
Making Cache Monotonic and Consistent
Shuai An

University of Edinburgh
shuai.an@ed.ac.uk

Yang Cao
University of Edinburgh

yang.cao@ed.ac.uk

ABSTRACT
We propose monotonic consistent caching (MCC), a cache scheme
for applications that demand consistency and monotonicity. MCC
warrants that a transaction-like request always sees a consistent
view of the backend database and observed writes over the cache
will not be lost. We show that the complexity of MCC ranges from
Ptime to Np-Complete. We characterize MCC via a notion of ob-
solete items, based on which we abstract a principle for designing
competitive MCC policies. By applying the principle, we develop
an optimal MCC policy for the batch model, where requests in a
batch are known in advance. For the online and semi-online models,
we develop ML-augmented policies that benefit from blackbox ML
models for classifying obsolete items, while being provably compet-
itive even if the ML is arbitrarily bad. Using benchmark and real-life
traces, we show that MCC policies reduce 39.09% of database reads
for Redis atop HBase and improve their throughput by 77.15%.

PVLDB Reference Format:
Shuai An and Yang Cao. Making Cache Monotonic and Consistent. PVLDB,
16(4): 891 - 904, 2022.
doi:10.14778/3574245.3574271

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/jiayouanan/mccache.

1 INTRODUCTION
It has been a common practice to augment databases with external
data caches, e.g.,Memcached [7] and Redis [8], to support data inten-
sive Web applications [21, 60, 62, 63, 75]. By redirecting data access
requests away from the database, data caches can reduce the load
on the backend database, improving the overall system throughput.

Example 1: Consider a social media application in Fig. 1, where
Alice successively accesses Bob’s profile via read requests 𝑅1, 𝑅3
and 𝑅4, during which Bob modifies his profile via write𝑊2, between
𝑅1 and 𝑅3. Initially Bob’s profile in the database 𝐷 is (name:Bob,
region:US, phone:111, address:California). The application server
𝑀 uses a Redis cache C with “infinitely” large space and is initially
empty; following look-aside caching [41, 60, 66],𝑀 bridges𝐷 and C.

Upon 𝑅1, the application server 𝑀 makes C fetch and cache
name:Bob, region:US, address:California from the database 𝐷 . It
then receives a cache invalidation message for𝑊2, e.g., ban [3],
which notifies that the cached region and address are stale. Follow-
ing the lazy eviction strategy [8] in Redis or the ban protocol, C still

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574271

Cache C (e.g., Redis)Database D

AliceBob

1 { }R  name,region,address

Invalidation
(e.g., Ban)

2 { : UK,
: 222,

: London}

W  region
phone
address

get/write
4 { }R  name,region,address
3 { }R  name,region,phone

get/set/delete Application Server
M

Figure 1: Application-level data caching in Example 1

keeps them as it is not running out of space. Then name and region
of 𝑅3 are both cache hits while phone is a miss. Hence 𝑀 fetches
phone:222 from 𝐷 for 𝑅3 and caches it in C. This seems to have
made 𝑅3 a cache hit as each requested item is a hit in C. It, however,
may not pass the application logic since phone:222 is not consistent
with name:Bob, region:US in C, i.e., there is never a time that (Bob,
US, 222) exists in𝐷 . To this end,𝑀 re-fetches region:UK from𝐷 and
adds it to C, to make 𝑅3 a consistent cache hit, i.e., (Bob, UK, 222).

After that, 𝑅4 could have a consistent cache hit (Bob, US, Cali-
fornia) over C. However, it may not pass the application logic as
Alice already observes region:UK in 𝑅3 but this would be lost in
𝑅4, i.e., Alice’s view on region would go back in time if𝑀 used this
consistent hit for 𝑅4. Hence,𝑀 fetches address:London and caches
it in C, to make 𝑅4 see a “consistent” and “monotonic” view of 𝐷 . □

As shown in Example 1, a cache request may access a set of items.
For such requests, even a cache hit could still be useless if it sees
inconsistent (e.g., 𝑅3) or non-monotonic (e.g., 𝑅4) items. Indeed, con-
sistency assures that the application always sees a consistent view
of the database at certain point of time, while monotonicity prevents
it from losing observed writes. They are the reported desiderata of
applications in, e.g., social network [21, 25, 60, 70, 75], e-commerce
[18, 26, 28, 73] and streaming services [2, 15, 27, 34, 48, 69].

While previous studies [28, 38, 39, 41, 43, 53, 57, 63, 66] have
developed customized systems and cache schemes that help track
writes and inform the applications about inconsistent cache hits,
they rely on application logic to specify the actions for such “in-
valid” hits or use default handling rules, e.g., treating them as cache
miss. This however leads to two different and independent forces
in maintaining the cache content: (a) the cache replacement policy
that decides which cached items to evict when cache overflow oc-
curs (e.g., LRU), and (b) the logic that handles invalid cache hits that
do not conform to the desired semantic properties. This impairs the
performance guarantees of existing cache replacement policies and
leads to suboptimal performance. Indeed, we will see shortly that
traditional optimal policies are not ideal anymore due to nontrivial
interference with the handling of invalid cache hits (Section 4). In
addition to this, monotonicity has not yet been addressed in pre-
vious schemes, in particular for requests accessing a set of items.

Contributions. We fill the void by making two contributions:
(1) We develop cache policies that holistically account for both tra-
ditional cache overflows and invalid cache hits caused by violation

891

https://doi.org/10.14778/3574245.3574271
https://github.com/jiayouanan/mccache
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574271
https://www.acm.org/publications/policies/artifact-review-and-badging-current

of consistency and monotonicity. We prove that they are theoreti-
cally competitive and even optimal, which are beyond the reach of
conventional policies that are optimized only for cache overflows.
(2) To make practical use of the policies, we developMCCache, a
tool that deploys them over existing caches, e.g., Redis and Mem-
cached, without changing their internal implementations; this im-
proves their throughput atop HBase by 77.15% on average.

Below we elaborate on these in more detail.
MCC policies. We first formulate monotonic consistent caching
(MCC), a scheme that uniformly captures cache overflows and in-
valid cache hits that violate monotonicity and consistency. MCC
allows us to characterize the effectiveness of cache policies in the
presence of monotonicity and consistency. We show that traditional
optimal policies are not competitive anymore and formally study
cache policy design under MCC. We consider all three input models
that have ever been used in caches: batch, semi-online and online.

The batch model abstracts cases where we have a high volume
of requests that are processed in batches. This has been used in e.g.,
Facebook’s Memcached clusters [60] and transaction systems [10],
where requests are buffered before being served. The semi-online
model assumes that read requests are known as a batch while write
requests are not. A typical example of the semi-online model is
secondary nodes in Redis [9], as writes are propagated from the
primary node via cache invalidation while reads are batched as
usual in local buffers. The online model has the least restriction and
is the mostly perceived: both read and write requests are revealed
to the cache policy online at runtime, one after another [21, 67, 68].
Complexity. We investigate the complexity of MCC. We prove that
in general optimal MCC cache policy is Np-Complete, as opposed
to conventional caching that is trivially in Ptime [19]. Unlike con-
ventional cache policies that only need to decide which cached
items to evict upon cache overflows caused by cache misses, MCC
policies also have to deal with inconsistent or non-monotonic cache
hits, and decide which version of the items to cache.

We consider two version selection strategies: Eager and Lazy. In-
formally, Lazy allows to cache items with bounded staleness, in line
with the lazy eviction of Redis, while Eager always fetches the most
current items and automatically warrants monotonicity.

Surprisingly, we find that the complexity ofMCC significantly dif-
fers w.r.t. Eager and Lazy. Indeed, we show that optimal MCC policy
remains Np-Hard with Eager, while it becomes Ptime with Lazy.
Characterization. We dig deeper and characterize the impact of
monotonicity and consistency on caching. We identify a class of
cached data items, which we refer to as obsolete items, that can
explain why the hardness of MCC policies varies with Eager and
Lazy: with Lazy it is Ptime to decide whether a cached item is
obsolete while it becomes coNp-Complete with Eager.

Based on the characterization, we develop a principled approach
to the design of MCC policies. It builds upon the following propo-
sition (informal): if a cache policy P is 𝑐-competitive [13] for MCC,
then P𝑜 is at least 𝑐-competitive, where 𝑃𝑜 evicts obsolete items
first and then acts exactly the same as P does upon cache overflows.
Optimal policies. As applications of the principle, we develop
(a) an MCC policy for the batch model that is optimal with Lazy.

(b) MCC policies for the semi-online and online models that can in-
corporate blackboxML classifierM for deciding obsolete items:
◦ they can benefit from accurate classifications fromM and

be provably competitive (online) and optimal (semi-online);
◦ they are ML-robust, i.e., they remain competitive even when
M is adversarial and produces arbitrarily bad predictions.

MCCache. We develop MCCache [6], a pluggable system that
adds the support of MCC to existing data caches in a non-intrusive
way.MCCache bypasses the internal cache policy of data caches,
mostly some LRU variant [7, 8], by running a dedicated MCC cache
policy atop them and injecting MCC cache actions via eviction
operators provided by the underlying data caches. Our current
implementation ofMCCache provides built-in connectors for the
most popular data caches including Redis and Memcached.

Using both YCSB benchmark and real-life traces, we evaluate
the effectiveness of our cache policies. We find the following. (1)
MCCache effectively empowers Redis and Memcached with the
capacity of upholding monotonicity and consistency. (2) Under
the batch model, our MCC policies inMCCache reduce 42.76% of
the cost (number of database reads) of MCC policies adopted from
conventional caching, up to 61.79%. (3) Under the semi-online and
online model, on average our policies have costs 41.28% and 20.01%
lower than competitor policies, respectively, with ML predictions
that have 95% of accuracy; they remain 28.02% and 12.16% better
even when the classification accuracy of the ML oracle is as low
as 80%. (4) As a proof of concept, we train a simple classification
modelM using LightGBM [46] as the ML oracle to predict obsolete
items for our semi-online and online policies inMCCache for Re-
dis with HBase as the backend database. We find that on average
withMCCache, Redis achieves 85.23%, 68.17% and 35.51% higher
throughput than with competitor policies, under the batch, semi-
online and online models, respectively; similarly for Memcached.

Summary & organization. In summary, we deliver the following.

• We propose monotonic consistent caching (MCC) for caches that
uphold consistency and monotonicity (Section 3).

• We study the complexity of MCC policies. We show it is Np-
Completewith Eager, and becomes Ptimewith Lazy (Section 4.1).

• We develop a principle for competitive MCC policies by charac-
terizing MCC with a notion of obsolete items (Section 4.2).

• Following the principle, we develop an MCC policy for the batch
model, and prove that it is optimal with Lazy (Section 5).

• We design ML-augmented semi-online and online MCC policies
that are both competitive and ML robust (Section 6).

• Using YCSB benchmark and three real-life cache traces, we
evaluated the effectiveness of our MCC policies (Section 7).

Related Work. We categorize the related work as follows.
Cache systems and schemes. Data caches such as Redis [8] andMem-
cached [7] have been well established in practice [21, 50, 60, 75], to
improve system throughput by reducing database load. There has
also been effort to customize data caches with semantic guarantees
according to the application logic, e.g., consistency [16, 36, 37, 39, 43,
50, 58, 63], read-your-wirte [21, 66] and cache serializability [28].

892

Distributed Cache Server
(e.g., Redis or Memcached)

Application ServerApplication Client

Database

read/write

get/write get/set/delete

invalidation

-Application Config
 -Consistency Monitor

 -Monotonicity Monitor

(a) existing architecture

Distributed Cache Server
(e.g., Redis or Memcached)

Application ServerApplication Client

Database

read/write

get/write get/set/delete

-Application Config

Mccacheinvalidation

invoke

(b) architecture withMCCache

Figure 2: Application-level data caching architectures

These systems develop cache protocols for various trade-offs
between consistency guarantees and performance. In contrast, we
focus on the design of cache policies, by holistically taking into
account traditional cache overflows and cache hits that are invalid
due to violation of semantic properties imposed by the applications.
Monotonicity and consistency. Monotonicity and consistency are
two fundamental desiderata of streaming [2, 5, 27, 34, 48, 55], dis-
tributed [40, 49, 69, 72] and transaction [16, 28, 39, 50, 63] systems.
Consistency applies to scenarios where multiple copies of the same
database item in different versions co-exist and applications want
to see a consistent view of the items. Monotonicity asserts that for
consecutive reads to a data item, the latter one never sees a ver-
sion older than the earlier one, which is more of a concern in, e.g.,
streaming applications [2, 5, 34, 55] where updates are frequent.

In contrast to distributed consistency that studies whether differ-
ent copies of the same item reflect the same value, we study whether
multiple items in a cache hit of a request that accesses a set of items
are consistent, i.e., whether the cache hit reflects a consistent view
of the database and hence is useful to the applications.
Cache policies. There has been a host of work on the design and
analysis of cache eviction policies that decide which cached items
to evict upon cache overflows. This includes offline caching where
the sequence of the read requests are known in advance [14, 19, 22,
23, 32, 44], and online caching where read requests arrival online
one by one [13, 20, 30, 31, 45, 56, 61]. In both cases, the analysis
focuses on the competitiveness of the policies for singleton read-
only requests. In particular, it has been shown that for paging, the
Belady’s rule is optimal [19]. For online policies, LRU and FIFO are
𝑘-competitive deterministic policies and are widely used in practice.

There has also been recent work on ML-augmented cache poli-
cies for the paging problem [52, 65, 67, 68, 74]. The idea is to exploit
ML models that predict some information about the read sequence,
i.e., the next arrival time of a read request, to improve cache hit rate.

Our work differs from existing work in the following. (1) Instead
of conventional caching that requests one item at a time, we con-
sider transaction-like requests that access a set of data items. (2) In
MCC, only monotonic and consistent cache hits are valid. In con-
trast, these properties do not exist in the context of conventional
caching, whose analysis even does not consider write operations.
(3) In contrast to ML-assisted policies [52, 65, 67, 68, 74] that predict
future requests, which is often difficult or infeasible in practice, our
online policies incorporates simple binary classification models
which are much easier than predicting workload sequence.

Closer to this work is [16], which applies consistent caching to
improving the throughput of single-version deterministic transac-
tion databases. Different from the study, we consider caching with

both monotonicity and consistency over multi-version databases
with different version selection strategies, e.g., Eager and Lazy. In
addition, we study caching under the batch, semi-online and online
input models, instead of for offline transactions only.

2 PRELIMINARY
We review the basics of caching and conventional cache policies.

Database versions. We model a database 𝐷 simply as a set of data
items {𝑑1, . . . , 𝑑𝑛}; in practice 𝐷 could be e.g., a relational database
or a key-value store. In this work, we focus on the case where all
data items are of the same size, e.g., tuples of the same relation, or
values of the same column family in key-value stores; our results
can be readily extended to cases where items are of varying sizes.

We consider both read and write operations to 𝐷 . A write W[𝑑𝑖]
updates 𝑑𝑖 in 𝐷 with a new value, while a read R[𝑑𝑖] returns 𝑑𝑖 .
Conceptually, each write generates a new version of 𝐷 . We denote
by 𝐷 [𝑖] the (logical) snapshot of 𝐷 in database version 𝑖 . Similarly,
each data item 𝑑 in 𝐷 also evolves into a new version once it is
updated by a write W[𝑑]. We denote by 𝑑 [𝑗] the value of 𝑑 in item
version 𝑗 . Note that,𝐷 [𝑖 +1] and𝐷 [𝑖] differ in at least one data item,
i.e., there exists 𝑑 ∈ 𝐷 such that 𝑑 [𝑗] ∈ 𝐷 [𝑖] and 𝑑 [𝑗 +1] ∈ 𝐷 [𝑖 +1].
Cache basics. We consider databases augmented with an external
application-level data cache C, as adopted by e.g., Facebook [60] and
Twitter [75]. As shown in Fig. 2a, writes are committed to the data-
base and are propagated to C via cache invalidation governed by
application logic [41, 63, 66]. By logging the invalidation message,
e.g., ban [3], C (via application servers) knows the difference be-
tween the item version of𝑑 in C and that of𝑑 in the latest𝐷 , referred
to as the staleness of 𝑑 in C and denoted by stale(𝑑). Intuitively,
one may want to use cached items with bounded staleness [63, 66].

Consider a read request R[𝑑]. If 𝑑 is not in C, then R[𝑑] is called
a cache miss. In such a case, the cache fetches 𝑑 from 𝐷 to C so that
R[𝑑] is made into a cache hit. A cache overflow occurs when C has
no room for storing the newly fetched 𝑑 ; the cache then needs to
evict some cached items from C, so that 𝑑 could be brought into C.
Cache policy. For a sequence ℓ of requests, a cache schedule 𝑃 for ℓ
is a list of eviction actions for cache overflows occurred when serv-
ing ℓ over cache C. More specifically, for each read R[𝑑] in ℓ , if it is
a cache miss that inflicts a cache overflow, then the entry for R[𝑑]
in 𝑃 is the items to be evicted from C so that 𝑑 can be brought into
C from 𝐷 ; otherwise, it is an empty entry. A cache policy is an algo-
rithm P that, given any sequence ℓ , generates a cache schedule for ℓ .

Many cache policies have been developed. For example, LRU and
LRU-k [61] are online policies for cases when ℓ consists of reads
revealed one by one, and Belady [19, 22] tackles the case when ℓ is
known in advance. Both Memcached and Redis use LRU by default.

3 MONOTONIC CONSISTENT CACHING
We first formulate monotonic consistent caching (MCC) in Sec-
tion 3.1. In Section 3.2, we then present MCCache, a lightweight
pluggable tool that deploys MCC policies over existing caches .

3.1 Caching with Monotonicity and Consistency
Requests. A set-based request 𝑅 is of the form {𝑑1, . . . , 𝑑𝑚}, where
each 𝑑𝑖 is referred to as a read query. Over a database 𝐷 , each 𝑑𝑖

893

retrieves 𝑑𝑖 from𝐷 if it exists, or returns ‘miss’ otherwise (to reduce
notation, we use 𝑑 interchangeably for items in 𝐷 and queries in 𝑅).
Similarly, a set-based write request𝑊 updates multiple data items
in one go. We often refer to set-based requests simply as requests.

In practice, 𝑅 could be a read-only transaction in large-scale
distributed databases [1, 21, 51, 60, 63, 71, 75], where 𝑑𝑖 is a read
operation. For streaming query serving systems [11, 59], 𝑅 could be
a query and 𝑑𝑖 is a cached view [5]. For Web applications, 𝑅 could
be an HTTP request that fetches tens or even hundreds of data
elements that could be in arbitrary types of values, including e.g.,
tuples, strings, dates or integers, from the backend database [50, 51].

Properties. In all these applications, there are two fundamental
desiderata: consistency andmonotonicity, which we formalize below.
Consistency. Consider a database 𝐷 that changes over time by write
requests. A read request 𝑅 = {𝑑1, . . . , 𝑑𝑚} is consistent over 𝐷 if
there exists a database version 𝑙 such that the retrieved items 𝑑1,
. . . , 𝑑𝑚 all exist in 𝐷 [𝑙], i.e., 𝑅 sees a consistent view of 𝐷 .
Monotonicity. For two read requests 𝑅 and 𝑅′, we say that 𝑅 ante-
cedes 𝑅′ over 𝐷 if for any query 𝑑 that appears in both 𝑅 and 𝑅′

such that 𝑑 reads 𝑑 [𝑖] from 𝐷 for 𝑅 and reads 𝑑 [𝑗] for 𝑅′, we have
𝑖 ≤ 𝑗 . For a sequence ℓ of read requests 𝑅1, . . . , 𝑅𝑛 , we say that 𝑅𝑖 is
monotonic in ℓ over 𝐷 if for any 𝑅𝑙 (𝑙 < 𝑖), 𝑅𝑙 antecedes 𝑅𝑖 over 𝐷 .

In addition to these, applications may also impose conditions on
data freshness to avoid reading data that are too stale.

Monotonic consistent caching. We next study caching with
monotonicity and consistency, referred to as monotonic consistent
caching (MCC). Consider a database 𝐷 augmented with cache C via
an application server, as shown in Fig. 2a. Consider a sequence ℓ of
requests𝑇1, . . . ,𝑇𝑛 , where each𝑇𝑖 is either a read request 𝑅 or write
request𝑊 that accesses to multiple data items in 𝐷 . Let the cache
C be of limited size much smaller than that of 𝐷 . Assume that only
items with staleness no larger than 𝑠 can be used in C. UnderMCC, a
read request 𝑅 = {𝑑1, . . . , 𝑑𝑚} in ℓ has three possible states over C:
(1) Monotonic consistent cache (MCC) hit. Informally,𝑅 is anMCC hit
over C for 𝐷 if (i) 𝑅 is a cache hit over C, i.e., each 𝑑𝑖 in 𝑅 is a cache
hit; (ii) 𝑅 is consistent over 𝐷 via the items read from C; (iii) 𝑅 is
monotonic in ℓ over𝐷 ; and (iv) items read by 𝑅 are not too stale. For-
mally, 𝑅 is an MCC hit, if C contains 𝑑1 [𝑣1], . . . , 𝑑𝑚 [𝑣𝑚], such that

(a) there exists a database version𝐷 [𝑙] that contains all of 𝑑𝑖 [𝑣𝑖]
for 𝑖 ∈ [1,𝑚], i.e., 𝑅 sees a consistent view of 𝐷 via C;

(b) for each 𝑑𝑖 of 𝑅, there exists no request 𝑅′ that precedes 𝑅 in
ℓ and sees a version of 𝑑𝑖 newer than 𝑑𝑖 [𝑣𝑖] read by 𝑅; and

(c) each cached 𝑑𝑖 has stale(𝑑𝑖 [𝑣𝑖]) ≤ 𝑠 , a staleness bound.

Intuitively, condition (a) ensures that 𝑅 is answered consistently
even when C caches data items from multiple versions of 𝐷 , (b)
further asserts that accesses to data items via C are monotonic, and
(c) enforces a data freshness condition on the answers to 𝑅.
(2) Non-MCC hit.𝑅 is a non-MCC hit over C if (a) for each𝑑𝑖 , there ex-
ists a copy of𝑑𝑖 in C, however, (b) the cached copies of𝑑𝑖 (𝑖 ∈ [1,𝑚])
in C cannot form anMCC hit for 𝑅. That is, the cached data items for
𝑅 are either not consistent, older than the versions that have been
seen by some request 𝑅′ that precedes 𝑅 in ℓ , or not fresh enough.
(3) Cache miss. 𝑅 is a cache miss if C does not contain some 𝑑𝑖 of 𝑅.

<latexit sha1_base64="qsENBH8U0mVz4uwwpW/Em2A8d4g=">AAAF1XicbZRLb9NAEMe3pYESXi0cuViklZBAVRyVx6VS09a0kcAJeTRF3Shar9eJFXtt7a6bRpZviCufgCtc+EJ8G8ZpWsWOV4oy2v3N/GfHM2uFnitVtfpvbf3eRun+g82H5UePnzx9trX9/FwGkaCsRwMvEBcWkcxzOespV3nsIhSM+JbH+tbkOD3vXzEh3YB31SxkA5+MuOu4lCjYGm5t77SH+gGO7eH+W3v4Dic7w61Kda86X9qqoS+MClqs1nB74y+2Axr5jCvqESkv9WqoBjERyqUeS8o4kiwkdEJG7BJMTnwmB/E890TbhR1bcwIBP660+e6yR0x8KWe+BaRP1Fjmz9LNwrNrCRao72bklfNxELs8jBTj9EbdiTxNBVpaHc12BaPKm4FBqHDhAhodE0GoghqWy5izKQ18n3A7xpNpcqkP4hgzLiPB0gy0GM8TceKKniQJvs0h40fU3A+HIlAgtuSe8b5zzsn6qX8t1bXYyOWxIpbl8lGCx3M+9cUH+A2euJ6nVWoQ3r5jkiQXrGN8No67CUS1gus0pKNBL0FWoK/l8v7Ubn7JkI4I/BTLcf0zo23cgik3HTPBVuN1etlwMvILVE/bzV7r6FuGHIkgCjVrVoCf1c8b5mmGHpOr+d1X2ON6x8iQFAapgDPMkwwGFS2g4NpmBoNr86JoF41Ot5MNeA2DLosybPbMu68DDQdDE3GV5CveMDtGu9swu81MWJdLJhT8qaAgdq91Uu9m7x+FNlFFFegY+R4papCGmZMvYJrtBE4l1WD2i8fDbHYXCA/U0hRgwZaxOnyEpR6DvQIxsYykikDA+6bnX7NV47y2p7/f2/9aqxweLV66TfQSvUKvkY4+oEN0hlqohyiaol/oN/pT6peS0vfSjxt0fW3h8wJlVunnf5RED9Q=</latexit>

R1 = {d4, d5}
<latexit sha1_base64="HpqbP5FuYO8YTPEPLZFH48qa3hQ=">AAAF2XicbZTdbtMwFMe9scIoXxuIK24yuklIoKktCLiZtG4LWyVISz/WTXVVOY7bRk2cyHa2VVEuuEPc8gTcAi/E23CSdVOTxlKUE/t3zv/YOcem79hSlcv/VlbvrBXu3lu/X3zw8NHjJxubT0+lFwjKutRzPHFmEskcm7OuspXDznzBiGs6rGdOD+P13gUT0vZ4R818NnDJmNsjmxIFU8ON59u94Vu8tYe3cGgNy28s+Iq2hxul8m45GdqyUZkbJTQfzeHm2l9seTRwGVfUIVL2K2VfDUIilE0dFhVxIJlP6JSMWR9MTlwmB2GSf6TtwIyljTwBD1daMrvoERJXyplrAukSNZHZtXgyd+1KggXqOyl5Nfo4CG3uB4pxeq0+ChxNeVp8QpplC0aVMwODUGHDBjQ6IYJQBedYLGLOLqnnuoRbIZ5eRv3KIAwx4zIQLM5AC3GSyCgsVaIowjc5pPyISvywLzwFYgvuKe9b54ysG/tXY12TjW0eKmKaNh9HeJLwsS/ew6/x1HYcrVSF8NYtE0WZYG39s37YiSCq6V3FIUca1BNkBfpaJu9PrcaXFDkSnhtjGa53orf0GzDmLidMsOV47W46nAzcHNXjVqPbPDhPkWPhBb5mznLwk9pp3ThO0RNykex9iT2stfUUSaGZcjjdOEphcKI5FGzbSGGwbZ4X7aze7rTTAa+g2WVeho2ucft3oOCgaQKuouyJ14223urUjU4jFdbmkgkFL+XlxO42j2qd9P4D3yIq7wTaerZG8gqkbmTkc5hGK4JVSTXo/fz2MBqdOcI9tdAFWLBFrAY/YaHGYC5HTCwisSIQcL9VsrfZsnFa3a283333tVraP5jfdOvoBXqJXqEK+oD20Qlqoi6iKES/0G/0p9AvfCt8L/y4RldX5j7PUGoUfv4Hj58Q9w==</latexit>

W3={d0, d3}
<latexit sha1_base64="b3WSS+ilQj+PaOL+QJdW9Umgtc8=">AAAF2XicbZTNbtNAEMe3pYESvloQJy4uaSUkUBRHCLhUatqaNhI4IR9NUTaK1utNYsVeW7vrtpHlAzfElSfgCrwQb8M4TavY8UpRRru/mf/seGatwHWkqlT+ra3f2Sjcvbd5v/jg4aPHT7a2n55JPxSUdanv+uLcIpK5Dmdd5SiXnQeCEc9yWc+aHiXnvQsmpOPzjpoFbOCRMXdGDiUKtoZbz3d7wyre2cc7OLKHlTf2UMfx7nCrVClX5ktbNfSFUUKL1Rxub/zFtk9Dj3FFXSJlX68EahARoRzqsriIQ8kCQqdkzPpgcuIxOYjm+cfaHuzY2sgX8ONKm+8ue0TEk3LmWUB6RE1k9izZzD27kmCB+l5KXo0+DCKHB6FinF6rj0JXU76WVEizHcGocmdgECocuIBGJ0QQqqCOxSLm7JL6nke4HeHpZdzXB1GEGZehYEkGWoTniYyikh7HMb7JIeVH1NwPB8JXILbknvK+dc7Ieol/NdG12NjhkSKW5fBxjCdzPvHF+/g1njquq5WqEN6+ZeI4E6xtfDKOOjFEtfyrJORIg36CrEBfy+T9sdX4nCJHwvcSLMP1To2WcQMm3OWECbYar91Nh5Ohl6N60mp0m4dfU+RY+GGgWbMc/LR2VjdPUvSEXMzvvsIe1dpGiqQwTDmcYR6nMKhoDgXXNlMYXJvnRTuvtzvtdMArGHaZl2Gja95+HWg4GJqQqzhb8brZNlqdutlppMI6XDKh4E/5ObG7zeNaJ33/MLCJyqtA28j2SF6D1M2MfA7TaMVwKqkGs58/Hmajs0C4r5amAAu2jNXgIyz1GOzliIllJFEEAt43PfuarRpn1bL+rvz2S7V0cLh46TbRC/QSvUI6eo8O0Clqoi6iKEK/0G/0p9AvfCt8L/y4RtfXFj7PUGoVfv4Hf2sQ9A==</latexit>

W2={d0, d1}

<latexit sha1_base64="dCcApHFRdcoqCfvxJa0Ym6RYuUk=">AAAF2XicbZTNbtNAEMe30EAJXy2IExeXtBISqIqjCrhUatqaNhI4IR9tUTaK1ut1YsVeW7vrtpHlAzfElSfgCrwQb8M4TavY8UpRRru/mf/seGat0HOlqlb/rdy5u1q6d3/tQfnho8dPnq5vPDuVQSQo69HAC8S5RSTzXM56ylUeOw8FI77lsTNrcpien10wId2Ad9U0ZAOfjLjruJQo2Bquv9hqD3fx5h7exLE9rL61hzpOtobrlepOdba0ZUOfGxU0X63hxupfbAc08hlX1CNS9vVqqAYxEcqlHkvKOJIsJHRCRqwPJic+k4N4ln+ibcOOrTmBgB9X2mx30SMmvpRT3wLSJ2os82fpZuHZlQQL1Lcz8sr5MIhdHkaKcXqt7kSepgItrZBmu4JR5U3BIFS4cAGNjokgVEEdy2XM2SUNfJ9wO8aTy6SvD+IYMy4jwdIMtBjPEnHiip4kCb7JIeNH1MwPhyJQILbgnvG+dc7J+ql/LdW12MjlsSKW5fJRgsczPvXFe/gNnriep1VqEN6+ZZIkF6xjfDIOuwlEtYKrNKSjQT9BVqCv5fL+2G5+zpCOCPwUy3FnJ0bbuAFT7nLMBFuO1+llw8nIL1A9bjd7rYOvGXIkgijUrGkBflI/bZjHGXpMLmZ3X2IP6x0jQ1IYpgLOMI8yGFS0gIJrmxkMrs2Lop03Ot1ONuAVDLssyrDZM2+/DjQcDE3EVZKveMPsGO1uw+w2M2FdLplQ8KeCgti91lG9m71/FNpEFVWgY+R7pKhBGmZOvoBpthM4lVSD2S8eD7PZnSM8UAtTgAVbxOrwERZ6DPYKxMQikioCAe+bnn/Nlo3T2o7+bmf3S62yfzB/6dbQS/QKvUY6eo/20QlqoR6iKEa/0G/0p9QvfSt9L/24Ru+szH2eo8wq/fwPbxEQ8Q==</latexit>

R4={d0, d1}
<latexit sha1_base64="tjc59cZJoEHvaRvzIq39smKCllI=">AAAF2XicbZRLb9NAEMe3pYESXi2IExeXtBISqIrD81KpaWvaSOCEPJqibBSt15vEir22dtdtI8sHbogrn4Ar8IX4NozTtIodrxRltPub+c+OZ9YKXEeqcvnfyuqttcLtO+t3i/fuP3j4aGPz8an0Q0FZh/quL84sIpnrcNZRjnLZWSAY8SyXda3JYXLePWdCOj5vq2nA+h4ZcWfoUKJga7DxdLs5eIu39vAWjuxB5ZU9eI3j7cFGqbxbni1t2dDnRgnNV2OwufYX2z4NPcYVdYmUPb0cqH5EhHKoy+IiDiULCJ2QEeuByYnHZD+a5R9rO7Bja0NfwI8rbba76BERT8qpZwHpETWW2bNkM/fsUoIF6jspeTX80I8cHoSKcXqlPgxdTflaUiHNdgSjyp2CQahw4AIaHRNBqII6FouYswvqex7hdoQnF3FP70cRZlyGgiUZaBGeJTKMSnocx/g6h5QfUTM/HAhfgdiCe8r7xjkj6yX+lUTXYiOHR4pYlsNHMR7P+MQX7+GXeOK4rlaqQHj7honjTLCW8ck4bMcQ1fIvk5BDDfoJsgJ9LZP3x2b9c4ocCt9LsAzXPTGaxjWYcBdjJthyvFYnHU6GXo7qcbPeaRx8TZEj4YeBZk1z8JPqac08TtFjcj67+xJ7WG0ZKZLCMOVwhnmUwqCiORRc20xhcG2eF+2s1mq30gEvYdhlXob1jnnzdaDhYGhCruJsxWtmy2i2a2a7ngrrcMmEgj/l58TuNI6q7fT9w8AmKq8CLSPbI3kNUjMz8jlMvRnDqaQazH7+eJj19hzhvlqYAizYIlaFj7DQY7CXIyYWkUQRCHjf9OxrtmycVnb1d7tvvlRK+wfzl24dPUPP0Quko/doH52gBuogiiL0C/1Gfwq9wrfC98KPK3R1Ze7zBKVW4ed/ihEQ9g==</latexit>

R5={d2, d3}
<latexit sha1_base64="fjULqrYce711VS6dfnqcaOzloGc=">AAAF2XicbZTNbtNAEMe3pYESvloQJy4uaSUkUJUEVLhUatqaNhI4IR9tUDaK1ut1YsVeW7vrtpHlAzfElSfgCrwQb8M4TavY8UpRRru/mf/seGbNwHWkKpf/razeWSvcvbd+v/jg4aPHTzY2n55JPxSUdanv+qJnEslch7OucpTLeoFgxDNddm5OjpLz8wsmpOPzjpoGbOCREXdshxIFW8ON59ut4R7e2sdbOLKG5TfW8C2Ot4cbpfJueba0ZaMyN0povprDzbW/2PJp6DGuqEuk7FfKgRpERCiHuiwu4lCygNAJGbE+mJx4TA6iWf6xtgM7lmb7An5cabPdRY+IeFJOPRNIj6ixzJ4lm7lnVxIsUN9JySv7wyByeBAqxum1uh26mvK1pEKa5QhGlTsFg1DhwAU0OiaCUAV1LBYxZ5fU9zzCrQhPLuN+ZRBFmHEZCpZkoEV4logdlSpxHOObHFJ+RM38cCB8BWIL7invW+eMrJf4VxNdk40cHilimg4fxXg84xNfvI9f44njulqpCuGtWyaOM8Ha+if9qBNDVNO/SkLaGvQTZAX6Wibvj63G5xRpC99LsAx3fqq39Bsw4S7HTLDleO1uOpwMvRzVk1aj2zz8miJHwg8DzZzm4Ke1s7pxkqLH5GJ29yX2qNbWUySFYcrhdOM4hUFFcyi4tpHC4No8L1qv3u600wGvYNhlXoaNrnH7daDhYGhCruJsxetGW2916kankQrrcMmEgj/l58TuNo9rnfT9w8AiKq8CbT3bI3kNUjcy8jlMoxXDqaQazH7+eBiNzhzhvlqYAizYIlaDj7DQY7CXIyYWkUQRCHjfKtnXbNk4q+5W9nbffamWDg7nL906eoFeoleogt6jA3SKmqiLKIrQL/Qb/Sn0C98K3ws/rtHVlbnPM5RahZ//AYS1EPU=</latexit>

R6={d0, d3}

Figure 3: Sequence ℓ1 in Example 2

Under MCC, only an MCC hit is valid for the applications. Pre-
vious studies provide effective methods to identify cache hits that
are inconsistent [28, 38, 39, 41, 43, 53, 57, 63, 66]. However, they
use conventional cache policies, e.g., LRU to manage cache content
by deciding cache evictions upon overflows, while invoking appli-
cation logic to deal with invalid cache hits by, e.g., re-fetching the
items in the cache hits. This, however, leads to two separate algo-
rithmic logics that manage C: (a) cache policies for cache overflows
and (b) rules for handling cache hits that violate consistency. This
voids the competitiveness of cache policies [19, 54, 61] due to the
foreign operations on the cache content from the applications.

We put them into the same space for MCC, via the notion of MCC
schedules below. This allows us to formally studyMCC policy design.

MCC schedules. Similar to conventional cache schedules, an MCC
schedule decides, for a sequence ℓ of requests over cache C, the ac-
tions to C upon each read request in ℓ . Different from conventional
cache policies that contain only cache eviction operations for cache
overflows caused by cache misses, an MCC schedule also needs to
address non-MCC hits: which stale items in C to update and which
version should be re-fetched in order to make them into MCC hits.

Consider a sequence ℓ of requests over database 𝐷 and a cache
C. When processing requests of ℓ one by one under MCC, an MCC
schedule for ℓ over C is a list 𝑃 of updating operations to C, one for
each read request 𝑅 in ℓ , such that the following holds:
(a) 𝑃 [𝑅] is one of following: (i) fetching a set of data items from 𝐷

to C with some version selection strategy (more below) when 𝑅 is
a non-MCC hit or cache miss, and evicting sufficiently many items
from C first if it has no room to hold the fetched items, or (ii) nil if
𝑅 is already an MCC hit, i.e., C does not need updates to serve 𝑅;
(b) After applying 𝑃 [𝑅] to C, 𝑅 becomes an MCC hit over C; and
(c) At all times the size of items in C does not exceed its capacity 𝑘 .

An MCC policy is an algorithm that, given any sequence ℓ of
requests, generates an MCC schedule for ℓ over C.
Version selection. We consider two natural version selection strate-
gies inMCC schedules upon 𝑅 that is a non-MCC hit or a cache miss:
Eager and Lazy. (a) With Eager, schedules eagerly update cached
items to the latest version of fetching them from 𝐷 if they are not
cached; note that with Eager it is always feasible to make 𝑅 an MCC.
(b) With Lazy, schedules instead try to make use of stale cached
items in a bounded way, while conforming to consistency, mono-
tonicity and staleness bound; it does this by fetching data items
from the oldest version 𝑙 of 𝐷 that can make 𝑅 an MCC hit. That is,
for any 𝑙 ′ < 𝑙 , fetching items from𝐷 [𝑙 ′] cannot make 𝑅 a consistent
cache hit that satisfies both monotonicity and staleness.

Intuitively, Eager enforces that items are current when they are
brought into C. In contrast, Lazy allows C to use slightly less fresh
items to answer read requests as long as they have bounded stale-
ness. Both Eager and Lazy have to conform to the staleness bound
upon MCC hits. In particular, Lazy and Eager converge when 𝑠 = 0.

894

Example 2: Consider a sequence ℓ1 of read and write requests as
shown in Fig. 3. Assume that the cache C initially contains {𝑑0, 𝑑1,
𝑑2, 𝑑3} and is full. Let staleness bound 𝑠 = 1. Then ℓ1 generates 3
database versions, say 𝐷 [0] prior to𝑊2, 𝐷 [1] after𝑊2 and 𝐷 [2]
after𝑊3; similarly, 𝑑0 has three item versions while 𝑑1 and 𝑑3 have
two.𝑅1 is a cachemiss as C does not have𝑑4 or𝑑5. Hence, one has to
evict two items from C to cache 𝑅1. Assume that we evict 𝑑0 and 𝑑1;
then upon 𝑅4, we have a cache miss as C contains neither 𝑑0 nor 𝑑1.

With Eager, we fetch 𝑑0 [2] and 𝑑1 [1] from 𝐷 [2] to answer 𝑅4,
making it into anMCC hit (note that𝑅4 causes an overflow; hencewe
evict 𝑑4 and 𝑑5 first). Then 𝑅5 is an MCC hit, while 𝑅6 is a non-MCC
hit as 𝑑0 [2] and 𝑑3 [0] are not consistent. Hence we need to further
fetch 𝑑3 [1] from 𝐷 [2] for 𝑅6. On the other hand, if we use Lazy, we
fetch from 𝐷 [1] for 𝑅4 as it contains 𝑑0 [1] and 𝑑1 [1], conforming
to staleness bound 𝑠 = 1. After that, both 𝑅5 and 𝑅6 areMCC hits. □

3.2 Making Cache Monotonic and Consistent
We presentMCCache, a tool that adds MCC policies to data caches.
MCCache. As shown in Fig. 2b, MCCache is a middleware built
atop existing data caches. It applies to the look-aside caching (Fig. 2a)
that is widely adopted by Web applications, e.g., Facebook [60] and
Twitter [75], where writes commit to the database and then prop-
agated to the application server and cache via invalidation [3].

MCCache intercepts only the cache replacement process of the
data caches, by evicting cached items according to MCC schedules
generated by MCC policies in MCCache, bypassing their default
cache policies, e.g., LRU and LRU-k [61], that are oblivious to mono-
tonicity and consistency. This is made possible sinceMCC schedules
deal with both cache overflows and non-MCC cache hits, before
passing the read items to the application server. Hence the underly-
ing cache replacement logic (e.g., LRU) never faces cache overflows.

MCCache provides built-in connectors to Redis and Memcached.
Input models. MCCache supports three input models, depending
on the knowledge that the MCC policies have about the requests ℓ .
(a) Batch model. Under the batchmodel, the sequence ℓ of read/write
requests of the current batch is known to the MCC policy P in
advance when P generates MCC schedule for ℓ . It abstracts appli-
cations in e.g., deterministic databases [10] where transactions are
batched before they are executed, or streaming applications where
requests are processed in epochs grouped by sessions [12, 47].
(b) Semi-online model assumes that read requests are known to the
policiesP while write requests are not. It models the scenario where
the cache buffer receives possibly out-of-order writes (cache inval-
idation) while reads are batched, e.g., secondary Redis nodes [9].
(c) Online model. Requests in ℓ are coming online and revealed to
cache policy P one after another. When P decides the schedule for
a request 𝑅, it has no knowledge about any subsequent requests in ℓ .

4 FUNDAMENTAL STUDY
To start with, we first formulate the problem ofMCC policies design
and analyze its complexity (Section 4.1).We then abstract a principle
for designing competitive MCC policies for theMCCPolicy module,
by developing characterizations of MCC (section 4.2).

4.1 Complexity of MCC Policies

Problem. A central task in caching is the problem of cache policy
design. Below we formulate the task for MCC policies, referred to
as the monotonic consistent caching problem (MCCP), as follows:

Input A cache buffer C of capacity 𝑘 , a sequence ℓ of read and
write requests over 𝐷 , and a staleness bound 𝑠 .

Output An MCC schedule 𝑃 for ℓ over C.
Objective Minimize cost(𝑃), the total number of items to be fetched

from 𝐷 when serving ℓ over C with 𝑃 .

Intuitively, the MCCP problem is to design an MCC policy that
minimizes the caching cost for any input sequence of requests. In
particular, we will study MCCP in all three input models, depending
on how we know about ℓ when generating cache schedules.

Complexity. To understand the intricacy inherent toMCC, we first
investigate the complexity of MCCP under the batch model below. As
will be seen shortly, this allows us to develop a coherent principled
approach to MCCP for all three input models.

Unlike conventional caching which is trivially in Ptime [19],
MCC is much more complicated, as illustrated below.

Example 3: Continuing with Example 2, we show that the optimal
policy for conventional caching under the batch model, namely the
Belady’s rule [19], is no longer optimal when adopted for MCC. The
idea of Belady’s rule is to evict, upon a cache overflow, the item in
the cache whose next read request time is the furthest in ℓ .

Assume that we use Lazy for version selection. Upon 𝑅1, Belady
evicts 𝑑2 and 𝑑3 as the nearest next request containing them is 𝑅5,
which is the furthest in ℓ . Then 𝑅4 is a cache hit but a non-MCC one.
This is because C contains 𝑑0 [0], exceeding the staleness bound
𝑠 = 1 as the latest 𝐷 (i.e., 𝐷 [2]) contains 𝑑0 [2]. Thus, C has to re-
fetch 𝑑0 [1] from 𝐷 [1]. To make 𝑅4 an MCC hit, 𝑑1 has to be further
updated to 𝑑1 [1] as C contains 𝑑1 [0] which is not consistent with
𝑑0 [1]. 𝑅5 is a cache miss, which requires to fetch 𝑑2 [0] and 𝑑3 [0]
from 𝐷 [0]. 𝑅6 is MCC hit. Hence, Belady has a total cost of 6 reads.

Now consider the schedule in Example 2, i.e., evicting 𝑑0 and 𝑑1
upon 𝑅1. One can readily verify that its cost is 4 reads with Lazy, as
both 𝑅5 and 𝑅6 become MCC hit, better than Belady.

Similarly, one can verify that, with Eager Belady’s rule incurs a
cost of 6 reads, while the schedule of Example 2 has a cost of 5. □

As shown in Example 3, underMCC a read request can be a cache
hit that is inconsistent or exceeds the staleness bound. Hence, con-
ventionally performant or even optimal cache policies do not work
well when they are adopted and extended to uphold consistency
and monotonicity. Indeed, MCC policies are much harder to design.

Theorem 1: (1) The decision version of MCCP is Np-Complete.

(2) It remains Np-Hard with Eager as the version selection strategy.

(3) It becomes Ptime when used with Lazy. □

Below we sketch a proof of Theorem 1(1) and (2). We will give a
constructive proof of Theorem 1(3) in Section 5.

Proof sketch: We only need to show that MCCP is in Np and it is
Np-Hard when used with Eager. An Np algorithm for MCCP works

895

as follows: (a) guess a schedule 𝑃 of length the same as that of ℓ , and
(b) check whether 𝑃 is a valid MCC schedule for ℓ over C, in Ptime.

We show that MCCP isNp-Hardwith Eager by reduction from the
maximum coverage problem (MCP) which is Np-Complete [35].
Given two integer 𝑘 and ℎ, and 𝑛 sets Γ = {𝑆1, . . . , 𝑆𝑛},MCP is to
decide whether there exists a 𝑘-subset Γ′ of Γ such that


𝑆∈Γ′ 𝑆

contains at least ℎ elements. The reduction uses s=1, a sequence ℓ
of𝑀 + 2𝑚 + 4 read requests and 2 write requests, and C of capacity
(2𝑚 + 1)𝑀 +𝑚 + 𝑛 + 1, where𝑚 = |𝑆∈Γ 𝑆 | and𝑀 =


𝑆∈Γ |𝑆 |. □

4.2 Characterizations
We next characterize the root cause of the complexity of MCC and
develop a principled approach to designing MCC policies.

We first take a closer look at MCC policies, and see why conven-
tional cache policies do not work when adopted for MCC.

Example 4: There are three scenarios where cached items can
be obsolete, i.e., useless. Recall Example 2. One can verify that,
initially,𝑑0 (i.e.,𝑑0 [0]) in C cannot be used to answer𝑅4 or any other
requests in ℓ1 due to the data freshness restriction: upon 𝑅4, 𝑑0 [0] is
not fresh enough w.r.t. the staleness bound 𝑠 = 1 for 𝑅4. As a result,
𝑑1 (𝑑1 [0]) in C is also obsolete as it cannot make a consistent cache
hit with the updated 𝑑0, i.e., 𝑑0 [1] with Lazy and 𝑑0 [2] with Eager.

Consider another case where we have a cache C′ that contains
both 𝑑0 [0] and 𝑑0 [1]. Then we can tell that 𝑑0 [0] is obsolete for
sure with both Lazy and Eager: when 𝑑0 [1] is fetched to C′, 𝑑0 [0]
cannot be used anymore due to monotonicity on 𝑑0. □

As shown in Example 4, a cached item can be in a state that it
could never be used to answer read requests, due to monotonicity,
consistency and data freshness in MCC. They are naturally key to a
cache policy to be optimal as in case of cache overflows, such items
could be safely evicted without impairing any potential MCC hits.

Obsolete items. Consider a sequence ℓ of requests to be processed
over cache C. At any time 𝑡 , an item 𝑑 in cache C is obsolete for ℓ if
for any read request 𝑅 ∈ ℓ to be processed at or after time 𝑡 , 𝑑 can
never be used by any MCC schedule to answer 𝑅 over C even 𝑑 ∈ 𝑅.

Note that, obsolete items are a concept over time. Indeed, 𝑑 can
be obsolete in C upon the arrival of request 𝑅 ∈ ℓ , while it however
could still be used in an MCC hit for a read request prior to 𝑅.

A principle. The concept of obsolete items naturally gives us a
principled approach to the design of MCC policies: when a cache
overflow occurs, i.e., C is short of space for newly fetched items, it
is natural to evict items in C that are obsolete at the time first.

Indeed, for any MCC schedule 𝑃 for ℓ over C, let 𝑃 ′ be a schedule
derived from 𝑃 as follows: for each read request 𝑅 ∈ ℓ , 𝑃 ′ [𝑅] first
evicts all items in C that are obsolete at the timewhen𝑅 is processed,
and then follows 𝑃 [𝑅]. Then the cost of 𝑃 ′, i.e., the total number of
items fetched from the database, is no larger than that of 𝑃 over ℓ ,
and moreover, 𝑃 ′ is a valid MCC schedule for ℓ as long as 𝑃 is.

However, in order to understand and make full use of the idea,
there are two questions to answer. (1) How effective is evicting
obsolete items in reducing the cost of cache schedules? (2) What is
the complexity of identifying obsolete items?
Effectiveness. We first study the effectiveness of evicting obsolete
items, by examining the extent that obsolete items can help reduce

non-MCC hits. Intuitively, one of the main differences betweenMCC
and conventional caching is that a cache hit under MCC can be a
non-MCC hit and hence is invalid. We want to know whether by
evicting obsolete items we can eliminate non-MCC hits and narrow
down the gap between MCC and conventional caching.

We show that obsolete items indeed capture all non-MCC hits
with Lazy. For convenience, assume w.l.o.g. that we evict obsolete
items after answering each read request 𝑅 in ℓ over C. Note that this
is not a restriction as obsolete items at the time right after answering
𝑅 are exactly those right before 𝑅′, where 𝑅′ is the read request
immediately next to 𝑅 in ℓ . Consider sequence ℓ over cache C.

We say that a read request 𝑅 is an MCC miss over C if one can
make 𝑅 into anMCC hit over C by fetching items in 𝑅\C only. Then
by induction on the length of ℓ , one can readily verify the following.

Proposition 2: For any MCC schedule 𝑃 for ℓ over C, if 𝑃 evicts all
obsolete items right after each read request, then with both Lazy and
Eager each read request 𝑅 in ℓ is either an MCC hit or MCC miss. □

Proposition 2 tells us that the principle of evicting obsolete items
helps eliminate all non-MCC hits and non-MCCmisses. This justifies
the effectiveness of the principle for MCC cache policies.
Complexity. To use the principle of evicting obsolete items in prac-
tice, it is necessary to understand the complexity of obsolete items.

Theorem 3: (1) It is in Ptime to decide whether an item in C is
obsolete with Lazy at the time when a read request 𝑅 in ℓ is processed.

(2) It becomes coNp-Complete when Eager is used. It remains coNp-
Hard even staleness bound 𝑠 is a fixed constant no smaller than 1. □

Proof sketch: We first sketch a proof of Theorem 3(2). To see that it
is in coNp, observe that an item 𝑑 in C is not obsolete at time 𝑗 iff
there exists an MCC schedule that uses 𝑑 to answer a request at or
after 𝑗 , and it is in Ptime to check whether a schedule witnesses this.
We show that it is coNp-Hard by proving it is Np-Hard to check
whether 𝑑 is not obsolete, via a reduction from the 3SAT problem,
which is Np-Complete [35]. Given a proposition formula𝜓 , 3SAT
decides whether𝜓 is satisfiable. The reduction uses a cache of size
5𝑛 +𝑚 + 3, ℓ with 6𝑛 + 3𝑚 + 3 read and 2 write requests, and s=1,
where𝑚 (resp. 𝑛) is the number of clauses (resp. variables) in𝜓 . □

We will constructively prove Theorem 3(1) in Section 5 by de-
veloping a Ptime algorithm for finding obsolete items.

5 AN OPTIMAL BATCH MCC POLICY
Using the principle developed in Section 4, we present bMCP, a
“small-but-sweet” MCC policy for the batch model that works with
both Lazy and Eager, and is proven optimal with Lazy.

Conceptually, the basic idea of bMCP is simple: when a cache
overflow occurs upon a read request 𝑅 in a sequence ℓ , it first evicts
all obsolete items in the cache at the time, to see whether 𝑅 can
be made a cache hit; if not it further evicts cached items of which
the next read time in ℓ is the furthest away from 𝑅, until C has
enough room to hold items requested by 𝑅. There are however two
challenges regarding the design and analysis of bMCP. (1) How to
deal with non-MCC cache hit or cache miss of which the hit part is
inconsistent? (2) Why is this embarrassingly simple policy optimal
with Lazy? Below we formally address the challenges.

896

ALGORITHM 1: The bMCP policy
Input: Cache C, sequence ℓ , staleness bound 𝑠 .
Output:MCC cache schedule 𝑃 for ℓ over C.
Upon each read request 𝑅𝑖 in ℓ :

1 if 𝑅𝑖 is anMCC hit over C then 𝑃 [𝑅𝑖] ← nil; // no need to update cache for 𝑅𝑖
2 else // 𝑅𝑖 is a non-MCC hit or cache miss
3 𝑙 ← decideDBv(𝑅𝑖 , C, 𝑠) ; // decide the database version that 𝑅𝑖 should see
4 update cached copies of items of 𝑅 by reading from 𝐷 [𝑙] if they are older;
5 if 𝑅𝑖 ⊈ C and C has no room for 𝑅𝑖 \ C then // 𝑅𝑖 is a cache miss
6 𝑂 ← OB(C, ℓ𝑖 , 𝑠) ; // ℓ𝑖 : the suffix of ℓ starting from 𝑅𝑖

7 evict all items in𝑂 from C ; // evicting obsolete items

8 foreach item 𝑑 of 𝑅𝑖 that is not yet cached in C do
9 if C is full then // obsolete items do not suffice; further apply Belady’s rule
10 evict from C the item with next read time furthest in ℓ ;

11 read 𝑑 from version 𝐷 [𝑙] and cache it in C;
12 𝑃 [𝑅𝑖] ← all evictions and reads for 𝑅𝑖 ; // cache actions to make 𝑅𝑖 MCC hit

Procedure decideDBv(𝑅, C, 𝑠) // for Lazy
1 foreach 𝑑 ∈ 𝑅 ∩ C do 𝑙𝑑 ← max(𝑑.minV, 𝑑 .lastV) ;
2 return 𝑙 ← max𝑑∈𝑅∩C 𝑙𝑑

Procedure OB(C, ℓ𝑖 , 𝑠)
1 do a dry run of bMCP(C, ℓ𝑖 , 𝑠) by assuming C has an infinite capacity;
2 return the set of items initially in C that do not appear in ℓ𝑖 or are

updated by line 4 of bMCP in the dry run;

The bMCP policy. As shown in Algorithm 1, given a cache C (of
bounded capacity), sequence ℓ of requests, and a staleness bound
𝑠 that imposes the data freshness requirement, bMCP generates a
cache schedule 𝑃 for ℓ over C by deciding the cache update actions
𝑃 [𝑅𝑖] for each read request 𝑅𝑖 in ℓ , one after another.

Specifically, if 𝑅𝑖 is an MCC hit, 𝑃 [𝑅𝑖] is simply nil as no cache
update is needed to serve 𝑅𝑖 over C (line 1). Otherwise, 𝑅𝑖 is either
a cache miss or non-MCC hit; in both cases C needs to be updated
to accommodate 𝑅𝑖 . To this end, bMCP first decides whether the
cached part of 𝑅𝑖 satisfies monotonicity, consistency and staleness
in C. It does this by deciding the database version 𝑙 that 𝑅𝑖 should
see according to the MCC scheme, via decideDBv (line 3; more
below). If the cached copies of items requested by 𝑅𝑖 do not agree
with 𝐷 [𝑙], it updates them by re-fetching them from 𝐷 [𝑙] (line 4).

If 𝑅𝑖 still misses items in C, i.e., 𝑅𝑖 is a cache miss, bMCP first
evicts all obsolete items from C via OB (lines 5-7; more below). It
then fetches items of 𝑅𝑖 that are not cached in C from 𝐷 [𝑙] one
by one (lines 8-11). If C still has no sufficient space to hold all the
missing items for 𝑅𝑖 , it then applies the Belady’s rule, i.e., evicting
the cached items of which the next request time is the furthest in ℓ ,
until all items of 𝑅𝑖 are brought in C. These eviction and fetching
operations form the cache actions for 𝑅𝑖 in 𝑃 (line 12).
(1) Deciding database version (decideDBv). We next describe how
bMCP decides the database version 𝑙 for each read request 𝑅. For
Eager, this is straightforward as 𝑙 is simply the latest database ver-
sion. The algorithmic logic for Lazy is also shown in Algorithm 1.
Intuitively, for each cached item 𝑑 , we record two database versions,
(a) 𝑑.minV for the minimum database version that contains 𝑑 while
conforming to staleness bound 𝑠 , and (b) 𝑑.lastV keeps the lowest
database version that contains 𝑑 in the same version as the cached
𝑑 that was lastly used by some read request 𝑅′ preceding 𝑅 in ℓ .

With this, decideDBv decides, for each 𝑑 of 𝑅 that is also cached
in C, a version 𝑙𝑑 that conforms to both staleness and monotonicity

by taking the maximum of 𝑑.minV and 𝑑.lastV (line 1). It then picks
the maximum 𝑙𝑑 among all items 𝑑 of 𝑅 that are in C as the database
version 𝑙 for 𝑅 (line 2). This further warrants consistency for 𝑅.
(2) Identifying obsolete items (OB). As also shown in Algorithm 1,
procedure OB identifies obsolete items for bMCP via a dry run of
bMCP over C for ℓ𝑖 , by assuming C has an infinite capacity. Hence,
the conditions in line 5 and line 9 never hold, i.e., no eviction occurs
in the dry run (which also ensures that OB is never invoked in the
dry run). It returns all items that are in C at the start of dry run
but are never used to answer some read request. That is, all items
that are initially in C but are (a) updated by line 4 of bMCP or (b)
not requested by ℓ𝑖 are returned as obsolete items.
Example 5: Continue with Example 2. We show how bMCP gener-
ates the cache schedules. Consider Lazy first. bMCP decides that 𝑅1
is a cache miss and fetches 𝑑4 and 𝑑5 for it from 𝐷 [0], which causes
a cache overflow. It then evicts all obsolete items, i.e., 𝑑0 and 𝑑1,
from C to make 𝑅1 into an MCC hit. Again, 𝑅4 is a cache miss and
cache overflow; however, there exists no obsolete item in C. Hence,
bMCP evicts 𝑑4 and 𝑑5 for 𝑅4 and caches 𝑑0 and 𝑑1 from 𝐷 [1]. After
that, it decides that 𝑅5 and 𝑅6 are both MCC hit. This is exactly the
cache schedule in Example 2. The case with Eager is similar. □

Analysis. We next show that OB and bMCP are constructive proofs
of Theorem 3(1) and Theorem 1(3), respectively.
Complexity. We start with complexity analysis. For each read re-
quest 𝑅 in ℓ , bMCP can decide cache actions 𝑃 [𝑅] in𝑂 (|𝑅 |) +𝑇ob (𝑅)
time, where |𝑅 | is the number of items requested by 𝑅 and 𝑇ob (𝑅)
is the time for identifying obsolete items via OB for 𝑅 if 𝑅 causes a
cache overflow. In theory, 𝑇ob (𝑅) is 𝑂 (|ℓ𝑅 |), where ℓ𝑅 is the suffix
of ℓ starting from 𝑅 and |ℓ𝑅 | is the total length of ℓ𝑅 . However, in
practice, the dry run of OB does not need to examine all requests
in ℓ𝑅 . As will be practiced in Section 7, by scanning as few as 10
requests OB can typically identify sufficiently many obsolete items.
Properties. bMCP guarantees monotonicity and consistency, and is
theoretically optimal when used with Lazy.

Theorem 4: Under the batch model,

(1) bMCP is monotonic and consistent with both Lazy and Eager;

(2) OB finds all the obsolete items with Lazy; and

(3) bMCP is optimal with Lazy. □

Proof sketch: (1) is assured by the design of bMCP (lines 4 and 11).
(2) is more intriguing. The crux is a lemma: with Lazy for any MCC
schedule 𝑃 for ℓ over C, if an item𝑑 [𝑖] is obsolete at time 𝑗 by 𝑃 , then
for any MCC schedule 𝑃 ′ for ℓ that keeps 𝑑 [𝑖] in C at time 𝑗 , 𝑑 [𝑖]
must also be an obsolete item in 𝑃 ′. We prove (3) by induction on the
length of ℓ , using a lemma: an item 𝑑 [𝑖] is obsolete for 𝑅 iff the data-
base version that decideDBv(𝑅) identifies does not contain 𝑑 [𝑖]. □

6 ONLINE POLICIES WITH ML ORACLES
We next extend our study of MCC policies to the semi-online model
(Section 6.1) and online model (Section 6.2), by again applying the
principle of evicting obsolete items. However, the challenge is, in
both models, the policies cannot decide obsolete items as they have
no knowledge of future (write) requests. Nonetheless, we propose

897

ML-augmented MCC policies that can incorporate any blackbox bi-
nary classifier as an oracle that predicts whether a cached item is ob-
solete. Moreover, we show that the policies are robust: (a) they bene-
fit from accurate classification and can even be optimal; and (b) they
are still theoretically competitive even with adversarial predictions.

6.1 A Robust Competitive Semi-Online Policy
We first present sMCP, anMCC policy for the semi-online model that
incorporates only a binary classifierM for deciding obsolete items.

The sMCP policy. The design of sMCP is simple: we simply replace
line 6 of bMCP in Algorithm 1 by invoking a plugged-in ML classifier
M that predicts obsolete items in C (more below). All the other
steps of sMCP remain exactly the same as bMCP.
ML oracle. sMCP can be used with any blackbox ML classifier M
that, given a cached item 𝑑 in C, predicts whether 𝑑 is obsolete. It
usesM as an oracle and does not make any assumption on its design
or what guarantees it must have on the generalization error. We will
give a proof-of-concept design ofM in Section 7 shortly and show
that sMCP can already benefit from models with moderate accuracy.

Properties. While sMCP is simple, it has interesting properties.
Specifically, its competitive ratio can be quantified by the classifica-
tion accuracy ofM over ℓ , which verifies that it can benefit from
good predictions fromM and even be optimal. Furthermore, we
also show that sMCP can be made robust against arbitrarily badM.

Competitiveness.We first review the notion of competitiveness [54],
which has been widely used to analyze online algorithms [13, 31].

In the context of MCC, a policy P is 𝑐-competitive against policy
P′ if, for every sequence ℓ of requests, cost(P, ℓ) ≤ 𝑐 · cost(P′, ℓ) +
𝑂 (1), where cost(P, ℓ) is the cost of the schedule 𝑃 thatP generates
for ℓ , and 𝑐 is called a competitive ratio. P is 𝑐-competitive if P is
𝑐-competitive against OPT, the optimal offline policy, i.e., bMCP
for MCC. Here 𝑐 could be a function over ℓ , to express instance-
dependent competitiveness. In particular, P is optimal if it is 1-
competitive, i.e., it has the lowest cost on every ℓ among all policies.

We say that the ML oracleM makes a mis-classification if it pre-
dicts that an item 𝑑 is obsolete while it is not or vice versa. Denote
by 𝜂 (ℓ) the accumulated absolute error thatM makes when sMCP
generates schedules for ℓ with M, which is the total number of
mis-classificationsM makes. Let 𝜖 (M) = 𝜂 (ℓ)

cost(OPT,ℓ) . Intuitively,
𝜖 (M) measures the quality of the ML oracleM by comparing its
accumulated absolute error with the total cost that OPT (i.e., bMCP)
incurs over the same input ℓ . Then below we show that the compet-
itive ratio of sMCP, denoted by CR(sMCP), is a function over 𝜖 (M).
(See Appendix A of full version [4] for a formal proof.)

Lemma 5: With Lazy, CR(sMCP) ≤ 1 + 𝜖 (M). □

Proof sketch: An error ofM can either be (a) an FP error if it predicts
𝑑 obsolete while it is not, or (b) an FN error if it tells that 𝑑 is not
obsolete while it indeed is. We then show that each FP and FN error,
respectively, causes at most 1 more cost when compared to bMCP
with Lazy. Hence, cost(sMCP) ≤ cost(bMCP) + 𝜂1 + 𝜂2, where 𝜂1
and 𝜂2 are the accumulated absolute FP and FN errors, respectively.
This gives an upper bound of 1 + 𝜖 (M) on CR(sMCP) with Lazy. □

Lemma 5 verifies the following about policy sMCP.

ALGORITHM 2: The oMCP policy (online model)
Input: Cache C, sequence ℓ revealed one by one online, staleness bound 𝑠 .
Output:MCC cache schedule 𝑃 for ℓ over C.
Upon the arrival of 𝑅𝑖 :

1 if 𝑅𝑖 is anMCC hit over C then
2 𝑃 [𝑅𝑖] ← nil;
3 mark all items requested by 𝑅𝑖 in C;
4 else // 𝑅𝑖 is a non-MCC hit or cache miss
5 𝑙 ← decideDBv(𝑅𝑖 , C, 𝑠) ; // recall from Algorithm 1
6 foreach 𝑑 ∈ 𝑅𝑖 ∩ C do
7 if the cached version of 𝑑 in C is older than the one in 𝐷 [𝑙] then
8 update 𝑑 in C by re-fetching it from 𝐷 [𝑙];
9 mark 𝑑 in C;

10 foreach item 𝑑 of 𝑅𝑖 that is not yet cached in C do
11 if C is full then // C has no room for 𝑑
12 if there exists no unmarked item in C then
13 unmark all the items in C and start a new phase;
14 foreach 𝑑𝑜 ∈ C do
15 if M predicts that 𝑑𝑜 is obsolete then
16 evict 𝑑𝑜 from C

17 if C still has no room for 𝑞 then
18 evict the least recently used item in C ; // use LRU

19 read 𝑑 from version 𝐷 [𝑙] and cache it in C;
20 mark 𝑑 in C;

21 𝑃 [𝑅𝑖] ← all evictions and reads for 𝑅𝑖 ; // cache actions to make 𝑅𝑖 MCC hit

(1) sMCP benefits from accurate predictions fromM. It gets strictly
better performance (competitiveness) with ML oracles of higher
accuracy. In particular, whenM produces absolutely accurate pre-
dictions, sMCP becomes optimal as CR(sMCP) = 1 with Lazy.

(2) sMCP has decent performance even with moderateM. Indeed,
𝜖 (M) is easily much smaller than 1 as the absolute errorM makes
over ℓ is typically smaller than the total cost of OPT over ℓ . This is
because each item incurs 1 cost when it is brought into the cache C
by OPT, while not all items in C of sMCP are mis-classified byM.

ML robustness. We say that a policy P is ML-robust if its com-
petitive ratio is no larger than a number that is independent of the
length |ℓ | of ℓ , no matter how bad the ML oracleM becomes. Note
that, Lemma 5 does not show that sMCP is ML-robust as we have
not derived an upper bound for 𝜖 (M) independent of |ℓ |.

Instead of upper bounding 𝜖 (M), we show that one can make
sMCP robust by further combining it with another variant of bMCP.
Denote by bMCP0 the variant of bMCP without lines 5-7 in Algo-
rithm 1, and by sMCP∗ the below combination of sMCP and bMCP0:

(a) Run both sMCP and bMCP0 independently on input ℓ in parallel.
(b) sMCP∗ switches between following the actions of sMCP and

the actions of bMCP0 (it starts with sMCP initially). It switches
from sMCP to bMCP0 upon 𝑅 of ℓ if the cost of sMCP so far is at
least twice as that of bMCP0; similarly when it switches from
bMCP0 to sMCP. When switching from one to another, sMCP∗

reconciles its cache content to that of the one it switches to.

Note that sMCP∗ does not actually operate the cache and read the
database when executing sMCP and bMCP0 as it only simulates their
cache decisions. The combination method has been developed to
combine multiple online algorithms for the paging problem [17, 30,
31]. It ensures that the combined algorithm is competitive against

898

each individual component algorithm. Below we show that the idea
also applies to MCC, and moreover, sMCP∗ is ML-robust.

Theorem 6: With Lazy, (1) sMCP∗ is 18-competitive even whenM
produces arbitrarily bad classification; and (2) sMCP∗ is optimal when
M produces no mis-classification. □

Proof sketch: We prove (1) by using the following lemmas: (a) bMCP0

is 2-competitive with Lazy under the semi-online model, and (b)
sMCP∗ is 9-competitive to both bMCP0 and sMCP. Here Lemma (b) is
verified by proving that the total cost of switching from bMCP0 to
sMCP (resp. sMCP to bMCP0) is bounded by the cost of bMCP0 (resp.
sMCP), and then applying the online algorithm combiner of [17, 31].
For (2), it follows from that sMCP reduces to the bMCPwith perfectM
and sMCP∗ starts with copying sMCP and never switches to bMCP0.□

6.2 Extending to the Online Model
We further extend our study to the online model. Along the same
lines as sMCP, we present oMCP, an online MCC policy that incorpo-
rates any blackbox binary classifierM for deciding obsolete items.
We show that oMCP is both competitive and ML-robust.

Similar to bMCP and sMCP, oMCP also applies the principle of evict-
ing obsolete items with a plugged-in ML oracleM. However, there
are two new challenges under the online model. (1) It cannot employ
the Belady’s rule to further evict items when cache overflow occurs
even when all obsolete items have been evicted (line 10 of Algo-
rithm 1), as it does not have access to subsequent read requests in ℓ .
(2) As a result of (1), the consequence of mis-classification byM on
the competitiveness of the policy could be amplified unboundedly
by non-optimal eviction choices made in line 10 of Algorithm 1.

Hence, one cannot simply replace OB and Belady’s rule in line 10
of bMCP with ML oracleM and some alternative eviction strategy
e.g., LRU, respectively, as this would yield an uncompetitive policy.

The oMCP policy. In contrast to sMCP that evicts obsolete items
upon each overflow, oMCP invokesM and evicts obsolete items in
phases to bound the affected scope of mis-classifications byM.

More specifically, as shown in Algorithm 2, oMCP decides the
cache update action 𝑃 [𝑅𝑖] upon the arrival of a read request 𝑅𝑖 in
a way that is similar to sMCP, except that it divides its run over
ℓ in phases by marking items in the cache C. An item 𝑑 in C is
marked at the time when it is brought into C (lines 9 and 20), or
when it is part of an MCC hit for 𝑅𝑖 (line 3). A phase ends when all
items in C are marked (line 12). In such case, a new phase starts
by unmarking all items in C (line 13). Marking and unmarking are
logical operations for partitioning the execution trace of oMCP over
ℓ into phases; they are not part of cache actions in the schedule.

Policy oMCP only invokes the ML oracle M and evicts items
that are predicted obsolete byM at the beginning of each phase
(lines 12-16). If C still has no room to hold new items requested
by a cache miss 𝑅𝑖 after evicting the predicted obsolete items or in
the middle of a phase where no obsolete items are evicted (line 17),
oMCP falls back to use LRU as the eviction strategy as an alternative
to the Belady’s rule used by bMCP and sMCP (line 18).

Analysis. Similar to sMCP, oMCP guarantees monotonicity and con-
sistency since (a) bMCP does and (b) oMCP differs from bMCP only in
their identified obsolete items, which only affect the performance,

i.e., competitiveness, of the cache policies. We next show that oMCP
is both competitive and ML-robust. Let 𝑘 be the size of C.
Theorem 7: (1) oMCP is 𝑘-competitive even whenM is arbitrarily
bad, e.g.,M mis-classifies each and every item. (2) There exists no de-
terministic onlineMCC policy that is 𝑘′-competitive, for any 𝑘′ < 𝑘 . □

By Theorem 7(1), we know that oMCP is competitive and ML-
robust against mis-classifications from arbitrarily badM. Moreover,
Theorem 7(2) confirms that oMCP is as good as any deterministic
online MCC policy without using ML, no matter how badM can be.

Proof sketch: We verify (1) by proving the following lemmas, with
Lazy. (a) With adversarialM, the cost of oMCP is at most 𝑘 + 𝑁𝑖 in
phase 𝑖 , where 𝑁𝑖 is the number of obsolete items arrived in phase
𝑖 . (b) The optimal bMCP incurs at least 1 + 𝑁𝑖 costs in phase 𝑖 . For
(2), observe that traditional caching is a special case of MCC and
the best deterministic traditional online policy is 𝑘-competitive. □

7 EXPERIMENTAL STUDY

Findings. Using YCSB benchmark and real-life traces, we experi-
mentally evaluated the effectiveness of cache policies bMCP, sMCP
and oMCP using Memcached and Redis under the batch, semi-online
and online models, respectively. Our main finding is that they
clearly outperform existing cache policies. More specifically:

• Under the batch model, bMCP outperforms MCC variants of con-
ventional policies in cost (number of database reads) by 42.76%
on average; in particular, it improves the optimal conventional
policy, Belady [19], by 30.61% on average, up to 45.12%.

• Under the semi-online model, sMCP outperforms conventional
policies by 41.28% on average with an ML oracleM that has an
accuracy of 95%; it has a lower cost than the optimal conven-
tional policy Belady even when the accuracy ofM is below 75%.

• For the online model, the cost of oMCP is on average 20.01% lower
than that of the conventional policies with MLM of accuracy
of 95%. Similar to sMCP, oMCP is also robust: it has lower cost
than competitors even ifM has an accuracy below 75%.

• We developed a simple proof-of-concept ML modelM for pre-
dicting obsolete items. By deployingMCCache atop Redis and
Memcached with HBase as the backend database andM as the
ML module, we find that on average, the throughput of Redis
is 85.23%, 68.17% and 35.51% higher with bMCP, sMCP and oMCP
than with the competitor policies, respectively.

Below we first specify the settings (Section 7.1). We then present
our evaluation results on the costs of all cache policies (Section 7.2).
Finally, we discuss our proof-of-concept ML model for sMCP and
oMCP, and system throughput evaluation of Redis and Memcached
as caches withMCCache and HBase as the database (Section 7.3).

7.1 Experimental Setup
Datasets. We used both benchmark transactions and three real-life
access traces as sources of set-based requests that MCC targets.
YCSB benchmark. We used YCSB [24] to generate read and write
transactions conforming to YCSB core A workloads, where each
item is a value; the tasks are transactions that access the items via
keys and serve as the MCC requests. It has the below parameters:

899

◦ 𝜃 : the built-in Zipfian distribution parameter in YCSB to control
the skewness of reads and writes; larger 𝜃 means more skewed
read/write accesses. We varied 𝜃 from 0.8 to 1.2 (1.2 by default).

◦ write%: the percentage of write requests in the YCSB trace; larger
write% indicates higher rate of updates to the YCSB database.
We varied write% from 30% to 50% and set it to 50% by default.
◦ #-queries: the total number of read/write operations in a trans-

action, ranging from 4 to 12, and is set to 8 by default.
◦ 𝑝write: the percentage of operations in a (hybrid) request that

are write, which varies from 12.5% to 62.5% (50% by default).
◦ dbsize: the size of the YCSB database, ranging from 10GB to

30GB, with the number of keys varied from 10M to 30M.
◦ vsize: the size of an item (value) in YCSB database. We varied

vsize in [1KB, 1024KB] (1KB by default), following [24, 42, 64].

Distributions. In addition to the default Zipfian, we also tested
with alternative YCSB built-in distributions [24]: (a) Uniform: each
item has an equal probability to be read/written; (b) Exponential:
reads/writes follow an exponential distribution; and (c) Latest: sim-
ilar to Zipfian but tends to access significantly more new items.
Real-life traces. We also used real-life traces from three applications.
(a) Wiki: a slice of real-life web access trace collected on a CDN
node serving media content for Wikipedia [68]. Wiki consists of
108 items that are grouped into requests. The number of operations
(#-queries) in a Wiki request, the write percentage (write%) and
the percentage of write operations in a hybrid request (𝑝write) are
varied in the same way as YCSB does.
(b) Twitter: a one-week-long user requests trace from Twitter’s in-
memory caching clusters collected in March 2020 [75], where each
record has explicit reads and writes. We tested with its cluster 14
and used the successive reads and writes as set-based requests.
(c) Ibm: a single week cloud-based key-value dataset with 99 traces
collected from IBM Cloud Object Store service [29]. Each trace
includes 22 thousand to 187 million read/write requests. We used
trace 1 and varied requests in the same way as YCSB and Wiki do.

Given a configuration of the parameters, we generated sequences
of requests as workloads, each consisting of 5000 requests.
Cache policies. We implemented all our MCC policies, i.e., bMCP,
sMCP and oMCP for the batch, semi-online and online policies, re-
spectively. In addition, we also developed the following policies as
baselines that are adopted from conventional cache policies:
(a)mcBelady: a simplified version of bMCP that does not evict obso-
lete items, i.e., Algorithm 1 without lines 5-7. It treats each request
as multiple singleton reads and processes them one by one, using
Belady [19] for eviction upon cache overflows.
(b) LRU: the mostly used cache policy (default in Redis and Mem-
cached); we tailored it forMCC similar to howwe derivedmcBelady.
(c) LRU-k [61]: a popular variant of LRU adopted for MCC.
(d) BeladySet: a direct application of Belady’s rule that processes
one (set-)request at a time without serializing it first.
(e) LRUSet: a direct application of LRU similar to BeladySet.

Among them, mcBelady and BeladySet work for the batch and
semi-online models only, while others work for all input models. We

injected cache schedules of all policies into Redis/Memcached via
MCCache, so that they are compared in exactly the same fair setup.
System deployment. We deployedMCCache [6] atop Redis v7.0.2
and Memcached v1.5.6, with HBase v2.2.4 as the backend database
that stores all the four datasets. For sMCP and oMCP, our imple-
mentation either (a) accepts a classification on obsolete items with
controlled accuracy so that we can evaluate the impact of the clas-
sification accuracy on the cost of sMCP and oMCP schedules; or (b)
directly uses a plugged-in ML classification model that predicts
obsolete items on-the-fly, so that we can evaluate the impact of the
cache policies on the overall system performance, e.g., throughput.
Configuration. The experiments were run on AWS EC2, where we
used the m5.24xlarge instance for HBase and m5.8xlarge for Redis
and Memcached. All instances are in the same region connected
by 10 Gigabit intranet. The cache size was set to a 𝑝csize fraction of
the database. We varied 𝑝csize from 10% to 30% (20% by default). We
also varied the staleness bound 𝑠 ofMCC from 0 to 10 (10 by default).
When varying a parameter, all other parameters were set to their
default. Each experiment was run 3 times. The average is reported.

7.2 Cost of Cache Policies
We first evaluated the effectiveness of all cache policies in reducing
database read load. To do this, we tested the cost of the policies,
measured as #dbread, the total number of reads to the database
when serving YCSB and Wiki workloads. Note that, #dbread is not
exactly consistent with cache hit rate, since a non-MCC hit or an
MCC miss could also save reads to the database.
Effectiveness under the batch model. We first report the cost
(#dbread) of all cache policies under the batch model. The results
over all the four datasets are reported in Figures 4a-4h.
(1) bMCP is consistently the best among all policies in all cases with
both Lazy and Eager. On average, the #dbread of bMCP is 30.83%,
44.63%, 44.96%, 51.73% and 50.98% lower than that of mcBelady,
LRU, LRU-k, BeladySet and LRUSet, respectively, over YCSB with
Lazy, up to 45.12%, 52.25%, 52.97%, 61.79% and 61.08%; similarly for
other traces. This also confirms the optimality of bMCP (Theorem 4).
(2) As shown in Figures 4a-4e, the benefit of bMCP is even more
evident when the workloads are skewed or with larger write%, i.e.,
higher update rate. Over YCSBwith Lazy, when 𝜃 varies from 0.8 to
1.2, the gap between bMCP and the second-best policy,mcBelady, in-
creases from 7.21% to 45.12%; similarly, whenwrite% varies from 30%
to 50%, the gap increases from 39.20% to 45.12%. The results are also
consistent when we varied the data distributions (Fig. 4d): the gap
is 26.93% and 38.16% over the Exponential and Latest distributions,
respectively, while it is 15.50% over Uniform that has no skewness.

This is becausewithmore skewed accesses or higher update rates,
cached items are more likely obsolete. It verifies the effectiveness
of the principle of obsolete items underlying all of our policies.
(3) As shown in Fig. 4f, the cost of all cache policies reduces with
larger cache (𝑝csize), while the gaps between bMCP and other policies
are stable. On the other hand, the gaps grow when the staleness
bound 𝑠 increases (Fig. 4g), which shows that bMCP can capitalize
boundedly stale cached items in a consistent and monotonic way.
(4) As shown in Figures 4b and 4h, the cost of all policies becomes
higher with Eager than with Lazy. In particular, bMCP benefits from

900

bMCP mcBelady LRU LRU-k BeladySet LRUSet

0.8 0.9 0.99 1.1 1.2

6

9

12

15

18

#
d
b
re

a
d
(k

)

(a) YCSB: vary 𝜃

30 35 40 45 50
5

10

15

20

#
d
b
re

a
d
(k

)

(b) YCSB: vary write%

12.5 25 37.5 50 62.5
4

8

12

16

20

#
d
b
re

a
d
(k

)

(c) YCSB: vary 𝑝write (%)

uniform exponential latest
4

8

12

16

20

#
d
b
re

a
d
(k

)

 bMCP Belady LRU LRU-k BeladySet LRUSet

(d) YCSB: vary distribution

4 6 8 10 12

2

4

6

8

#
d
b
re

a
d
(k

)

(e) Ibm: vary #-queries

10 15 20 25 30

6

9

12

15

18

#
d
b
re

a
d
(k

)

(f)Wiki: vary 𝑝csize (%)

0 2 4 6 8 10

2

3

4

5

6

#
d
b
re

a
d
(k

)

(g) Twitter: vary staleness bound 𝑠

30 35 40 45 50

10

12

14

16

18

#
d
b
re

a
d
(k

)

(h) YCSB: vary write%

30 35 40 45 50
0.1

0.2

0.3

0.4

th
ro

u
g
h
p
u
t(

M
 t
x
n
s
/s

e
c
)

(i) YCSB: vary write%

1 200 400 600 800 1024
0.1

0.2

0.3

0.4

th
ro

u
g
h
p
u
t(

M
 t
x
n
s
/s

e
c
)

(j) YCSB: vary vsize (KB)

10 15 20 25 30
0.1

0.2

0.3

0.4

th
ro

u
g
h
p
u
t(

M
 t
x
n
s
/s

e
c
)

(k) YCSB: vary dbsize (GB)

800 900 1000 1100 1200
0.1

0.2

0.3

0.4

0.5

th
ro

u
g
h
p
u
t(

M
 t
x
n
s
/s

e
c
)

(l)Wiki: vary #-thds

Figure 4: Experimental results under the batch model: (a)-(g) and (i)-(l) with Lazy; (h) with Eager

Lazy themost. This verifies that the use of slightly stale cached items
in a bounded, monotonic and consistent way does help with cache
performance, and bMCP best exploits stale data in such a safe way.

Semi-online and online: effectiveness andML-robustness. We
also evaluated our semi-online policy sMCP and online policy oMCP
by comparing their #dbreadwith that of all other policies overYCSB
and Wiki. To assess their ML-robustness, we fed sMCP and oMCP
with classification predictions of varying accuracy. In particular, we
denote by sMCP(𝛼%) the sMCP with classification on obsolete items
that has 𝛼% of probability being correct; similarly for oMCP(𝛼%).
Key results under semi-online and online models are shown in
Figs 5a-5c and 6a-6c respectively. For clarity, we only plot the best
competitor i.e.,mcBelady for semi-online and LRU for online model.
(1) Both sMCP and oMCP consistently have much lower #dbread than
other policies over varying workloads when provided with accurate
classification. For instance, the #dbread of sMCP(100%) is on average
41.54%, 51.22%, 51.94%, 59.24%, 58.36% lower than that ofmcBelady,
LRU, LRU-k, BeladySet and LRUSet over YCSB with Lazy, respec-
tively, when varying write% from 30% to 50% (Fig. 5b). The results
are consistent when varying skewness 𝜃 of YCSB (Fig. 5a), over
Wiki (Fig. 5c), or under the online model (Figures 6a-6c).
(2) Both sMCP and oMCP are robust against classification errors. For
instance, sMCP still outperforms mcBelady, the second-best policy,
by 13.89% with classification accuracy as low as 80% when write%
is 50% over Wiki with Lazy; similarly for other cases. Furthermore,
achieving 80% accuracy is not difficult for a binary classification

ML model in caching tasks [67, 68] (also in Section 7.3). On the
other hand, we also noticed that both sMCP and oMCP with 75% ML
accuracy sometimes perform worse than best competitors when
the workloads are less skewed or with fewer writes. This is because
in these cases, cached items are less likely obsolete, which in turn
makes false positive classifications more likely to happen. Neverthe-
less, the ML-robustness of sMCP and oMCP assures us that their per-
formance does not degrade unboundedly even each and every clas-
sification made by the ML model is incorrect (Theorems 6 and 7).
(3) We also find that Eager is more sensitive to classification accu-
racy and relies more on accurate predictions than Lazy. This shows
that Lazy is superior for caching as it allows better use of boundedly
stale items than Eager does. It is also consistent with the theoretical
properties that sMCP and oMCP hold with Lazy.

7.3 System Evaluation: A Proof of Concept
As a proof of concept, we developed a simple binary classification
model M𝑜 for MCCache to decide obsolete items, and deployed
sMCP and oMCP withM𝑜 , as well as bMCP. Using HBase as the back-
end database, we evaluated the throughput ofMCCache atop Redis
and Memcached (Redis by default), with different cache policies
over YCSB andWiki under all three input models.

A classification modelM𝑜 .M𝑜 uses LightGBM [46], which is an
implementation of the Gradient Boosting Decision Tree (GBDT)
framework [33] with strong generalization properties over tabular
data.M𝑜 uses three types of features: (a) delta features that record,

901

sMCP(100%) sMCP(95%) sMCP(90%) sMCP(85%) sMCP(80%) sMCP(75%) sMCP mcBelady LRU LRU-k BeladySet LRUSet

0.8 0.9 0.99 1.1 1.2

6

8

10

12

14

#
d
b
re

a
d
(k

)

(a) YCSB: vary 𝜃

30 35 40 45 50

6

8

10

12

14

#
d
b
re

a
d
(k

)

(b) YCSB: vary write%

30 35 40 45 50

8

10

12

14

#
d
b
re

a
d
(k

)

(c)Wiki: vary write%

30 35 40 45 50

0.16

0.20

0.24

0.28

0.32

0.36

th
ro

u
g
h
p
u
t(

M
 t
x
n
s
/s

e
c
)

(d) YCSB: vary write%

Figure 5: Experimental results under the semi-online model

oMCP(100%) oMCP(95%) oMCP(90%) oMCP(85%) oMCP(80%) oMCP(75%) oMCP LRU LRU-k LRUSet

#
d
b
re

a
d
(k

)

0.8 0.9
16.5

16.6

16.7

16.8

16.9

17.0

17.1

#
d

b
re

a
d

(k
)

(a) YCSB: vary 𝜃

30 35 40 45 50
8

10

12

14

16

#
d
b
re

a
d
(k

)

(b) YCSB: vary write%

30 35 40 45 50

12

14

16

18

#
d
b
re

a
d
(k

)
(c)Wiki: vary write%

30 35 40 45 50
0.16

0.20

0.24

0.28

th
ro

u
g
h
p
u
t(

M
 t
x
n
s
/s

e
c
)

(d) YCSB: vary write%

Figure 6: Experimental results under the online model

for each data item 𝑑 , the distance between consecutive requests con-
taining 𝑑 ; (b) set-request features that encode the data items of each
request; and (c) frequency features that keep track of the occurrence
frequency of the data items in the requests. All the features are
computed using a sliding window of 2000 requests over the training
set, of which the labels are computed via OB of Algorithm 1.

Throughput. To quantify the effectiveness of all cache policies via
throughput, we run multiple cache threads of requests from the Re-
dis nodes to keep the HBase node saturated. We varied the number
of threads (#-thds) from 800 to 1200 (1000 by default) by controlling
the number of cache nodes. Each request thread was run for 1 hour
and the throughput of the overall system, i.e., the number of requests
processed per second, was calculated. The throughput is based on
the end-to-end processing time, including the overhead of classifi-
cation byM𝑜 . Key results under the batch, semi-online and online
models are reported in Figures 4i-4l, Fig. 5d and Fig. 6d, respectively.
(1) With bMCP the system throughput is consistently the high-
est among all policies. For instance, over YCSB with Lazy, the
throughput of bMCP is on average 52.80%, 80.81%, 79.06%, 109.82%
and 107.97% higher than mcBelady, LRU-k, LRU, BeladySet and
LRUSet, respectively, when write% varies from 30% to 50% (Fig. 4i).
(2) The throughput of all cache policies decreases when vsize in-
creases (e.g., Fig. 4j), due to higher cost per read/write operation.
However, the improvement of our policies over competitors re-
mains stable, e.g., consistently around 83.01% over YCSB when
vsize varies from 1KB to 1024KB. In contrast, cache policies are in-
sensitive to dbsize (e.g., Fig. 4k), since the number of reads to HBase
depends on workloads and cache size, independent of dbsize.
(3) As shown in Fig. 4l, most cache policies benefit from increased
threads (larger #-thds) and bMCP has the highest throughput in all

cases. However, the throughput of BeladySet and LRUSet degrades
when #-thds is larger than 1100. This is due to their worse per-
formance (larger #dbread) than the others, which leads to a large
number of read shifted to the database, causing higher contention.
(4) Our example classification modelM𝑜 has an average prediction
accuracy of 92.35%. Nonetheless, we find that sMCP and oMCP with
M𝑜 still outperform their semi-online and online competitors, e.g.,
by 68.17% and 35.51%, respectively, on average over YCSBwith Lazy,
up to 108.77% and 61.99% (Figures 5d and 6d). This shows that sMCP
and oMCP can easily incorporate plugged-in coarsely designed clas-
sifiers and achieve higher system throughput than other policies.

8 CONCLUSION
We have proposedMCC, a cache scheme for set-based requests from
applications that demand consistency and monotonicity. We have
formulated the problem ofMCC policy design, settled its complexity,
and characterized optimal MCC policies. Based on the characteri-
zation, we have developed an optimal MCC policy under the batch
model, and ML-augmented MCC policies for the semi-online and
online models with provably competitiveness and ML-robustness
guarantees. We have developed MCCache, a tool that adds MCC
policies to existing caches, e.g., Redis and Memcached. Our experi-
mental study has verified that the policies are effective in reducing
reads to the database and improving system throughput.

One topic for future work is to incorporate ML predictors on
request sequences [17, 52, 65, 68, 74] to further improve cache per-
formance. Another topic is to consider the per-client monotonicity.

ACKNOWLEDGMENTS
The authors are supported by RAEng RF\201920\19\319 and the
Huawei-Edinburgh Joint Lab.

902

REFERENCES
[1] Mysql cluster cge. https://www.mysql.com/products/cluster/, 2016.
[2] What consistency guarantees should you expect from your streaming data plat-

form? https://materialize.com/blog-consistency/, 2020.
[3] Foshttpcache: An introduction to cache invalidation. https://foshttpcache.

readthedocs.io/en/stable/invalidation-introduction.html, 2021.
[4] Full version. https://homepages.inf.ed.ac.uk/ycao/MCCfull.pdf, 2022.
[5] Materialize. https://materialize.com/, 2022.
[6] Mccache. https://github.com/jiayouanan/mccache, 2022.
[7] Memcached. https://memcached.org/, 2022.
[8] Redis. https://redis.io/, 2022.
[9] Scaling with redis cluster. https://redis.io/docs/manual/scaling/, 2022.
[10] D. J. Abadi and J. M. Faleiro. An overview of deterministic database systems.

Commun. ACM, 61(9):78–88, 2018.
[11] A. Agiwal and K. L. et al. Napa: Powering scalable data warehousing with robust

query performance at google. Proc. VLDB Endow., 14(12):2986–2998, 2021.
[12] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,

D. Mills, P. Nordstrom, and S. Whittle. Millwheel: Fault-tolerant stream process-
ing at internet scale. Proc. VLDB Endow., 6(11):1033–1044, 2013.

[13] S. Albers. Online algorithms: a survey. Mathematical Programming, 97(1):3–26,
2003.

[14] S. Albers, S. Arora, and S. Khanna. Page replacement for general caching prob-
lems. In SODA, volume 99, pages 31–40, 1999.

[15] P. Alvaro, P. Bailis, N. Conway, and J. M. Hellerstein. Consistency without
borders. In SOCC, pages 1–10, 2013.

[16] S. An, Y. Cao, and W. Zhao. Competitive consistent caching for transactions. In
ICDE, pages 2154–2167, 2022.

[17] A. Antoniadis, C. Coester, M. Eliás, A. Polak, and B. Simon. Online metric
algorithms with untrusted predictions. In ICML, pages 345–355, 2020.

[18] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. M. Preguiça, M. Najafzadeh,
and M. Shapiro. Putting consistency back into eventual consistency. In EuroSys,
pages 1–16. ACM, 2015.

[19] L. A. Belady. A study of replacement algorithms for virtual-storage computer.
IBM Syst. J., 5(2):78–101, 1966.

[20] D. Berend, S. Dolev, and M. Kogan-Sadetsky. Adaptiveclimb: adaptive policy for
cache replacement. In SYSTOR, pages 187–187, 2019.

[21] N. Bronson, Z. Amsden, and G. C. et al. TAO: facebook’s distributed data store
for the social graph. In ATC, pages 49–60, 2013.

[22] M. Chrobak, H. J. Karloff, T. H. Payne, and S. Vishwanathan. New results on
server problems. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 291–300, 1990.

[23] M. Chrobak, G. J. Woeginger, K. Makino, and H. Xu. Caching is hard - even in
the fault model. Algorithmica, 63(4):781–794, 2012.

[24] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing cloud serving systems with YCSB. In J. M. Hellerstein, S. Chaudhuri, and
M. Rosenblum, editors, SoCC, pages 143–154. ACM, 2010.

[25] A. Davoudian, L. Chen, and M. Liu. A survey on nosql stores. ACM Comput.
Surv., 51(2):40:1–40:43, 2018.

[26] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly
available key-value store. In SOSP, 2007, pages 205–220. ACM, 2007.

[27] S. Dernbach, N. Taft, J. Kurose, U. Weinsberg, C. Diot, and A. Ashkan. Cache
content-selection policies for streaming video services. In INFOCOM, pages 1–9.
IEEE, 2016.

[28] I. Eyal, K. Birman, and R. van Renesse. Cache serializability: Reducing inconsis-
tency in edge transactions. In ICDCS, pages 686–695, 2015.

[29] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. I. Kat. It’s time to revisit LRU
vs. FIFO. In HotStorage, pages 1–7, 2020.

[30] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.
Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

[31] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. J. Comput.
Syst. Sci., 48(3):410–428, 1994.

[32] L. Folwarczný and J. Sgall. General caching is hard: Even with small pages.
Algorithmica, 79(2):319–339, 2017.

[33] J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[34] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Strong and efficient consistency with consistency-aware durability. In FAST,
pages 323–337, 2020.

[35] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness, volume 24. 1979.

[36] S. Ghandeharizadeh, Y. Alabdulkarim, and H. Nguyen. Rangeqc: A framework
for caching range predicate query results. In SoCC, pages 514–514, 2018.

[37] S. Ghandeharizadeh and J. Yap. Gumball: a race condition prevention technique
for cache augmented SQL database management systems. In DBSocial@SIGMOD,
pages 1–6, 2012.

[38] S. Ghandeharizadeh and J. Yap. Cache augmented database management systems.
In DBSocial@SIGMOD, pages 31–36, 2013.

[39] S. Ghandeharizadeh, J. Yap, and H. Nguyen. Strong consistency in cache aug-
mented SQL systems. In Middleware, pages 181–192. ACM, 2014.

[40] A. Girault, G. Gößler, R. Guerraoui, J. Hamza, and D. Seredinschi. Monotonic
prefix consistency in distributed systems. In FORTE, pages 41–57, 2018.

[41] P. Gupta, N. Zeldovich, and S. Madden. A trigger-based middleware cache for
orms. In Middleware, pages 329–349, 2011.

[42] R. Harding, D. V. Aken, A. Pavlo, andM. Stonebraker. An evaluation of distributed
concurrency control. Proc. VLDB Endow., 10(5):553–564, 2017.

[43] V. Holmqvist, J. Nilsfors, and P. Leitner. Cachematic - automatic invalidation in
application-level caching systems. In ICPE, pages 167–178, 2019.

[44] S. Irani. Page replacement with multi-size pages and applications to web caching.
Algorithmica, 33(3):384–409, 2002.

[45] T. Johnson and D. E. Shasha. 2q: A low overhead high performance buffer
management replacement algorithm. In VLDB, pages 439–450, 1994.

[46] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu. Lightgbm:
A highly efficient gradient boosting decision tree. In NeuIPS, pages 3146–3154,
2017.

[47] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja. Lambda architecture
for cost-effective batch and speed big data processing. In 2015 IEEE International
Conference on Big Data, pages 2785–2792, 2015.

[48] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran. Streaming video over
HTTP with consistent quality. In R. Zimmermann, editor, Multimedia Systems
Conference 2014, pages 248–258. ACM, 2014.

[49] Q. Liu, G. Wang, and J. Wu. Consistency as a service: Auditing cloud consistency.
IEEE Trans. Netw. Serv. Manag., 11(1):25–35, 2014.

[50] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd. The SNOW theorem and
latency-optimal read-only transactions. In OSDI, pages 135–150, 2016.

[51] H. Lu, S. Sen, and W. Lloyd. Performance-optimal read-only transactions. In
OSDI, pages 333–349, 2020.

[52] T. Lykouris and S. Vassilvitskii. Competitive caching with machine learned
advice. J. ACM, 68(4):2401–2425, 2021.

[53] K.Ma and B. Yang. Access-aware in-memory data cachemiddleware for relational
databases. In HPCC, pages 1506–1511, 2015.

[54] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for
server problems. Journal of Algorithms, 11(2):208–230, 1990.

[55] F. McSherry, A. Lattuada, M. Schwarzkopf, and T. Roscoe. Shared arrange-
ments: practical inter-query sharing for streaming dataflows. Proc. VLDB Endow.,
13(10):1793–1806, 2020.

[56] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead replacement
cache. In FAST, pages 115–130. USENIX, 2003.

[57] R. M. Meloca and I. Nunes. A comparative study of application-level caching
recommendations at the method level. Empir. Softw. Eng., 27(4):1–31, 2022.

[58] J. Mertz, I. Nunes, L. D. Toffola, M. Selakovic, and M. Pradel. Satisfying increasing
performance requirements with caching at the application level. IEEE Softw.,
38(3):87–95, 2021.

[59] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad:
a timely dataflow system. In SIGOPS, pages 439–455. ACM, 2013.

[60] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, et al. Scaling memcache at facebook. In NSDI 13,
pages 385–398, 2013.

[61] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page replacement algorithm
for database disk buffering. In P. Buneman and S. Jajodia, editors, SIGMOD, pages
297–306. ACM Press, 1993.

[62] L. Phillips and B. Fitzpatrick. Livejournal’s backend and memcached: Past,
present, and future. In LISA, pages 1–20. USENIX, 2004.

[63] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden, and B. Liskov. Transactional
consistency and automatic management in an application data cache. In OSDI,
pages 279–292. USENIX Association, 2010.

[64] G. Prasaad, A. Cheung, andD. Suciu. Handling highly contendedOLTPworkloads
using fast dynamic partitioning. In SIGMOD, pages 527–542, 2020.

[65] D. Rohatgi. Near-optimal bounds for online caching with machine learned advice.
In SODA, pages 1834–1845, 2020.

[66] X. Shi, S. Pruett, K. Doherty, J. Han, D. Petrov, J. Carrig, J. Hugg, and N. Bronson.
Flighttracker: Consistency across read-optimized online stores at facebook. In
OSDI, pages 407–423, 2020.

[67] Z. Shi, X. Huang, A. Jain, and C. Lin. Applying deep learning to the cache
replacement problem. In MICRO, pages 413–425, 2019.

[68] Z. Song, D. S. Berger, K. Li, and W. Lloyd. Learning relaxed belady for content
distribution network caching. In NSDI, pages 529–544, 2020.

[69] D. Terry. Replicated data consistency explained through baseball. Commun.
ACM, 56(12):82–89, 2013.

[70] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. B. Welch.
Session guarantees for weakly consistent replicated data. In PDIS, pages 140–149.
IEEE Computer Society, 1994.

[71] A. Z. Tomsic, M. Bravo, and M. Shapiro. Distributed transactional reads: the
strong, the quick, the fresh & the impossible. In Middleware, pages 120–133,

903

https://www. mysql.com/products/cluster/
https://materialize.com/blog-consistency/
https://foshttpcache.readthedocs.io/en/stable/invalidation-introduction.html
https://foshttpcache.readthedocs.io/en/stable/invalidation-introduction.html
https://homepages.inf.ed.ac.uk/ycao/MCCfull.pdf
https://materialize.com/
https://github.com/jiayouanan/mccache
https://memcached.org/
https://redis.io/
https://redis.io/docs/manual/scaling/

2018.
[72] M. Van Steen and A. S. Tanenbaum. Distributed systems. Maarten van Steen

Leiden, The Netherlands, 2017.
[73] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.

[74] A. Wei. Better and simpler learning-augmented online caching. In AP-
PROX/RANDOM, pages 1–14, 2020.

[75] J. Yang, Y. Yue, and K. V. Rashmi. A large scale analysis of hundreds of in-memory
cache clusters at twitter. In OSDI, pages 191–208. USENIX Association, 2020.

904

	Abstract
	1 Introduction
	2 Preliminary
	3 Monotonic Consistent Caching
	3.1 Caching with Monotonicity and Consistency
	3.2 Making Cache Monotonic and Consistent

	4 Fundamental Study
	4.1 Complexity of MCC Policies
	4.2 Characterizations

	5 An Optimal Batch MCC Policy
	6 Online Policies with ML Oracles
	6.1 A Robust Competitive Semi-Online Policy
	6.2 Extending to the Online Model

	7 Experimental Study
	7.1 Experimental Setup
	7.2 Cost of Cache Policies
	7.3 System Evaluation: A Proof of Concept

	8 Conclusion
	Acknowledgments
	References

