
SkinnerMT: Parallelizing for Eiciency and Robustness in
Adaptiveery Processing on Multicore Platforms

Ziyun Wei
Cornell University
Ithaca, NY, USA

zw555@cornell.edu

Immanuel Trummer
Cornell University
Ithaca, NY, USA

itrummer@cornell.edu

ABSTRACT
SkinnerMT is an adaptive query processing engine, specialized for
multi-core platforms. SkinnerMT features dierent strategies for
parallel processing that allow users to trade between average run
time and performance robustness.

First, SkinnerMT supports execution strategies that execute mul-
tiple query plans in parallel, thereby reducing the risk to nd near-
optimal plans late and improving robustness. Second, SkinnerMT
supports data-parallel processing strategies. Its parallel multi-way
join algorithm is sensitive to the assignment from tuples to threads.
Here, SkinnerMT uses a cost-based optimization strategy, based on
runtime feedback. Finally, SkinnerMT supports hybrid processing
methods, mixing parallel search with data-parallel processing.

The experiments show that parallel search increases robustness
while parallel processing increases average-case performance. The
hybrid approach combines advantages from both. Compared to tra-
ditional database systems, SkinnerMT is preferable for benchmarks
where query optimization is hard. Compared to prior adaptive pro-
cessing baselines, SkinnerMT exploits parallelism better.

PVLDB Reference Format:
Ziyun Wei and Immanuel Trummer. SkinnerMT: Parallelizing for Eciency
and Robustness in Adaptive Query Processing on Multicore Platforms.
PVLDB, 16(4): 905 - 917, 2022.
doi:10.14778/3574245.3574272

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/cornelldbgroup/skinnerdb/tree/skinnermt.

1 INTRODUCTION
Traditional query optimizers select join orders based on coarse-
grained data statistics and many simplifying assumptions [34].
All too often, those assumptions (e.g., uniform data and uncor-
related query predicates) do not hold. In that case, query optimizers
may generate query plans whose execution cost exceeds the opti-
mum by orders of magnitude. Those long standing problems have
recently motivated the use of machine learning for query opti-
mization [23, 25, 26, 31]. Most work in that domain focuses on
“inter-query learning”. This means that experiences gained from
past queries are used to make better optimization decisions for the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574272

next. However, such methods suer from a “cold start” problem
and are not helpful for fresh data or unusual queries (e.g., queries
introducing new user-dened functions).

Adaptive query processing [2, 3, 19, 33] is another idea to miti-
gate the eects of unreliable query optimization. Here, the selected
plan may change over the course of query execution. This allows
integrating run time feedback into plan choices. While early forms
of adaptive processing were targeted at stream data processing [2],
allowing for longer convergence times, recent work [28, 39] has
shown promising performance on standard benchmarks such as
TPC-H as well. This paper presents SkinnerMT, a new engine for
adaptive processing on multi-core platforms.

In the context of adaptive processing, there are two ways to ex-
ploit parallelism. First, alternative plans can be processed in parallel.
Second, the same plan can be processed on dierent data partitions
in parallel. Processing more data in parallel is benecial if the exe-
cuted plan is reasonably ecient. On the other side, exploring more
plans in parallel can help to identify near-optimal plans faster. Of
course, mixtures between the two extremes (i.e., processing mul-
tiple plans and multiple data partitions in parallel) are possible as
well. SkinnerMT features dierent parallel processing strategies
that cover all of the aforementioned possibilities. It has been built
to systematically study the research question of how to exploit
multicore parallelism best for adaptive processing. It is a fork of
the recently proposed SkinnerDB system [39], an adaptive process-
ing engine based on a reinforcement learning framework, which
executes all joins sequentially.

SkinnerMT uses adaptive processing to nd good join orders.
Arguably, this is perhaps the most dicult and impactful choice
made by the query optimizer. To enable fast and adaptive join order
switching, SkinnerMT uses specialized join algorithms and data
structures. It divides query processing into small time slices in
which dierent join orders are tried. Measuring the amount of data
processed per time slice allows obtaining (noisy) estimates of join
order quality. Based on those run time performance measurements,
SkinnerMT uses reinforcement learning to select which join order
to try next. In doing so, it balances exploration (trying out join
orders about which little is known) and exploitation (re-using join
orders that are promising, according to current quality estimates)
in an optimal manner.

SkinnerMT divides query processing into multiple phases (e.g.,
separating the processing of unary predicates and grouping or
aggregation operations from join processing). For most of those
phases, parallelization is trivial. This does not hold for the join pro-
cessing phase. Parallelizing join processing is the focus of this paper

905

https://doi.org/10.14778/3574245.3574272
https://github.com/cornelldbgroup/skinnerdb/tree/skinnermt
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574272
https://www.acm.org/publications/policies/artifact-review-and-badging-current

and SkinnerMT oers a rich set of parallelization strategies. As dis-
cussed later, those strategies allow users for optimizing for dierent
metrics such as raw performance or performance robustness.

First, SkinnerMT can exploit multi-threading to explore multiple
join orders in parallel. In the simplest version, the space of alterna-
tive join orders is split uniformly across dierent threads. A more
sophisticated variant adapts the assignment from search space par-
titions to threads over time. The goal is to assign more threads to
search space partitions that are likely to contain interesting join
orders, based on performance observed so far. This avoids cases in
which many threads explore parts of the search space that contain
no near-optimal join orders. Processing multiple join orders in par-
allel may seem wasteful as it leads to redundant work. However,
it can help for queries where nding good join orders is dicult.
More importantly, it decreases performance variance. As adaptive
processing is subject to random variations (due to randomized order
of exploration and noisy performance feedback), limiting the scope
of exploration per thread reduces convergence time.

Second, SkinnerMT can exploit multi-threading to process the
same join order in parallel. A large body of prior work focuses on
parallelizing traditional join operators. However, those join opera-
tors cannot deal with the requirements of adaptive processing with
high-frequency join order switches [39] (which is why prior work
on adaptive processing often opts for specialized join operators [2]).
Instead, SkinnerMT uses a parallel, multi-way join operator that
avoids creating large intermediate results (which would be costly
to materialize when switching between join orders that generate
dierent intermediate results). It exploits parallelism by assign-
ing tuples in a specic table (the so called “split table”) to specic
threads. The choice of a split table is impactful and highly non-
trivial. The best choice is determined by various factor, including
the table position in join order (which changes over time) as well as
data properties (e.g., value skew). Therefore, as shown later, simple
strategies fall far short of realizing optimal speedups via paralleliza-
tion. Instead, SkinnerMT uses cost-based optimization to select
optimal split tables, based on run time feedback.

Finally, SkinnerMT supports hybrid strategies, exploiting parallel
processing and parallel search at the same time. This includes a
dynamic variant that gradually switches from parallel search to
parallel processing.

We analyze all proposed algorithms formally and evaluate them
in experiments. We evaluate on various benchmarks, ranging from
benchmarks where optimization is easy (TPC-H benchmark [37],
due to uniform data) over benchmarks where optimization is moder-
ately dicult (join order benchmark [14]), up to benchmarks where
optimization is hard (JCC-H, due to highly skewed data [8]). It turns
out that parallel search leads to maximal robustness, minimizing
the execution time variance when executing queries repeatedly.
Parallel join processing reduces average run time signicantly, in
exchange for increased variance. The hybrid algorithm (in the dy-
namic variant) realizes attractive tradeos between average run
time and variance. Compared to SkinnerDB, the most similar prior
work, SkinnerMT scales well in the number of threads while Skin-
nerDB is bottlenecked by sequential joins. Compared to traditional
database systems such as MonetDB and Postgres, SkinnerMT per-
forms better on benchmarks where query optimization is dicult

Query

SkinnerMT
Decompose

Complex Queries

Filter Using
Unary Predicates

Create Indexes
on Join Columns

Grouping &
Aggregation

Join Processor
Learning Optimizer

Coordinator

Join
orders Rewards

Worker Worker...

Join orders,
split tables,
search spaces

Progress Tracker

States

Results

Figure 1: Overview of SkinnerMT.

(e.g., the join order benchmark). SkinnerMT’s speedups via paral-
lelization are comparable to the ones of traditional database systems.
In summary, our original scientic contributions are the following:

• We describe SkinnerMT, an adaptive query processing en-
gine featuring dierent parallelization strategies.

• We present several algorithms for parallel, adaptive pro-
cessing, exploiting parallel processing in dierent ways.

• We formally analyze the algorithms and evaluate Skin-
nerMT with dierent congurations in experiments.

The remainder of this paper is organized as follows. Section 2
gives an overview of the SkinnerMT system. Section 3 introduces a
data structure used to store execution state for specic join orders.
Section 4 describes how SkinnerMT performs data-parallel process-
ing. Section 5 describes how to leverage parallelism to explore more
query plans in parallel instead. Section 6 proposes an algorithm
that combines parallel exploration of join orders with parallel data
processing. Section 7 analyzes all proposed processing strategies
formally. In Section 8, we report experimental results. We discuss
related work in Section 9 before we conclude.

2 SYSTEM OVERVIEW
SkinnerMT is an analytical, relational database management sys-
tem for in-memory data processing. It is specialized for exploiting
multicore parallelism via multiple parallel processing strategies.
SkinnerMT is implemented in Java, primarily, while invoking fast
C code via the Java Native Interface for operations such as ltering,
index creation, and aggregation. The current prototype supports
SQL features that are required by the benchmarks used in the ex-
periments, including TPC-H and the join order benchmark.

Figure 1 shows an overview of the SkinnerMT system. Each
incoming query is rst rewritten to decompose it into a sequence of
simple SPJGA (select, project, join, group-by, aggregation) queries.
Each of the simple queries is processed in multiple phases. First,
unary predicates are applied and the resulting tables are material-
ized. Second, in-memory hash indexes are created on columns that

906

appear in equality joins. In order to enable arbitrary join orders,
SkinnerMT creates hash indexes on any column that may be probed
during join processing (i.e., compared to a system that prepares
hash indexes for a single join order, SkinnerMT typically creates
indexes on around twice as many columns).

Third, SkinnerMT uses adaptive processing strategies to perform
joins. It uses specialized multi-way join algorithms (explained in
more detail later) to enable fast join order switching. SkinnerMT
supports multiple parallel join processing strategies. They dier
in how they exploit parallelism and they realize dierent tradeos
between expected performance and performance robustness. For all
variants, joins are executed by worker threads. Workers frequently
suspend joins and resume join execution with a dierent join order.
To avoid redundant work, workers communicate with the progress
tracker component. This component uses a specialized data struc-
ture (discussed in more detail later) to concisely store execution
state for multiple workers and multiple join orders. Furthermore,
the progress tracker tries to merge progress achieved via dier-
ent join orders. At the same time, workers communicate with a
coordinator component. Depending on the parallelization strategy,
this component assigns worker threads either to join orders, split
tables (tables split into partitions for dierent worker threads), or
partitions of the join order search space (or a combination thereof).

Join orders are selected via reinforcement learning. Performance
statistics about join orders translate into reinforcement learning
rewards. The reward function is the sum of two components. First,
it measures the number of complete join result tuples produced
per time unit. As all join orders produce the same total number of
tuples, faster join orders produce more tuples per time unit in aver-
age. Second, to cover cases where join results are very sparse, the
reward function measures the speed at which tuple combinations
are explored. This speed is higher if, e.g., having selective predicates
early in the join order allows the multi-way join to exclude tuple
combinations in the remaining tables quickly. A precise denition
of the reward function is given in Section 4.1.

More precisely, the learning optimizer uses the UCT algorithm
to choose interesting join orders to explore [22], balancing the
need for exploration (trying new join orders) with the need for
exploitation (trying join orders showing good performance so far).
This algorithm builds a search tree over join orders, associating
sub-trees with condence bounds on average rewards (obtained
when sampling join orders within that sub-tree). The algorithm
builds the search tree gradually over time, adding at most one node
per reinforcement learning sample and starting with an empty tree.
This is crucial to avoid prohibitive overheads when creating trees
representing the entire join order space for large queries. It also
means that the initial decisions are random while the algorithm
converges to optimal decision over time [22].

During join processing, join result tuples are collected from
dierent threads. Keeping track of the tuple lineage (i.e., the vector
of osets of joined tuples in the base tables) allows eliminating
tuples that are generated redundantly (e.g., by dierent threads or
by the same thread via dierent join orders). After a full join result
is generated, the join result is materialized and the grouping and
aggregation phase starts. Here, group-by clauses and aggregates are
processed to generate the nal result. This result is either returned

Algorithm 1 Retrieving and updating join execution state.
1: // Store start tuple indices when resuming join order 9
2: // into vector E using progress tree with root ? .
3: procedure R(?, 9, E)
4: for 8 1, . . . , 9 .;4=6C⌘ do
5: // Select child node in progress tree
6: 2 GC(?, 98)
7: // Is child node outdated?
8: if ? .DC8<4 > 2 .DC8<4 then
9: 2 null
10: end if
11: // Extract index of latest tuple
12: if 2 = null then
13: E98 0
14: else
15: E98 2 .CD?;4
16: end if
17: ? 2
18: end for
19: end procedure

20: // Update progress tree with root ? considering
21: // vector of latest tuple indices E for join order 9 .
22: procedure U(?, 9, E)
23: // Update progress tree
24: for 8 1, . . . , 9 .;4=6C⌘ do
25: 2 GOC(?, 98)
26: // Does child need an update?
27: if 2 .CD?;4 < E98 _ ? .DC8<4 > 2 .DC8<4 then
28: 2 .CD?;4 E98
29: 2 .DC8<4 TUT
30: end if
31: ? 2
32: end for
33: end procedure

to the user or serves as input for the next query in the sequences
of simple queries, resulting from query rewriting.

3 TRACKING PROGRESS
The execution state of the multiway join algorithm used by Skin-
nerMT (described in detail in the next section) is fully captured by
one integer number per table. This number indicates the position
(i.e., column array index) of the currently selected tuple. When
selecting a new join order, worker threads start from the last exe-
cution state that is available for this order (or from the rst tuple
in each table, if the order is selected for the rst time). All parallel
processing strategies use the same data structure to store execu-
tion state for dierent join orders and threads concisely. This data
structure, the progress tree, is described in the following.

Each node in the progress tree is associated with a join order
prex. Nodes in the 8-th tree level represent prexes of length 8 .
Leaf nodes are associated with entire join orders. Each tree edge is
associated with a query table. Traversing an edge appends the asso-
ciated table to the join order prex (i.e., the child node represents
the prex with appended table, compared to the parent node). For
each node, we store two integers: a tuple index and an update times-
tamp. The tuple index represents execution state. It refers to the
last table in the join order prex associated with the corresponding

907

utime
tuple

utime
tuple

utime
tuple

R 1
0

2
1

T 1
2

S 1
0

...

R S T
1 0 0

R 2
1

S 2
0 T 1

2

S 1
0

...

R S T
1 0 0

R 2
1

S 2
0

T 2
0

T 1
2

S 1
0

...

R S T
1 0 0

(a) Update progress for join order ' Z (Z) at Timestamp 2.
utime
tuple

utime
tuple

utime
tuple

R 2
1

T 1
2

S 1
0

...

...

R T S
1

R 2
1

T 1
2

S 1
0

...

...

R T S
1 0

R 2
1

T 1
2

S 1
0

...

...

R T S
1 0 0

Outdated

Outdated

(b) Restore state for join order ' Z) Z (at Timestamp 3.

Figure 2: Storing and retrieving order-specic execution state.

node. It indicates which tuple was considered in that table when
the join was interrupted last. When resuming processing for the
corresponding join order, we start from that index.

The progress tree merges progress that was achieved according
to dierent join orders. Join order prexes belong to multiple join
orders. Hence, the latest execution state for a rst join order may
partially override state of a second order. In those cases, it is impor-
tant to understand which state is associated with what join order. It
is for instance not admissible to mix the last tuples considered for
dierent join orders in dierent tables. Resuming join processing
from such a mixed state may lead to skipped join result tuples.
Hence, we store in each tree node a timestamp, indicating when the
tuple index was updated for the last time. A change in timestamp,
when traversing the tree, indicates that tuple indices may refer to
dierent join orders.

Algorithm 1 shows pseudo-code for storing and restoring exe-
cution state. Procedure R is called at the start of each time
slice, when resuming join processing with a new join order. Proce-
dure U is called at the end of a time slice, to backup progress
made with the current join order. Both procedures obtain as input
the root node ? of the progress tree, the join order 9 , and a vector
E of base table tuple indices to store or to restore. When restoring
execution state, we iterate over the tables of the input join order.
At the same time, we traverse the progress tree, retrieving the edge
associated with the next table using Function GC. The func-
tion returns null if no corresponding edge exists (i.e., if this join
order was tried for the rst time, covering the case ? = null as
well). Also, if update timestamps (eld DC8<4) indicate an outdated
child node, we act as if no edge exists for the next table. A node

becomes outdated if one of its predecessor nodes was updated more
recently. This can happen if it belongs to a join order that has been
outperformed by a dierent join order, sharing a join order prex.
In that case, the predecessor nodes associated with the other join
order are updated while the outdated node is not. We restore tuple
indices stored in the progress tree (eld CD?;4) until one of the two
aforementioned cases arises (or until the join order was completely
processed).

Similarly, when backing up execution state, we traverse the
progress tree according to the input join order. Function GO
C retrieves child nodes in the progress tree, if they exists,
and creates them otherwise. The update procedure is only called if
the execution state stored in E is useful, meaning that it dominates
progress already stored. Hence, we override existing progress where
it diers from the input. Increasing the timestamps of nodes on the
path representing the current join order makes other child nodes
outdated. Hence, if possible, we want to avoid doing so. This moti-
vates the condition in Line 27, checking whether stored progress
diers from the input and whether the child is already outdated.
In those cases, we override the tuple index and update the times-
tamp (Function TUT returns the same value during
the same invocation of Function U which increases strictly
monotonically over dierent invocations).

Example 3.1. Figure 2 illustrates state retrieval and progress
updates. Figure 2a shows the tree is updated to reect the current
execution state [1,0,0] (indexes of selected tuples in join order) for
the join order ' Z (Z) with Timestamp 2. Timestamp and tuple
index are updated for the node in the rst tree level, capturing
progress by all join orders starting with table '. Nodes representing
join orders with prex ' Z (and the full join order ' Z (Z)
are created successively (update steps from left to right). Figure 2b
illustrates execution state retrieval for join order ' Z) Z (. The
tuple indexes of the current state (shown on the bottom of the gure)
are retrieved in join order. Note that the tuple index retrieved for
the rst table, ', is due to the update from Figure 2a which refers to
a dierent join order with an overlapping prex. As the overlapping
prex only covers the rst table, join processing must start from
the rst tuple in the remaining tables. This information is captured
by the timestamps in the tree, indicating that tuple positions for)
and (refer to an older update and cannot be used.

The data structure described so far stores progress for a single
thread. If multiple threads process join orders in parallel on dierent
data partitions (as described in the next section), progress made
for the same join order may dier across threads. It is possible
to store one progress tree per thread. However, this means that
space consumption increases linearly in the number of threads
(and progress trees are stored in main memory). Instead, we opt to
store for each join order progress made by the slowest thread alone
(using relative tuple indexes, referring to each thread’s specic data
partition). This allows other threads to resume execution from the
stored state without skipping tuples. On the other hand, it means
faster thread may have to redo work. This tradeo seems acceptable:
if a join order allows some threads to advance signicantly faster
than others (e.g., due to data skew), it is not suitable for parallel
processing (as the slower threads will become the bottleneck).

908

UCT

Coordinator

Data
Threads

Join Order,
Split Table

Split Table

Figure 3: Worker threads execute a parallel multi-way join
algorithm, using join orders and split tables selected by the
coordinator.

4 DATA PARALLELISM
SkinnerMT supports adaptive, data-parallel (DP) query process-
ing. We discuss a parallel, multi-way join algorithm in Section 4.1.
Conceptually, this algorithm partitions tuple in a specic table (the
“split table”) between threads. The choice of a good split table is
critical for performance. In Section 4.2, we discuss a cost-based
approach to select split tables based on run time feedback.

4.1 Parallel Multi-Way Join
Binary join algorithms generate a sequence of intermediate results,
before producing the rst complete join result tuple. If temporarily
switching from a rst to a second join order, the intermediate re-
sults of the rst join order would have to be backed up (to avoid
redundant work when selecting the rst join order again). However,
this causes signicant cost in terms of space and materialization
time. Instead, SkinnerMT uses a multi-way join algorithm that is
optimized for quick join order switches. It aims at generating com-
plete join result tuples as quickly as possible, never keeping more
than one intermediate result tuple at the same time. Complete join
tuples are not specic to the join order anymore (unlike intermedi-
ate result tuples as the set of intermediate results generated depends
on the join order) and can therefore be saved without space penalty.
The only execution state that is specic to join orders is the index
of the currently selected tuple in each table. This state is stored in
the data structure introduced in the previous section.

To parallelize processing, SkinnerMT splits data in one specic
table across worker threads. Doing so does not require physical data
re-organization (which would be costly). Instead, choosing a split
table merely assigns tuple osets to dierent threads, determining
which subset of tuples they consider. The selection of the split table
has signicant impact on performance and is highly non-trivial. A
cost-based approach for split table selection is discussed in the next
subsection.

Algorithm 2 shows pseudo-code of the multi-way join algorithm.
Worker threads execute specic join orders with specic split tables
(both selected by the coordinator) for a xed time budget of B steps.
Execution is initiated by invoking the RJ function for one
specic thread. First, the thread consults the progress tracker to
restore the last known state for that order. Note that SkinnerMT
stores dierent progress trees for dierent split tables. Progress

Algorithm 2 Parallel multi-way join algorithm.
1: // Propose next tuple index in 8-th table of order 9 , given
2: // execution state 4 and split table B .
3: function N(4, 9, 8, B)
4: // Do we select tuples in split table?
5: if 98 = B then
6: return next matching tuple in thread scope s.t. index g.t. 4 98
7: else
8: return next matching tuple in table C with index g.t. 4 98
9: end if
10: end function

11: // Perform parallel multi-way join on query @ using order 9 with split
12: // table B for up to B steps, working with execution state 4 and focusing
13: // on 8-th table in join order.
14: procedure PMWJ(@, 9, B,', B, 4, 8)
15: // While budget left and join not nished
16: while B > 0 ^ 8  0 do
17: // Do tuples selected in rst 8 tables join?
18: if 4 91 Z . . . Z 4 98 satises join predicates then
19: if 8 = @.=A)01;4B then
20: // Insert join result tuple
21: ' ' [{A }
22: else
23: // Advance to next table
24: 8 8 + 1
25: end if
26: end if
27: // Advance to next tuple in current table
28: 4 98 N(4, 9, 8, B)
29: // No tuples left in current table?
30: if 4 98 = 1 then
31: // Backtrack to previous table
32: 8 8  1
33: end if
34: B B  1
35: end while
36: end procedure

37: // Resume join with order 9 and split table B for query @ for B steps,
38: // inserting result tuples into set ' and using progress trackers % .
39: procedure RJ(@, 9, B,', B,%)
40: // Select progress tracker for split table
41: ? % [B]
42: // Retrieve last execution state 4 for join order
43: R(?, 9, 4)
44: // Add join result tuples until budget runs out
45: PMWJ(@, 9, B,', B, 4, 0)
46: // Update progress tracker tree with last state
47: U(?, 9, 4)
48: end procedure

achieved using dierent split tables cannot be combined. Hence,
each split table is associated with a separate progress tracker. Next,
the thread executes the multi-way join for a limited time. Finally,
the resulting execution state is stored in the progress tree. Proce-
dure PMWJ represents the core of the parallel join algorithm.
During processing, this procedure manipulates four variables: 4
represents the execution state, indicating the index of the currently
selected in each joined table, 8 is the size of the join order prex for

909

which a valid tuple combination (i.e., a combination of tuples satis-
fying all join predicates) has been found, ' is the set of completed
join result tuples, and B is the remaining join budget. Iterations
continue until the join budget runs out or 8 reaches negative values
(this indicates that a complete join result has been generated). In
each iteration, the algorithm rst veries whether the currently
selected tuples for the current join prex (selected tuples in tables
one to 8 in join order 9 , denoted as 91 to 98) satisfy all predicates
(check in Line 18). If that is the case and the join “prex” covers
all tables (i.e., 8 = @.=A)01;4B) then a complete join result tuple is
found that is added to the result set '. If the currently selected tuple
combination is valid but does not cover all tables, the prex length
(8) is incremented by one.

For the 8-th table in join order (i.e., the end of the current join
prex), the algorithm advances to the next tuple by changing the
corresponding tuple index in the execution state (i.e., 4 98). Func-
tion N recommends the next tuple index to consider. In case
of equality join conditions, it uses previously generated indexes
to nd tuples that satisfy that join condition. It distinguishes the
split table from other tables. If suggesting tuples in the split table,
it selects the next tuple from the subset of tuples assigned to the
current thread (this subset is dened by a hash value). Otherwise, it
selects the next tuple from all tuples (with a tuple index larger than
the currently selected tuple to avoid considering the same tuple
combination twice).

Figure 3 illustrates parallel data processing in context. Worker
threads execute the parallel multi-way join algorithm in parallel,
using a join order and split table suggested by the coordinator. Pro-
cessing nishes once all threads nish processing (i.e., condition
8 < 0 is satised in Algorithm 2) with the same split table. The
join order is selected via reinforcement learning, using the UCT
algorithm described in Section 2. This algorithm is guided by a re-
ward function that it tries to maximize. Here, rewards represent the
quality of join orders. Reward samples are calculated after each in-
vocation of Procedure RJ, using the same reward function
as SkinnerDB [39]. The reward is the average of two components.
The rst component is the number of result tuples added to set
' during the invocation. As all join orders must ultimately gener-
ate the same result, join orders generating more results per time
unit are, in average, preferable. The second component is based
on the speed at which the counters in vector 4 (representing the
currently selected tuple for each table) change. Denoting by 4 and
40 the execution start before and after the invocation, we denote by
X8 = 4098  4 98 the number of tuples by which we advanced for the
8-th table in join order. Using 28 for the cardinality of the 8-th table in
join order,

Õ
18= X8/(

Œ
1:<8 2:) is the second component of the

reward function. This measure of progress does not depend on the
number of result tuples and is useful even for queries with empty
result. For any join order, its values sum up to one over the course
of the entire execution [39]. Hence, again, join orders with higher
average rewards execute faster. Note that both reward metrics may
vary across dierent invocations of the same join order (due to
non-homogeneous data, for instance). The UCT algorithm can han-
dle such variance and identies join orders with highest average
reward. The split table is selected using the process described next.

4.2 Selecting Split Tables
First, we illustrate by the following example why split table choices
matter for performance.

Example 4.1. Figures 4a to 4c illustrate processing of the same
query and join orderwith dierent split tables. The query joins three
tables, R, S, and T, via equality join conditions (connecting the only
table columns). In the example, three threads process the parallel
multi-way join algorithm discussed before. Dierent colors are
associated with dierent threads. First, dierent cell background
colors in the split table represent the scope of dierent threads.
Second, colored numbers represent processing steps of dierent
threads. More precisely, numbers represent the order in which
dierent tuples are selected by the N function in Algorithm 2.
For instance, in Figure 4a, the green thread starts by selecting
the rst tuple in the rst table (which is within its scope), then
switches to the next table where it selects the rst matching tuple
that satises the (binary equality) join condition. Next, it advances
to the last table in join order where it selects two matching tuples.
After that, no matching tuples are left in the last table, prompting
the thread to backtrack to the previous table (where it selects the
next matching tuple in step number ve).

Note that the number of total steps diers across threads. This
is due to the data not being completely uniform. In case of skew,
selecting the wrong split table may cause a single thread to become
the bottleneck. In the example, selecting table) (the second one in
join order) minimizes the maximal number of steps over all threads.
Hence, using this split table will be most ecient.

Up until the split table, all threads perform the same steps. This
could be avoided by generating intermediate results once, then
distributing the resulting tuples. However, as intermediate results
are join order specic and cause overheads, SkinnerMT deliberately
discards that option. This means that dierent threads perform
redundant work before reaching the split table. If data are perfectly
homogeneous, choosing the left-most table in join order therefore
leads to optimal results. However, in practice, choosing a dierent
table may improve performance due to skew.

Instead, we choose split tables according to the following model.
Let C(C) be the processing cost for a xed query when choos-
ing split table C . To nish query evaluation, each worker needs
to nish its result partition for the current split table. Hence, it is
C(C) = max: (C: (C)) where C: (C) denotes processing cost for the
:-th worker when splitting table C . Clearly, we want to minimize
maximal per-worker costs.

For each worker, we can estimate remaining processing costs
as follows. For a xed split table, a worker nishes once it has
advanced to the last tuple of the rst table in join order. Hence, we
can use the percentage of tuples covered in the rst table as a coarse-
grained measure of progress. By relating progress achieved so far
with the time that has passed, we obtain an estimate of remaining
processing costs. In a more ne-grained version, we also consider
the number of tuples covered in other tables. E.g., the percentage
of tuples covered in the second table in join order, scaled down by
the cardinality of the rst table (since it is specic to the currently
selected tuple in the rst table). We identify the slowest current
worker based on those estimates. To select a split table, we only
use statistics from that worker :⇤.

910

1
2
3

1
1
1

0
1
1
1
2
3

2
5
8
2
2

1
1
3
4
4

3 6 9
4 7 10

3

R T SZ Z

(a) Split table R

1
2
3

1 1 1
5 5 5
6 7 6

0
1
1
1
2
3

2
2
2
6
7

1
1
3
4
4

3 3 3
4 4 4
8

R T SZ Z

(b) Split table T

1
2
3

1 1 1
8 8 5
10 10 7

0
1
1
1
2
3

2 2 2
4 4 3
6 6 4
9 9 6
11 11 8

1
1
3
4
4

3 5 7
3 5 7
9

R T SZ Z

(c) Split table S

Figure 4: Example of split table choices: three threads execute the join order ' Z) Z (with dierent split tables.

The depth-rst join algorithm switches focus between dierent
tables (parameter 8 in Algorithm 2). We can decompose processing
costs as C:⇤ (C) =

Õ
8 C8

:⇤ (C) where C
8
:⇤ (C) denotes processing costs

associated with table 8 . The impact of split table choices on process-
ing costs depends on data properties. Assuming that no reliable
data statistics are available, this makes them hard to predict. We can
however derive upper and lower bounds. Denote by C:⇤ (C) lower
and by C:⇤ (C) upper bounds on processing costs when splitting C .
At the very least, splitting table C scales down work required for
that table by factor< (the number of workers). Hence, we obtain

C:⇤ (C) = CC/< +
’
8<C

C8 (1)

where C8 denotes cost associated with table 8 without splitting.
Threads perform work before the split table redundantly. Hence,
we cannot hope to reduce costs associated with prior tables in
join order. On the other side, assuming perfectly uniform data,
cost associated with tables following the split table will decrease
proportionally to the number of workers as well. Hence, we obtain

C:⇤ (C) =
’

8:A(8,C,:⇤)
(C8/<) +

’
8:¬A(8,C ,:⇤)

C8 (2)

as an optimistic cost bound, where A(8, C,:) is true if 8 = C or if
table 8 appears after table C in the join order executed by worker
: . When selecting a split table, we prioritize the optimistic bound
(Equation 2) and use the pessimistic bound (Equation 1) to break
draws. Each worker collects per-sample statistics about the number
of steps spent iterating over dierent tables.We use them to evaluate
the prior formulas.

5 PARALLEL SEARCH
SkinnerMT can exploit multi-threading to explore more join orders
in parallel. This can be helpful if good join orders are hard to nd.
Figure 5 illustrates the main idea. Each worker is assigned to a
search space partition. Instead of a single instance of the learning
optimizer, one instance is spawned for each partition. At any point
in time, each worker thread executes the most interesting join order,
according to reinforcement learning, in each search space partition.
The search space for join orders is represented as a tree by the
UCT algorithm. Tree nodes correspond to join order prexes. Edges
connect one prex to another, by selecting one more table. This
means that each search tree level is associated with a join order
prex length. Dierent nodes at each level correspond to dierent
join order prexes.

UCT

R S T

S T S R

T S R S
...

Search
Threads

Optimal
Plans

R Z S Z T

R Z T Z S

T Z S Z R

Figure 5: Dividing the search space: threads explore and ex-
ecute join orders in parallel in dierent parts of the search
space. Query evaluation ends once the rst thread nishes.

This search space can be naturally partitioned by xing a join
order prex. This means that dierent threads explore join orders
that dier by the rst few tables. In the simplest variant, we can
divide the space of join orders uniformly. This means that, approxi-
mately, each thread searches a space of the same size. Processing
terminates whenever the rst thread terminates. Unlike in the case
of data-parallel processing, threads do not consider dierent data
splits. Instead, each thread is generating a full join result.

The variant described above, called SP-U (for uniform partition-
ing) in the following, achieves some improvements via paralleliza-
tion, as shown in Section 8. It suers, however, from the following
problem. Typically, good join orders are not distributed uniformly
over dierent search space partitions. Instead, xing the rst few
tables often has a signicant impact on the average quality of the
associated join orders. In such scenarios, the benet of uniform
parallel search is limited. Most of the threads are working within
search space partitions that do not contain near-optimal join orders.

An improved version of the parallel search algorithm, SP-A,
starts with uniform search space partitioning. Then, it adaptively
changes the assignments from threads to search space partitions.
Assignments are based on reward statistics in the UCT search tree.
Ideally, the number of search threads per partition is proportional to
average rewards observed in that partition. During re-assignments,
SP-A successively divides threads into smaller and smaller groups
that are associated with longer and longer join order prexes (i.e.,
more and more ne-grained search space partitions). This process
ends once the number of threads becomes too small to cover all
possible expansions of a given join order prex. As re-assignments
create overheads, we increase the number of episodes between

911

Algorithm 3 Assigning threads to search space partitions.
1: // Recursively partition threads over child nodes of =.
2: procedure PT(=)
3: // Do we have multiple threads to partition?
4: if |=.C⌘A403B | > 1 then
5: // Collect unassigned threads
6: * =.C⌘A403B
7: // Assign threads to child nodes, proportional to reward
8: for 2 2 =.2⌘8;3A4= in decreasing order of average reward do
9: // Calculate desired number of threads
10: < d |=.C⌘A403B | · 2 .A/(Õ22=.2⌘8;3A4= 2 .A) e
11: // Are enough unassigned threads left?
12: if |* | >< then
13: 2 .C⌘A403B pick< threads from*
14: else if * < ; then
15: 2 .C⌘A403B pick max(|* |  1, 1) threads from*
16: else
17: 2 .C⌘A403B pick one thread from previous child
18: end if
19: * * \ 2 .C⌘A403B
20: end for
21: // Recursively partition threads for child nodes
22: for 2 2 =.2⌘8;3A4= do
23: PT(2)
24: end for
25: end if
26: end procedure

reassignments according to an exponential scheme, waiting for U8
episodes between the 8-th and 8  1-th reassignment.

Algorithm 3 shows the recursive function used regularly to parti-
tion the search space based on rewards. It updates the eld C⌘A403B ,
associated with each UCT tree (if a single thread is assigned to
the root of a sub-tree, the thread assignments within the sub-tree
will not be updated further). Initially, all threads are assigned to
the root node of the UCT tree. Then, Function PT
is invoked with the root node as parameter. In each invocation,
the function tries to partition threads over child nodes to cover
high-reward regions by more threads (eld 2 .A denotes average
reward of a node 2 , =.2⌘8;3A4= denotes the set of =’s child nodes).
The procedure ensures that every part of the search tree has at
least one thread assigned. It is recursive and partitions threads over
more and more ne-grained parts of the UCT search tree.

6 HYBRID PARALLELISM
We discuss a hybrid algorithm combining parallel search and ex-
ecution. Figure 6 illustrates the idea. We divide threads into two
groups: search threads and data threads. The primary task of search
threads is to explore the space of join orders. The primary task of
data threads is to execute promising join orders in parallel.

Search threads are assigned to non-overlapping parts of the
search space. They execute join orders to obtain performance es-
timates, then report those statistics back to the coordinator. The
coordinator analyzes statistics collected by the search threads to
identify the most promising join order overall (maximizing average
reward). The coordinator assigns that join order to data threads,
selecting a split table via the method discussed in Section 4.2. Pro-
cessing ends once either all of the data threads or one of the search

UCT

R S T

S T S R

T S R S
...

Coordinator

Search
Threads

Data
Threads

Rewards
Join Order,
Split Table

Figure 6: Hybrid algorithm: threads either explore search
space partitions or execute join orders in parallel. The coor-
dinator selects join orders and split tables for data threads,
based on performance statistics collected by search threads.

threads nishes join processing. The latter case is rare as search
threads do not use parallel processing.

In the simplest case (called “HP-F” in the following), the number
of search and data threads remains xed. Using more search threads
leads to similar performance tradeos, compared to parallel search.
Using more data threads has the opposite eect and approaches
the performance of data-parallel processing in the limit.

A second version, “HP-A”, gradually transitions from parallel
search to parallel execution over the course of query execution.
Intuitively, parallel execution is more useful after ecient join or-
ders are known. Initially, HP-A partitions the search space equally
among all search threads. In regular intervals, the algorithm se-
lects half of the search threads, associated with the search space
partitions with lowest average rewards, and re-assigns them for
parallel join order execution (executing join orders selected by other
search threads). This approach is similar, in spirit, to reinforcement
learning variants that periodically discard actions with sub-optimal
rewards (e.g., the sequential halving algorithm [20]). Ultimately,
join order search focuses on a single search space partition, ex-
plored by a single search thread. The other threads execute selected
join orders in parallel.

Algorithm 4 shows the associated pseudo-code. The algorithm
depends on a tuning parameter, W , determining how quickly the
rate of reassignments decreases. Initially, all threads are assigned as
search threads (Line 7). The main loop ends once one of two condi-
tions is satised: either one of the search threads terminates (B .C4A<
is the termination of search thread B) or all data-parallel threads
terminate for a specic split table (3 .C4A<(B) indicates whether data
thread 3 terminated for split table B). Iteratively, the coordinator re-
trieves the optimal join order found by the search threads (Line 12),
calculates the best split table via the approach from Section 4.2
(Line 13) and instructs the data threads to execute with the corre-
sponding join order and split table (while search thread continue
exploration in the background). Periodically, search threads associ-
ated with the search space partitions with lowest average reward
values are reassigned to become data threads (Lines 18 to 21).

7 ANALYSIS
At the start of execution, the UCT algorithm selects join orders with
uniform random distribution. Over time, it converges to optimal

912

Algorithm 4 Hybrid algorithm: coordinator assigns threads for
exploring join orders and executing promising orders in parallel.
1: // Search optimal join orders and execute query q in parallel and
2: // periodically assign threads) to search and execution tasks.
3: procedure HPC(@,))
4: // Initialize samples until next order assignment
5: 1 W
6: // Initialize search and data threads, assign partitions
7: () , ⇡ ;
8: // While join processing not nished
9: while (öC 2 @.C01;4B, 83 2 ⇡ : 3 .C4A< (C)) ^öB 2 (: B .C4A< do
10: // Iterate until budget runs out
11: for 1 iterations do
12: 9 best join order found by search threads (
13: B best split table for join order 9
14: Instruct data threads ⇡ to execute one episode with 9 and B
15: In parallel, search threads (continue exploration
16: end for
17: // Reassign search threads if required
18: if |(| > 1 then
19: ' pick half of search threads with lowest reward
20: ((\ '
21: ⇡ ⇡ ['
22: end if
23: // Increase time until next reassignment
24: 1 1 · W
25: end while
26: end procedure

(i.e., maximum reward) join orders [22]. To analyze the impact
of parallelization, we assume a simplifying model in which that
transition happens instantaneously. This divides query execution
into two phases: nding optimal orders via random exploration and
executing them. The rst phase ends once an optimal join order is
found (i.e., we simplify by assuming query execution does not end
with sub-optimal orders).

We denote by)(
⇠ (time for convergence) and)(

⇢ (time for execu-
tion) random variables modeling time needed, without paralleliza-
tion, for the rst and second phase respectively (for an arbitrary
but xed query in the following). Consistent with that model, we
assume that)(

⇠ follows an exponential distribution [5], modeling
time until a rare event occurs. The distribution is parameterized
by a parameter _, capturing the event rate. Here, we consider dis-
covering an optimal join order via random exploration a rare event
and set _ to the ratio of optimal join orders within the join order
space (i.e., _ = =⇤/= where =⇤ and = are the number of optimal and
all join orders respectively). Due to the general properties of the
exponential distribution, the expected value of)(

⇠ is therefore 1/_
and its variance 1/_2. We assume that)(

⇢ follows a normal distribu-
tion (a common assumption in the domain of non-adaptive query
execution time prediction [15, 47]) with mean ` and variance f2.
For analyzing variance, we assume that)(

⇠ and)(
⇢ are independent

random variables (as the time required for nding a join order does
not directly relate to its execution time).

Next, we analyze how parallelization via dierent strategies,
namely SP-U (parallel searchwith uniform partitioning), DP-L (data-
parallel execution splitting left table in join order), and HP-F (hybrid
parallelism with a xed number of search and parallel processing

threads), inuences expected time (E) and variance (V). We denote
the number of worker threads by <. We simplify by neglecting
inter-thread synchronization overheads (which are shown to be
moderate in Section 8).

T 7.1. SP-U has expected time E()(
⇠)/< + E()(

⇢) and
variance V()(

⇠)/<
2 + V()(

⇢).

P. Weuniformly partition the search space across< threads.
Denote by _1 to _< the ratio of optimal join orders in the corre-
sponding search space partition. It is _ =

Õ
8 _8/< (the average ratio

over all equal-sized partitions equals the ratio in the entire search
space). Threads proceed independently and execution nishes once
any thread discovers an optimal order and nishes its execution.
Variable)⇠8 for 1  8  < models time until thread 8 nds an
optimal join order. It follows an exponential distribution with pa-
rameter _8 . Then,)%

⇠ = min18< ()⇠8) models time until the rst
thread nds an optimal join order. The minimum of independent,
exponentially distributed random variables follows an exponential
distribution as well [6]. More precisely,)%

⇠ follows an exponential
distribution with parameter

Õ
8 _8 = _ ·<. The expected time be-

fore convergence is therefore E()%
⇠) = 1/(_ ·<) = E()(

⇠)/<, the
variance V()%

⇢) = 1/(_ ·<)2 = V()%
⇢)/<2. As dierent threads

execute joins independently, parallel execution time)%
⇢ follows the

same distribution as)(
⇢ . It is E()

%
⇠ +)%

⇢) = E()%
⇠) + E()%

⇢) and
V()%

⇠ +)%
⇢) = V()%

⇠) + V()%
⇢) as)%

⇠ and)%
⇢ are independent. ⇤

For the next theorems, we assume that data is skew-free.

D 1. A database is skew-free with regards to the join
'1 Z . . .'= if replacing relation '1 by a subset '(of rows with
cardinality ratio |'(|/|'1 | = A scales down the sizes of all intermediate
results proportionally (e.g., |'(Z '2 |/|'1 Z '2 | = A and |'(Z '2 Z
'3 |/|'1 Z '2 Z '3 | = A).

We assume that processing time per thread is proportional to
the total number of intermediate result rows it processes. This is
consistent with the denition of the cost budget in Algorithm 2
(reducing the budget by one whenever the next intermediate result
tuple is selected) and the classical ⇠>DC cost metric [10].

T 7.2. DP-L has expected time E()(
⇠) + E()

(
⇢)/< and

variance V()(
⇠) + V()

(
⇢)/<

2.

P. DP-L does not explore more join orders in parallel, com-
pared to the sequential algorithm. Hence, convergence time does
not change. On the other side, DP-L executes join orders in parallel
on dierent data subsets. While executing an optimal order, DP-L
selects the left-most table as split table. Hence, the tuples in the
left-most table are equally partitioned across threads. For skew-free
data, this means that the sizes of all intermediate results are parti-
tioned equally (i.e., scaled down by factor<) as well. We assume
that execution cost depends on the number of tuples, therefore
parallel execution time is)%

⇢ =)(
⇢ /<. Hence, E()%

⇢) = E()(
⇢)/<

and V()%
⇢) = V()(

⇢)/<
2. Expected values and variance of)%

⇠ and
)%
⇢ can be added since we assume independence. ⇤

For the analysis of HP-F, <(denotes the number of search
threads and<⇡ the number of data-parallel processing threads.

913

T 7.3. HP-F has expected time E()(
⇠)/<(+ E()(

⇢)/<⇡

and variance V()(
⇠)/<

2
(+ V()(

⇢)/<
2
⇡ .

P. We combine reasoning from prior theorems. As HP-F
explores<(join orders in parallel, it shortens expected convergence
time and the associated variance. As it executes the optimal order
using<⇡ threads in parallel, it shortens expected time and reduces
variance in the second (execution) phase as well. ⇤

Based on those results, we expect SP to perform better, compared
to DP, on queries where sequential execution time is dominated
by time for nding optimal join orders ()⇠). On the other side, DP
should perform better on queries where sequential execution time is
dominated by the time for executing join orders ()⇢), not searching
them. HP combines aspects from both algorithms and we expect
it to perform well with both types of queries. We present further
analysis in our extended technical report.

8 EXPERIMENTAL EVALUATION
We describe the experimental setup in Section 8.1. In Section 8.2,
we analyze performance of dierent parallelization strategies in
SkinnerMT’s join phase. In Section 8.3, we compare SkinnerMT
against other database systems and adaptive processing baselines.
We include the detailed results in an extended technical report [44].

8.1 Experimental Setup
We evaluate on three benchmarks: the TPC-H benchmark [37], the
join order benchmark (JOB) [14], and JCC-H [8]. Those benchmarks
cover dierent degrees of challenge for traditional query optimizers,
ranging from TPC-H (easy optimization due to uniform data), over
JOB (moderately dicult optimization due to slightly skewed data),
up to JCC-H (hard due to highly skewed data). We omit three
TPC-H and JCC-H queries, Q13, Q15, and Q22, from the following
comparisons as they are currently not supported by SkinnerMT
(lack of support for outer joins, views, and substring functions). We
use scaling factor of 10 for TPC-H and JCC-H. SkinnerMT is a fork
of the original SkinnerDB system1 which does not parallelize the
join phase.

For performance, we compare algorithms in terms of per-query
and per-benchmark run time (average of ten runs with one warmup
run), reporting 95% condence bounds. We calculate speedups by
the ratio of sequential to parallel join phase time for each perfor-
mance metric. We measure robustness via the T-Ratio: the ratio
of maximal to minimal run time over ten runs. I.e., if ') with
|') | = 10 is the set of run times for a specic query, the T-ratio is
max('))/min(')). For each benchmark, we report the arithmetic
average of T-ratios over all queries. We use a join budget of B = 500
steps per time slice, set U and W to 10. We use a reward function that
combines input and output reward with weights 0.5 respectively.
All experiments were conducted on a 24-core server (two 2.30 GHz
12-core Intel(R) Xeon(R) Gold 5118 CPUs) running Ubuntu 20.04.4
LTS and the OpenJDK 64-Bit Server JVM 15.0.2. The total DRAM
size is 252 GB. In order to reduce garbage collection (GC) overheads,
we use Epsilon GC [30] with the maximum heap space of 200 GB
for performance testing.

1https://github.com/cornelldbgroup/skinnerdb

5
10
15

Sp
ee
du

p

JOB TPC-H JCC-H

10 20
2
4
6
8

Nr. Threads

T-
Ra

tio

10 20
Nr. Threads

10 20
Nr. Threads

SP DP HP

Figure 7: Time speedups and T-ratios for dierent strategies.

8.2 Evaluating SkinnerMT
We compare variants for dierent parallel strategies on the join
order benchmark. For SP, we compare the uniform (SP-U) and adap-
tive (SP-A) search space partitions described in Section 5. SP-A is
faster than SP-U by factor 1.17X for four threads and by factor 1.05X
for 24 threads. Also, SP-A reduces T-ratio, compared to SP-U, by
factor 1.59X for four threads and factor 1.08X for 24 threads. This
means that redirecting more search threads to promising search
space partitions reduces time and variance. For DP, we vary the
split table selection policy. We compare our main variant (DP-C)
against selecting the left-most table (DP-L) and selecting the largest
table (DP-M). Cost-based splitting leads to optimal performance for
any number of threads, achieving up to 2.3X speedup over DP-L
and 1.4X speedup over DP-M. The space-ecient progress tracker
presented in Section 3 reduces space consumption from 2.3 to 4.3
times, compared to the original SkinnerDB progress tracker. Finally,
we compare HP-A to a simplied variant, HP-F, that xes the num-
ber of search threads (while using the remaining threads for data
processing). HP-A achieves speedups between factor 1.4X (minimal
number of search threads) and 3.5X (maximal number of search
threads) over HP-F and achieves comparable (worse by at most
20%) or better T-ratios. This means that adapting the distribution of
threads over tasks (search versus execution) is preferable. Parallel
search helps initially but becomes useless once optimal join orders
are found. The extended report (Figures 12 to 15) provides details.

We perform a parameter sensitivity analysis. We vary the cost
budget B per episode, SP’s U parameter, inuencing the frequency
of search space reassignments, and HP’s W parameter, inuencing
the speed at which search threads are converted into data processing
threads. Varying B between 50 and 5,000, and U and W between ve
and 100 lead to run time variations of at most 49% and variations
in T-ratio of at most 47% (considering all benchmarks, parameters,
and values). Figure 21 in the technical report contains details.

Figure 7 compares the best variant of each proposed algorithm
for all three benchmarks. Generally, increasing the degree of par-
allelism leads to speedups for DP and HP. For SP, only a limited
number of threads can be exploited eciently. In terms of robust-
ness, SP reduces per-query run time variance to at most factor two

914

https://github.com/cornelldbgroup/skinnerdb

100

101

Sp
ee
du

p

SP DP HP

0 1 2100

101

Seq Entropy

T-
Ra

tio

0 1 2
Seq Entropy

0 1 2
Seq Entropy

Figure 8: Time speedups and T-ratios as a function of join
order selection entropy for JOB.

Table 1: Relative performance of DP and HP, compared to SP,
broken down by sequential entropy.

Method S-Low S-High R-Low R-High

⇡%/(% 2.92 1.76 2.17 3.14

%/(% 2.21 1.91 1.68 1.53

over all queries. DP andHP achieve similar speedups onmost bench-
marks while HP reduces variance. On JOB, the benchmark with the
largest join order space, HP improves speedups, compared to DP,
as well. As HP is overall preferable, it is used for the end-to-end
comparison with other systems in the next subsection.

We perform additional experiments to analyze the source of
performance improvements. We hypothesize that speedups are due
to a reduction in the number of episodes (rather than a reduction in
the time per episode). We nd a strong Pearson correlation between
time and the number of episodes for all benchmarks indeed with '2
values of at least 0.92 and p-values of at most 0.01. This is consistent
with SkinnerMT’s reward model, rewarding join orders with more
progress per episode while keeping the cost budget per episode
constant. We hypothesize that reductions in T-ratio are due to more
stable join order selections (rather than a reduction in processing
time variance per order). We quantify “instability” via the entropy
of join order selections. I.e., for a given query, we record the last
selected join order for ten runs, then calculate the entropy of the
associated probability distribution. A high entropymeans less stable
join order choices (i.e., no convergence). Indeed, T-ratio shows a
signicant Pearson correlation with entropy, achieving '2 values of
0.87 (JOB), 0.79 (TPC-H), and 0.36 (JCC-H) with p-values below 0.01
respectively. Table 2 in the technical report provides more details.

Next, we analyze how query properties inuence performance
gains by dierent parallelization methods. Our formal analysis from
Section 7 suggests relative performance gains of SP over DP, the
longer convergence takes without parallelization. We apply the
same entropy measure as before to the queries of the join order
benchmark, executed sequentially (via SkinnerDB). Here, we use
entropy as a proxy for the degree of convergence. As entropy is max-
imal for a uniform distribution and minimal once a single join order
is selected with probability one, we expect advantages of SP for

high-entropy queries. Figure 8 reports results for each algorithm.
Each dot represents one query from the join order benchmark,
sorted by sequential entropy on the x-axis. In particular DP, the
only algorithm not using parallel search, shows decreasing perfor-
mance (i.e., lower speedups and higher T-ratio) as entropy increases.
Table 1 reports average results for queries with high (i.e., above
average) and low entropy for speedups (S) and T-ratios (R). The
table reports relative results, scaling performance results of DP and
HP to the corresponding number of SP. Clearly, relative to SP, the
performance of DP worsens with increasing entropy, according to
both metrics. HP is more robust to queries where join order search
is dicult. This is expected as it uses parallel search as well.

Finally, we quantify synchronization overheads by executing a
xed number of episodes with dierent threads in parallel or se-
quentially for each of the three parallelization methods. Comparing
average execution time per thread in the parallel to the sequential
scenario, overheads increase from 8% for four threads to 60% for
24 threads. We consider these results reasonable for a research pro-
totype implementation. Figure 20 in the technical report contains
full details.

8.3 Comparison to Other Systems
Figure 9 compares SkinnerMT to HP, Postgres [32] (version 12.11),
MonetDB [9] (DB Server 4 v11.43.13), and SkinnerDB. We use a
timeout of 300 seconds per benchmark and baseline.

MonetDB performs best on the TPC-H benchmark. Here, cardi-
nality estimation is easy due to uniform data. Adaptive processing
leads to overheads that do not pay o in this scenario. For JOB, Mon-
etDB and SkinnerMT are similarly fast. Finally, SkinnerMT is the
best approach for the JCC-H benchmark where query optimization
is hard due to skewed data (the baselines hit our per-benchmark
timeout). SkinnerMT clearly benets from parallelization, achiev-
ing comparable speedups to MonetDB (except for JCC-H where
MonetDB reaches the timeout).

Figure 10 compares plans generated by dierent optimizer base-
lines in the Postgres database system. We compare plans generated
by the original Postgres optimizer to join orders selected by Skin-
nerMT (executing queries in SkinnerMT and forcing the Postgres
optimizer to execute the orders SkinnerMT converges to, setting
join_collapse_limit to one) and to plans selected by an adaptive pro-
cessing baseline, AQO [19], as well as BAO [25], another optimizer
based on reinforcement learning. Unlike SkinnerMT, both BAO and
AQO learn from prior queries. Hence, for those baselines and for
each benchmark, we measure execution time after ten training runs.
As the order of queries may matter for BAO’s training phase, we
experiment with the original query order (BAO) as well as with the
inverse order (BAO-I), and randomly selected query orders (BAO-R).
Figure 10 reports total benchmark run time and the number of time-
outs (using a timeout of 60 seconds per query). BAO can perform
better than SkinnerMT on JOB but its performance depends on the
query order. It improves performance over the default optimizer on
JCC-H whereas SkinnerMT performs best for JCC-H and TPC-H
overall (e.g., it achieves signicant improvements over the Postgres
optimizer plan for TPC-H Query 2). BAO does not directly optimize
join order but inuences the Postgres optimizer by setting ags,
e.g. enabling or disabling specic join operators. By selecting join

915

101

102

Ti
m
e
(s
)

JOB TPC-H JCC-H

0 10 20
0
2
4
6
8

Nr. Threads

Sp
ee
du

p

0 10 20
Nr. Threads

0 10 20
Nr. Threads

SkinnerMT Postgres MonetDB SkinnerDB

Figure 9: End-to-end performance of dierent systems.

0

200

400

Ti
m
e
(s
)

JOB TPC-H JCC-H
0

2

4

N
r.
Ti
m
eo
ut
s

BAO BAO-I BAO-R AQO SkinnerMT PSQL

Figure 10: Performance of dierent query plans in Postgres.

orders directly, SkinnerMT is able to inuence optimization in a
more ne-grained manner. AQO achieves slight performance im-
provements over default plans on JOB but is otherwise dominated
by the other baselines.

The discussion of robustness has so far focused onmitigating per-
formance variance, caused by adaptive plan selection. Traditional
systems which select and execute a single query plan do not suer
from this variance. However, a well documented problem with such
approaches are drastic performance changes, caused by dierent
plan selections when applying small changes to queries. In the ex-
treme case, those changes do not even change the query semantics.
In a nal experiment, we rewrite JOB queries by duplicating unary
predicates. This does not change the query semantics but impacts
selectivity estimates by the optimizer. SkinnerMT relies on run time
feedback alone to select join orders. It is therefore insensitive to
the way in which a query is written. MonetDB, however, shows
signicant variations in processing performance. Figure 11 com-
pares the two systems (each dot represents one query, calculating
the maximal time ratio over ten runs).

9 RELATEDWORK
SkinnerMT is based on SkinnerDB [39] and uses the same rein-
forcement learning approach to select join orders. Our focus in this
paper is parallelization. SkinnerDB processes joins sequentially, se-
verely limiting its performance as we show in the experiments. We

103 102 101 100
100
101
102

Query Time (s)

Ra
tio

MonetDB
SkinnerMT

Figure 11: Performance robustness for JOB queries with re-
gards to semantically equivalent query rewritings.

propose various algorithms to exploit parallelism for adaptive pro-
cessing, covering the full spectrum from parallel join order search
to parallel execution, along with formal and experimental analysis.
Along with those algorithms, we solve several technical problems
that arise specically in the context of parallel processing. First,
to avoid memory bottlenecks when trying many join orders in
parallel, we propose a space-ecient data structure storing execu-
tion states for join orders. Second, we describe a parallel version
of SkinnerDB’s multi-way join algorithm to enable data-parallel
processing. Third, we propose a cost-based optimization approach
for adaptive data partitioning, based on run time feedback. Our
work is complementary to other research on using learning for
query optimization [21, 23, 26, 27, 31, 36, 45]. Prior work imple-
ments inter-query learning: knowledge gained from past queries
is applied to optimize future queries. As opposed to our approach,
this requires representative training workloads. We experimen-
tally compare against one representative [27]. Traditional [34] and
re-optimization [4, 7, 46] require initial data statistics.

Our work connects to prior work on parallel query execution [1,
12]. Unlike SkinnerMT, prior work on parallel query execution
does not typically consider the possibility to execute multiple join
orders concurrently. Our cost-based partitioning strategy relates
to prior work on optimal data partitioning [18, 35]. However, our
partitioning decisions are based on statistics (i.e., the frequency at
which dierent tables are visited) that are specic to multi-way
joins. Such statistics are not considered for data partitioning in
prior work as it focuses on traditional, binary join operators.

Our work relates to prior work on adaptive query processing
strategies for data streams [2, 11, 40, 42]. However, prior work in this
domain has not systematically considered possibilities to trade data
parallelism for search parallelism which is the focus in this paper.
Doing so helps to reduce convergence time and variance (which
may be less interesting for long-running queries on data streams).
Prior work on parallelizing query optimization [16, 17, 38, 43, 48]
assumes that optimization operates on an intermediate result lattice.
Instead, SkinnerMT operates on a partial UCT search tree. Our work
is complementary to other work using specialized multi-way join
algorithms for dierent purposes than fast join order switching
(e.g., fast approximation [13, 24] or worst-case guarantees [29, 41]).

10 CONCLUSION
SkinnerMT exploits parallelism for adaptive processing. We pre-
sented dierent parallelization strategies, ranging from parallel
search to parallel execution. In our experiments, SkinnerMT com-
pares favorably against various baselines.

916

REFERENCES
[1] MC Albutiu, Alfons Kemper, and T Neumann. 2012. Massively parallel sort-

merge joins in main memory multi-core database systems. VLDB 5, 10 (2012),
1064–1075. http://dl.acm.org/citation.cfm?id=2336678

[2] Ron Avnur and Jm Hellerstein. 2000. Eddies: continuously adaptive query pro-
cessing. In SIGMOD. 261–272. https://doi.org/10.1145/342009.335420

[3] Shivnath Babu. 2005. Adaptive query processing in the looking glass. In CIDR.
238 – 249. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.3279

[4] Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive re-optimization.
In SIGMOD. 107–118. https://doi.org/10.1145/1066157.1066171

[5] K. Balakrishnan. 2019. Exponential distribution: theory, methods and applications.
[6] Markus Bibinger. 2013. Notes on the sum and maximum of independent expo-

nentially distributed random variables with dierent scale parameters. (2013),
1–9. arXiv:1307.3945 http://arxiv.org/abs/1307.3945

[7] P. Bizarro, N. Bruno, and D.J. DeWitt. 2009. Progressive parametric query opti-
mization. KDE 21, 4 (2009), 582–594. https://doi.org/10.1109/TKDE.2008.160

[8] Peter Boncz, Angelos Christos Anatiotis, and Steen Kläbe. 2018. JCC-H: Adding
join crossing correlations with skew to TPC-H. LNCS 10661 (2018), 103–119.
https://doi.org/10.1007/978-3-319-72401-0_8

[9] P.A. Boncz, Kersten M.L., and Stefacn Mangegold. 2008. Breaking the memory
wall in MonetDB. CACM 51, 12 (2008), 77–85.

[10] Sophie Cluet and Guido Moerkotte. 1995. On the complexity of generating
optimal left-deep processing trees with cross products. In ICDT. 54–67. http:
//link.springer.com/chapter/10.1007/3-540-58907-4_6

[11] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2006. Adaptive Query
Processing. Foundations and Trends® in 1, 1 (2006), 1–140. https://doi.org/10.
1561/1900000001

[12] David J Dewitt, Donovan Schneider, and Rick Rasmussen. 1990. The Gamma
database machine project. KDE 2, 1 (1990), 44–62.

[13] Alin Dobra, Chris Jermaine, Florin Rusu, and Fei Xu. 2009. Turbo-Charging
Estimate Convergence in DBO. PVLDB 2, 1 (2009), 419–430.

[14] Andrey Gubichev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015.
How good are query optimizers, really? PVLDB 9, 3 (2015), 204–215.

[15] Chetan Gupta, Abhay Mehta, and Umeshwar Dayal. 2008. PQR: Predicting
query execution times for autonomous workload management. 5th International
Conference on Autonomic Computing, ICAC 2008 (2008), 13–22. https://doi.org/
10.1109/ICAC.2008.12

[16] Wook-Shin Han, Wooseong Kwak, Jinsoo Lee, GuyM. Lohman, and Volker Markl.
2008. Parallelizing query optimization. In VLDB. 188–200. https://doi.org/10.
14778/1453856.1453882

[17] Wook-Shin Han and Jinsoo Lee. 2009. Dependency-aware reordering for par-
allelizing query optimization in multi-core CPUs. In SIGMOD. 45–58. https:
//doi.org/10.1145/1559845.1559853

[18] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Partition-
ing Advisor for Cloud Databases. In SIGMOD. 143–157. https://doi.org/10.1145/
3318464.3389704

[19] Oleg Ivanov and Sergey Bartunov. 2017. Adaptive cardinality estimation. arXiv
preprint arXiv:1711.08330 (2017).

[20] Zohar Karnin, Tomer Koren, and Oren Somekh. 2013. Almost optimal exploration
in multi-armed bandits. In International Conference on Machine Learning. PMLR,
1238–1246.

[21] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: estimating correlated joins with
deep learning. In CIDR. 1–8. arXiv:1809.00677 http://arxiv.org/abs/1809.00677

[22] Levente Kocsis and C Szepesvári. 2006. Bandit based monte-carlo planning. In
European Conf. on Machine Learning. 282–293. http://www.springerlink.com/
index/D232253353517276.pdf

[23] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2020. Learning to optimize join queries with deep reinforcement learning.
In aiDM. 1–6. arXiv:1808.03196 http://arxiv.org/abs/1808.03196

[24] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggrega-
tion via Random Walks. SIGMOD 46, 1 (2016), 615–629. https://doi.org/10.1145/
2882903.2915235

[25] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2022. Bao: Making learned query optimization practical.
ACM SIGMOD Record 51, 1 (2022), 6–13.

[26] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for
join order enumeration. In aiDM. 3. arXiv:arXiv:1803.00055v2

[27] Tim Marcus, Ryan and Negi, Parimarjan and Mao, Hongzi and Tatbul, Nesime
and Alizadeh, Mohammad and Kraska. 2022. Bao: Making Learned Query Opti-
mization Practical. In ACM SIGMOD Record, Vol. 51. 5. https://doi.org/10.1145/
3542700.3542702

[28] Prashanth Menon, Amadou Ngom, Lin Ma, Todd C. Mowry, and Andrew Pavlo.
2020. Permutable compiled queries: Dynamically adapting compiled queries
without recompiling. Proceedings of the VLDB Endowment 14, 2 (2020), 101–113.
https://doi.org/10.14778/3425879.3425882

[29] Hung Q Ngo and Christopher Ré. 2014. Beyond Worst-case Analysis for Joins
with Minesweeper. In PODS. 234–245.

[30] OpenJDK. 2022. JEP 318: Epsilon: A no-op garbage collector (Experimental).
https://openjdk.java.net/jeps/318 Accessed: 2022-08-30.

[31] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2018. Learning State Representations for Query Optimization with Deep Rein-
forcement Learning. In DEEM. arXiv:1803.08604 http://arxiv.org/abs/1803.08604

[32] PostgreSQL. 2022. Group, The PostgreSQL Global Development. https://www.
postgresql.org. Accessed: 2022-08-30.

[33] Vijayshankar Raman Vijayshankar Raman, A. Deshpande, and J.M. Hellerstein.
2003. Using state modules for adaptive query processing. In ICDE. 353–364.
https://doi.org/10.1109/ICDE.2003.1260805

[34] PG G Selinger, MM M Astrahan, D D Chamberlin, R A Lorie, and T G Price. 1979.
Access path selection in a relational database management system. In SIGMOD.
23–34. http://dl.acm.org/citation.cfm?id=582095.582099

[35] Marco Serani, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: Fine-Grained Adaptive Partitioning for
General Database Schemas. Vldb 10, 4 (2016), 445–456. https://doi.org/10.14778/
3025111.3025125

[36] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In PVLDB. 19–28.

[37] TPC. 2013. TPC-H Benchmark. http://www.tpc.org/tpch/
[38] Immanuel Trummer and Christoph Koch. 2016. Parallelizing query optimization

on shared-nothing architectures. In VLDB. 660–671.
[39] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan

Jo, and Joseph Antonakakis. 2019. SkinnerDB: regret-bounded query evaluation
via reinforcement learning. In SIGMOD. 1039–1050.

[40] Kostas Tzoumas, Timos Sellis, and Christian S Jensen. 2008. A reinforcement
learning approach for adaptive query processing. Technical Report.

[41] Todd L. Veldhuizen. 2012. Leapfrog Triejoin: a worst-case optimal join algorithm.
(2012), 96–106. https://doi.org/10.5441/002/icdt.2014.13 arXiv:1210.0481

[42] Stratis D Viglas, Jerey F Naughton, and Josef Burger. 2003. Maximizing the
output rate of multi-way join queries over streaming information sources. In
PVLDB. 285–296. http://dl.acm.org/citation.cfm?id=1315451.1315477

[43] Florian M. Waas and Joseph M. Hellerstein. 2009. Parallelizing extensible query
optimizers. In SIGMOD. 871–882. https://doi.org/10.1145/1559845.1559938

[44] Ziyun Wei and Immanuel Trummer. 2022. SkinnerMT: Parallelizing for Eciency
and Robustness in Adaptive Query Processing on Multicore Platforms. Technical Re-
port. https://github.com/cornelldbgroup/skinnerdb/blob/skinnermt/skinnermt.
pdf

[45] Lucas Woltmann, Claudio Hartmann, Maik Thiele, and Dirk Habich. 2019. Car-
dinality estimation with local deep learning models. In aiDM. 1–8.

[46] Wentao Wu, Jerey F. Naughton, and Harneet Singh. 2016. Sampling-based
query re-optimization. In SIGMOD. 1721–1736. arXiv:1601.05748 http://arxiv.
org/abs/1601.05748

[47] Wentao Wu, Xi Wu, Hakan Hacigümüş, and Jerey F. Naughton. 2014. Un-
certainty aware query execution time prediction. Proceedings of the VLDB En-
dowment 7, 14 (2014), 1857–1868. https://doi.org/10.14778/2733085.2733092
arXiv:1408.6589

[48] Wanli Zuo, Yongheng Chen, Fengling He, and Kerui Chen. 2011. Optimization
strategy of top-down join enumeration on modern multi-core CPUs. Journal of
Computers 6, 10 (oct 2011), 2004–2012. https://doi.org/10.4304/jcp.6.10.2004-2012

917

http://dl.acm.org/citation.cfm?id=2336678
https://doi.org/10.1145/342009.335420
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.3279
https://doi.org/10.1145/1066157.1066171
https://arxiv.org/abs/1307.3945
http://arxiv.org/abs/1307.3945
https://doi.org/10.1109/TKDE.2008.160
https://doi.org/10.1007/978-3-319-72401-0_8
http://link.springer.com/chapter/10.1007/3-540-58907-4_6
http://link.springer.com/chapter/10.1007/3-540-58907-4_6
https://doi.org/10.1561/1900000001
https://doi.org/10.1561/1900000001
https://doi.org/10.1109/ICAC.2008.12
https://doi.org/10.1109/ICAC.2008.12
https://doi.org/10.14778/1453856.1453882
https://doi.org/10.14778/1453856.1453882
https://doi.org/10.1145/1559845.1559853
https://doi.org/10.1145/1559845.1559853
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3318464.3389704
https://arxiv.org/abs/1809.00677
http://arxiv.org/abs/1809.00677
http://www.springerlink.com/index/D232253353517276.pdf
http://www.springerlink.com/index/D232253353517276.pdf
https://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1145/2882903.2915235
https://arxiv.org/abs/arXiv:1803.00055v2
https://doi.org/10.1145/3542700.3542702
https://doi.org/10.1145/3542700.3542702
https://doi.org/10.14778/3425879.3425882
https://openjdk.java.net/jeps/318
https://arxiv.org/abs/1803.08604
http://arxiv.org/abs/1803.08604
https://www.postgresql.org
https://www.postgresql.org
https://doi.org/10.1109/ICDE.2003.1260805
http://dl.acm.org/citation.cfm?id=582095.582099
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.14778/3025111.3025125
http://www.tpc.org/tpch/
https://doi.org/10.5441/002/icdt.2014.13
https://arxiv.org/abs/1210.0481
http://dl.acm.org/citation.cfm?id=1315451.1315477
https://doi.org/10.1145/1559845.1559938
https://github.com/cornelldbgroup/skinnerdb/blob/skinnermt/skinnermt.pdf
https://github.com/cornelldbgroup/skinnerdb/blob/skinnermt/skinnermt.pdf
https://arxiv.org/abs/1601.05748
http://arxiv.org/abs/1601.05748
http://arxiv.org/abs/1601.05748
https://doi.org/10.14778/2733085.2733092
https://arxiv.org/abs/1408.6589
https://doi.org/10.4304/jcp.6.10.2004-2012

	Abstract
	1 Introduction
	2 System Overview
	3 Tracking Progress
	4 Data Parallelism
	4.1 Parallel Multi-Way Join
	4.2 Selecting Split Tables

	5 Parallel Search
	6 Hybrid Parallelism
	7 Analysis
	8 Experimental Evaluation
	8.1 Experimental Setup
	8.2 Evaluating SkinnerMT
	8.3 Comparison to Other Systems

	9 Related Work
	10 Conclusion
	References
	A Additional Experiments
	A.1 Join Performance
	A.2 Performance Analysis

	B Analysis and Proofs
	B.1 Space Complexity

