complementing the tuples in 𝑈temp with outer
unioned tuples 𝑈ou. (Line 4). For each tuple in 𝑈temp, we look for a
complementing partner in 𝑈ou and if at least one complementing
partner is found, we add the result of complementation to 𝑈comp
(Line 9-12). However, if a tuple in𝑈temp does not have any comple-
menting tuples, we add the tuple itself to𝑈comp (Line 13-14). This
ensures that the tuples having no join partners are also included
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Algorithm 2: Complement

1 Input: A set of outer unioned tuples𝑈ou
2 Output: A set of tuples after complementation𝑈comp
3 𝑈comp ← 𝑈ou;𝑈temp ← ∅
4 while𝑈temp ≠ 𝑈comp do
5 𝑈temp ← 𝑈comp;𝑈comp ← ∅
6 for 𝑡1 ∈ 𝑈temp do
7 complement_count = 0
8 for 𝑡2 ∈ 𝑈ou do
9 𝑅, complement_status← 𝜅 (𝑡1, 𝑡2 )
10 if complement_status then
11 𝑈comp ← 𝑈comp ∪ 𝑅
12 complement_count← complement_count + 1
13 if complement_count = 0 then
14 𝑈comp ← 𝑈comp ∪ {𝑡1}
15 Output𝑈comp

in the FD results. After we go through all the tuples in 𝑈temp, we
check if 𝑈temp and 𝑈comp have the same tuples. If this is true, it
means that there are no more complementing tuples left and hence,
we stop the complementation. If they are not equal, there may be
tuples that can be complemented. So, we go for another round of
complementation. Note that the outer loop (Line 4-14) never takes
more than 𝑛 − 1 rounds (even less in practice). The reason is simple:
complementation can only combine tuples from different tables.
So, there are at most 𝑛 − 1 such steps for any tuple. Also from
monotonicity of the process, if a tuple does not get complemented
in one step, it can not be complemented in a future step.

Example 14. Consider Table (a) and (b) of Fig. 2. Table (a) is the
result of outer unioning the tables in Fig. 1 and Table (b) holds the
resulting tuples given by different integration techniques. Consider
Algorithm 2 which has as input a set of tuples to be complemented.
In the complementation first round (Line 4-14), both 𝑈ou and 𝑈temp
are the same and they contain the tuples 𝑡1, 𝑡7 and 𝑡10. All these
three tuples integrate with each other. Assume that the labeled
null in 𝑡10 was replaced by a distinct non-null value ±1. So, the
complementation operator integrates them pairwise (Line 9) to
generate intermediate tuples 𝜅 (𝑡1, 𝑡7) (equal to 𝑓1 except Capacity
= ⊥), 𝜅 (𝑡1, 𝑡10) (equal to 𝑓1 except Coach = ⊥ and Capacity = ±1),
and 𝜅 (𝑡7, 𝑡10) (equal to 𝑓1 except Capacity = ±1) (see Section 2.2).
All these tuples are added to𝑈comp. Similarly, tuples 𝑡8 and 𝑡12 com-
plement each other producing 𝑓8, which is added to𝑈comp (Line 11).
On the other hand, 𝑡5 does not have any integrating partners
and, hence, is added to 𝑈comp itself (Line 14). After the first com-
plementation round, 𝑈comp = 𝑈ou \ {𝑡1, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10, 𝑡11, 𝑡12} ∪
{𝜅 (𝑡1, 𝑡7), 𝜅 (𝑡1, 𝑡10), 𝜅 (𝑡7, 𝑡10), 𝜅 (𝑡6, 𝑡9), 𝜅 (𝑡6, 𝑡11), 𝜅 (𝑡9, 𝑡11), 𝑓8}
which is different from 𝑈ou. Hence, we move 𝑈comp to 𝑈temp,
and empty 𝑈comp. Then the algorithm starts a second round of
complementation (Line 4-14). As mentioned earlier, 𝑈ou is always
the same. So, tuples 𝜅 (𝑡1, 𝑡7) and 𝜅 (𝑡1, 𝑡10) in 𝑈temp complement
with tuples 𝑡10 and 𝑡7 respectively. They both produce the same
tuple that is equal to 𝜅 (𝑡7, 𝑡10) which is already in 𝑈temp from the
first iteration. As 𝑈temp is the set, the newly generated duplicates
are discarded. After this round, we again move 𝑈comp to 𝑈temp
and empty 𝑈comp. In the next round, no tuples in 𝑈temp have
complementing partners in𝑈ou. So, the complementation terminates
and𝑈comp =𝑈temp = {𝜅 (𝑡7, 𝑡10), 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8, 𝑡14}.

4+5. Remove labeled nulls and subsumption. Once the com-
plementation is done, we remove the subsumable tuples to get the
FD. Notice however, we have replaced the missing nulls (±) with
the distinct labeled nulls before complementation. This is to pre-
vent the complementation on the missing nulls. However, to get the
maximally integrated tuples, we ensure that there are no subsum-
able tuples, both on missing nulls and produced nulls. Therefore,
we revert each labeled null to its original missing value (±) (Line 6
of Algorithm 1) and then use subsumption (Line 7) to remove the
non-maximally integrated tuples.

Example 15. We now replace the unique labeled nulls in each
tuple with a missing null (±). This step converts 𝜅 (𝑡7, 𝑡10) to 𝑓1.
Finally, we apply subsumption to 𝑈comp and get rid of tuple 𝑡14
(Algorithm 1, Line 7). This ensures that the final result is the set of
FD tuples i.e., {𝑓𝑖 }, 𝑖 ∈ [1, 8] where, i is an integer.

For subsumption, we use the null-value based partitioning algo-
rithm introduced by Bleiholder et al. that computes subsumption in
𝑂 (𝑠 log 𝑠) time where, 𝑠 is the number of input tuples [8]. The idea
is to first partition the input tuples according to their null value
pattern. This helps to reduce the number of tuple comparisons for
the subsumption check and hence, we can apply subsumption only
on tuples within a partition. Note that the number of columns in
the integrated table is constant for a given set of tables.

5.2 Efficient Complementation
For subsumption, we used an existing fast algorithm. For comple-
mentation, we describe a novel optimization based on partitioning
of the tuples. Recall that two tuples having different non-null values
on a common column cannot complement each other. So, we avoid
the comparison between such tuples by assigning them to different
partitions. Then we apply complementation within each partition
using Algorithm 2, reducing its computation time.

Example 16. Consider column Stadium and tuples 𝑡1, 𝑡2, 𝑡7 and
𝑡10 of Table (a) in Fig. 2. Also recall the necessary conditions for two
tuples to complement each other (see Section 2). Since 𝑡1 [𝑆𝑡𝑎𝑑𝑖𝑢𝑚]
= NRG Stadium and 𝑡2 [𝑆𝑡𝑎𝑑𝑖𝑢𝑚] = AT&T Stadium, they cannot
complement each other as they have different non-null values on a
common column Stadium. Hence, we safely avoid any comparison
between 𝑡1 and 𝑡2. Also, as 𝑡10 [𝑆𝑡𝑎𝑑𝑖𝑢𝑚] = NRG Stadium, it has a
possibility of complementing 𝑡1. So, we compare 𝑡1 and 𝑡10. Notice
however, tuple 𝑡7 complements 𝑡10 even though 𝑡7 has a produced
null on Stadium. Therefore, a tuple having a produced null on a
common column should still be compared with other tuples.

We intend to make each partition fairly small, i.e., keep the
number of tuples in each partition less than a positive integer 𝜃
where, 𝜃 ≪ 𝑠 . Bleiholder et al. suggested to partition tuples using
the values of selected partitioning column(s) [9]. The selection of
the partitioning column(s) is based on a heuristic that considers the
number of non-null and unique values on each column. At first, the
tuples having the same non-null values in the partitioning column
are kept in separate partitions. If there are tuples having produced
null values in the partitioning column(s), they are added to all
other partitions. Now, the complementation can be applied on the
tuples within each partition. But partitioning with a single or even
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a group of columns may still produce large partitions. So, instead of
stopping after the first partitioning, we continue the process using
other columns one after another until the number of tuples in each
partition is less than 𝜃 . The tuples in the produced null partition
should be added to each of the other partitions. Hence, in order to
reduce the number of tuples in the produced null partition, we first
sort the columns in ascending order of the number of produced
nulls they contain. Then, we partition the tuples by value of each
column one by one. Also, the tuples from produced null partitions,
when added in other partitions, may create duplicate partitions
i.e., the partitions having exactly the same tuples. To discard such
duplicate partitions, we index each partition based on its tuples.

Example 17. Consider the table in Fig. 2(a), which is the outer
union of the tables in Fig. 1. Each missing null is replaced by a
distinct value. Let the threshold for partitioning be 𝜃 = 4. The par-
titioning order of the columns based on the number of produced
nulls is {Location, Stadium, Team, Coach, Opened, Capacity}. In
the first round, we partition by Location which gives six parti-
tions 𝑃1 = {𝑡1, 𝑡2, 𝑡7, 𝑡10}, 𝑃2 = {𝑡3, 𝑡13}, 𝑃3 = {𝑡4, 𝑡14}, 𝑃4 = {𝑡5},
𝑃5 = {𝑡6, 𝑡9, 𝑡11}, 𝑃6 = {𝑡8, 𝑡12}. As 𝑃1 does not have less than 4 tu-
ples at the end of the first round, we again partition 𝑃1 into smaller
partitions using Stadium column. This gives two more partitions
𝑃11 = {𝑡1, 𝑡7, 𝑡10} and 𝑃12 = {𝑡2, 𝑡7}. Note that 𝑡7 has a produced
null in the partitioning column. So, we add 𝑡7 to both 𝑃11 and 𝑃12. At
the end of second round, all the partitions have size less than 4. Hence,
we do not further partition using other columns and the input to Al-
gorithm 2 by Algorithm 1 are partitions 𝑃11, 𝑃12, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6.

To optimize, we slightly modify Algorithm 1 (Line 5). Specifi-
cally, we apply partitioning over the outer unioned tuples (Algo-
rithm 1 Line 4) and apply complementation over each partition one-
by-one. The complementation over each partition is then unioned
before replacing distinct labeled nulls with the missing nulls.

5.3 Full Disjunction Algorithm Analysis
Correctness. We now present a theorem on the correctness of
Algorithm 1. 2

Theorem 18. The relation computed by ALITE over a set of
input tables 𝑇1,𝑇2, . . .𝑇𝑛 is exactly the natural full disjunction of
𝑇1,𝑇2, . . .𝑇𝑛 .

TimeAnalysis. Recall that the objective of ALITE is to integrate
data lake tables discovered using table search techniques. Generally,
such tables form schema graphs that may have complex cycles. Our
choice of using a complementation operator enables us to optimize
the production ofmaximally integrated tuples. Furthermore, we also
optimize the subsumption operator separately, which makes ALITE
faster in practice than the baselines for computing FD over data
lake tables. We will show the superiority of ALITE over baselines
in different conditions experimentally in Section 6. Further details
on time complexity are available in our technical report [42].

6 EXPERIMENTS
We now evaluate the two steps involved in ALITE.

2 Proof in the technical report [42].

6.1 Experimental Setup
We implement ALITE and all the baselines using Python 3.7 and
run experiments using a CentOS server having Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz processor. The main objective of our
experiments is to answer: (1) How accurate is our Column Inte-
gration ID Assignment method in comparison to the existing at-
tribute matching techniques? (2) How well does our FD algorithm
scale in comparison to the state-of-the-art FD algorithms? (3) Is it
worthwhile to use FD instead of the faster (and widely available)
outer-join operator? Specifically, we study how many FD tuples
are missed by outer-join when integrating real data lake tables.

Embedding Generation. Recall that we use pre-trained em-
beddings to represent the columns for clustering (and integration
ID assignment). Before using TURL [23], our method of choice to
generate embeddings, we pre-process the tables using their im-
plementation [72]. This phase includes, for example, generating
a Wikipedia entity dictionary to map values in the tables. TURL
was designed for web tables and, hence, has a limited capacity in
terms of the number of rows and columns it can use to create em-
beddings (mean of ∼20 rows and ∼2 columns [23]). Since typical
data lake tables are much larger (see Fig. 4), to cope with such a lim-
itation, we designed an iterative embedding generation approach
for each column. First, we randomly sample 50 rows and generate
the corresponding column embedding by averaging the representa-
tions of each row. Then, we iteratively sample 50 additional rows
and combine them with the current embedding until convergence.
Convergence is achieved if the euclidean distance between two
consecutive embeddings is less than some value (0.05 in our setup).

Hierarchical Clustering. The generated embeddings are used
to represent columns for clustering (see Section 4). We implement
the clustering algorithm using Agglomerative Clustering module
available in Scikit learn library [60]. Based on our objective of ob-
taining dense, but well-separated clusters, we use the Silhouette
Coefficient as a clustering quality measure [67]. We select the num-
ber of clusters (column predicates) that maximizes the Silhouette
Coefficient (Section 4). We use euclidean distance as a distance
metric throughout the experiments.

6.2 Evaluation Measures
To the best of our knowledge, no prior work considers the integra-
tion of data lake tables after discovery. So, we compare the different
components of our pipeline to some approximate baselines.

Column Integration ID Assignment: The column integration
ID assignment can be addressed using schema matching. Generally,
precision, recall and their harmonic mean, i.e., 𝐹1-score are used as
the evaluation measures for schema matching [14, 31, 69]. So, we
use the same three metrics to compare our column integration ID
assignment against existing schema matching methods. To assess
the quality of a clustering-based solution using binary measures, we
consider a pair of columns belonging to the same cluster as a match.
Note that a column having no matches forms a singleton cluster,
i.e., a cluster having one column. We count each such cluster as
a true match during the evaluation. Specifically, the total number
of matches is the sum of the number of column pairs belonging to
the same cluster and the number of singleton clusters. Formally,
let TM be true column pair matches according to the ground truth
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and T̂𝑀 be the matches according to a method. We define Precision
(𝑃), Recall (𝑅) and 𝐹1-score (𝐹1) as follows:

𝑃 =
T𝑀 ∩ T̂𝑀
T̂𝑀

, 𝑅 =
T𝑀 ∩ T̂𝑀
T𝑀

, 𝐹1 =
2 · 𝑃 · 𝑅
𝑃 + 𝑅 (1)

We compute precision, recall and 𝐹1-score for each set of tables to
be integrated and report the average. In addition, we also report
the time taken by each method to determine the column predicates.

Full Disjunction: Our objective is to show that our proposed
FD algorithm is faster in integrating data lake tables in comparison
to the state-of-the-art methods for computing the FD. Therefore,
we will report the time taken to compute Full Disjunction by each
method. A cut-off of 10k seconds is used when applying FD. Fur-
thermore, it is interesting to see how many tuples generated by FD
can also be generated by the relatively faster outer-join over real
data lake tables. Recall that outer-join is not an associative operator
and there may exist outer-join orderings that yield the semantics
of Full Disjunction when the scheme graph of the input tables does
not contain a 𝛾-cycle [65]. But the data lake tables to be integrated
may contain gamma cycles in which case an outer join may not
compute the FD. We quantify this using the Tuple Difference Ratio
(𝑇𝐷𝑅) as a success metric. Let 𝑓 be the FD output size and 𝑓 ′ be
output size of a competing method (e.g. outer join). The 𝑇𝐷𝑅 is
given by 𝑓 ∩𝑓 ′

𝑓
. If the competing method produces all FD tuples,

𝑇𝐷𝑅 is equal to 1 and it is equal to 0 if it produces none of them.

6.3 Baselines
Column Integration ID Assignment. Recall that we use a clus-
tering approach and pre-trained embeddings created for the tables’
columns [23] to find the column integration IDs. Other existing
natural language embeddings were successfully adopted for similar
tasks such as table search [10, 57] and column annotation [71]. Here,
we compare the performance of such embeddings also for our task.
Like in table search [10, 57], we use fastText [38, 54] embeddings of
columns as done for column annotation [71], and we useBERT [24]
embeddings. We use a publicly available Fasttext model [30] using
Gensim python package [33]. We generate BERT embeddings [4]
using the commonly used hugging face package [27].

We also compare our Column Integration ID Assignment with
existing schema matching methods. There are numerous matching
approaches in the literature [25, 45, 51, 69]. However, most work
relies on metadata, which we aim to avoid in our setting. Recently,
in Valentine, Koutras et al. performed a detailed analysis of existing
schema matching methods in a data lake setting [45]. Based on
their analysis, we select the Distribution Based method (DB), pro-
posed by Zhang et al., as a baseline [76]. DB discovers clusters of
similar attributes in tables using information that includes attribute
data types, overlap of the attribute values, and their distribution.
Earth Mover’s Distance is used to measure the similarity between
the column pairs [68]. A threshold is applied over this score to de-
cide the column similarity. We use a threshold of 0.15 suggested by
Zhang et al. [76]. Also, we reproduce DB using the open source code
in Valentine [73]. For completeness, we compare ALITE against
other schema-based matching methods available in Valentine over
a benchmark having real schemas. Specifically, we compare CU-
PID [51], COMA [25] and Similarity Flooding (SF) [53]. We also

report a Jaccard Similarity and Levenshtein Distance method (JLM)
used as a baseline in Valentine [45]. We use default parameters
from the respective papers. Note that the holistic schema matching
works with a set of tables whereas the pairwise schema matching
methods work only between a pair of tables (or schemas). So, for
fair evaluation, we make all the pairwise methods holistic. We apply
pairwise schema matching between every pair of tables in the set
of tables to be integrated. Then, the method returns all the column
pair matches, which we use to compute P, R and 𝐹1 (Section 6.2).

Full Disjunction. Paganelli et al. recently suggested ParaFD to
compute the FD of relational tables where all joins are between keys
and foreign keys using multiple machines [59]. In a data lake, we are
often not joining on keys and foreign keys, so we mainly compare
ALITE against ParaFD in a benchmark having such relationships.
However, to understand how accurate ParaFD can be in the real
tables that may not necessarily have PK-FK relations, we report its
TDR on a benchmark having real data lake tables.

We also use BICOMNLOJ, which computes the FD with a poly-
nomial delay between tuples [17]. As our focus is to compute full
FD, we report the performance of BICOMNLOJ for computing the
full FD. Also, BICOMNLOJ is based on the tuple sets and computes
FDtuple-set, if the input contains nulls its output may contain some
subsumable tuples (see Example 10). So, to ensure that the output
produced by this algorithm is the same as other algorithms, we
apply subsumption to its final result. For fair comparison, we apply
the same subsumption algorithm that we use for our approach [8].
Since an open-source implementation is not available for either
ParaFD or BICOMNLOJ, we reproduce them using the information
provided in the paper. We implement ParaFD to run on a single
machine for fair comparison. The reproduced implementations are
publicly available in our github repository [2]. Also, we run outer
join to integrate the tables and use its output size to report 𝑇𝐷𝑅.
As outer join is not associative, the order of integration makes a sig-
nificant difference [32]. Applying outer join in a connected-prefix
ordering of the input tables can yield FD for 𝛾-acylic case [17].
Therefore, we find the connected-prefix ordering by performing
DFS transversal over the input scheme graph and use it to compute
the outer join [17].

6.4 Benchmarks

Benchmark Tables Columns Tuples Integration sets Experiments

Align 606 4,584 2.2M 65 Integration ID

Real 102 1, 195 219k 11 Integration ID, FD

Join 302 2, 309 1.1M 28 FD

IMDB 6 33 3k - 30k 1 FD

Figure 4: Benchmarks used in the experiments.

Figure 4 summarizes all benchmarks used in different experi-
ments along with their statistics. Each benchmark contains multiple
tables with different schemas and each schema may be used by mul-
tiple tables. All the benchmarks are publicly available [2].

Align. To the best of our knowledge, there are no available data
lake benchmarks that could be adapted to evaluate the column inte-
gration ID assignment task. So we create a new benchmark called
Align containing 606 tables divided into 65 non-overlapping sets of
tables, which we call integration sets. For example, 𝑇1-𝑇5 (Fig. 1) is
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an integration set containing 5 tables to be integrated. We run the
column integration ID Assignment over the columns of tables of
each integration set and report the average performance. To create
this benchmark, we follow a similar technique used to create a
table union benchmark [57]. First, we select 65 real data lake tables
from US Open Data [36], Canada Open Data [20], and UK Open
Data [21] and consider them as seed tables. Each seed has a different
schema and is used to generate an integration set. We partition
the seed tables by projecting columns and selecting rows (without
replacement) to get 606 smaller tables such that all the columns of
the small tables that originated from the same seed column have
the same integration ID. Accordingly, we have labeled ground truth
for the column integration ID assignment. Based on the number of
columns and rows in the seed tables, each integration set contains 2
to 30 tables. Note that we do not add or remove missing nulls in the
seed tables before partitioning. Therefore, if there is a missing null
in the seed table row, it gets copied to the small tables. On average,
since these are real data lake tables, we have null values in 50% of
the rows. This ensures that our benchmark well-represents the real
data lake scenario where such nulls are prevalent.

Real. To understand the performance of different methods in a
real data lake environment, we also created the Real Benchmark
that contains 102 real data lake tables divided into 11 disjoint in-
tegration sets. We ensure that the schema graph of the tables in
each integration set is connected. Furthermore, two real tables can
have different column headers for the join columns. Therefore, we
manually marked the join columns and labeled the ground truth.
We use this benchmark to evaluate the effectiveness of column
integration ID assignment and efficiency of FD. It is interesting
to evaluate FD computation for different input sizes (𝑠) and out-
put sizes (𝑓 ). Therefore, we also ensure that the benchmark covers
𝑓 < 𝑠 , 𝑓 ≈ 𝑠 and 𝑓 > 𝑠 cases. Precisely, in this benchmark, there
are three integration sets where 𝑓 < 𝑠 , five integration sets where
𝑓 ≈ 𝑠 , and three integration sets where 𝑓 > 𝑠 . 3 The number of
tables (n) on each integration set ranges from 5 to 14. Also, 𝑠 and 𝑓

ranges from 588 to 76k and 580 to 60k respectively.
Join. Except renaming column headers, we do not modify the

Real Benchmark and it contains raw tables searched from open
data lakes. Therefore, to experiment with our algorithm in broader
contexts, like for variation in the input size, output size and the
number of tables in each integration set, we create a Join Benchmark
that contains 28 integration sets generated using 27 seed tables–
at most two integration sets from each seed. Each integration set
contains 2 to 20 tables. We follow a similar methodology as used in
Nargesian et al. [57] as explained in the Align Benchmark, but this
time we also consider broader variation in the number of input and
output tuples and also their ratio. The input tuple size (𝑠) varies
from 266 to 100k and range of output size is from 234 to 12M. There
are 17 integration sets with 𝑓 < 𝑠 among which six have 𝑓 < 0.5𝑠 .
Furthermore, five integration sets have 𝑓 ≈ 𝑠 and six integration
sets have 𝑓 > 𝑠 .

IMDB. As ParaFD can only be used accurately for the tables
having PK-FK relationships, we also use an IMDB dataset, hav-
ing such relationships for our experiments [37]. This is a dataset
about movies and their details including ratings, crews, etc. The

3We consider 𝑓 ≈ 𝑠 when |𝑓 −𝑠 |
𝑠
≤ 0.05.

full dataset contains about 106.8 M tuples in 6 tables. We use this
benchmark to study the effect of different input size on the run
time. Previous work uses 1k tuples in each table to evaluate the
run time [17]. Therefore, to study the trend on similar setting , we
sample tuples randomly and vary the input size between 500 to
5000 for each table– around 3k to 30k input tuples in total for our
experiments. We preserve PK-FK relationships during sampling.

6.5 Column Integration ID Assignment Results Best score
Second Best score

Benchmark

Method

Baseline ALITE

CUPID COMA SF JLM DB fastText BERT TURL

Align

P - - - - 0.953 0.955 0.924 0.934

R - - - - 0.892 0.924 0.967 0.968

F1 - - - - 0.911 0.936 0.942 0.947

Real

P 0.448 0.821 0.255 0.494 0.718 0.689 0.730 0.776

R 0.695 0.631 0.914 0.912 0.799 0.806 0.769 0.762

F1 0.465 0.685 0.296 0.562 0.717 0.722 0.713 0.755

Best score
Second Best score

Benchmark

Method

Baseline ALITE

CUPID COMA SF JLM DB fastText BERT TURL

Align

P - - - - 0.95 0.96 0.92 0.93

R - - - - 0.89 0.92 0.97 0.97

F1 - - - - 0.91 0.94 0.94 0.95

Real

P 0.45 0.82 0.26 0.49 0.72 0.69 0.73 0.78

R 0.70 0.63 0.91 0.91 0.80 0.81 0.77 0.76

F1 0.47 0.69 0.30 0.56 0.72 0.72 0.71 0.76

Figure 5: Average precision, recall and 𝐹1 over the Align and
Real benchmarks for column integration ID assignment.

We now report the effectiveness of column integration ID as-
signment, followed by an empirical analysis of its efficiency. Fig. 5
shows the evaluation results for the Align and Real benchmarks.
Recall that ALITE uses a clustering-based approach to find the
column integration IDs that uses pre-trained embeddings created
using TURL [23]. So, first we compare ALITE’s precision, recall and
𝐹1-Score using TURL-based embeddings against fastText and BERT.
We use the same experimental setups for all three methods (Sec-
tion 6.1). TURL gives comparable or even better precision and recall
against the baselines (Fig. 5). In terms of 𝐹1-score (the best overall
metric that combines both precision and recall), TURL performs
better than the baselines. This validates our choice of using table-
based embedding (TURL) instead of natural language embeddings
(fastText and BERT) for data lake tables. We will explore other ways
to embed data lake tables in future research.

Next, we compare the effectiveness of ALITE’s embedding-based
technique against 𝐷𝐵 that uses attribute data types, values and
distribution to find the similar columns. The 𝐷𝐵 approach has
a slightly better precision than ALITE on the 𝐴𝑙𝑖𝑔𝑛 benchmark.
However, ALITE outperforms 𝐷𝐵 by more than 8% in terms of
Recall. In 𝑅𝑒𝑎𝑙 benchmark, DB has the lower precision and higher
recall than ALITE. Still, in terms of 𝐹1 (the combined metric), ALITE
outperforms DB by more than 4% on both benchmarks. The main
reason for the lower performance of 𝐷𝐵 is that it relies on value
overlap and ignores the semantics (e.g., synonyms). Specifically,
𝐷𝐵’s precision is impacted by the presence of homographs [49]–
the same values having different meanings– in the non-matching
columns, and its recall is impacted by the presence of synonyms in
the matching columns that can not be captured by value overlap.
Also, 𝐷𝐵 uses information only within a pair of columns to make
the matching decision whereas, ALITE considers all the columns
together in a holistic way, which enhances its performance.

Moreover, we analyze the performance of schema-based meth-
ods for column ID assignment in Real Benchmark. Recall that Align
Benchmark’s tables are generated using seed tables such that the
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aligning columns have the same column headers (Section 6.4). So,
we do not evaluate schema-based methods (CUPID, COMA, SF and
JLM) in Align Benchmark. In Real Benchmark, we observe that
COMA has better 𝑃 and 𝐹1 than other schema-based methods but
it has lower 𝑅 and 𝐹1 than DB (baseline) and ALITE. Specifically,
ALITE outperforms COMA, the best schema-based method, by
∼10 % in 𝐹1-score. This is because the tables contain unreliable
schemas and applying similarity measures over them leads to in-
correct aligning. CUPID also shows weaker performance due to the
same reason. We observe that SF and JLM have the top-2 recalls
among all the methods. However, they have lower precision and
𝐹1-score. This is because they align most columns within the same
cluster which increases their recall but penalizes precision. Hence,
the schema-based methods are not effective in the data lake setting.

The column integration ID assignment is considered as an offline
task. Yet, ALITE’s clustering is much faster than the pair-wise
comparison done by the baseline (𝐷𝐵). Specifically, ALITE takes
∼10 minutes for Align and ∼15 minutes for Real while 𝐷𝐵 takes
about 45 minutes (×4.5) for Align and about 2 hours (×8) for Real.
Comparing the embedding generation, fastText is the fastest (∼28
seconds for Align and ∼3 seconds for Real) as the embeddings are
pre-defined. TURL and BERT, for which a pre-trained model is
used, show somewhat different trends. For the Align benchmark,
BERT takes ∼80 minutes while TURL takes ∼7 minutes. For the Real
benchmark, they take approximately the same time (∼15 minutes).

6.6 Full Disjunction Results
Now we compare ALITE’s FD algorithm efficiency (Algorithm 1)
against the baselines (see Section 6.3). We also analyze the run time
of our algorithm by varying the input and output sizes. Finally, we
compare the FD output with the outer join output in terms of 𝑇𝐷𝑅
(the relative size of the outputs, see Section 6.1).

ALITE against baselines. Before experimenting with our data
lake benchmarks, we conducted a preliminary analysis over three
synthetic integration sets (R1,R2,R3) introduced in Cohen et
al. [17]. We reproduced these by randomly generating 1000 input
tuples in each of the 10 tables in each integration set. Unsurpris-
ingly, since these schema contain biconnected components [17],
𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 splits the tables into smaller integration sets, com-
putes FD for each of them separately and combine them. Therefore,
𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 is much faster than ALITE. As a second step, we
created a new, more complex, integration set having eight tables
that better represents data lake tables (see repository [2]). We again
fix the number of tuples on each input table to 1k for each of the 8
tables, i.e., 𝑠 = 8000. We added tuples to the tables in such a way as
to create three cases: 𝑓 < 𝑠 (f = 3868), 𝑓 ≈ 𝑠 (f = 7445) and 𝑓 > 𝑠 (f
= 14204). For all three cases, ALITE outperforms 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 by
at least one order of magnitude. 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 could not optimize
the computation because there is only one biconnected component.
Note that this is a common case in data lakes due to the presence
of complex cycles in the scheme graphs.

We also compare the time taken by ALITE’s FD algorithm against
the baseline 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 in Real Benchmark. Fig. 6(a) summarizes
this experiment. Each pair of bars on the X-axis represents a schema
and the Y-axis shows the time taken to integrate the tables by ALITE
(blue) and 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 (red). The tables in an integration set are
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(a) Real Benchmark

(b) Join Benchmark

Figure 6: Integration time (Y-axis, log scale) in (a) Real Bench-
mark and (b) Join Benchmark. The integration sets in X-axis
are arranged in ascending order of input size, some of the
names are truncated for conciseness. A 10k second cut-off
was used in both benchmarks. Due to space considerations,
integration sets that did not meet the cut-off time in Join
benchmark are provided in the technical report [2].

(a) (b)

Figure 7: Integration time in the IMDB benchmark for (a)
different input size and (b) different output size.

ordered by input size such that the smallest is shown on the left and
the largest in the right. ALITE’s FD algorithm (blue bars) is signifi-
cantly faster than 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 (red bars) over all 11 integration
sets. Specifically, the cases where the cut-off was not applied (all
but the last three), ALITE boosts the performance of 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽

by around two orders of magnitude. The reason for this gain comes
from the fact that our algorithm partitions tuples according to their
complementation patterns and iterates over the tuples only within
the partitions. This leads to an interesting insight, showing the
impact of the complementation operator in optimizing the FD com-
putation for data lake tables. Another reason is that data lake tables
have complex join connections that limit the chances of dividing
the tables of integration sets into biconnected components, which
is used in 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 . We see the same trend on Join Benchmark
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(shown in Fig. 6 (b)) where, ALITE outperforms 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 on
all integration sets by around one and half orders of magnitude. As
in Real, we are much faster for the integration sets having different
output to input ratio. Also, it is notable that out of 28 integration
sets, 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 computes the full FD result within the cutoff
time for only 13 integration sets that are shown in Fig. 6(b). Gen-
erally, 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 is able to compute FD within the cutoff time
for input sizes less than 45k. For the remaining 15 integration sets,
the average integration time by ALITE ranges from 20 seconds
to 3827 seconds with an average of 598 seconds–well below the
cut-off time (10k seconds) that we used in the experiments. This
shows that ALITE is more applicable than the baseline for the data
lake tables with large input size. we also observed that tuple-set
FD produces over 300 subsumable tuples per integration set in the
Real Benchmark which supports the subsumption step in ALITE.

Next, we apply ParaFD over Real Benchmark to see if it can yield
FD results in data lake tables. ParaFD completes the integration
within the cut-off time for only 3 out of 11 integration sets and
only 2 of them are equal to FD result. ParaFD is slow in Real be-
cause it computes all the spanning trees over the schema graph and
computes outer join over each of them (see Section 3). Accordingly,
we also implement an approximate version of ParaFD where we
do not apply the cut-off time but compute output tuples using at
most 100 spanning trees. The approximate version yields FD result
for only 5 out of 11 integration sets. For other 6 sets, the average
TDR is 0.82, i.e., ParaFD misses around 18 % of tuples. Also, it takes
an average of 9268 seconds per integration set, which is slower by
magnitudes than ALITE (Fig. 6(a)). The integration time and TDR
on each integration set is provided in the github repository [2].

Moreover, we compare ALITE’s FD algorithm against both
𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 and 𝑃𝑎𝑟𝑎𝐹𝐷 in IMDB– a benchmark having six ta-
bles and large number of join connections. As shown in Fig. 7 (a),
we vary input tuples (𝑠) from 0 to 30k and observe the runtime.
Note that, when we increase the number of input tuples, the output
size also increases in this benchmark. Therefore, we also show the
integration time with respect to the output size (Fig. 7 (b)). It is seen
that ALITE gives comparable performance against 𝑃𝑎𝑟𝑎𝐹𝐷 and is
more than two times faster than 𝐵𝐼𝐶𝑂𝑀𝑁𝐿𝑂𝐽 . Recall that 𝑃𝑎𝑟𝑎𝐹𝐷
needs all joins to be key to foreign-key joins to compute FD. It uses
this property to optimize the computations and hence, performs
relatively better than other techniques on 𝐼𝑀𝐷𝐵. However, 𝑃𝑎𝑟𝑎𝐹𝐷
cannot be used for the tables without PK-FK relationship. Due to
space constraints, we provide other details like the number of tables
on each integration set, the number of columns, input size, output
size, and missing nulls size with the supplementary materials [2].

FD against outer join. We now show the importance of using
FD against outer join empirically in real data lake tables (Real
Benchmark). We provide a bar graph in our technical report [42]
that shows each integration set of this benchmark in X-axis and
TDR in Y-axis. We show the schemas based on three categories:
𝑠 < 𝑓 , 𝑠 ≈ 𝑓 , and 𝑠 > 𝑓 . Recall that all these schemas contain
complex cycles. Out of 11 integration sets, only once is 𝑇𝐷𝑅 equal
to one (school_report), i.e., all FD tuples are generated by outer join.
It is interesting that even in the presence of complex cycles, the
outer join can sometimes produce the full FD. For two integration
sets (chicago_parks and 1009ipopayments), the outer join is able to
generate more than half of the FD tuples. But for other sets, 𝑇𝐷𝑅

is very low, which shows that the outer join produces incomplete
tuples and hence, magnifies the importance of FD to best integrate
real data lake tables.

Integration 
Method

Integrated
Table Size

|𝑻| | 𝑻 ∩ 𝑻
∗
| P R F1

Full Disjunction 121 98 78 0.795 0.838 0.816

Outer join 114 109 37 0.339 0.397 0.366

Figure 8: Results of applying ER over FD and outer join out-
put. Integrated Table Size is the number of input tuples to
ER, which is the output size of integration methods.

Entity Resolution (ER). Lastly, we analyze the use of FD (rather
than outer join) for the downstream application of entity resolution
(ER). To create ground truth, we inject duplicate tuples into a real
table. We then partition the table into four tables and integrate
them back using outer join and FD. Over these tables, we apply ER
and verify if the tuples in the original table are reproduced. Specifi-
cally, we use Magellan’s py_entitymatching [62] to find and remove
matching tuples. Given a table 𝑇 (resulting table after applying
ER and removing duplicates from outer joined or FD table) and a
ground truth table 𝑇 ∗ (i.e. clean table), we compute precision (𝑃 ),
recall (𝑅) and F1-score (𝐹1) as follows:

𝑃 =
|𝑇 ∩𝑇 ∗ |
|𝑇 | , 𝑅 =

|𝑇 ∩𝑇 ∗ |
|𝑇 ∗ | , 𝐹1 =

2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

In other words, precision and recall measure the portion of clean
tuples in 𝑇 and the portion of clean tuples that are covered by
𝑇 respectively. Additional details on the experimental setup are
provided in the technical report [42].

We report P, R and 𝐹1 of applying ER over FD and outer join
output in Fig. 8. The results indicate that applying ER over FD table
is better than outer join table in terms of both P and R and by
∼123% in terms of 𝐹1. Since outer join is not able to integrate the
maximal information, its result contains incomplete tuples having
null values. This reduces the information available for the entity
resolution algorithm and impacts de-duplication accuracy.

7 CONCLUSION
We introduce a novel problem of integrating data lake tables after
discovery and present ALITE that aims to solve this problem in
two steps. ALITE first assigns an integration ID to each column
and then applies natural full disjunction to integrate the tables. We
show that ALITE’s new FD algorithm is more efficient than existing
baselines, in practice. We also show the effectiveness of using FD
to best integrate the real data lake tables.
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