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ABSTRACT
The Social Network Benchmark’s Business Intelligence workload
(SNB BI) is a comprehensive graph OLAP benchmark targeting
analytical data systems capable of supporting graph workloads.
This paper marks the finalization of almost a decade of research
in academia and industry via the Linked Data Benchmark Council
(LDBC). SNB BI advances the state-of-the art in synthetic and scal-
able analytical database benchmarks in many aspects. Its base is a
sophisticated data generator, implemented on a scalable distributed
infrastructure, that produces a social graph with small-world phe-
nomena, whose value properties follow skewed and correlated
distributions and where values correlate with structure. This is a
temporal graph where all nodes and edges follow lifespan-based
rules with temporal skew enabling realistic and consistent tempo-
ral inserts and (recursive) deletes. The query workload exploiting
this skew and correlation is based on LDBC’s “choke point”-driven
design methodology and will entice technical and scientific im-
provements in future (graph) database systems. SNB BI includes the
first adoption of “parameter curation” in an analytical benchmark,
a technique that ensures stable runtimes of query variants across
different parameter values. Two performance metrics characterize
peak single-query performance (power) and sustained concurrent
query throughput. To demonstrate the portability of the benchmark,
we present experimental results on a relational and a graph DBMS.
Note that these do not constitute an official LDBC Benchmark Re-
sult – only audited results can use this trademarked term.
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Table 1: The SNBBI workload fills in the space between LDBC
SNB Interactive and LDBC Graphalytics. It is a graph OLAP
workload focusing on queries on a labelled attributed graph
with temporal changes (inserts and deletes), targeting sys-
tems with domain-specific query languages. We denote the
data models and features covered, and whether a language is
capable of implementing and allowed to implement a given
benchmark. Notation: ⊗: yes,◯: no,⊘: limited coverage.

OLTP OLAP algorithms
LDBC benchmark SNB Interactive SNB BI Graphalytics

labelled attributed graph ⊗ ⊗ ◯

insert operations ⊗ ⊗ ◯

delete operations ◯ ⊗ ◯

challenging joins ◯ ⊗ ⊘

cheapest path finding ◯ ⊗ ⊗

inter-query parallelism required optional not allowed
query footprint small large all data

SQL with recursion ⊗ ⊗ ◯

GQL, SQL/PGQ, Cypher ⊗ ⊗ ◯

GSQL ⊗ ⊗ ⊗

SPARQL+path extension ⊗ ⊗ ◯

imperative API ⊗ ◯ ⊗

1 INTRODUCTION
Analyzing the connection patterns in graphs is a steadily expanding
use case in data analytics and is projected to still grow considerably
in importance [57]. It is reflected in the increasing role of graph-
shaped data as represented in data models such as (initially) RDF
and increasingly property graphs [5]. While graph analytics is of-
ten associated with obviously graph-intensive application domains
that manage data representing social networks, telecommunication
networks, and enterprise knowledge graphs [60], graph challenges
are also found in traditional relational data warehouses and modern
data lakes, where implicit graphs lurk in the connection patterns
formed between tables that refer to each other through joins along
relationships, esp. along many-to-many relationships. Practitioners,
data system builders, and researchers are increasingly focusing on
graph analysis questions [56], performing tasks such as fraud detec-
tion, recommendation, historical analysis, and root-cause analysis.

The Linked Data Benchmark Council. To expedite the evolution of
the modern graph data management stack, a group of industry and
academic organizations founded the Linked Data Benchmark Coun-
cil (LDBC) in 2012, originally as a European Union-funded project.
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Since 2015 LDBC has been an independent non-profit benchmark-
ing organization that provides a set of standard benchmarks to
make graph processing performance measurable and thus facilitate
competition between vendors. These benchmarks were designed
using a choke point-based methodology [11, 19], which ensures
the coverage of challenging data management features. LDBC thus
fulfills a role similar to the Transaction Processing Performance
Council (TPC), which defined a number of influential benchmarks
(e.g. TPC-C [67], TPC-H [68]) and greatly contributed to the rapid
improvement of RDBMS performance [23].

Graph query languages. Initially, there were no standard data mod-
els and query languages for graph DBMSs, which hindered develop-
ment of benchmarks. LDBC therefore expanded from benchmarking
only to fomenting the development of standards, and established
a liaison with the ISO SQL working group in 2016. Building on,
among others, the LDBC G-CORE [7] proposal, this liaison helped
ISO design the native Graph Query Language (GQL) as well as the
SQL/PGQ (Property Graph Queries) extension, which will be part
of the next SQL standard, expected in 2023 [16].

(a) Model system implementing an ETL process from a transactional
to an analytical data system and the systems targeted by each LDBC
benchmark.

(b)Main components of SNBBI, and their connection to theworkflow
executed by the benchmark driver on the system under test. Writes
(W) apply update operations, reads (R) execute queries.

Figure 1: SNB BI’s model system and main components.

Comparison of LDBC benchmarks. A comparison of the main LDBC
benchmarks is shown in Table 1, including their data model and
dynamic behaviour; the type of operations used and choke points

stressed (see Section 3.1); and the languages allowed for the imple-
mentation. We now provide an overview of these benchmarks.

SNB BI. In this paper, we present SNB BI, the final result of almost
a decade of work in designing the Business Intelligence workload
of the LDBC Social Network Benchmark, with a first evaluation on
multiple systems. As explained in the contributions section, SNB BI
is arguably the most refined and challenging analytical (OLAP) data-
base benchmark to date, and targets relational, RDF, and property
graph database systems. It is different from purely relational OLAP
benchmarks in that the SNB BI queries analyze connection patterns,
including thorough complex pattern matching and cheapest path
finding between many sources and destinations, sometimes over
edges that are not explicitly in the data but computed on-the-fly.

SNB Interactive. LDBC had released the Social Network Bench-
mark’s Interactive workload [20] already in 2015. Although SNB BI
shares the graph schemawith it, SNB Interactive is a different bench-
mark aimed at transactional (OLTP) graph management, measuring
throughput in sustaining a stream of inserts, while answering also
read queries. All read queries start from a single node or a pair of
nodes in the graph such that each query visits a limited number
of nodes only. Each of these queries is followed by a manifold of
simple lookups, that retrieve properties of the visited nodes. This
makes the Interactive workload heavier than other transactional
benchmarks (e.g. TPC-C [67] or YCSB [15]), but still a far cry from
an OLAP benchmark such as TPC-H [68], TPC-DS [69], and SNB BI,
in which each of the queries touches a large fraction of a database,
which can scale to terabytes of data and beyond.

SNB Graphalytics. At the opposing end of the spectrum, LDBC
had also released Graphalytics [31, 32] in 2016, a read-only bench-
mark that tests graph analytics frameworks, and consists of a suite
of graph algorithms (PageRank, clustering, breadth-first search,
etc.). Many of these algorithms cannot be expressed efficiently in a
query language, and instead are formulated in programming lan-
guages such as C++ or Java, embedded through an API in a graph
programming framework (such as GraphX [77], GraphBLAS [33]),
and typically only analyze the structure of the graph, but not the
property values attached to its nodes and edges. SNB BI, on the
other hand, targets queries formulated in a domain-specific query
language, and like analytical relational database benchmarks do,
intensively tests operations on data values (filters, aggregations,
top-k, and some value-based joins) in addition to advanced graph
pattern matching and path finding. As Table 1 shows, SNB BI thus
clearly fills the gap between the transactional SNB Interactive and
the algorithmic and read-only Graphalytics benchmark.

Model system. Figure 1a illustrates the model system targeted by
SNB BI, implementing the following analytical workflow. Initially,
the data resides in a transactional data system that serves a busi-
ness application. To run complex analytical queries, the data set is
transferred to an analytical data system through an ETL (extract-
transform-load) pipeline. To this end, a snapshot of the data is
extracted from the transactional system e.g. by creating a data-
base dump. This is then cleaned and aggregated to form an initial
snapshot data set, which is bulk loaded to the analytical data sys-
tem. Subsequent changes in the transactional system are tracked
by using its transaction log, which is monitored by a data capture
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system such as Debezium [14] and Oracle GoldenGate [48]. Here,
the changes are turned into a stream of insert and delete operations,
applied as trickle updates. Meanwhile, the analytical data system
serves complex ad-hoc analytical queries to multiple clients.

Contributions and paper structure. To allow benchmark executions
that simulate the model system faithfully and yield interpretable
results, SNB BI uses several innovative components, e.g. the data
and parameter generators, and the benchmark driver (shown in
Figure 1b). Moreover, it defines guidelines on how implementations
can be audited. The result is a benchmark that clearly advances
the state-of-the-art in OLAP and graph DBMS benchmarks. We
describe our main contributions in the following sections. Sec-
tion 2 presents the SNB BI Datagen which generates fully dynamic,
correlated graphs, and produces batches of update operations. Sec-
tion 3 outlines the query template design process and highlights
example graph-shaped queries. Section 4 describes parameter cu-
ration techniques that ensure stable runtimes. Section 5 defines
the benchmark’s workflow, its balanced scoring metrics and key
auditing guidelines. Section 6 shows experimental results with two
systems under test, the Umbra RDBMS [43] and the TigerGraph
graph DBMS (GDBMS) [17]. We end the paper by reviewing related
literature in Section 7 and summarizing our findings in Section 8.

2 DATA SET AND BATCH GENERATION
The SNB Datagen generates social network graphs for the SNB
benchmarks. The key design goals of Datagen are to (1) produce
dynamic social networks with realistic characteristics (network
structure, attribute distributions, and correlations), (2) scale for
networks with 100B+ edges, and (3) ensure reproducibility.

Figure 2: Schema of the social network graph. Many-to-many
edges are highlightedwith thick lines. Attributes are omitted.

2.1 Conceptual Overview
Schema. The LDBC SNB uses a graph schema with 14 node types
connected by 20 edge types. The data set consists of a Person–
knows–Person graph and a number of Message trees within Fo-
rums. Messages are connected to Persons by creatorship and likes.
A simplified schema is shown in Figure 2.

Correlated graph. The degree distribution of the Person–knows–
Person network is modelled after Facebook, with the social graph
exhibiting the small-world phenomenon [73] characterized by a
small diameter. Property-value (a.k.a. column-value) distributions
are skewed. Completely unique w.r.t. other graph generators, col-
umn values correlate within an entity (e.g. French people have

predominantly French names) but also correlate with structural
features of the graph. For instance, following the homophily prin-
ciple [38], people are more likely to be friends if they studied at
the same school at the same time, live in close proximity, and/or
have the same interests. The queries in the SNB BI workload exploit
these correlations, and for some queries with two parameters, two
variants exist. This allows us to pick two structurally correlated pa-
rameter values for one query variant, while picking anti-correlated
values for the other (Section 4.3). This results in a query optimizer
seeing structurally identical query variants, with similar-looking
base table selectivities that will, however, have completely different
join hit rates.

Dynamic graph. The SNB social network is a dynamic graph, where
friendships and messages are exchanged at realistic time intervals.
However, these intervals may be skewed to represent flashmob
events where discussed topics spike in popularity for a period
before decaying back to normal [36]. A certain query variant may be
affected by a flashmob, resulting in unexpectedly large cardinalities,
while the other variant is not.

2.2 Generating Deletes
Delete operations. Generating complex delete operations is an im-
portant and unique feature of the SNB BI Datagen. We argue that
supporting efficient delete operations is a crucial and challenging
feature in analytical data sytems: (1) Applying the trickle updates
(Figure 1a) necessitates efficient deletions. (2) Delete operations are
required in order to comply with privacy laws, e.g. the European
Union’s General Data Protection Regulation (GDPR), which has
shown to have a significant impact on the performance of data sys-
tems [61]. (3) Deletion operations limit the algorithms and data struc-
tures that can be used by a system. For instance, many incremental
computations (e.g. for shortest path) are significantly more chal-
lenging in the presence of deletes [53], and several graph-oriented
storage formats support efficient insertions but not deletions [12].

Temporal graph with lifespan attributes. To produce dynamic graphs
which include deletions, the SNB BI Datagen first produces a tempo-
ral graph, which contains all entities that exist at some point during
the simulation period. Within this, entities are assigned lifespan at-
tributes, i.e. their creation date and deletion date. For entities to have
valid lifespans: (1) updates must follow a logical order, e.g. two Per-
sons can become friends (knows edge) only after both join the net-
work and before either Person leaves the network; (2) updates in the
graph should not violate the cardinality prescribed by the schema,
e.g. a Forum can only have a single moderator (hasModerator edge);
(3) updates need to satisfy the semantic constraints required by the
application domain, e.g. a Person can only create a Post in a Forum
if they are a member of the Forum (hasMember edge). To ensure
valid lifespans, we define intervals in which creation and deletion
events can logically occur. Our techniques for deriving these are
presented in [75]. The intervals are defined during the time period
starting at simulation start (the time when the simulated social
network is created) and ending at the network collapse (the time
when the social network is assumed to be shut down) [37]. The
period used in the benchmark starts at simulation start and ends at
simulation end (a point in time before the network collapse).
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Cascading deletes. Deleting graph entities often triggers a cascading
delete. Firstly, it is required there are no dangling edges thus nodes
must be always deletedwith all their edges. Secondly, node deletions
can also trigger the deletion of other nodes, e.g. the deletion of a
Forum implies the deletion of all its Posts and their Comments.

Deletion probabilities. To maintain Datagen’s design principle of
realism, deletion probabilities and timestamp distributions were
derived from real-world data where possible, namely for Person
nodes [37], knows edges [41], and likes edges [3]. The deletion of
Forum nodes (1% during the simulation period) and hasMember
edges (5%) are not motivated by empirical evidence. The deletion
probability of Persons is determined as follows. People with more
connections are less likely to leave a social network to avoid losing
social capital they have accumulated [37]. In Datagen, when a Per-
son is generated, the total number of knows connections they will
make across the simulation period is determined. This information
is leveraged using the deletion distributions provided in [37], whose
authors report a temporal analysis of the now-defunct Hungarian
social network, iWiW. It is assumed the arrival rate of Person nodes
into the network is constant over the simulation period, thus the
same is assumed of the departure rate with deletion timestamps
selected uniformly from the valid deletion interval for a Person.

2.3 Initial Snapshot and Updates

simulation
start

initial snap.
cut-off

simulation
end

network
collapsesnap ins del

(a)
− − −

(b)
✓ − ✓

(c)
✓ − −

(d)
− ✓ ✓

(e)
− ✓ −

Figure 3: Possible dynamic entity creation and deletion
dates with respect to simulation start, initial snapshot cut-off,
simulation end, and network collapse. We indicate whether
the entity is included in the initial snapshot, the insert up-
dates, and the delete updates.

To produce a separate initial data set and a stream of trickle
updates (shown in Figure 1a), we establish a cut-off date and as-
sociate the entities with one or more of the following categories:
(1) the initial snapshot, which contains entities before the cut-off
date; (2) entities inserted after the cut-off date; (3) entities deleted
after the cut-off date. An entity may occur in multiple of these cate-
gories depending on their creation date and deletion date. Figure 3
enumerates all possibilities: In case (a), the entity is created and
deleted before the cut-off, therefore it is discarded from the data set.
(b) presents the case in which the dynamic entity is created before
the cut-off, deleted after the cut-off, but before the simulation end.
Such an entity is serialized into the initial snapshot and spawns a
delete operation. In case (c), the entity is created before the cut-off,

but is deleted after the simulation end, resulting only in inclusion
in the initial snapshot. In case (d), the entity occurs after the initial
snapshot cut-off and is deleted before the simulation end, therefore
it spawns an insert and delete operation. Lastly, in case (e) the entity
is created after the initial snapshot but is deleted sometime after
the simulation end and thus spawns only an insert operation.

Batch splitter. The batch splitter (Figure 1b) produces update batches
consisting of insert operations (Section A.2) and delete operations
(Section A.3), each capturing the updates for a time period of one
day. Note that if an entity is created and deleted within the period
of the batch, it will be included in both update operations. The
rationales behind this decision are to (1) follow the behaviour of a
typical model system (Figure 1a), where handling these redundant
operations would be the task of the analytical data system and
(2) allowmodelling of streaming updates where there is no batching.

2.4 Data Sets
Formats and layout. The SNB BI Datagen is capable of serializing
CSV (Comma Separated Value) files with different layouts, depend-
ing on whether edges with a cardinality of one-to-many are merged
in the node files as foreign keys (merged-FK) or projected into sep-
arate files (projected-FK). Datagen is also capable of generating
Parquet files, a format popular for storing data lakes [29].

Table 2: SNB BI data sets. k: thousand, M: million, B: billion.

SF10 SF30 SF100 SF300 SF1,000 SF3,000 SF10,000

#nodes 27M 78M 255M 738M 2.4B 7.2B 23B
#edges 170M 506M 1.7B 5.1B 17B 51.9B 173B

#Person 68k 170k 473k 1.2M 3.4M 9M 26M
#knows 1.8M 5.5M 19M 55.7M 187M 559M 1.9B

#insert ops 44.6M 127M 399M 1.1B 3.3B 8.9B 27B
#delete ops 353k 1M 3.3M 9.3M 28.9M 79.7M 245M

Scale factors. Similarly to the TPC benchmarks [68, 69], SNB BI’s
data sets are characterized by their scale factors (SF). This is defined
as the overall size of the uncompressed CSVs in merged-FK format,
measured in GiB, including both the initial snapshot and the update
operations. Table 2 shows the key properties of the data sets.

2.5 Scalability and Reproducibility
Scalability. The old version of the SNB Datagen used Hadoop [49]
andwas limited to generating SF1,000 (1,000 GiB) data sets. The SNB
BI Datagen was ported to Spark to improve scalability. It supports
both on-premise Spark clusters and cloud services such as AWS
Elastic MapReduce (EMR). Due to space constraints, we refrain from
a detailed analysis of Datagen’s scalability and refer the reader to
our papers [20, 49] and blog posts [62, 63].

Reproducibility. The Datagen guarantees reproducibility, i.e. for a
given configuration, it always produces the same graph regardless
of the number of machines it is executed on. This is achieved by
using a deterministic blocking algorithm where Persons are divided
into blocks of 10k, with each block having its own independent state
and only depending on the block id. Blocks can then be determinis-
tically sorted during the edge generation and edges are merged to
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Table 3: Challenging graph-related choke points featured in the read queries. Notation: ⊗ covered,◯ not covered.

CP Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

challenging joins CP-2.x ◯ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ◯ ⊗ ⊗ ⊗ ⊗ ⊗ ◯ ⊗ ⊗ ⊗ ◯ ◯
cheapest path finding CP-7.6 ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊗ ◯ ◯ ◯ ⊗ ⊗

eliminate duplicates. The pseudorandom number generators used
during the generation are seeded with constant values.

3 READ QUERY TEMPLATES
SNB BI consists of 20 parameterized read query templates, herein
referred to as queries. These search for graph patterns (often im-
plying join-heavy operations on many-to-many edges), traverse
hierarchies, and compute cheapest paths (a.k.a. weighted shortest
paths). Additionally, they include filtering, grouping, aggregation,
and sorting operators. While all queries explore a large portion
of the graph, they only return the top-k (typically 20 or 100) re-
sults, keeping their result sizes compact to avoid emphasizing the
client-server network protocol’s role in the benchmark [51].

Query languages. To ensure portability, the queries are defined in
plain text and implementations are not required to use a particular
query language. At the same time, we designed the queries such that
they will be expressible in the upcoming ISO standard SQL/PGQ
and GQL query languages [16]1.

3.1 Choke Point-Based Design Methodology
LDBC’s query design process relies on using choke points [11, 19], i.e.
challenging aspects of query processing. SNB BI includes 38 choke
points divided into 9 categories: aggregation performance, join
performance, data access locality, expression calculation, correlated
subqueries, parallelism and concurrency, graph specifics, language
features, and update operations. A full breakdown of the choke
points and their coverage is given in [6, Appendix A]. Here, we
focus on the join and graph-specific choke points. Their coverage is
shown in Table 3, which shows that 18 of the 20 read queries cover
at least one choke point related to joins or path finding.

Explosive and redundant multi-joins. In recent years it has become
clear that graph pattern matching, or equivalent multi-join queries
over many-to-many relationships, typically generate very large in-
termediate results when executed with traditional join algorithms.
This is especially the case for cyclical join graphs (corresponding
to cyclic graph queries). It was proven in theory [46] and shown in
practice [21, 39, 72] that “worst-case optimal”multi-join algorithms
can avoid these large intermediates and outperform traditional joins.
Following this, there has been increased attention on redundancy
in join results for acyclic subgraph queries (even when produced by
worst-case optimal joins), which can be eliminated using factorized
query processing techniques [9, 28, 47]. Graph pattern matching
queries that contain large join patterns will trigger these phenom-
ena, and SNB BI is the first OLAP benchmark to include these.

Expressive path finding. SNB BI contains queries that require an
efficient implementation of cheapest path finding between many

1With the “cheapest path” language opportunity fulfilled

pairs. Expressing such queries requires a query language which
supports either path finding or recursion. The underlying system
implementation must then handle this with an optimized execution
strategy, as recursing to try all paths will not scale. As some of this
path finding includes on-the-fly computed edges (joins) between
nodes, the queries can benefit from path expressions, as proposed
in Oracle’s PGQL language [71] and as part of the upcoming GQL
and SQL/PGQ languages. The path finding required by SNB BI not
only tests connectivity (as supported in SPARQL), but also requires
returning the cheapest cost along weighted paths (necessitating
SPARQL extensions [40]).

3.2 Example Queries
In order to defeat trivializing complex query performance by
caching, SNB BI instantiates the parameterized query templates
with different substitution parameters (a.k.a. parameter bindings).
In this section, we describe and analyze four read queries while the
rest of them are given in Section A.1. We denote the parameters
with the $ symbol and discuss their generation in Section 4.

3.2.1 Q11: Friend triangles (Figure 4a). For a given Country $c,
count all the distinct sets of Persons living in Cities of $c, who
form a triangle: p1 knows p2, p2 knows p3, p3 knows p1, and these
edges were created in the interval (︀$startDate, $endDate⌋︀.

Analysis. This query imposes two key difficulties. First, systems
should efficiently filter the knows edges based on the location of
their endpoint Persons (Cities in Country $c) and the date range.
Second, given a large number of knows edges even after filtering,
efficient enumeration of p1–p2–p3 triangles (a cyclic subgraph
query) requires worst-case optimal multi-joins.

3.2.2 Q14: International dialog (Figure 4b). Given two Countries
$c1 and $c2, consider all pairs of Persons p1, p2 such that they
know each other, p1 is located in $c1, and p2 is in $c2. Score them
based on the volume of their interactions throughMessages (details
omitted). For each City in $c1, return the highest scoring pair.

Analysis. The optimal query plans for this query are different based
on whether Countries $c1 and $c2 are correlated or anti-correlated
(Section 4.3). For the ranking, top-k pushdown can be exploited:
once a result for a City in $c1 is obtained, extra restrictions in a
selection can be added based on the value of this element. As the
score of two Persons does not depend on any query parameters,
precomputing it as an attribute on the knows edge can be beneficial.

3.2.3 Q18: Friend recommendation (Figure 4c). For each Person p1
interested in Tag $t, recommend new friends (p2) who do not yet
know p1, have at least one mutual friend (pm) with p1, and are also
interested in $t; rank based on the number of mutual friends.

881



(a) Q11. Parameters: $c, $startDate, $endDate. (b) Q14. Parameters: $c1 and $c2. (c) Q18. Parameter: $t.

(d) Q20. Parameters: $c and $p2.
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(e) Execution times using naïvely selected vs. curated parameters.

Figure 4: Read query templates discussed in this paper. Thick lines denote many-to-many edges, red dashed lines imply negative
conditions. The black square ∎ in a node’s top left corner denotes that the node is uniquely specified by a query parameter.

Analysis. This query is inspired by Twitter’s recommendation algo-
rithm [27]. Implementations of this query can exploit factorization:
systems can count the number of mutual friends without explicitly
enumerating all (p1, pm, p2) tuples.

3.2.4 Q20: Recruitment (Figure 4d). Construct a graph from the
knows edgeswhere the endpoint Persons pA and pB have attended at
least oneUniversity together. For theseUniversities, we consider the
pairs of studyAtA and studyAtB edges for pA and pB, respectively,
and define the weight of the corresponding knows edge as follows:

𝑤 = min
studyAtA,studyAtB

⋃︀studyAtA .classYear − studyAtB .classYear⋃︀ + 1

Then, given aCompany $c and a Person $p2, find a Person p1 ≠ $p2,
who works at $c and has the cheapest path to $p2.

Analysis. This query performs graph projection [7]. Instead of ma-
terializing this graph in the database, systems may represent it
using a compact in-memory structure such as CSR (Compressed
Sparse Row) [55]. To perform the cheapest path computation, a
single-source cheapest path algorithm (starting from $p2), such as
Dijkstra’s algorithm, can be used. As the projected graph is inde-
pendent of query parameters, precomputing it can be beneficial.

4 PARAMETER CURATION
4.1 The Need for Parameter Curation
A disadvantage of executing the same read query template with
different parameters is that the intermediate results and runtimes
can be severely influenced by the parameter values. This is par-
ticularly the case in SNB BI with its explosive joins, skewed out-
degrees, skewed value distributions, correlated value distributions,
and structural correlations. Moreover, the updates (including cas-
cading deletes) can significantly change the portion of the graph
reached by the same query executed at different times. In order to
keep query performance understandable we need to actively curate
parameters, such that different parameters executed at different log-
ical times still lead to stable and, therefore, understandable results.
We achieve this through parameter curation [20, 25], a data mining

process of looking for parameter values with suitably similar char-
acteristics. Our approach improves on existing parameter curation
techniques by improving their scalability as well as increasing the
maintainability of the parameter generator code.

The effect of naïve parameter selection. We demonstrate the im-
portance of parameter curation with the Umbra system using the
environment and implementation described in Section 6.3. For this
experiment, we ran a naïve parameter generator which selects pa-
rameters following a uniform distribution. We loaded the SF100
data set in the database and ran 100 query instances (sequentially)
of Q11, Q14a, Q14b, Q18, Q20a, and Q20b, with both naïve and
curated parameters, and measured their individual execution times
(Figure 4e). The results show that naïvely selected parameters in-
clude numerous outliers, which often take more than an order of
magnitude longer to finish than the median query execution time,
while the curated variants contain fewer outliers.

4.2 Parameter Generation Steps
Our parameter curation process is a two-step process: we first gen-
erate factors, then used them for generating parameters. The factor
and the parameter generator components (Figure 1b) are executed
for each scale factor and are independent of the serialization for-
mat/layout of the data set.

Factor generation. The factor generator produces factor tables con-
taining data cube-like summary statistics [24] of the temporal graph,
e.g. the number of Persons per City or the number of Messages per
day for each Tag. It also contains tables derived with more complex
computations (e.g. connected components), see Section 4.3.

Parameter generation. To find suitable substitution parameters that
(presumably) lead to the same amount of data access and thus simi-
lar runtimes, we first identify the factor table containing the sum-
mary statistics of the query’s parameters. For example, the template
of Q14 (Figure 4b) uses the parameters Country $c1 and Country
$c2. Therefore, we use the countryPairsNumFriends factor table
which contains $c1, $c2 pairs and the number of friendships where
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one Person lives in $c1 and the other lives in $c2. Using this table,
we select the 𝑝th percentile from the distribution as the anchor, then
rank the rest of the distribution based on their absolute difference
from the anchor and take the top-k values. We shuffle the values us-
ing a hash function to avoid introducing artificial locality, where e.g.
subsequent queries start in nodes from the same ID range. Listing 1
shows the plain SQL parameter generation query for Q14a.
SELECT c1, c2 FROM (
SELECT c1, c2, abs(frequency - (

SELECT percentile_disc(0.98) WITHIN GROUP (ORDER BY frequency)
AS anchor FROM countryPairsNumFriends

)) AS diff FROM countryPairsNumFriends ORDER BY diff, c1, c2
) ORDER BY md5(concat(c1, c2)) LIMIT 50

Listing 1: Parameter generation SQL query for Q14a.

4.3 Parameter Curation for Graph Queries
We discuss two parameter curation cases that are particularly im-
portant in graph data management.

Correlated vs. anti-correlated parameters. Our parameter curation
provides a straightforward way of selecting start entities which
are affected by (structural or attribute-level) correlation vs. anti-
correlation: corresponding parameters can be found by selecting a
high vs. low percentile as the anchor in the parameter generation
query. For example, for Q14 (Figure 4b) we set variant a to 𝑝 = 0.98
(correlated) and variant b to 𝑝 = 0.03 (anti-correlated). Figure 4e
and Table 4 show the runtimes of these variants.

Reachable vs. unreachable node pairs. Queries Q15, Q19, Q20 include
cheapest path finding queries computed between given (sets of)
Persons. These queries are particularly challenging for parameter
curation as query runtimes may significantly differ based on the
existence of a path between the selected endpoints. Moreover, the
presence of a path between two nodes at a given time does not
guarantee that it will always exist during the benchmark execution
as deletions can render the endpoints of a path unreachable.
The problem of selecting reachable vs. unreachable node pairs is
the most pronounced for Q20 (Figure 4d), which looks for cheapest
paths in a sparse subgraph consisting of knows edges between
Persons who in the original graph “know each other and attended
the same University” (ksu). Therefore, this query has two variants
based on whether Person $p2 is reachable from at least one Person
p1 who is an employee of $c. For Q20a, it is guaranteed that no
such path exists, while for Q20b, it is guaranteed that there is a
two-hop path. To allow generating such parameters, during the
factor generation, we use the temporal graph to compute the ksu
factor table, i.e. pairs of Persons who attended the same University.
As the temporal graph contains all edges that exist in the graph
at any time, this is an overapproximation of the ksu edges that are
available at a given time during the benchmark period (after the
cut-off date and before the simulation end). We then run a connected
components algorithm on the graph of the ksu edges and save its
results to the factor table ksu_components. Additionally, we also
return compact views of the knows, studyAt, and workAt edges
which only contain their source ID, destination ID, and temporal
attributes (creation date, deletion date).
We perform the parameter generation as follows. For Q20a, we

select Person pairs from the ksu_components table who are in
different components. Due to the overapproximation, it is guaran-
teed that if two nodes are in different components in the temporal
graph, they will be in different components at any given time in
the actual graph during the simulation. For Q20b, we perform the
following steps. (1) We use the creation date and deletion date at-
tributes of knows and studyAt edges to create the ksu_filtered
table by only keeping edges that exist during the entirety of the
benchmark period. (2) We create a set of Company candidates
based on the number of employees using the technique shown in
Listing 1. (3) For each Company, we get their employees using the
temporal attributes of the workAt edges (to ensure they work at
the Company during the benchmark period) and perform two joins
on ksu_filtered to compute two-hop paths to get $p2 candidates.
(4) We return a deterministic sample using a hash-based shuffling.

4.4 Query Variants
12 queries have a single variant, while 8 queries have two variants,
yielding a total of 28 query variants. Variants of Q2, Q8, Q16 are
parametrized with a flashmob vs. a non-flashmob date (Section 2.1).
Variants of Q14 and Q19 select correlated vs. non-correlated Coun-
tries/Cities. Q10’s variants differ in the degree of the start Person
(high vs. low), while Q15’s variants have different path lengths and
time intervals (4 hops and one week vs. 2 hops and one month). Q20
variants differ on whether a path exists between the two endpoints.

4.5 Scalability and Reproducibility
Scalability. The factor generator is part of the SNB Datagen and
runs after the temporal graph has been created. It is implemented
using the Spark DataFrame API for distributed execution. While
its data cube-like computations use expensive, aggregration-heavy
queries, the derived factor tables are compact, e.g. SF10,000 has only
20 GiB of factors in compressed Parquet format, the equivalent of
approximately 100 GiB in CSV format, i.e. 1% of the total data set
size. The parameter generator queries are executed in DuckDB [52].
To demonstrate that our setup is scalable, we report runtimes for the
parameter curation on the largest data set, SF10,000: the parameter
generation took 22.2 minutes on an r6id.32xlarge instance in
AWS EC2 (128 Intel Xeon 8375C 2.90 GHz vCPU cores, 1 TiB RAM).

Reproducibility. It is important to guarantee that the parameter
curation process is reproducible. To this end, we leverage that
the graph generator and, consequently, the factor generator are
reproducible. To ensure that the parameter generation queries yield
deterministic results we define a total ordering in each query. To
provide deterministic shuffling we base the ordering onMD5 hashes
of concatenated attribute values, see Listing 1 for an example.

5 BENCHMARK WORKFLOW AND AUDITING
5.1 Benchmark Phases and Workflow
SNB BI’s execution includes three distinct phases (Figure 1b): the
load, the power batch, and a sequence of throughput batches. Both
type of batches consist of writes corresponding to one day of simu-
lation time in the social network, and 30 instances for each of the
28 read query variants (Section 4.4).
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Load. To begin the benchmark, an initial snapshot (Figure 3) is
loaded into the system under test (SUT), timed as 𝑡load .

Power batch. The workflow includes a single power batch. This first
performs the write operations, followed by the reads with no con-
currency allowed between any query instances. The following times
are measured: the runtime of applying the writes (𝑤 ), the time spent
on reads by each query variant, denoted as𝑞1, 𝑞2a, 𝑞2b, . . . , 𝑞20a, 𝑞20b;
and the total time spent on reads. The sequential execution implies
that achieving good performance during this batch necessitates
intra-query parallelism from the SUT.

Throughput batches. The throughput batches run the same opera-
tions as the power batches but allow fully concurrent execution
to exploit inter-query parallelism. To qualify for a valid run, ex-
periments shall run 𝑛throughput batches ≥ 1 throughput batches for a
timespan of 𝑡throughput batches ≥ 1 hour.

Concurrent vs. disjoint RWs. Implementations can choose to run
either concurrent or disjoint read-write (RW) operations in their
throughput batches. A concurrent RW setup allows for the inter-
spersing of update operations among read queries. Under disjoint
RW operations systems should first perform all write operations,
followed by (potentially concurrent) reads. The rationale behind
this design choice is to enable the participation of read-optimized
data analytical systems such as Spark [78]. In the long term, however
we expect the top SNB BI implementations to choose a concurrent
RW setup as this potentially leads to improved resource utilization.

5.2 Scoring Metrics
SNB BI provides four scoring metrics: the power score, the through-
put score, and their price-adjusted variants, the per-$ power score
and the per-$ throughput score.

Power score. The definition of SNB BI’s power score follows TPC-H
in using a geometric mean, ensuring that there is an incentive to
improve all queries, no matter their running time. Its formula uses
the execution times during the power batch, measured in seconds:

power@SF =
3,600

29⌋︂𝑤 ⋅ 𝑞1 ⋅ 𝑞2a ⋅ 𝑞2b ⋅ . . . ⋅ 𝑞20a ⋅ 𝑞20b
⋅ SF

Throughput score. The throughput score is based on 𝑡load, measured
in hours, the cumulative execution time and the number of the
throughput batches executed. The subtraction of 𝑡load ensures that
the scoring rewards systems with efficient bulk loaders (unlike in
TPC-H/DS which do not include load performance in their metrics):

throughput@SF = (24 hours − 𝑡load) ⋅
𝑛throughput batches

𝑡throughput batches
⋅ SF

Price-adjusted scores. We follow TPC’s specification for reporting
prices [70]. The price is established as the total cost of ownership
(TCO) for the SUT used in the benchmark, reported as a breakdown
of machine cost, software license costs, and maintenance costs for 3
years. For cloud deployments, the cost of a 3-year reserved instance
should be used. To determine the price-adjusted scores, we factor
in the TCO by multiplying the respective base score by 1,000

TCO .

5.3 Auditing Rules
LDBC defines stringent auditing rules for its benchmarks [6, Chap-
ter 7]. Here, we summarize two key rules for SNB BI.

ACID test. Systems running concurrent RWs in throughput batches
must pass the LDBC ACID test suite [74] to ensure that they comply
with their claimed isolation level (snapshot isolation or higher is
required). Systems running disjoint RWs can omit this test as their
execution does not require transactional isolation for correctness.

Query languages. Implementations are only allowed to use domain-
specific query languages to express the SNB BI read queries and
update operations. This allows the use of languages with imperative
traits such as Gremlin [54] and GSQL but forbids using general-
purpose programming languages and accessing the data through
a low-level API. This criterium is different from SNB Interactive
where API-based implementations are also allowed (see Table 1).

6 PERFORMANCE EXPERIMENTS
We conducted a series of experiments to demonstrate that SNB BI
satisfies key criteria of benchmark design [22, 30]. Its portability
is confirmed by providing three complete implementations. Its
scalability is proven by running experiments on data sets up to
SF10,000 (i.e. 10,000 GiB). Finally, its economic viability is shown
through a detailed cost breakdown of our experiments.

6.1 Disclaimer
The experiments presented here are not LDBC Benchmark
Results, as they were not audited, do not include price-
adjusted scores, and cannot be used for product compari-
son. Instead, they were conducted as part of LDBC’s standard-
establishing audit process, which requires a complete, specification-
compliant execution of the benchmark on two systems and makes
subsequent official audits possible [35]. To counter marketing mis-
use, LDBC trademarked the term “LDBC Benchmark Result”, and
stipulates that it can only be used to describe the outcome of ex-
periments that have passed an official LDBC audit. Academics are
encouraged to use LDBC benchmark technology, also without au-
dits, provided their paper states that the results are not LDBC
Benchmark Results (regardless of the capitalization of these three
words or the presence of a trademark logo). For such usage, LDBC
also encourages describing those aspects where such a non-audited
result deviates from the benchmark implementation rules (e.g. only
executing a power batch, or executing a power batch without the
write operations, or exploiting concurrency without the required
ACID properties, or using non-official parameter bindings, or using
incomplete – or different – data, queries, or writes).

6.2 Systems Under Test
We created three implementations of the workload in Neo4j2, Um-
bra [43], and TigerGraph [17]. We used the Neo4j implementation
for cross-validation at SF10, and report performance results from
Umbra and TigerGraph. In this section we discuss the latter two
implementations, describing their schema and their approach for
handling the initial bulk load, read queries, and update operations.

2https://neo4j.com/ (accessed on Dec 16, 2022)
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Table 4: Benchmark results for Umbra and TigerGraph on
SF30 to SF10,000: scoring metrics, load times, power test re-
sults (write batch runtime to average query runtimes for each
query variant), throughput test statistics, and experiment
costs. Times are reported in seconds.

Umbra TigerGraph
SF30 SF100 SF300 SF1,000 SF10,000

power@SF 75,761.75 103,308.45 110,473.72 17,821.02 61,319.43
throughput@SF n/a 28,996.42 26,251.13 7,655.88 23,132.08

load time 68.70 211.92 668.81 4,786.00 6,321.00

power batch writes 6.79 14.66 45.66 1,369.52 3,272.27
power writes w/o prec. 1.48 2.84 8.01 445.37 859.48

Q4 precomputation 0.68 1.67 4.66 126.00 336.96
Q6 precomputation 0.31 1.03 2.96 155.58 491.11
Q19 precomputation 2.10 7.38 25.60 615.07 1,486.82
Q20 precomputation 2.21 1.75 4.42 27.51 97.90
total precomputation 5.31 11.82 37.65 924.16 2,412.79

power batch reads 84.14 243.47 945.70 8,879.12 25,423.65

Q1 0.02 0.05 0.16 9.40 10.54
Q2a 0.04 0.10 0.32 9.56 25.29
Q2b 0.02 0.04 0.09 2.55 12.04
Q3 0.06 0.16 0.71 5.85 23.83
Q4 0.03 0.07 0.17 2.16 5.88
Q5 0.04 0.09 0.31 1.63 8.13

Q6 0.03 0.07 0.24 1.82 9.03
Q7 0.04 0.10 0.25 4.02 26.29
Q8a 0.02 0.05 0.12 3.55 10.50
Q8b 0.02 0.05 0.15 1.68 6.11
Q9 0.19 0.55 1.38 12.16 25.18
Q10a 0.09 0.31 0.79 11.93 30.23
Q10b 0.05 0.14 0.49 5.33 12.18

Q11 0.04 0.09 0.19 7.15 13.65
Q12 0.03 0.09 0.27 10.16 20.34
Q13 0.05 0.13 0.33 35.20 75.27
Q14a 0.07 0.22 0.69 13.01 36.73
Q14b 0.02 0.06 0.17 5.10 16.64
Q15a 0.34 0.58 1.74 25.16 65.92
Q15b 1.28 4.36 20.66 67.31 159.06

Q16a 0.06 0.14 0.33 7.98 40.56
Q16b 0.05 0.12 0.30 2.72 8.41
Q17 0.06 0.18 0.43 6.82 27.23
Q18 0.07 0.21 0.57 27.94 141.04
Q19a 0.02 0.03 0.07 6.08 14.44
Q19b 0.02 0.03 0.07 6.05 15.80
Q20a 0.01 0.01 0.01 1.99 3.53
Q20b 0.02 0.08 0.50 1.66 3.59

𝑛throughput batches 32 batches 13 batches 4 batches 1 batch 1 batch
𝑡throughput batches 3,242.52 3,864.08 3,918.97 10,660.30 34,618.16

total execution time 3,333.71 4,122.39 4,910.60 20,908.95 63,314.11
experiment cost $18.79 $21.26 $24.34 $66.75 $1,849.97

Umbra. Umbra is a mostly PostgreSQL-compatible hybrid OLTP &
OLAP research RDBMS [43] with compiled query execution [34, 42],
and support for worst-case optimal multi-joins [21]. The read
queries, initial bulk loading, and update operations are implemented
in SQL in the PostgreSQL dialect. The read queries are verified to
work on PostgreSQL, and as they require no proprietary SQL exten-
sions, they could be adapted to work onmost RDBMSs. Even though
the queries only use plain SQL, their efficient execution relies on
sophisticated query optimization techniques such as unnesting
arbitrary queries [44] and cost-based join ordering [45].

The relational schema is designed to eliminate as many tree tra-
versals of the data as possible during the read queries. For instance,
every Comment is stored with the ID of its corresponding root
Post. This allows Umbra to omit the expensive tree traversal to find
the root Post for a given Comment. Storing this additional ID with
every Comment has nominal storage costs, and is relatively easy
to maintain as there are no cut-and-link operations; a Comment is
never moved, it is only inserted (below an existingMessagewith an
existing root Post) and deleted (which results in child Comments
being deleted). As Umbra does not yet support automatic cascading
deletes, the set of tuples to be deleted is initially computed manually
in auxiliary tables then deleted with the SQL DELETE USING clause.

TigerGraph. TigerGraph is a distributed massively parallel pro-
cessing (MPP) GDBMS using a native graph storage format. It is
designed for handling HTAP query workloads. It offers GSQL, a
Turing-complete query language [17] which provides both declara-
tive features (e.g. graph patterns) as well as imperative ones (e.g. for
expressing iterative graph algorithms with loops and accumulators
primitives) [18]. GSQL allows users to program at a high abstraction
level and select a (close to) optimal join ordering at the same time.

The SNB BI graph schema is defined using GSQL DDL, which
consists of node types, edge types and graph type definition state-
ments. The initial bulk loading, and the subsequent insert and delete
operations are implemented using the GSQL data loading language
(DLL). When TigerGraph is deployed on a cluster of machines the
input data is distributed across the cluster and loaded concurrently.
Deletes are implemented with GSQL queries which search for the
entities affected by a given delete operation, then delete them.

The read queries are implemented in GSQL and the compiled
executions are distributed across the cluster in an MPP fashion.
Accumulators [18] are used to perform aggregation and filtering.
Common static computations were identified and were formulated
as GSQL queries whose results are materialized as auxiliary at-
tributes to speed up Q4, Q6, Q14 and Q19 (computed together and
reported under Q19’s precomputation time), and finally Q20. These
attributes require some extra space, but significantly reduce the cost
over multiple runs. For example, the member counts per Country of
a Forum are precomputed and the largest member count is material-
ized in the Forum node. When Q4 is evaluated, the largest member
count is used directly to calculate the top-k popular Forums.

6.3 Benchmark Environment and Execution
We describe the benchmark environments, data sets, and the work-
flow used for conducting the experiments.

Umbra. We used Umbra version cbad59200, running in a container
using Docker 20.10. The experiments were run in AWS EC2 on an
m6id.32xlarge instance (128 Intel Xeon 8375C 2.90 GHz vCPU
cores, 512 GiB RAM, 4×1.9 TiB NVMe SSDs in RAID0 configuration)
running Ubuntu 22.04 as the host OS and Ubuntu 22.10 in the
container. The data sets (SF30, SF100, SF300) were serialized as
uncompressed CSV files in the merged-FK layout.

TigerGraph. We used TigerGraph version 3.7.0. The experiments
were run in the GCP Compute Engine in a distributed setup, us-
ing n2d-highmem-32 instances (32 AMD EPYC 7B12 2.25 GHz
vCPU cores, 700 GiB non-NVMe SSD storage, 256 GiB RAM) with
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CentOS 7 v20220406. The SF1,000 experiment used 4 instances
while the SF10,000 experiment was performed on 48 instances. The
data sets were serialized as CSV files in the projected-FK layout.

Workflow. The experiments were executed according to the work-
flow given in Section 5.1. Both implementations opted to run dis-
joint RWs in their throughput batches and chose not to exploit
inter-query parallelism due to the high memory consumption of
individual queries. Instead, they used the same code path for their
power batch and throughput batches.

6.4 Analysis of the Results
We summarize our main findings from the results shown in Table 4.

Portability and scalability. The existence of three feature-complete
SNB BI implementations (Neo4j, TigerGraph, Umbra) illustrates
the benchmark’s portability. The benchmark is also scalable: its
data and parameter generators can produce inputs for SF10,000
experiments and its driver can stress DBMSs at this scale.

Tractable complexity. The results confirm that the read queries and
update operations issued by SNB BI are tractable, i.e. they can
be evaluated in a reasonable time and it is possible to perform a
complete benchmark execution in a few hours on large scale factors.

Significant performance differences for 3 query variants. The effect
of query variants clearly shows for Q2, Q10, Q14: the a variants are
significantly slower than the b variants, as expected. For Q8 and
Q16, this can only be observed for TigerGraph.

Limited performance differences for path queries. For the path
queries, Q15, Q19, and Q20, the performance differences between
variants are limited. In Q15’s case, the selected time interval is
the dominant factor, making variant a simpler. In Q19’s case, the
complexity of cheapest path finding between correlated vs. anti-
correlated Cities shows little difference, less than 10%. Interestingly,
Umbra achieves 2–42× faster runtimes on Q20a compared to Q20b
as it can quickly identify when there is no path between the nodes
by traversing the smaller connected component from one endpoint.

High performance from Umbra. Umbra demonstrates high perfor-
mance thanks to its state-of-the-art architecture, execution model,
and sophisticated optimizer. On SF30, Umbra runs out of throughput
batches to evaluate, causing the throughput batch execution time
to be less than the required time (1 hour), therefore the through-
put@SF score cannot be determined on this scale factor. The per-
formance of Umbra on path finding queries (Q15, Q19, and Q20)
can be particularly surprising as path finding is difficult to express
in SQL [79]. This can be attributed to the use of a sophisticated
bidirectional, sampling variant of Dijkstra’s algorithm in Umbra’s
SNB BI implementation; this is formulated as a complex recursive
SQL query (requiring 3,000 characters for Q15). Moreover, it is im-
portant to point out that while Umbra is a fully fledged RDBMS
with high PostgreSQL compatibility, it is an academic prototype
and lacks a mature storage system.

High level of scalability from TigerGraph. TigerGraph demonstrates
a low memory usage: it is able to handle the SF1,000 data set with
1 TiB of total memory on 4 machines. Moreover, its loader and
query engine can both scale out: using a 48-machine cluster, it is

able to load the SF10,000 data set in less than 2 hours and complete
the benchmark in less than 18 hours.

Read-heavy query mix. Table 4 shows that systems spend less than
5% of the execution time of the power batch on applying the up-
dates (without precomputations). This implies that the workload’s
read–write ratio aligns with the general finding of survey [56]
whose authors concluded that GDBMSs are typically used for read-
intensive analytical queries. We also observed a difference between
the systems: Umbra spends 0.8–1.6%, while TigerGraph spends
3.0–4.3% of the time on updates. This is due to a bottleneck in
TigerGraph’s execution of the deletes: while it processes the inserts
distributedly, the input file of the delete operations is processed on
a single machine, limiting the speed of cascading deletes.

6.5 Optimization Opportunities
We list some of the optimization opportunities observed during
the implementation and execution of the benchmark. This is by
no means a complete set of opportunities and we look forward to
techniques proposed by users of this benchmark.

Precomputation. Both the Umbra and TigerGraph implementations
utilized precomputations. To this end, the benchmark implementers
created queries that materialize partial query results after applying
the writes. As a general optimization, one precomputation elimi-
nates tree traversals by calculating the explicit root Post of each
Message during inserts. The implementations also used query-
specific precomputations by calculating member counts per Coun-
try for each Forum (Q4), popularity scores for each Person (Q6),
and the edge weights specified by Q19 and Q20. Additionally, Tiger-
Graph precomputed the interaction scores defined in Q14 for each
knows edge as part of its precomputation step for Q19.

Cheapest path algorithms. In SNB BI’s cheapest path queries (Q15,
Q19, Q20) path finding is executed from two (sets of) endpoints.
Therefore, bidirectional search algorithms are beneficial. Q19 looks
for paths between Persons of two Cities, therefore, it also benefits
from multi-source batched path finding algorithms [65, 66]. Addi-
tionally, cheapest path queries can use landmark labelling [1], a
method which precomputes cheapest paths for a set of landmark
nodes, leading to improved pruning during runtime.

Factorization. Several queries, e.g. Q5, Q6, Q9, Q10, Q12, Q13, Q17,
Q18, contain long paths which include many-to-many edges. These
queries could benefit from applying factorization techniques [9, 58].

Multi-joins. Queries containing cyclic subgraphs along many-to-
many edges (Q11, Q17, Q18) can benefit from worst-case optimal
multi-joins [46]. Q18 is a particularly interesting candidate as it is
among the top-5 most challenging query variants and could exploit
both multi-joins and factorization.

6.6 Cost of Running the Experiments
Huppler argues that a good benchmark should be economical [30].
We strived to keep the cost of executing SNB BI at a reasonable
level by optimizing the data generator and limiting the amount of
time required for running the benchmark.

Table 4 shows an estimate of the costs for reproducing the ex-
periments presented in this paper, assuming the pricing of the
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AWS us-east-2 and GCP us-central1a regions as of October 2022.
The total costs were derived based on the following items. Storage
cost: AWS S3 costs $23.55/TiB/month, while GCP Cloud Storage is
$26.0/TiB/month. Execution cost: for the Umbra experiments, the
m6id.32xlarge instance costs $7.59/h, while for TigerGraph, each
n2d-highmem-32 instance costs $1.82/h. We calculate the price of
reserving these machines for the full duration of the benchmark
plus account for a 1 hour setup time. Based on these, the estimated
total cost of reproducing our experiments is $1,981.12.

Table 5: Key features tested and number of queries in re-
lated database benchmarks. Notation:⊗ yes,◯ no,⊘ limited
coverage,⍟ the benchmark provides a query generator. For
cyclic subgraphs, only many-to-many edges are considered.
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LUBM [26] ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ 14
SP2Bench [59] ⊗ ◯ ◯ ◯ ⊘ ⊗ ◯ ◯ 14
BSBM [10] ◯ ◯ ◯ ⊗ ◯ ◯ ◯ ◯ 20
BSMA [76] ⊗ ◯ ◯ ⊗ ◯ ⊗ ◯ ◯ 24
WatDiv [4] ⊗ ◯ ◯ ⊗ ⊘ ⊘ ◯ ◯ ⍟

TPC-H [68] ⊗ ◯ ◯ ⊗ ⊘ ◯ ◯ ◯ 22
TPC-DS [50, 69] ⊗ ◯ ◯ ⊗ ⊘ ◯ ◯ ◯ 99

LDBC SNB Interactive [20] ⊗ ⊘ ⊗ ⊘ ◯ ⊗ ◯ ⊗ 21
LDBC SNB BI [6, 64] ⊗ ⊘ ⊗ ⊗ ⊘ ⊗ ⊗ ⊗ 20

7 RELATEDWORK
Transactional graph benchmarks. Several graph benchmarks define
update-heavy transactional workloads: LinkBench [8], BG [2], and
most recently TAOBench [13]. While most of these benchmarks
use large-scale data sets (similarly to SNB BI), their workload only
contains simple reads (lookups) and simple updates, hence, they
are not representative of analytical graph processing workloads.

SPARQL and TPC analytical benchmarks. We summarize related
SPARQL and analytical benchmarks in Table 5 and characterize
them based on their coverage of graph-related and analytical fea-
tures, as well as their support for correlated data generation, com-
plex deletes, and parameter curation techniques. The table shows
that none of the existing SPARQL benchmarks are representative of
the challenges imposed by graph OLAP queries. Meanwhile, TPC’s
analytical benchmarks do not cover graph features, complex deletes
or correlations, and rely on basic parameter generation algorithms.

Prior work on SNB BI. Some features and techniques in SNB BI,
including the social network data model, some read queries, early-
stage read-only experiments on data sets up to SF10, and the Data-
gen’s approach to creating temporal graphs have been published
in [6, 20, 25, 64, 75]. However, compared to [64], half of the queries
have been replaced, primarily with ones stressing graph-specific
choke points. Several other queries have been rewritten or im-
proved, and the size of the largest experiment increased from SF10

to SF10,000. The update workload (including the cascading delete
operations) and performance metrics are newly introduced.

8 CONCLUSION AND FUTUREWORK
We described the rationale for SNB BI, the first analytical graph
benchmark that tests OLAP queries with graph tasks such as pat-
tern matching and cheapest path finding, following sometimes
edges that are generated on-the-fly. We presented highlights of its
data generator, read queries, parameter curation techniques and
recursive deletes. Additionally, we outlined its auditing process
and presented preliminary experimental results. Our experiments
included a large-scale distributed execution of SNB BI on SF10,000
using the TigerGraph GDBMS. Up to our best knowledge, this is
the largest-scale analytical GDBMS benchmark run conducted to
date. The experiments demonstrate that the benchmark is portable,
scalable, and economical. The results show that running the bench-
mark is feasible for the current state-of-the-art, but our analysis
suggests there is also headroom for improvement through research,
e.g. incorporating factorization and fast worst-case optimal joins
in graph-capable database systems.

Future work. An updated version of the SNB Interactive workload,
which incorporates several of the innovations of SNB BI (large scale
factors, delete operations, scalable parameter curation), is currently
under development. Moreover, LDBC is designing the new Financial
Benchmark, which targets distributed systems and runs financial
fraud detection queries with real-time latency requirements [80].
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A QUERY SPECIFICATIONS
We give a concise summary of SNB BI’s read query templates and
update operations. Their detailed specification can be found in [6].

A.1 Read Queries
Q1: Posting summary. Find all Messages created before
$datetime. Categorize them into 3 groups, (1) by year of creation,
(2) by Message type, (3) by length (< 40, < 80, < 160, or longer).
Q2: Tag evolution. Find the Tags under a given $tagClass that
were used inMessages during the 100-day time window starting at
$date and the 100-day time window that follows. For the Tags and
time windows, compute the count ofMessages.
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Q3: Popular topics in a country. Given a $tagClass and a
$country, find all the Forums created in $country, containing
at least one Message with Tags belonging to the given $tagClass,
and count the Messages by their containing Forum.
Q4: Top message creators by country. Find the most popular Fo-
rums created after a given $date by Country, where the popularity
of a Forum is measured by the number of members that Forum has
in a given Country. Calculate the top-100 most popular Forums.
For each member Person of the top-100 Forums, count the number
ofMessages they made in any of the top-100 Forums.
Q5: Most active posters of a given topic. Get each Person who
created a Message with a given $tag. Considering only these Mes-
sages, for each Person, count (1) their Messages: mC, (2) likes to
theirMessages: lC, (3) reply Comments to theirMessages: rC, then
determine the score as 1 ⋅ mC + 2 ⋅ rC + 10 ⋅ lC.
Q6: Most authoritative users on a given topic. Given a $tag,
find all Persons (person1) that ever created a Message with the
$tag. For each person1 compute their “authority score” as follows:
(1) The “authority score” is the sum of “popularity scores” of the
Persons (person2) that liked any of that Person’sMessages with
$tag. (2) A Person’s (person2) “popularity score” is defined as the
total number of likes on their Messages.
Q7: Related topics. Find allMessages that have a given $tag. Find
the related Tags attached to reply Comments of these Messages,
but only consider ones that do not have the $tag. Group the Tags
by name, and count the replies in each group.
Q8: Central person for a tag. Given a $tag, find all Persons who
are interested in the $tag and/or have written a Message with
a creationDate after a given $date with $tag. For each Person,
compute the score as the sum of the following two aspects: (1) 100,
if the Person has $tag among their interests, or 0 otherwise; (2) the
number of Messages by the Person with $tag. For each Person,
also compute the sum of the score of their friends.
Q9: Top thread initiators. For each Person, count their Posts and
the number ofMessages in each of their reply trees. For both Posts
andMessages, filter on the time interval (︀$startDate, $endDate⌋︀.
Q10: Experts in social circle. Given a $startPerson, find all
other Persons (expert) who live in a given $country and are con-
nected to $startPerson by a shortest path with length in range
[$minPathDistance, $maxPathDistance⌋︀ through the knows rela-
tion. For each of these expert nodes, retrieve all of their Messages
that contain at least one Tag belonging to $tagClass. For each
Message, retrieve all of its Tags. Count theMessages grouped by
Person and Tag.
Q11: Friend triangles. See Section 3.2.1.
Q12: How many persons have a given number of messages.
For each Person, count theirMessages (mC) whose: (1) content is
not empty, (2) length is below $lengthThreshold, (3) creation-
Date is after $startDate, (4) language is any of $languages. For
each mC value, count the number of Persons with exactly mCMes-
sages (with the required attributes).
Q13: Zombies in a country.Within $country, find zombies, i.e.
Persons who were created before $endDate and created an aver-
age of (︀0, 1)Messages per month during the time range between
their creationDate and $endDate. For each zombie, calculate their
zombieScore as the ratio between the number of likes received
from other zombies and the total number of likes received.

Q14: International dialog. See Section 3.2.2.
Q15: Trusted connection paths through forums created in a
given timeframe. Given $person1 and $person2, calculate the
cost of the cheapest path between them along knows edges. The
edges are weighted with 1⇑(interaction score + 1), where the inter-
action score is calculated based onMessage exchanges of the edge’s
Person endpoints: (1) every direct reply to a Post is 1.0 point and
(2) every direct reply to a Comment is 0.5 points. Only consider
Messages in Forums created during (︀$startDate, $endDate⌋︀.
Q16: Fake news detection. Given ($tagA, $dateA) and ($tagB,
$dateB), for both pairs ($tagX, $dateX), create an induced sub-
graph from the Person–knows–Person graph where both Persons
have created aMessage on the day of $dateX with $tagX. In the
induced subgraph, only keep pairs of Persons who have at most
$maxKnowsLimit friends. For these Persons, count the number of
Messages created on $dateX with $tagX. Return Persons who had
at least oneMessage for both ($tagA, $dateA) and ($tagB, $dateB).
Q17: Information propagation analysis. Find instances where
person1 submitted a Message with a $tag to a Forum, and, at
least $delta hours later, other members of forum1 engaged in a
discussion (Message–Comment) with the same $tag in a different
Forum where person1 is not a member. Return person1s with the
number of discussions (potentially) triggered by them.
Q18: Friend recommendation. See Section 3.2.3.
Q19: Interaction path between cities.Given $city1 and $city2,
find the person1 and person2 pairs living in these Cities with the
cheapest interaction path between them. The path uses knows
edges and the weight between two Persons is based on the rounded
square root of the number of interactions (reply Comments to a
Message by the other Person). At least one interaction is required.
Q20: Recruitment. See Section 3.2.4.

A.2 Insert Operations
In each batch, the insert operations insert entities created during
one day of simulation time (Person nodes, knows edges, etc.). In
concurrent RW mode, systems must perform the insertions such
that the graph is well-formed after each operation (e.g. there are
no dangling Forums andMessages). In disjoint RW mode, systems
are free to perform these operations in any order.

A.3 Delete Operations
DEL1: Remove a Person and its edges. Additionally, remove the
Album/Wall Forums whose moderator is the Person and remove
all Messages the Person has created in the rest of the Forums.
DEL2: Given a Person and a Post, remove their likes edge.
DEL3: Given a Person and a Comment, remove their likes edge.
DEL4: Remove a Forum, its edges, and all Posts in the Forum, and
all Comments in their threads.
DEL5:Given a Forum and a Person, remove their hasMember edge.
DEL6: Remove a Post node and its edges (isLocatedIn, likes, hasCre-
ator, hasTag, containerOf). Remove all (direct and transitive) reply
Comments to the Post and their edges.
DEL7: Remove a Comment node, its edges (isLocatedIn, likes,
hasCreator, hasTag), and all replies to the Comment.
DEL8: Given two Person nodes, remove their knows edge.
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