
MQH: Locality Sensitive Hashing on Multi-levelQuantization
Errors for Point-to-Hyperplane Distances

Kejing Lu
Nagoya University, Japan
lu@db.is.i.nagoya-u.ac.jp

Yoshiharu Ishikawa
Nagoya University, Japan
ishikawa@i.nagoya-u.ac.jp

Chuan Xiao
Osaka University, Japan
chuanx@ist.osaka-u.ac.jp

ABSTRACT
Point-to-hyperplane nearest neighbor search (P2HNNS) is a funda-
mental problem which has many applications in data mining and
machine learning. In this paper, we propose a provable Locality-
Sensitive-Hashing (LSH) scheme based on multi-level quantization
errors to solve this problem. In the indexing phase, for each data
point, we compute the hash values of its residual vectors generated
by a stepwise quantization process. In the query phase, for each
processed point, we first determine its suitable level for hashing
and then determine the size of hash bucket based on its quantiza-
tion error in that level. We theoretically show that this treatment
not only yields a probability guarantee on query results, but also
makes the generated hash functions much more efficient to prune
those false points. Experimental results on five real datasets show
that the proposed approach generally runs 2X-10X faster than the
state-of-the-art LSH-based approaches.

PVLDB Reference Format:
Kejing Lu, Yoshiharu Ishikawa, and Chuan Xiao. MQH: Locality Sensitive
Hashing on Multi-level Quantization Errors for Point-to-Hyperplane
Distances. PVLDB, 16(4): 864 - 876, 2022.
doi:10.14778/3574245.3574269

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/LUKEJING/MQH.

1 INTRODUCTION
In recent years, Point-to-hyperplane Nearest Neighbor Search (P2HNNS)
problem has attracted much attention due to its wide applications in
pool-based active learning [27, 30, 32], dimension reduction [5, 29]
and maximum margin clustering [6, 26]. This problem can be de-
scribed as follows: given a dataset D in a Euclidean space R𝑑 and
a query hyperplane 𝐻 with dimension 𝑑 − 1 in the same space,
how do we efficiently find the data point closest to 𝐻? When 𝑑
is low, we can solve this problem by existing tree structures like
KD-Tree [4] and Cone-Tree [25], etc. However, as 𝑑 goes larger,
these tree structures lose effectiveness due to the curse of dimen-
sionality [16]. Currently, for the search in high-dimensional spaces,
Locality Sensitive Hashing (LSH) has been regarded as an efficient
technique due to its robust theoretical guarantees and sub-linear

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574269

query overheads [1, 10, 18, 20]. The basic idea of LSH is that, by de-
signing a hash function family, the approximate nearest neighbors
of queries can be found with probability guarantees by comparing
the hash values of queries and those of data points. Note that, ex-
cept for the theoretical implications, the guarantees owned by LSH
are also important for the determination of parameters. Therefore,
LSH-based approaches still play both theoretically and practically
important roles especially in the database field.

Currently, although most of LSH-based schemes are designed
to solve the point-to-point nearest neighbor search problem, by
some transformations on the hyperplane 𝐻 , it is feasible to design
effective LSH families, such as BH, MH, NH and FH, to solve the
P2HNNS problem [15, 33, 34]. Nevertheless, in this paper, we will
take a totally different way to design the LSH function family. Our
motivation is based on the following fact. Since LSH is essentially
a random-projection technique, it generally performs worse than
those heuristic learning-based approaches, such vector quantiza-
tion, in capturing important features on real datasets. Therefore. it
is natural to raise the following question: is it possible to design a
provable LSH-based scheme which could achieve the competitive
performance of quantization-based approaches. In this paper, our
main goal is to devise such structure. In addition, compared with
BH and MH [33, 34], our approach can apply to non-normalized
datasets, while compared with NH and FH [15], our approach does
not need any transformation on the query hyperplane and data
points. Actually, the dimension of transformed data is much higher
than the original one, which may weaken the efficiency of random
projection in the transformed space.

It is notable that, except for LSH-based approaches mentioned
above, there also exist some heuristic approaches (for the point-to-
point search) like vector quantization [2, 3, 13, 17, 23] and similarity
graph [11, 19, 22], which generally own higher search efficiencies
than LSH-based ones. However, we argue here that a theoretical
guarantee owned by LSH is sill important for some applications.
For instance, when we deal with the top-k nearest neighbor search
problem which requires high query accuracies, it is very hard to de-
termine the size of the candidate set containing those points whose
exact distances to the query need to be computed if no theoretical
guarantee exists. Thus, in this paper, we not only hope to greatly
improve the search efficiency of existing LSH-based approaches but
also need to ensure that the proposed approach owns guarantees
on query results. Actually, we can even adjust their relationships
in a reasonable manner, as will be shown in Sec. 4.

Before proceeding into the details, we first present the definition
of P2HNNS problem. For a given 𝑑-dimensional query hyperplane
𝐻 , we can express it as 𝑞𝑑+1 + 𝑑

𝑖=1 𝑦𝑖𝑞𝑖 = 0, where {𝑞𝑖 }’s are
hyperplane parameters and {𝑦𝑖 }’s represent the coordinates of

864

https://doi.org/10.14778/3574245.3574269
https://github.com/LUKEJING/MQH
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574269
https://www.acm.org/publications/policies/artifact-review-and-badging-current

points on 𝐻 . Then, the P2HNNS problem can be written in a formal
way as follows:

𝑥min = argmin{𝑠𝐻 (𝑥) = |⟨𝒙, 𝒒⟩ − 𝑏 |} (1)

, where 𝑥min is the true nearest neighbor; 𝑞 denotes the normal-
ized vector of [𝑞1, . . . , 𝑞𝑑]⊤ and 𝑏 = −𝑞𝑑+1/

√︃𝑑
𝑖=1 𝑞𝑖

2. For each
𝑥 , we first quantize it to 𝑥 via some quantization technique and
decompose 𝑥 as 𝑥 = 𝑥+𝑟 (𝑥), where 𝑟 (𝑥) denotes the residual vector
of 𝑥 . We observe that, to obtain a strict probability guarantee on
query results, we only need to consider residual vectors instead of
original data points tackled by existing LSH-based schemes, that
is, we only compute the hash values of 𝑟 (𝑥). On the other hand,
since for existing quantization techniques, the quantization error
∥𝑟 (𝑥)∥ is generally not taken into account in the query phase, the
treatment of 𝑟 (𝑥) can help improving the query accuracy further.
Note that, our work goes far beyond a straightforward combination
of a quantization process and a hashing process. In fact, our focus
in this paper is to show that there are some intrinsic connections
between these two processes, which not only yields the theoretical
guarantees on our final results, but also implies when to combine
these two processes from the perspective of efficiency. Both of these
two aspects lay the foundation for the proposed structure. Specifi-
cally, the connections mentioned above can be shown roughly as
follows. (1) For every data point, the size of hash bucket depends
on the quantization error. Generally, the smaller the quantization
error is, the smaller the required size of hash bucket is. Note that,
as the size decreases, the probability that the processed point falls
inside the hash bucket increases, which means that we can prune
the false point (if it is) more easily. (2) For those points which are
far away from 𝐻 , we can accordingly tolerate larger quantization
errors. In fact, for every data point, by checking the relationship
between its distance to the hyperplane and its quantization error,
we can automatically determine if the current quantization error is
tolerable for the examination of current hash values (More details
can be found in Fig. 1.).

Based on the observations above, we summarize our contribu-
tions as follows. Note that, the proposed framework is essentially an
LSH-based scheme and is compatible with any Multiple Codebook
Quantization (MCQ) technique.

(1) In Sec. 3, we derive some results regarding the random projec-
tion of residual vectors. We show that, under some assumptions, if
we set the size of hash bucket to a reasonable value, the nearest point
to the hyperplane is guaranteed to be found with a user-specified
success probability. This not only yields a theoretical guarantee of
our final algorithm, but also quantitatively shows how the size of
quantization error affects the effectiveness of random projection.

(2) In Sec. 4, based on the results obtained in Sec. 3, we propose a
structure called MQH (Hashing onMulti-level Quantization Errors
). Specifically, we generate several groups of hash functions, each
of which corresponds to a level of quantization error. In the query
phase, we can automatically determine a level for each data point
in an online fashion and examine its hash values in that level. If the
processed data point can be pruned with the probability guarantee
determined beforehand, we skip the examination of its remaining
sub-codewords to gain the efficiency.

Table 1: Some notations

Notation Explanation
D The dataset
𝑛 The size of dataset
𝐻 The query hyperplane
𝑞 An arbitrary normalized vector of 𝐻
𝐿 The number of levels (𝐿0 level is excluded)
M The number of sub-codebooks in each level
𝑥 The quantized vector of 𝑥
𝑟 (𝑥) The residual vector of 𝑥
𝑠𝐻 (𝑥) The distance of point 𝑥 to hyperplane 𝐻
𝑐 The approximation ratio (0 < 𝑐 < 1)
𝑤 The half-width of hash bucket
𝑚 The number of hash functions in each level
𝑙0 The parameter regarding the collision threshold
𝛿 The parameter controlling search performance
𝜖 The error rate (0 < 𝜖 < 1)
ℎ𝛼 (𝑥) The hash value of 𝑥 regarding vector 𝛼
#Col(,) The collision number of two points
𝛼 , 𝛽 Two coefficients regarding the time complexity

(3) In experiments, we show that, with the guarantee for approx-
imate P2HNNS solutions, MQH runs 2X-10X faster than existing
P2HNNS solvers for each target recall rate. In addition, MQH with
the strict guarantee of recall rates also generally performs better
than the competitive solver FH, which shows that MQH could
achieve a practical tradeoff between search performance and theo-
retical bound.

The rest of this paper is organized as follows. In Sec. 2, we intro-
duce some relevant definitions of P2HNNS and some LSH-based
P2HNNS solvers. In Sec. 3 and Sec. 4, we introduce the details of
MQH. In Sec. 5, we present some analysis of the proposed algorithm.
In Sec. 6, we verify the effectiveness of MQH by experiments.

2 RELATEDWORK
2.1 P2HNNS and LSH Function Families
Firstly, we introduce some background and definitions with respect
to LSH. Given a datasetD of 𝑛 𝑑-dimensional data points, P2HNNS
needs to find the point 𝑥min in D with the minimum distance to
query hyperplane 𝐻 . However, since finding such exact solution
may be exhaustive, especially in high-dimensional spaces, some
researchers turn to find approximate solutions and introduce ap-
proximation ratio 𝑐 to measure the difference between the true
nearest neighbor and the returned approximate nearest neighbor.
Specifically, for 𝑐-approximate nearest neighbor (𝑐-ANN) search,
only an approximate nearest neighbor 𝑥∗ needs to be returned, that
is, 𝑠𝐻 (𝑥∗) ≤ 𝑐𝑠𝐻 (𝑥min), where 𝑠𝐻 (𝑥) denotes the distance between
𝑥 and 𝐻 . Similarly, 𝑘NN search returns 𝑘 results 𝑥 (𝑖)min (1 ≤ 𝑖 ≤ 𝑘),
where 𝑥 (𝑖)min is the 𝑖-th true nearest neighbor of𝐻 . Its 𝑐-approximate
version, 𝑐-𝑘-ANN, returns a set of 𝑘 objects 𝑥 (𝑖)∗ (1 ≤ 𝑖 ≤ 𝑘) satis-
fying 𝑠𝐻 (𝑥 (𝑖)∗) ≤ 𝑐𝑠𝐻 (𝑥 (𝑖)min).

Next, let us turn to the point-to-point search in ℓ2 space to in-
troduce the classical definition of LSH. We use 𝑞 to denote the

865

query point and 𝑥 to denote any data point. That is, the distance
function 𝑠𝐻 (𝑥) should be replaced by ∥𝑥 − 𝑞∥ in this case. Given
a hash function family F and a hash function ℎ drawn randomly
from F , if the following two conditions are satisfied, where 𝑟 de-
notes a search radius and 0 ≤ 𝑝1 < 𝑝0 ≤ 1, we say that F is a
(𝑟, 𝑐𝑟, 𝑝0, 𝑝1)-sensitive hash function family.

(1) Pr[ℎ(𝑞) = ℎ(𝑥)] ≥ 𝑝0 if ∥𝑞 − 𝑥 ∥ ≤ 𝑟 .
(2) Pr[ℎ(𝑞) = ℎ(𝑥)] ≤ 𝑝1 if ∥𝑞 − 𝑥 ∥ ≥ 𝑐𝑟 .
It is easy to see that, according to the properties above, we can

use F to distinguish the nearest neighbor from other false points.
We will show that, the hash function family designed in this paper
also satisfies these two conditions (See Lemma 1 and Lemma 2
below). Actually, in our proposal, the normalized vector of query
hyperplane plays a similar role of the query point in the point-to-
point search problem.

2.2 Existing P2HNNS Solutions
To solve P2HNNS with probability guarantees, some researchers
proposed hyperplane hashing schemes to deal with the hyperplane.
The first two solutions in this category are AH and EH [24, 28]
whose basic ideas are to design hash function families sensitive
to the angle between every data vector and the hyperplane. Later,
to make better use of the LSH property, authors in [33] and [34]
proposed BH and MH with bilinear and multi-linear hash func-
tions, respectively. Recently, authors in [15] proposed NH and FH.
The basic ideas of NH and FH are to embed data points into an-
other Euclidean space with higher dimensions, and then transform
P2HNNS to Nearest Neighbor Search (NNS) and Furthest Neighbor
Search (FNS) in the new space.

As mentioned earlier, except for LSH-based approaches, there
also exist some heuristic approaches for the point-to-point search
like vector quantization [2, 3, 13, 17, 23] and similarity graph [11, 19,
22]. For the completeness, we would also like to discuss if graphs are
suited to P2HNNS. The effectiveness of similarity graph depends on
the Voronoi Diagramwith all data points as seed points. If the query
is a point, it lies in one and only one Voronoi cell and we may reach
the desired cell along a searching path. However, if the query is a
hyperplane, it can intersect with many Voronoi cells. Since graph-
based search is essentially a greedy algorithm, it can not reach
these cells simultaneously in a single-round search. Therefore, such
strategy is not applicable to P2HNNS.

3 RANDOM PROJECTION OF RESIDUAL
VECTORS

In this section, we present some theoretical results such that the
introduction of MQH in the next section becomes clear and natu-
ral. According to (1), for each 𝑥 , we need to compute or estimate
|⟨�̂�, 𝒒⟩ − 𝑏 + ⟨𝒓 (𝒙), 𝒒⟩ | to find 𝑥∗, which is always interpreted as
the true nearest neighbor in this section. Since it is always efficient
to compute the exact value of ⟨�̂�, 𝒒⟩ via quantization, if we can
estimate ⟨𝒓 (𝒙), 𝒒⟩ precisely and determine if this value is smaller or
larger than 𝑏−⟨�̂�, 𝒒⟩ , we can also estimate the point-to-hyperplane
distance precisely since 𝑏 is always known and fixed. The precision
mentioned here is measured by a criterion used to judge if the value
⟨�̂�, 𝒒⟩ is smaller or larger than some bound determined beforehand
with a user-specified success probability. One of main goals in this

1

4

3

2

0
4
tl

1
1
tl

1
2
tl

1
3
tl

0
1
tl

0
3
tl

0
2
tl

1
4
tl

2o

1o

0t−

0t−

0t−1t−

1t−

1t−

0t

0t

0t

1t

1t

1t

1o

1o

2o

2o

2o

q

q

q

collision number

1o

q

0VHP
1VHP

1o

2o

0r

1r

0 0
0 1 4() ()t tr l l = = =

1 1
1 1 4() ()t tr l l = = =

qx

1r

2r
3r

4r

5r

1,x r

5,x r
5,D =

0 1,s =
2m = 。

1r

2r

3r

4r

5r
2
y= −

Inverted index list

Quantization code Hashing code

Quantization code

collistion testing

Quantization code

Hashing code

Collision
testing

+

+

+

Residual vector

Residual vector

Residual vector

Hashing code

1L

0L

2L

3L

For the same residual vector

Collision
testing

Collision
testing

Figure 1: A working mechanism of MQH. We can see that
MQH has a hierarchical structure. Specifically, in each level,
we need to make a decision, that is, we choose to check the
hashing code in this level or to step to the next level to de-
crease the quantization error further, which depends on if
the processed point is highly likely to be a false point. From
the 𝐿1 level, every data point is represented by a combination
of a hashing code and a quantization code. Particularly, the
hashing code in the 𝐿𝑖 level (𝑖 ≥ 1) and the quantization code
in the 𝐿𝑖+1 level are the approximate representations of the
same residual vector although they are different. In the query
phase, for every data point which could enter the 𝐿1 level,
we need to check if it is the false point. Specifically, in each
level, we need to make a decision, that is, we choose to check
the hashing code in this level or to step to the next level to
decrease the quantization error further, which depends on if
the processed point is highly likely to be a false point, since,
if this point cannot pass the collision testing in the current
level, we prune it instantly. Clearly, this structure can take
the different advantages of hashing codes and quantization
codes simultaneously, that is, the hashing code helps us prun-
ing false points with deterministic probability guarantees
while quantization codes can approximate residual vectors
in a more accurate way to strengthen the collision testing.

section is to determine such criterion. Specifically, let us consider
the following concrete problem: given a residual vector 𝑟 (𝑥) = 𝑥−𝑥 ,
an interval [𝑏−𝑤,𝑏 +𝑤] and a value 𝐼 (𝑥) = ⟨�̂�, 𝒒⟩ < 𝑏−𝑤 , how do
we get a lower bound of the probability that the value of 𝐼 (𝑥)+⟨�̂�, 𝒒⟩
lies in the interval [𝑏 −𝑤,𝑏 +𝑤], where𝑤 denotes the exact mini-
mum point-to-hyperplane distance (The discussion for 𝐼 (𝑥) > 𝑏+𝑤
is similar, as will be shown later.). Although𝑤 is unknown in prac-
tice, we assume that we know its value here for the simplicity and
will get rid of this assumption in our main theoretical result (Th. 1).
Clearly, according to the definition in (1), if we can answer this
question, we actually obtain a criterion to determine if an arbitrary
data point is the nearest one with probability guarantees.

To solve the problem mentioned above, let us introduce some
notations and build their relationships. Let 𝑛(𝑥) = ∥𝑟 (𝑥)∥ and
𝑥 = 𝑟 (𝑥)/𝑛(𝑥). We introduce two normalized vectors 𝑞+ and 𝑞− ,
where 𝑞+ = 𝑞/∥𝑞∥ and 𝑞− = −𝑞/∥𝑞∥. If 𝑏 −𝑤 ≤ 𝐼 (𝑥) ≤ 𝑏 +𝑤 , we
compute the exact distance of𝑥 to𝐻 since𝑥 is a promising candidate
of the nearest neighbor. Thus, in the following discussion, we only

866

20

0

0

0

0

2

2

2

2

3

1,1T

1,2T

2,1T

3,1T

3,2T

1o 2o
4
3

4

q
60

v

1,2R

1,1R

2,1R

3,1R

3,2R

1o

2o

3o

240

45

1C

2C

3C

4o

4o

q 3o

1,1R

1,2R

2,1R

3,1R

3,2R

v

v q

q

q

q
20

0

0

0

0

2

2

2

2

3

1,1T

1,2T

2,1T

3,1T

3,2T

1o 2o
4
3

4

q
60

v

1,2R

1,1R

2,1R

3,1R

3,2R

1o

2o

3o

240

45

1C

2C

3C

4o

4o

q 3o

1,1R

1,2R

2,1R

3,1R

3,2R

v

v q

q

q

q

2,1R

H
++

==

==

1

1

1o
1

1,1R

1o v

1

1,1R

2,1R

x

2ˆ()I x

2x̂

1ˆ()I x

()I x

3ˆ()I x
2,1R

1ˆ()I x
1x̂x 3x̂

1h2h3h
2ˆ()I x

3ˆ()I x
()I x

q −

w−

wH

(b) Inner products with (c) Computation of hash values

(d) Collision testing (a) Stepwise quantization

q

Figure 2: A geometrical illustration. In this example, we show how to prune the false point 𝑥 (in black) by MQH. By a stepwise
quantization, we approach 𝑥 in the order 𝑥1, 𝑥2, 𝑥3 (red-blue-green).

consider the case 𝐼 (𝑥) < 𝑏 −𝑤 . If 𝐼 (𝑥) > 𝑏 +𝑤 , the discussion is
completely similar if we replace 𝑞+ by 𝑞− (see Fig. 2). Clearly, when
𝐼 (𝑥) < 𝑏 −𝑤 , we need to check the relationship between 𝐼+ (𝑥) =
⟨𝒒+, �̃�⟩ and [𝑡0 (𝑥), 𝑡1 (𝑥)], where 𝑡0 (𝑥) = (𝑏 −𝑤 − 𝐼 (𝑥))/𝑛(𝑥) ≥ 0
and 𝑡1 (𝑥) = (𝑏 +𝑤 − 𝐼 (𝑥))/𝑛(𝑥)] ≥ 0. Specifically, there are the
following three additional cases. Case 1: 1 < 𝑡0 (𝑥). In this case, we
prune 𝑥 since its distance to the hyperplane is definitely greater
than𝑤 . Case 2: 1 < 𝑡1 (𝑥). We set 𝑡1 (𝑥) to 1 such that this case can
be included in the following case. Case 3: 0 ≤ 𝑡0 (𝑥) ≤ 𝑡1 (𝑥) ≤ 1.
We first introduce some notations. Let ℎ𝛼 (𝑥) be the hash value of
point 𝑥 regarding hash function ℎ𝛼 . That is, ℎ𝛼 (𝑥) = 1 if ⟨�̃�,𝜶 ⟩ ≥ 0
and ℎ𝛼 (𝑥) = 0 otherwise, where 𝛼 is drawn randomly from any
isotropic distribution𝑈 [7]. Then, we have the following result.

Lemma 1. Suppose that𝑤 > 0. If−𝑤 ≤ 𝑠𝐻 (𝑥) ≤ 𝑤 , Pr𝛼∈𝑈 [ℎ𝛼 (𝑥) =
ℎ𝛼 (𝑞)] lies in the interval [𝑃0, 𝑃1], where 𝑃0 = 1 − [arccos(𝑡0)/𝜋]
and 𝑃1 = 1 − [arccos(𝑡1)/𝜋].

Proof. Since
𝑞+ = ∥𝑥 ∥ = 1, by the definitions of 𝑡0 and 𝑡1, it is

easy to see that −𝑤 ≤ 𝑠𝐻 (𝑥) ≤ 𝑤 is equivalent to 𝑡0 ≤ ⟨𝒒+, �̃�⟩ ≤ 𝑡1,
and is also equivalent to arccos(𝑡1) ≤ 𝜃𝑥 ≤ arccos(𝑡0), where 𝜃𝑥 is
the angle between 𝑞+ and 𝑥 . On the other hand, it is well known
that [7], for two normalized data points 𝑥1, 𝑥2, and a hash function
ℎ𝛼 (𝑥) defined above, we have the following collision probability:

Pr[ℎ𝛼 (𝑥1) = ℎ𝛼 (𝑥2)] = 1 − 𝜃/𝜋 (2)
, where 𝜃 is the angle between 𝑥1 and 𝑥2. Then, we obtain the

result in Lemma 1. □

For the nearest neighbor 𝑥∗, Lemma 1 provides us with a char-
acteristic of its hash value. Next, similar to traditional LSH-based
schemes, we introduce an approximation ratio 𝑐 > 1 and consider
those false data points 𝑥 ’s with 𝑠𝐻 (𝑥) < −𝑐𝑤 or 𝑠𝐻 (𝑥) > 𝑐𝑤 . Then,
we have the following result.

Lemma 2. Suppose that 𝑐 > 1 and 𝜂 (𝑥) = (𝑐 − 1)𝑤/𝑛(𝑥). If
𝑠𝐻 (𝑥) < −𝑐𝑤 and 𝜂 (𝑥) ≤ 𝑡0, Pr𝛼∈𝑈 [ℎ𝛼 (𝑥) = ℎ𝛼 (𝑞)] ≤ 𝑃 ′0, where
𝑃 ′0 = 1 − [arccos(𝑡0 − 𝜂 (𝑥))/𝜋]. If 𝑠𝐻 (𝑥) > 𝑐𝑤 and 𝜂 (𝑥) ≤ 1 − 𝑡1,
Pr𝛼∈𝑈 [ℎ𝛼 (𝑥) = ℎ𝛼 (𝑞)] ≥ 𝑃 ′1, where 𝑃

′
1 = 1− [arccos(𝑡1 +𝜂 (𝑥))/𝜋].

Proof. since 𝑠𝐻 (𝑥) ≤ −𝑐𝑤 is equivalent to 𝜃𝑥 ≥ arccos(𝑡0 −
𝜂 (𝑥)) and 𝑠𝐻 (𝑥) ≥ 𝑐𝑤 is equivalent to 𝜃𝑥 ≤ arccos(𝑡1 + 𝜂 (𝑥)), we
obtain the result in Lemma 2 by Lemma 1. □

Note that we do not need to consider the other cases of 𝜂 (𝑥),
that is, 𝜂 (𝑥) > 𝑡0 or 𝜂 (𝑥) > 1 − 𝑡1 since they actually have been
tackled in the preceding discussion. On the other hand, it is easy
to see that 𝑃 ′0 < 𝑃0 and 𝑃 ′1 > 𝑃1. Moreover, the differences 𝑃0 −
𝑃 ′0 and 𝑃 ′1 − 𝑃1 increase as 𝑐 increases, which implies the LSH
property. That is, we can use hash function ℎ𝛼 to distinguish the
nearest neighbor 𝑥∗ from other false points. Since a single hash
function can only be regarded as a weak classifier, by combing
𝑚 hash functions generated independently, we can actually get a
stronger one [12]. We introduce the notation #𝐶𝑜𝑙 (𝑥, 𝑞+) to denote
the collision number between 𝑥 and 𝑞+, which indicates how many
times ℎ𝛼𝑖 (𝑥) equals ℎ𝛼𝑖 (𝑞), where 𝑖 = 1, . . . ,𝑚 and 𝛼𝑖 ∼ 𝑈 , i.i.d. Let
𝑔(𝜖) =

√︃
𝑚
2 log 1

𝜖 . Then, by the Hoeffding’s inequality, we have the
following result.

Lemma 3. Given an error 𝜖 > 0. Let 𝑙0 = 𝑔(𝜖) and 𝑙1 = 𝑔(𝜖/2).
If −𝑤 ≤ 𝑠𝐻 (𝑥) ≤ 𝑤 , Pr[#𝐶𝑜𝑙 (𝑥, 𝑞+) ≥ 𝑚𝑃0 − 𝑙0] ≥ 1 − 𝜖 and
Pr[𝑚𝑃0 − 𝑙1 ≤ #𝐶𝑜𝑙 (𝑥, 𝑞+) ≤ 𝑚𝑃1 + 𝑙1] ≥ 1 − 𝜖 .

Proof. We focus on the second inequality in the statement of
Lemma 3, while the first inequality can be proved in a similar way.

Based on the relationships between 𝑥 and 𝑃0, 𝑃1, we have the
following two Hoeffding’s inequalities:

𝑃 (#Col(𝑥, 𝑞) ≤ 𝑚𝑃0 − 𝑙1) ≤ 𝑒−2𝑚 (𝑙1/𝑚)2 = 𝜖/2. (3)

867

𝑃 (#Col(𝑥, 𝑞) ≥ 𝑚𝑃1 + 𝑙1) ≤ 𝑒−2𝑚 (𝑙1/𝑚)2 = 𝜖/2. (4)

Thus, 𝑙1 should be set to
√︃

𝑚
2 log 2

𝜖 , which is exactly the setting
in Lemma 3. □

By Lemma 3, we can check if the collision number of each point
lies in either of these two buckets to determine the candidate set. In
this way, the probability that 𝑥∗ does not pass the collision testing
is bounded by 𝜖 . In practice, we mainly use [𝑚𝑃0 − 𝑙0,𝑚], where
𝑙0 = 𝑔(𝜖/2), since most of false points fall outside this bucket. If 𝑥
falls inside this bucket, we further check [0,𝑚𝑃1 + 𝑙0].

Next, let us take hash bucket [𝑚𝑃0 − 𝑙0,𝑚] as an example and
simply discuss why such hashing scheme potentially performs
better than previous ones. From the definitions of 𝑡0 and 𝑡1, it
is easy to see that, the size of hash buckets highly depends on
the quantization error, that is, 𝑛(𝑥). Roughly speaking, as 𝑛(𝑥)
decreases, the size of hash bucket, that is,𝑚 −𝑚𝑃0 is very likely to
decrease accordingly, which strengthens the collision testing and
makes false points more difficult to be added into the candidate set.
Later, we will use this property to design our index structure (See
Fig. 1 and Fig. 2 for more details.).

4 HASHING ON MULTI-LEVEL
QUANTIZATION ERRORS

We have shown the impact of 𝑛(𝑥) = ∥𝑟 (𝑥)∥ and the fact that
we can compute hash values of 𝑥 = 𝑟 (𝑥)/𝑛(𝑥) to find the nearest
neighbor. It is natural to raise the following question: how do we
determine a suitable value of𝑛(𝑥) for an efficient collision testing of
𝑥 . If we answer this question, we can automatically and reasonably
determine the number of required sub-codebooks for each point
and the size of candidate set, while both of these two parameters
are hard to be tuned for pure quantization approaches. Generally,
we cannot control 𝑛(𝑥) since quantization errors depend on the
used quantization approach. Nevertheless, we can alternatively use
a stepwise quantization process to achieve our goal. Specifically,
we generate a codebook C1 by any existing quantization approach.
For every data point 𝑥 , we first use C1 to quantize 𝑟0 (𝑥) to 𝑥1 and
compute the residual vector 𝑟1 (𝑥) = 𝑟0 (𝑥) −𝑥1 (𝑟0 (𝑥) is the residual
vector of 𝑥 in the 𝐿0 level.). Then, we generate codebook C2 based
on the residual vectors 𝑟1 (𝑥)’s and quantize every 𝑟1 (𝑥) to 𝑥2 with
residual vector 𝑟2 (𝑥) = 𝑟1 (𝑥) − 𝑥2. We repeat this process and
generate 𝐿 codebooks C1, C2, . . . , C𝐿 . Clearly, 𝑥 can be represented
in 𝐿 ways, that is, 𝑥 =

ℓ
𝑖=1 𝑥𝑖 + 𝑟ℓ (𝑥) (1 ≤ ℓ ≤ 𝐿), where ℓ actually

denotes a level of quantization error. Note that this treatment is
essentially different from Residual Quantization (RQ) [8] since RQ
focuses on the minimization of ∥𝑟𝐿 (𝑥)∥ =

𝑥 −𝐿
𝑖=1 𝑥𝑖

 while in
our proposal, the focus is how to choose a reasonable value of
ℓ such that the residual vector 𝑟 (𝑥) in that level is suitable for
hashing. Clearly, we can always ensure that ∥𝑟ℓ (𝑥)∥ ≤ ∥𝑟ℓ−1 (𝑥)∥
if the codebook in each level contains the zero codeword. On the
other hand, we can give the condition under which the size of hash
bucket decreases in the next level. We extend some notations for
𝑥 as follows. 𝑛ℓ (𝑥) = ∥𝑟ℓ (𝑥)∥; 𝑥ℓ = 𝑟ℓ (𝑥)/∥𝑟ℓ (𝑥)∥; 𝑡 (ℓ)0 , 𝑃 (ℓ)0 are
the values of 𝑡0 and 𝑃0 in the ℓth level, respectively; 𝜃ℓ is the angle
between 𝑥ℓ and 𝑞+;𝑊ℓ = [𝑚𝑃 (ℓ)0 − 𝑙0,𝑚] is the hash bucket in the
ℓth level. Then, we have the following result, where the condition

cos𝜃ℓ+1 ≤ 𝑡
(ℓ)
0 is necessary since otherwise, we should compute

the exact distance of 𝑥 to the hyperplane (If 𝐼 (𝑥ℓ) > 𝑏 +𝑤 , we have
a similar result.).

Lemma 4. Suppose that 𝐼 (𝑥ℓ) < 𝑏 −𝑤 and cos𝜃ℓ+1 ≤ 𝑡
(ℓ)
0 (1 ≤

ℓ ≤ 𝐿 − 1),𝑊ℓ+1 ⊆𝑊ℓ if and only if cos𝜃ℓ+1 ≤ 𝑛ℓ (𝑥)−𝑛ℓ+1 (𝑥)
𝑛ℓ (𝑥) 𝑡

(ℓ)
0 .

Proof. By the definitions of notations,𝑊ℓ+1 ⊆𝑊ℓ is equivalent
to the following inequality:

𝑏 −𝑤 − 𝐼 (𝑥ℓ)
𝑛ℓ (𝑥)

≤ 𝑏 −𝑤 − 𝐼 (𝑥ℓ+1)
𝑛ℓ+1 (𝑥)

. (5)

On the other hand, we have 𝐼 (𝑥ℓ) + 𝑛ℓ (𝑥) cos𝜃ℓ+1 = 𝐼 (𝑥ℓ+1).
Actually, we assume that 𝑛ℓ (𝑥) = ∥𝑥ℓ+1∥ here, which can always
hold if we use the norm-explicit quantization technique [9] in each
level. Then, by some elementary transformations and the definition
of 𝑡 (ℓ)0 , we have the result in Lemma 4. □

Lemma 4 describes the relationship between the quantization
error and the size of hash bucket. The condition making the bucket
size decrease in the next level depends on two factors: the decreas-
ing rate of the quantization error and the value of 𝑡 (ℓ)0 . The first
factor explains the motivation of using a stepwise quantization. As
for 𝑡 (ℓ)0 , we would like to show that, even if its value is much smaller
than 1 (For example, 𝑡0 = 0.5.), this condition is still highly likely
to be satisfied. To show this, we make some assumptions on the
distribution of residual vectors. For every 𝑟 (𝑥), we suppose that it is
drawn randomly from the sphere 𝑆𝑑 (𝑛(𝑥)), which is generally close
to the practical error distribution. Under this assumption, we can
get a closed form of the probability that 𝑥 passes the collision testing
as 𝑑 goes infinity. Let 𝐹 (𝜏 ;𝑚, 𝑝) be the probability that the variable
𝑥 of Binomial distribution 𝐵(𝑚, 𝑝) is not less than 𝜏 and𝐺 (𝑑,𝑚, 𝜏) =∫ 𝜋

0 [𝑒−𝑑 cos2 𝜃/2
√︃

𝑑
2𝜋 𝐹 (𝜏 ;𝑚, 1 −

𝜃
𝜋) | sin𝜃 |]𝑑𝜃 . Then, we have the

following asymptotic result.

Lemma 5. Pr�̃�∼𝑈 (𝑆𝑑 (1)) [#𝐶𝑜𝑙 (𝑥, 𝑞) ≥ 𝜏] → 𝐺 (𝑑,𝑚, 𝜏) as 𝑑 goes
infinity.

Proof. Let 𝑣1 and 𝑣2 be two vectors drawn randomly from the
unit sphere 𝑆𝑑 (1). We denote the angle between 𝑣1 and 𝑣2 by 𝜃 ,
and denote the probability density function of 𝜃 by 𝑝𝑑 (𝜃). By some
elementary transformations, we can easily derive the closed form
of 𝑝𝑑 (𝜃) as follows:

𝑝𝑑 (𝜃) = Γ(𝑑/2)
Γ((𝑑 − 1)/2) ·

sin𝑑−2 (𝜃)
√
𝜋

(6)

, where Γ() denotes the Gamma function. According to the proof
of Theorem 1 in [21], we have

lim
𝑑→∞

1
√
𝑑 − 𝑧2

× 𝑝𝑑 (arccos 𝑧
√
𝑑
) = 𝑓 (𝑧) (7)

, where 𝑓 (𝑧) = 1√
2𝜋
𝑒−𝑧

2/2. Then, based on the threshold in
collision testing and the collision probability of generated hash
functions, we have the following equation:

Pr
�̃�∼𝑈 (𝑆𝑑 (1))

[#𝐶𝑜𝑙 (𝑥, 𝑞) ≥ 𝜏] =
∫ 𝜋

0
𝑝𝑑 (𝜃)𝐹 (𝜏 ;𝑚, 1 − 𝜃

𝜋
)𝑑𝜃 . (8)

868

Algorithm 1: The Indexing of MQH
Input: D is the dataset (𝑥 ∈ D); 𝐿 is the maximum level;

M is the number of sub-codebooks in each level;𝑚
is the number of hash functions generated
independently in each level;

1 Generate coarse quantizers in the 𝐿0 level;
2 for ℓ from 1 to 𝐿 do
3 Train the codebook Cℓ containing M sub-codebooks in

the ℓ-th level;
4 Quantize every 𝑟ℓ−1 (𝑥) to 𝑥ℓ by Cℓ and compute

residual vector 𝑟ℓ (𝑥);
5 Compute𝑚 hash values for every 𝑟ℓ (𝑥) and obtain the

binary hashing code with length𝑚;
6 Store quantization codes and hashing codes in all levels;

By (7) and (8), we conclude. □

In practice [21], the difference between the probability on the
left-hand side and 𝐺 (𝑑,𝑚, 𝜏) is small enough when 𝑑 exceeds 100.
We plotted the curves showing the values of 𝐺 (𝑑,𝑚,𝑚𝑃0 − 𝑙0) for
different values of 𝑑 (See Fig. 6(c)(d)). On one hand, the value of
function 𝐺 is predictable by 𝑡0 since, in our proposal, the threshold
𝑚𝑃0 − 𝑙0 of the bucket depends on 𝑡0. On the other hand, for high-
dimensional datasets, the collision numbers of most of vectors on
sphere 𝑆𝑑 are around 𝑚/2, which means that a small 𝑡0 may be
enough to ensure a high rejection rate of the collision testing. Both
of these two observations imply that, for every data point 𝑥 , 𝑡0 is
a critical parameter controlling the possibility that 𝑥 passes the
collision testing. In the query phase, we will use a coefficient 𝛿
to indicate the upper bound of 𝑡0 and thus control the tradeoff
between search efficiency and query accuracy. In experiments, we
will compare the values of predicted 𝛿 and experimentally optimal
𝛿 (See Fig. 6).

A toy example: for each point in a given data set, MQH needs
to determine if it can be regarded as a candidate. Based on the
discussion above, we use a top example to show how MQH works
(See Figure 2). Let the number of levels be 3 and𝑚 (the number
of hash functions) be 16. For a false point 𝑥 , let 𝑥1, 𝑥2 and 𝑥3 be
three quantized vectors of 𝑥 with quantization error 𝑛1 (𝑥) = 4,
𝑛2 (𝑥) = 2 and 𝑛3 (𝑥) = 1, respectively. In the first level, based on
𝑥1 and 𝑛1 (𝑥), we compute the bucket regarding 𝑥 as [5, 16] and
the collision number of 𝑥 as 8. Clearly, we cannot prune 𝑥 since 𝑥
does not fall outside the bucket. Then, we move to the next level.
In the second level, we decrease the quantization error to 𝑛2 (𝑥)
and consider 𝑥2. For a similar reason, 𝑥 is still not rejected by the
collision testing in this level. In the third level, the bucket shrinks
to [16,16] and the collision number of 𝑥 is 9, which means that we
can now safely prune 𝑥 with some probability guarantee. We treat
every data point in this way. If some point cannot be pruned even
in the last level, we regard this point as a promising candidate of
P2HNNS.

Algorithm 2: The Query Phase of MQH
Input: 𝑞 and 𝑏 are hyperplane parameters; 𝑘 is the number

of returned points; 𝛿 is the parameter for the
tradeoff of efficiency and accuracy; D is the dataset
(𝑥 ∈ D); 𝐿 is the maximum level;𝑚 is the number of
hash functions in each level; 𝐶 is the set containing
𝑘 nearest neighbors among current candidates; 𝐹𝑙𝑎𝑔
is an indicator, where 𝐹𝑙𝑎𝑔 = 1 for guarantees on
recall rates and 𝐹𝑙𝑎𝑔 = 0 for guarantees of finding
approximate nearest neighbors.

1 Build multi-level tables for the fast processing of
quantization codes;

2 Find some initial candidates in the 𝐿1 level;
3 Update 𝐶 = {𝑥 (1)∗ , . . . , 𝑥

(𝑘)
∗ } and𝑤∗ = 𝑠𝐻 (𝑥 (𝑘)∗);

4 for 𝑥 ∈ D do
5 for ℓ from 1 to 𝐿 do
6 Compute𝑤ℓ (𝑥) = 𝑏 −𝑤∗ − 𝐼 (𝑥ℓ); %

𝐼 (𝑥ℓ) = 𝐼 (𝑥ℓ−1) + ⟨�̂�ℓ , 𝒒⟩;
7 if 𝑤ℓ (𝑥) ≤ 0 then
8 Compute the exact distance of 𝑥 to 𝐻 ; % 𝑥

is a promising candidate in this case;
9 Update 𝐶 and𝑤∗ if necessary;

10 if 𝑤ℓ (𝑥) > 𝑟ℓ (𝑥) then
11 Turn to process the next data point; % 𝑥 is

not a top-k point;
12 if 𝐹𝑙𝑎𝑔 = 0 and𝑤ℓ (𝑥)/𝑟ℓ (𝑥) > 𝛿 then
13 Turn to process the next data point; %

Improve the efficiency by 𝛿 ;
14 if (𝐹𝑙𝑎𝑔 = 1 and𝑤ℓ (𝑥)/𝑟ℓ (𝑥) > 𝛿) or (𝐹𝑙𝑎𝑔 = 0 and

ℓ = 𝐿 and𝑤ℓ (𝑥)/𝑟ℓ (𝑥) ≤ 𝛿) then
15 Compute the collision number of 𝑥 and 𝑞+ or 𝑞− ;

% left for 𝑞+ and right for 𝑞− ;
16 if 𝑥 passes the collision testing then
17 Compute the exact distance of 𝑥 to 𝐻 ; %

judge if 𝑥 falls in the bucket;
18 Update 𝐶 and𝑤∗ if necessary;
19 Turn to process the next data point; % skip

checking remaining levels;

20 return 𝑘 points in 𝐶

5 DISCUSSION
5.1 Implementation and Algorithm
Now, we are in a position to give the algorithm of MQH (Alg. 1 and
Alg. 2). In the indexing phase, we just take a stepwise quantization
process to generate the quantization codes and hashing codes of
every data point, as discussed earlier. In the query phase, the choice
of 𝑤 needs additional explanations. In the preceding discussion,
we suppose that we know the value of𝑤 . Actually, to ensure the
correctness of our probability guarantee, we can replace𝑤 by any
𝑤∗ ≥ 𝑤 without making the earlier analysis essentially different,
where𝑤∗ denotes the distance of the 𝑘th nearest neighbor which

869

we have found to 𝐻 (Of course, from the perspective of efficiency,
we still hope that𝑤∗ is as close to𝑤 as possible.). Thus, our query
phase consists of two sub-phases. In the first sub-phase, we get
an approximate value of 𝑤 , i.e., 𝑤∗, by checking a small number
of promising candidates, as existing quantization approaches do.
In the second sub-phase, we use MQH to deal with the remaining
points, that is, to determine if every processed point can be regarded
as a candidate. If we find a closer point, we need to update 𝑤∗ to
strengthen the collision testing.

Let 𝑥 (1)min, 𝑥
(2)
min, . . . , 𝑥

(𝑘)
min be the true top-k nearest neighbors. By

the analysis in the preceding sections, we have the following main
result for the guarantees on the returned points, where 𝑤ℓ (𝑥) is
defined in step 6 in Alg. 2.

Theorem 1. Given an error rate 𝜖 > 0, a coefficient 0 < 𝛿 < 1
and 𝐹𝑙𝑎𝑔 = 0. If (1/𝛿 − 1)𝑤ℓ (𝑥 (𝑖)min) < 𝑤∗ holds for each level ℓ ,
the probability that Algorithm 2 finds a point 𝑥 such that 𝑠𝐻 (𝑥) ≤

𝑤∗
𝑤∗−(1/𝛿−1)𝑤ℓ (𝑥 (𝑖)

min)
𝑠𝐻 (𝑥 (𝑖)min) is at least 1−𝜖 (1 ≤ 𝑖 ≤ 𝑘). If 𝐹𝑙𝑎𝑔 = 1,

the probability that 𝑥 (𝑖)min is found is at least 1−𝜖 for each 𝑖 (1 ≤ 𝑖 ≤ 𝑘).

Proof. We first consider the case 𝐹𝑙𝑎𝑔 = 1. since 𝑤∗ ≥ 𝑤 , by
the definitions of 𝑡0, 𝑡1, we know that the bucket size determined
by𝑤∗ is not smaller than that determined by𝑤 . If the condition in
step 7 in Algorithm 2 is satisfied, the exact distance of 𝑥 to𝐻 will be
computed. If not, according to the observation above and Lemma 3,
we know the probability that 𝑥 (𝑖)min falls inside the bucket is at least
1 − 𝜖 (1 ≤ 𝑖 ≤ 𝑘). Note that, the discussion above applies to any
level and the value of 𝛿 in this case only determines the terminal
level for each point.

Next, we consider the case 𝐹𝑙𝑎𝑔 = 0. Since (1/𝛿 − 1)𝑤ℓ (𝑥 (𝑖)min)
< 𝑤∗, we define 𝑐 =

𝑤∗
𝑤∗−(1/𝛿−1)𝑤ℓ (𝑥 (𝑖)

min)
> 1. Then, we consider

the following two additional cases when we are processing 𝑥 (𝑖)min.
Case 1: we have found a point 𝑥 such that 𝑠𝐻 (𝑥) ≤ 𝑐𝑠𝐻 (𝑥 (𝑖)min). In
this case, whether 𝑥 (𝑖)min passes the collision testing or not does not
affect our conclusion. Case 2: we have not found a 𝑐-approximate
nearest neighbor of 𝑥 (𝑖)min. According to the definition of 𝑤∗, this
implies that, 𝑐𝑤 (𝑖)

min ≤ 𝑤∗, where𝑤 (𝑖)
min is the distance of 𝑥 (𝑖)min to the

hyperplane. By the definition of 𝑟ℓ (𝑥 (𝑖)min) and the definition of 𝑐 ,
we have the following relationships:

𝑤
(𝑖)
min ≤ 𝑤∗ − (1/𝛿 − 1)𝑤ℓ (𝑥 (𝑖)min) ⇒ 𝑤ℓ (𝑥 (𝑖)min)/𝑟ℓ (𝑥

(𝑖)
min) ≤ 𝛿. (9)

Therefore, we know that 𝑥 (𝑖)min could not be pruned by the con-
dition in step 12 in Algorithm 2. On the other hand, according to
the preceding discussion for 𝐹𝑙𝑎𝑔 = 1, 𝑥 (𝑖)min can pass the collision
testing with probability at least 1−𝜖 . Therefore, no matter in which
case, we can ensure that a 𝑐-approximate nearest neighbor of 𝑥 (𝑖)min
is found with probability at least 1 − 𝜖 . □

By this theorem, we can see that, for 𝐹𝑙𝑎𝑔 = 0, 𝛿 plays a similar
role of approximation ratio 𝑐 . In addition, by the definitions and the
high precision of quantization, 𝑤ℓ (𝑥 (𝑖)min) is generally very small,
which means that the condition stated in the theorem is highly

likely to be satisfied even with a small value of 𝛿 (For example,
0.3 ≤ 𝛿 ≤ 0.5.).

5.2 Complexity Analysis
Next, we analyze the space complexity and the time complexity of
MQH. Let 𝑛 be the data size. In the indexing phase, since we need to
execute the stepwise quantization process, the space complexity is
𝑂 (𝑛𝑑 +M𝑛+𝑛𝑚/8), where in each level, the complexity for storing
quantization codes is 𝑂 (M𝑛) and the complexity for storing hash-
ing codes is 𝑂 (𝑛𝑚/8). For the training complexity, since it highly
depends on the used quantization approach in each level, we skip its
estimation. Nevertheless, we will show that, for large-scale datasets,
the training time is actually much smaller than the indexing time by
choosing a training-efficient quantization approach. On the other
hand, the time complexity for indexing is 𝑂 (𝑛𝑑𝐿𝑇 + 𝑛𝑑𝑚𝐿), where
𝑇 = 256 is the number of sub-codewords in each sub-codebook; the
complexity for the computation of quantization codes is 𝑂 (𝑛𝑑𝐿𝑇)
and the complexity for the random projection is 𝑂 (𝑛𝑑𝑚𝐿). Note
that, the indexing time can be greatly shorten in a multi-core envi-
ronment since all data points are encoded independently.

In the query phase, the space complexity is𝑂 (𝑛𝑑+𝐿M𝑛+𝐿𝑛𝑚/8)
since we need to store the quantization and hashing codes in all
levels for the level determination. On the other hand, we also need
to store the original dataset since the exact distance computation is
indispensable for the top-k search. The time complexity for search-
ing is 𝑂 (𝛼𝐿M𝑛 + 𝑛𝑚 + 𝛽𝑛𝑑). Here 𝑂 (𝛼𝐿M𝑛) denotes the time for
the examination of quantization codes, where 𝛼𝐿 (0 < 𝛼 ≤ 1) is the
average terminal level; 𝑂 (𝑛𝑚) denotes the time for the counting
of 1’s of hashing codes, which can be executed efficiently by using
suitable instructions; 𝛽𝑛 denotes the number of candidates pass-
ing the collision testing. In the scenario of isotropic distributions,
𝛽
.
= 𝐺 (𝑑,𝑚,𝑚𝑃0 − 𝑙0) if the terminal levels of all data points can be

bounded by 𝐿 − 1. Note that both 𝛼 and 𝛽 are controllable. In fact,
with the existence of 𝐿0 level, we can feed only a small subset of the
original dataset into our model such that 𝛼 can be small enough,
although in this case, our guarantee only holds for the input subset.
As for 𝛽 , it implicitly depends on the user-specified parameter 𝛿 .
Theoretically, 𝛽 can be arbitrarily small if 𝛿 was set to be close to
0 enough. On the other hand, if we normally run MQH with the
guarantees for approximate solutions (That is, we do not use the
heuristic strategies above.), 𝛼 is generally smaller than 0.3/𝐿 and
𝛽 is generally smaller than 0.01 for a practical value of 𝛿 on real
datasets (See Table 5). Since M ≪ 𝑑 on high-dimensional datasets
, the complexity of our algorithm is much lower than that of the
linear scan.

5.3 Handling Updates
By the discussion above, it is easy to see that, after determining
the codebook in each level, the binary codes of all data points are
generated independently with each other. If the domain of data
points does not change significantly, which occurs rarely in practice,
we do not need to retrain the codebooks and can thus easily handle
the updates of data points. Specifically, for a data point to be inserted
or to be modified, the time for computing its quantization codes
is 𝑂 (𝑇𝐿𝑑) and the time for computing its hash values is 𝑂 (𝑚𝐿𝑑),

870

Table 2: The statistics of five used datasets.

Dataset #Points Dimension Data size Type
Music 1,000,000 100 0.38 GB Rating
Glove 1,183,514 100 0.45 GB Text
Tiny1M 1,000,000 384 1.43 GB Image
Deep10M 10,000,000 96 3.88 GB Image
Deep100M 100,000,000 96 38.8 GB Image

Table 3: Indexing time (including the training time) and Index
size. BH and MH have been outperformed by NH and FH
in [15]. In addition, all approaches except for MQH crashed
on Deep100M due to overlarge memory costs in the indexing
phase on our PC.

Dataset Index Size (GB) Indexing Time (s)
NH FH MQH NH FH MQH

Music 2.9 2.2 0.53 285 114 789
Glove 3.5 2.6 0.73 342 130 846
Tiny1M 3.0 5.2 1.67 1069 931 3702
Deep10M 29.3 21.4 5.1 1123 1129 2740
Deep100M \ \ 51.5 \ \ 22324

where 𝑇 = 256. For the deletion, the time is 𝑂 (1) because of the
independency of codes.

6 EXPERIMENTS
All experiments were performed on a PC with Intel(R) Xeon(R)
Gold 6285V CPU@2.70Ghz with 157GBmemory, running in Ubuntu
18.04. Our code and all used datasets are available on the Github1.

6.1 Experimental Setup
We chose five real datasets: Music (dim: 100; size: 1M), Glove (dim:
100, size: 1.2M), Tiny1M (dim: 384; size: 1M), Deep10M (dim: 96;
size:10M) and Deep100M (dim: 96; size:100M), where Tiny1M was
extracted from Tiny80M [31]; Deep10M and Deep100M were ex-
tracted from Deep1B (Note that, the norms of data points in Deep
are all 1.). The details of used datasets can be found in Table 2. For
each dataset, the number of queries was fixed to 100, as in [15].

Next we discuss the choice of quantization approach in MQH.
Based on the analysis in Sec. 4, we know that any MCQ approach
can apply to the proposed framework. In this paper, we chose NE-
RQ [9] for the following reason. According to Definition (1), the
selected quantization approach should be suited to the estimation
of inner product, and NEQ [9] has been proven to be a competitive
approach for this purpose. Among various NEQ variants, NE-RQ
can achieve the best performance with a comparatively small train-
ing time. Therefore, in the following experiments, we incorporate
NE-RQ into the stepwise quantization process in MQH. It is no-
table that, some quantization approaches proposed for Maximum
Inner Product Search (MIPS), such as ScaNN [14], are not suited to
P2HNNS due to essentially different objective functions.

We first consider existing P2HNNS solutions and choose the
following five LSH-based approaches.
1https://github.com/LUKEJING/MQH

• BH [33]. 𝐾 was set to {2, 4, 6, 8, 10} and 𝐿 was set to {8, 16,
32, 64, 128, 256}. We chose the best search results under all the
combinations of parameters.

• MH [34].We set the number of random projections to {4,8,16}
and set other (common) parameters to the same values in BH.

• NH [15]. The number of hash functions was set to {8, 16, 32, 64,
128, 256} and 𝜆 was set to 𝑑, 2𝑑, 4𝑑, 8𝑑 , as in its paper. The other
parameters were set to the default values in its original code.

• FH [15]. The setting of 𝜆 and the number of hash functions were
the same with those of NH. Parameter 𝑡 was set to {2, 4, 6, 8, 10}
as suggested in its paper.

• MQH. We generated four levels (𝐿 = 4). Actually, we will show
that only a very small portion of data points could reach the
fourth level (See Table 5). Thus, 𝐿 = 4 is enough for most of real
datasets. Besides, in each level, the number of sub-codebooks
was set to 16 (M = 16) which is a standard setting in many
quantization-based approaches. Actually, the concrete value of
M is not very important since our structure can automatically
determine the total number of sub-codebooks which need to be
processed. The number of hash functions was set to 64 (𝑚 = 64)
since the binary code of such length (64 bits) can be processed
efficiently on our PC. 𝑙0 was recommended to set to 5 on Tiny1M
and set to 3 on the other datasets (𝜖 was thus fixed.). 𝛿 was
generally taken in [0,2, 0.5] for achieving different tradeoffs
between efficiency and accuracy (for approximate solutions).
The performance of MQH under different settings of 𝑙0 and 𝛿
will be discussed in Sec. 6.5. The number of training samples was
fixed to 100K.

6.2 Index Size and Indexing Time
Since the number of hash tables for BH,MH, and the number of hash
functions for NH, FH were chosen in a large range, the indexing
times and index sizes of compared methods were not fixed on each
dataset. On the other hand, BH and MH have been outperformed by
NH and FH in these two performance metrics, as reported in [15].
Thus, we focus on the comparison among MQH, NH and FH with
the number of hash functions fixed, that is,𝑚 = 256. Actually, this
is the recommended setting for NH, and FH under𝑚 = 256 can
perform slightly better than it under other values of𝑚, as shown
in [15]. Note that the total number of hash functions for MQH is
also 256 since there are 4 levels in each of which 64 hash functions
are built.

Table 3 shows the index sizes and the indexing times of com-
pared approaches. Since BH, MH, FH, NH crashed on Deep100M
in the indexing phase even with the smallest feasible value of each
parameter, we focus on the comparison results on the other four
datasets. We can see that, for𝑚 = 256, MQH has the smallest index
size among all LSH-based approaches. This is because, compared
with FH and NH, every data point in MQH is represented by a bi-
nary code rather than a group of integers. This might be the reason
why only MQH could work on Deep100M on our PC.

On the other hand, MQH generally requires more indexing time
than the other compared approaches. This is because MQH needs
additional training time for the stepwise quantization. Note that,
although the indexing time of MQH is obviously larger than those
of NH and FH on 1M-scale datasets, the difference decreases as the

871

c=2

0

20

40

60

80

100

8 9 10 11 12 13 14 15

Recall (%)

Time (ms)

MQH BH
MH NH
FH

(a) Music, k = 1
c=2

0

20

40

60

80

100

15 16 17 18 19 20 21 22

Recall (%)

Time (ms)

MQH BH
MH NH
FH

(b) Glove, k = 1
c=2

0

20

40

60

80

100

8 9 10 11 12 13 14 15

Recall (%)

Time (ms)

MQH BH
MH NH
FH

(c) Tiny1M, k = 1
c=2

0

20

40

60

80

100

33 36 39 42 45 48 51 54

Recall (%)

Time (ms)

MQH
BH
MH
NH
FH

(d) Deep10M, k = 1

c=2

0

20

40

60

80

100

8 9 10 11 12 13 14 15

Recall (%)

Time (ms)

MQH BH
MH NH
FH

(e) Music, k = 10
c=2

0

20

40

60

80

100

15 16 17 18 19 20 21 22

Recall (%)

Time (ms)

MQH BH
MH NH
FH

(f) Glove, k = 10
c=2

0

20

40

60

80

100

8 9 10 11 12 13 14 15

Recall (%)

Time (ms)

MQH BH
MH NH
FH

(g) Tiny1M, k = 10
c=2

0

20

40

60

80

100

33 36 39 42 45 48 51 54

Recall (%)

Time (ms)

MQH
BH
MH
NH
FH

(h) Deep10M, k = 10

c=2

0

20

40

60

80

100

7 8 9 10 11 12 13 14

Recall (%)

Time (ms)

MQH
BH
MH
NH
FH

(i) Music, k = 100
c=2

0

20

40

60

80

100

14 16 18 20 22 24 26 28

Recall (%)

Time (ms)

MQH
BH
MH
NH
FH

(j) Glove, k = 100
c=2

0

20

40

60

80

100

8 11 14 17 20 23 26 29

Recall (%)

Time (ms)

MQH BH
MH NH
FH

(k) Tiny1M, k = 100
c=2

0

20

40

60

80

100

30 35 40 45 50 55 60 65

Recall (%)

Time (ms)

MQH
BH
MH
NH
FH

(l) Deep10M, k = 100

Figure 3: The performances of compared approaches on four real datasets (Normalized case).

c=2

50

60

70

80

90

100

7 8 9 10 11 12 13 14

Recall (%)

Time (ms)

MQH NH FH

(a) Music, k = 1
c=2

70
75
80
85
90
95

100

12 13 14 15 16 17 18 19

Recall (%)

Time (ms)

MQH NH FH

(b) Glove, k = 1
c=2

0

20

40

60

80

100

8 9 10 11 12 13 14 15

Recall (%)

Time (ms)

MQH NH FH

(c) Tiny1M, k = 1
c=2

50

60

70

80

90

100

7 8 9 10 11 12 13 14

Recall (%)

Time (ms)

MQH NH FH

(d) Music, k = 10

c=2

70
75
80
85
90
95

100

12 13 14 15 16 17 18 19

Recall (%)

Time (ms)

MQH NH FH

(e) Glove, k = 10
c=2

0

20

40

60

80

100

8 9 10 11 12 13 14 15

Recall (%)

Time (ms)

MQH NH FH

(f) Tiny1M, k = 10
c=2

50

60

70

80

90

100

7 8 9 10 11 12 13 14

Recall (%)

Time (ms)

MQH NH FH

(g) Music, k = 100
c=2

60

70

80

90

100

12 13 14 15 16 17 18 19

Recall (%)

Time (ms)

MQH NH FH

(h) Glove, k = 100

Figure 4: The results on original datasets (Non-normalized case).

data size grows (on Deep10M). This implies that the training time
does not dominate in the total indexing time on large-scale datasets.
On the other hand, since the data points are indexed independently
in MQH, we can easily accelerate the indexing process in a multi-
thread regime.

6.3 Comparison on Search Performances
6.3.1 Results for Approximate Solutions on Normalized Datasets.
We set 𝐹𝑙𝑎𝑔 to 0 in MQH and show the search performances of
compared approaches on normalized datasets in Fig. 3 (Specifically,

we normalize Music, Glove and Tiny1M such that the norm of
every data point is fixed to 1). Actually, original BH and MH can
only apply to the dataset whose data points locate on a sphere,
which occur frequently in the domain of active learning. From the
results, we can see that, MQH performs much better than the other
approaches. Specifically, for each target running time, the recall
rate of MQH is 20%-70% larger than that of the state-of-the-art LSH-
based approach FH, which shows the superiority of the hashing
scheme built on quantization errors.

872

Table 4: MQH(𝐹𝑙𝑎𝑔 = 1) vs. FH in various cases. Here Deep denotes Deep10M.

Data

Normalized dataset Original dataset
k = 10 k = 100 k = 10 k = 100

Recall(%) Time(ms) Recall(%) Time(ms) Recall(%) Time(ms) Recall(%) Time(ms)
MQH FH MQH FH MQH FH MQH FH MQH FH MQH FH MQH FH MQH FH

Music 99.3 73.1 36.6 41.6 99.7 66.3 40.6 41.6 99.5 99.4 30.9 35.0 99.1 99.1 30.4 42.3
Glove 98.5 80.2 58.7 90.3 99.7 80.3 63.4 90.4 100.0 99.6 52.1 44.1 99.8 99.8 52.0 90.8
Tiny 98.0 97.4 68.1 63.5 97.6 96.7 84.3 101 98.0 89.7 62.0 63.7 98.0 93.8 75.3 122
Deep 98.9 51.2 417 472 99.9 44.5 447 472 \ \ \ \ \ \ \ \

Table 5: The studies of 𝛼 (Processing ratio) and 𝛽 (Passing ratio), 𝑘 = 100

Dataset Processing ratio (‰) Passing ratio (‰) Recall rate (%)
𝐿 = 1 𝐿 = 2 𝐿 = 3 𝐿 = 4 𝐿 = 1 𝐿 = 2 𝐿 = 3 𝐿 = 4 𝐿 = 1 𝐿 = 2 𝐿 = 3 𝐿 = 4

Music 46.0 2.9 0.4 0.09 4.81 0.57 0.12 0.04 94.4 96.3 98.2 99.2
Glove 34.6 1.7 0.2 0.05 6.35 0.66 0.13 0.04 92.2 95.3 97.9 99.2
Tiny1M 167 167 81.9 39.6 80.3 45.4 25.6 14.1 92.1 93.2 93.7 95.3
Deep10M 10.0 0.31 0.02 0.004 1.17 0.07 0.01 0.003 93.1 95.8 97.9 98.8
Deep100M 1.7 1.7 0.12 0.001 0.35 0.02 0.002 0.001 89.7 92.8 95.7 97.1

6.3.2 Results for Approximate Solutions on Original Datasets. Al-
though in many cases, P2HNNS is applied to normalized datasets,
it also has some applications, such as dimension reduction, on
non-normalized datasets. Therefore, we compared MQH with FH
and NH on the original datasets of Music, Glove and Tiny1M (See
Fig. 4 and Fig. 7-(a)). From the results, we can see that, MQH still
performs better than FH and NH, especially on high-dimensional
dataset Tiny1M. This shows that the performance of MQH is not
sensitive to the norm distributions of datasets.

6.3.3 Results for Guarantees on Recall Rates. In the discussion
above, we have shown the performances of MQH under 𝐹𝑙𝑎𝑔 = 0.
Now, we focus on the case 𝐹𝑙𝑎𝑔 = 1, in which MQH owns a prob-
ability guarantee on recall rates. As for the choice of parameters,
with the other parameters unchanged, we set 𝛿 to 0.5 for the reason
which will be discussed in Sec. 6.5. Since the other compared meth-
ods do not have such strong guarantees on recall rates and FH has
shown the best performance among four benchmark approaches in
the experiments above, we focus on the comparison between MQH
under 𝐹𝑙𝑎𝑔 = 1 and FH under its common settings for approximate
solutions. The results are shown in Table 4.

From the results, we have the following observations:
(1) In the case of normalized datasets, compared with FH, MQH

required less running time to achieve higher recall rates on each
dataset. This shows that, MQH could apply to those applications
which need guarantees on recall rates with an acceptable efficiency.

(2) Still for the case of normalized dataset, compared with MQH
(𝐹𝑙𝑎𝑔 = 0), MQH (𝐹𝑙𝑎𝑔 = 1) can achieve a slightly higher recall rate
at the expense of much more running time. An important reason
for such results is that, MQH (𝐹𝑙𝑎𝑔 = 0) determines those points
which are highly unlikely to pass the collision testing beforehand
by parameter 𝛿 and skips their collision testings to improve the
efficiency. Thus, for those applications which focus on both of the
efficiency and the accuracy, we recommend users to choose MQH
with 𝐹𝑙𝑎𝑔 = 0 and use 𝛿 to achieve a desired tradeoff.

Table 6: MQH vs. Vanilla NEQ (𝑘 = 100). X in V𝑋 denotes the
number of sub-codebooks in Vanilla NEQ.

Dataset Running time (ms) Recall rate (%)
MQH V16 V32 MQH V16 V32

Music 13.4 24.9 29.9 98.7 78.6 98.3
Glove 31.5 36.0 42.5 98.9 76.9 98.4
Tiny1M 13.6 24.4 29.6 93.8 66.6 82.6
Deep10M 128.8 184.2 229.5 98.9 69.7 98.6
Deep100M 764.1 1274 1762 97.1 55.3 96.5

(3) In the case of original datasets, we can see that, on Glove
(𝑘 = 10), the performances of FH and MQH are very close, while
on the other datasets, MQH outperforms FH.

6.4 Ablation Study
Obviously, the discussion in Sec. 3 can lead to an approach with a
straightforward combination of quantization and hashing, which
also owns probability guarantees, as in the analysis of MQH. In
order to demonstrate the necessity of stepwise quantization more
clearly, we introduce an approach called NEQ+Hashing. Its infor-
mation is shown below. In addition, since we incorporate NEQ in
MQH, we also take NEQ (with some modification) as a baseline
method for P2HNNS.
• Vanilla NEQ. Traditional NEQ was proposed to solve MIPS.

Here, we adjust it for P2HNNS. Specifically, we follow NEQ to
quantize all data points and estimate the inner product in (1).
Then, we sort data points and compute the exact distances of
some top points to the hyperplane. The number of sub-codebooks
was set to {16, 32} and the size of candidate set was set to 1000.

• NEQ+Hashing. To show the necessity of dynamic level determi-
nation in MQH, we introduce NEQ+Hashing. It can be regarded
as a straightforward combination of NEQ and LSH. Specifically,
by choosing a value of 𝐿, we only compute the residual vector of

873

c=2

80

84

88

92

96

100

8 9 10 11 12 13 14 15

Recall (%)

Time (ms)

MQH
NEQ+Hashing(L=1)
NEQ+Hashing(L=2)
NEQ+Hashing(L=3)

(a) Music, k = 100
c=2

75

80

85

90

95

100

14 16 18 20 22 24 26 28

Recall (%)

Time (ms)

MQH
NEQ+Hashing(L=1)
NEQ+Hashing(L=2)
NEQ+Hashing(L=3)

(b) Glove, k = 100
c=2

75

80

85

90

95

100

8 10 12 14 16 18 20 22

Recall (%)

Time (ms)

MQH
NEQ+Hashing(L=1)
NEQ+Hashing(L=2)
NEQ+Hashing(L=3)

(c) Tiny1M, k = 100
c=2

70

76

82

88

94

100

28 34 40 46 52 58 64 70

Recall (%)

Time (ms)

MQH
NEQ+Hashing(L=1)
NEQ+Hashing(L=2)
NEQ+Hashing(L=3)

(d) Deep10M, k = 100

Figure 5: MQH vs. NEQ+Hashing, where 𝐿 denotes the terminal level. Due to the large computational cost of quantization codes,
NEQ+Hashing under 𝐿 ≥ 4 performed worse than that under 𝐿 = 3 on each dataset.

each data point in the 𝐿-th level and then compute corresponding
hash values. That is, compared with MQH, the terminal level for
each data point in NEQ+Hashing was set to the same value. Thus,
for each data point, we would not skip the examination of its
remaining sub-codebooks until the terminal level is reached. Sim-
ilar to MQH, we use 𝛿 to adjust its tradeoffs between efficiency
and accuracy.

Table 6 shows the comparison results of MQH and Vanilla NEQ.
We can see that, compared with NEQ, MQH can achieve higher re-
call rates with less running times. This is because MQH dynamically
and automatically determines the required length of quantization
code for each data point to gain the efficiency, while the length of
code in NEQ should be fixed to a unified value beforehand.

Fig. 5 and Fig. 7-(b) show the comparison results of MQH and
NEQ+Hashing. We can see that MQH outperforms NEQ+Hashing
with a 5%-8% improvement on the recall rate for each target running
time. This shows that, the optimal terminal levels of data points
may be very different with each other, and the level determination
in MQH is helpful for the improvement of query accuracy.

6.5 Coefficients and Parameters
There are two coefficients which indicate the performance of MQH:
𝛼 regarding the total number of sub-codebooks which need to be
processed in the query phase, and 𝛽 regarding the size of candidate
set. The details of both of these two coefficients can be found in
Sec. 5. In addition, although several internal parameters, such as
𝛿 , ł0, have theoretical implications, their values may affect the
performance of MQH. In Sec. 6.5, we also study their impact.

6.5.1 The Effect of 𝛼 and 𝛽 . In the analysis of time complexity,
we introduced two parameters 𝛼 and 𝛽 , and claimed that both of
them were much smaller than 1. In Table 5, we explicitly compute
the values of 𝛼 and 𝛽 on each dataset. From the results, we can
see that, thanks to the inverted index list in the 𝐿0 level, only 5%
- 16% data points could enter the 𝐿1 level, which means that the
other data points are pruned without affording any computational
cost on their quantization or hashing codes. Besides, the number
of processed data points decreases significantly as the level goes
deeper. With these two observations, it is easy to see that the value
of 𝛼 could be generally smaller than 0.1.

As for 𝛽 , which is indicated by the passing ratio, we can see
that its trend is very similar to that of 𝛼 . Even with 𝐿1 level only,
more than 95% data points cannot pass the collision testing on each
dataset except for Tiny1M, which means that their exact distances

to the query hyperplane do not need to be computed. When we use
four levels, the passing ratio can be further reduced to 0.01.

6.5.2 The Effect of 𝛿 . 𝛿 controls the tradeoff between efficiency
and accuracy. We consider both cases of 𝐹𝑙𝑎𝑔 = 0 and 𝐹𝑙𝑎𝑔 = 1. In
addition, we compute the predicted value of 𝛿 and compare it with
the experimental value.

By Fig. 6, we can see that the practical effect of 𝛿 is almost
consistent with the theoretical effect of 𝛿 , which is reflected in the
following two aspects. (1) 𝛿 ≤ 0.5 is enough for achieving high
recall rates since for 𝛿 > 0.5, the theoretical probability of passing
the collision testing is very close to 0. (2) 𝛿 is suggested to take
value in [0.2, 0.5] and the theoretical probability changes rapidly
as 𝛿 varies in this interval.

In the theoretical analysis, we have explained how to improve
the search efficiency of MQH by 𝛿 in the case 𝐹𝑙𝑎𝑔 = 0. Here, we
want to show that, 𝛿 is also an important parameter for 𝐹𝑙𝑎𝑔 = 1.
Note that, the implication of 𝛿 under 𝐹𝑙𝑎𝑔 = 1 is slightly different
from that under 𝐹𝑙𝑎𝑔 = 0. Actually, as discussed earlier, the value
of 𝛿 does not affect the probability guarantee on recall rates for
𝐹𝑙𝑎𝑔 = 1. However, the earlier analysis still applies to this case.
From the results in Table 7, we can see that, as 𝛿 increases from
0.5, the recall rate almost remains unchanged and the running time
still increases, which implies that 𝛿 = 0.5 is a reasonable upper
threshold for 𝛿 , which is consistent with our theoretical prediction.

6.5.3 The Effects of 𝑙0. Except for 𝛿 , another important parameter
is 𝑙0, which controls the size of error rate 𝜖 . Generally, the recall rate
increases as 𝜖 decreases, that is, as 𝑙0 increases. From the results in
Table 8, we can see that [3, 5] is a reasonable interval for 𝑙0 since the
recall rates can be high enough if 𝑙0 takes a value in this interval.

6.5.4 The Effects of Initial Candidate Set. In Algorithm 2 of MQH,
we have shown that MQH first needs to determine a small candidate
set to get a value of𝑤∗. Here we want to show that the performance
of MQH is not sensitive to the size of such initial candidate set. In
Table 9, we set the size to {1000, 2000, 5000}. We can see that, the
performances of MQH under such parameters are generally close.
This is because, we need to use MQH to deal with all remaining
data points after this step and a roughly approximate value 𝑤∗,
which is obtained by coarse quantizers in the 𝐿0 level, can work
well enough in our proposal.

874

c=2

2

20

200

2000

0.1 0.2 0.3 0.4 0.5

Running time (ms)
Music Glove
Tiny1M Deep10M
Deep100M

(a) 𝛿 vs. Running time
c=2

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall (%)

Music
Glove
Tiny1M
Deep10M
Deep100M

(b) 𝛿 vs. Recall rate
c=2

0
0.1
0.2
0.3
0.4
0.5
0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Prob

(c) Probabilities of passing
collision testing (dim=100) c=2

0
0.1
0.2
0.3
0.4
0.5
0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Prob

(d) Probabilities of passing
collision testing (dim=384)

Figure 6: The effect of 𝛿 (the upper bound of 𝑡0) under 𝐹𝑙𝑎𝑔 = 0. The theoretical probabilities of passing the collision testing are
obtained based on isotropic distributions.

c=2

0

20

40

60

80

100

8 9 10 11 12 13 14 15

Recall (%)

Time (ms)

MQH NH FH

(a) Results on original
Tiny1M, k = 100 c=2

70

76

82

88

94

100

300 400 500 600 700 800 900 1000

Recall (%)

Time (ms)

MQH
NEQ+Hashing(L=1)
NEQ+Hashing(L=2)
NEQ+Hashing(L=3)

(b) Deep100M in Figure 5

Figure 7: Supplemental results to Figures 4 and 5

Table 7: The effect of 𝛿 , 𝑘 = 100, 𝑙0 = 5 and 𝐹𝑙𝑎𝑔 = 1.

𝛿
Recall rate (%) Running time (ms)

Glove Tiny Deep10M Glove Tiny Deep10M
0.1 88.8 94.0 93.3 44.7 74.6 378.7
0.3 96.7 96.2 95.4 45.1 69.0 385.0
0.5 99.6 96.2 99.6 48.7 63.6 400.6
0.7 99.6 96.2 99.6 55.5 70.0 455.1
0.9 99.6 96.2 99.6 60.9 73.5 494.8

Table 8: The effect of 𝑙0, 𝑘 = 100, 𝛿 = 0.5 and 𝐹𝑙𝑎𝑔 = 1.

𝑙0
Recall rate (%) Running time (ms)

Glove Tiny Deep10M Glove Tiny Deep10M
1 99.2 93.7 99.2 47.4 58.8 345.3
3 99.6 96.2 99.6 48.7 63.5 343.1
5 99.8 98.0 99.9 50.2 75.3 399.3
7 99.9 99.2 100.0 58.5 95.3 497.8

Table 9: The effect of the size of initial candidate set, 𝑘 = 100,
𝑙0 = 3, 𝛿 = 0.4 and 𝐹𝑙𝑎𝑔 = 0.

Dataset Recall rate (%) Running time (ms)
1000 2000 5000 1000 2000 5000

Music 99.4 99.4 99.5 8.44 9.1 11.7
Glove 99.3 99.3 99.3 17.2 18.1 21.0
Tiny1M 95.1 96.2 97.5 41.8 42.7 44.9
Deep10M 94.6 94.9 95.1 68.1 70.9 77.5

7 CONCLUSION
In this paper, to solve P2HNNS, we build a hierarchical structure
called MQH which can determine if the current residual vector
is suitable for hashing. Theoretical analysis shows that MQH not
only enjoys guarantees on query results, but also automatically
determines the required length of code for each point to ensure the
high efficiency. Experiments on real datasets confirm the superiority
of MQH.

ACKNOWLEDGMENTS
Thisworkwas supported by KAKENHI (21H03555, 22H03594, 22H03903).

REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.
[2] A. Babenko and V. S. Lempitsky. Additive quantization for extreme vector

compression. In CVPR, pages 931–938, 2014.
[3] A. Babenko and V. S. Lempitsky. Efficient indexing of billion-scale datasets of

deep descriptors. In CVPR, pages 2055–2063, 2016.
[4] J. L. Bentley. K-d trees for semidynamic point sets. In SCG, pages 187–197, 1990.
[5] C. Z. Bin Zhao, Fei Wang. Efficient maximummargin clustering via cutting plane

algorithm. In SDM, pages 751–762, 2008.
[6] C. X. Y. R. Chang Xu, Dacheng Tao. Large-margin weakly supervised dimension-

ality reduction. In ICML, pages 865–873, 2014.
[7] M. Charikar. Similarity estimation techniques from rounding algorithms. In

STOC, pages 380–388, 2002.
[8] Y. Chen, T. Guan, and C. Wang. Approximate nearest neighbor search by residual

vector quantization. Sensors, 10(12):11259–11273, 2010.
[9] X. Dai, X. Yan, K. K. W. Ng, J. Liu, and J. Cheng. Norm-explicit quantization:

Improving vector quantization for maximum inner product search. In AAAI,
2020.

[10] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In SoCG, pages 253–262, 2004.

[11] C. Fu, C. Wang, and D. Cai. High dimensional similarity search with satellite
system graph: Efficiency, scalability, and unindexed query compatibility. IEEE
Trans. Pattern Anal. Mach. Intell, 2022.

[12] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based on
dynamic collision counting. In SIGMOD, pages 541–552, 2012.

[13] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization. IEEE Trans.
Pattern Anal. Mach. Intell, 36(4):744–755, 2014.

[14] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and S. Kumar. Ac-
celerating large-scale inference with anisotropic vector quantization. In ICML,
pages 3887–3896, 2020.

[15] Q. Huang, Y. Lei, and A. K. H. Tung. Point-to-hyperplane nearest neighbor search
beyond the unit hypersphere. In SIGMOD, pages 777–789, 2021.

[16] P. Indyk and R. Motwani:. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In STOC, pages 604–613, 1998.

[17] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell, 33(1):117–128, 2011.

[18] K. Lu and M. Kudo. R2LSH: A nearest neighbor search scheme based on two-
dimensional projected spaces. In ICDE, pages 1045–1056, 2020.

[19] K. Lu, M. Kudo, C. Xiao, and Y. Ishikawa. HVS: Hierarchical graph structure
based on voronoi diagrams for solving approximate nearest neighbor search.
Proc. VLDB Endow., 15(2):246–258, 2021.

875

[20] K. Lu, H. Wang, W. Wang, and M. Kudo. VHP: Approximate nearest neighbor
search via virtual hypersphere partitioning. Proc. VLDB Endow., 13(9):1443–1455,
2020.

[21] K. Lu, H. Wang, Y. Xiao, and H. Song. Why locality sensitive hashing works: A
practical perspective. Inf. Process. Lett., 136:49–58, 2018.

[22] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE Trans.
Pattern Anal. Mach. Intell, 42(4):824–836, 2020.

[23] J. Martinez, hobhit Zakhmi, H. H. Hoos, and J. J. Little. Lsq++: Lower running
time and higher recall in multi-codebook quantization. In ECCV, pages 508–523,
2018.

[24] K. G. Prateek Jain, Sudheendra Vijayanarasimhan. Hashing hyperplane queries
to near points with applications to large-scale active learning. In NeurIPS, pages
928–936, 2010.

[25] P. Ram and A. G. Gray. Maximum inner-product search using cone trees. In
KDD, pages 931–939, 2012.

[26] M. J. Saberian, J. C. Pereira, N. Vasconcelos, and C. Xu. Large margin discriminant
dimensionality reduction in prediction space. In NeurIPS, pages 1488–1496, 2016.

[27] G. Schohn and D. Cohn. Less is more: Active learning with support vector
machines. In ICML, pages 839–846, 2000.

[28] K. G. Sudheendra Vijayanarasimhan, Prateek Jain. Hashing hyperplane queries
to near points with applications to large-scale active learning. IEEE Trans. Pattern
Anal. Mach. Intell, 36(2):276–288, 2014.

[29] Z.-H. Z. Teng Zhang. Optimal margin distribution clustering. In AAAI, pages
4474–4481, 2018.

[30] S. Tong and D. Koller. Support vector machine active learning with applications
to text classification. J. Mach. Learn. Res, 2:45–66, 2001.

[31] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data
set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal.
Mach. Intell, 30(11):1958–1970, 2008.

[32] S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Training
object detectors with crawled data and crowds. In CVPR, pages 1449–1456, 2011.

[33] J. W. Wei Liu, Y. Mu, S. Kumar, and S.-F. Chang. Compact hyperplane hashing
with bilinear functions. In ICML, pages 467–474, 2012.

[34] X. F. Xianglong Liu, C. Deng, Z. Li, H. Su, and D. Tao. Multilinear hyperplane
hashing. In CVPR, pages 5119–5127, 2016.

876

	Abstract
	1 Introduction
	2 Related Work
	2.1 P2HNNS and LSH Function Families
	2.2 Existing P2HNNS Solutions

	3 Random Projection of Residual Vectors
	4 Hashing on Multi-level Quantization Errors
	5 Discussion
	5.1 Implementation and Algorithm
	5.2 Complexity Analysis
	5.3 Handling Updates

	6 Experiments
	6.1 Experimental Setup
	6.2 Index Size and Indexing Time
	6.3 Comparison on Search Performances
	6.4 Ablation Study
	6.5 Coefficients and Parameters

	7 Conclusion
	Acknowledgments
	References

