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ABSTRACT
In recent years, hardware has become increasingly diverse, in terms
of features as well as performance. This poses a problem for complex
software in general and database systems in particular. To achieve
top-notch performance, we need to exploit hardware features, but
do not fully know which behave best on the current, and more-so
future, machines. Specializing query execution methods for many
diverse hardware platforms will significantly increase database
software complexity and also poses a physical query optimization
problem that cannot be solved robustly with static cost models.

In this paper, we propose a new query execution architecture
addressing these problems. Based on the flexible domain-specific
language VOILA, it can generate thousands of different flavors from
a single code-base. As an abstraction, a virtual machine (VM) allows
hiding physical execution details, such that the VM can transpar-
ently switch between different execution tactics within each query,
applied at a fine granularity. We show rules to describe a search
space for good tactics, and describe efficient search strategies, that
limit the overhead of adaptive JIT code generation and compilation.
The VM starts executing each query in full vectorized code style,
but adaptively replaces (parts of) query pipelines by code fragments
compiled using different execution flavors, exploring this search
space and exploiting the best tactics found, casting adaptive query
execution into a Multi-Armed Bandit (MAB) problem. Excalibur,
our prototype, outperforms open-source systems by up to 28× and
the state-of-the-art system Umbra by up to 1.8×. In specific queries
Excalibur performs up to 2× faster than static flavors.
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1 INTRODUCTION
Analytical query performance is an important driver of growth in
data science applications, yet significant software challenges lie
immediately ahead. One trend is in stalling CPU improvement, as
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the limits of Moore’s law and Dennard scaling are causing classical
performance boosting techniques, such as increased clock-speed,
increased core-counts and wider-issue CPUs, to dry up. In response,
hardware is rapidly diversifying, with computer architects seeking
improved performance through specialization, typically targeting
high-growth applications such as gaming, video processing and
deep learning, but not necessarily SQL systems. The trend towards
a heterogeneous hardware landscape is hastened by a computing
market split between consumer hardware, now focused on mobile
devices, versus very large cloud companies now creating their own
specialized server hardware, whereas the standardized on-premise
server market is quickly diminishing in importance. Concretely, we
observe that the decades-old hegemony of X86 CPUs is challenged
by a variety of new options using ARM variants or RISC-V; in con-
junction with specific hardware extensions regarding persistent
memory, SIMD, encryption, compression and network communi-
cation. For database software, this hardware fragmentation poses
optimization and maintainability challenges. We have shown that
on different hardware, different styles of analytical query engine de-
sign prevail [21]; so the question is how one can create future-proof
database systems? Database systems are of the most complex soft-
ware systems and take many person-years to develop, and trying
to optimize for this diversifying hardware landscape would cause a
significant growth in code size, that in the long run will turn into
technical debt and a robustness and maintenance liability.

In response to this database systems software challenge, we
proposed VOILA [20], that introduces a domain-specific language
(DSL) to encode relational operators, and from there we can gener-
ate thousands of different flavors of execution styles. The gist of its
DSL is that it logically encodes the operations to be performed on
data as well as the layout of the data structures, yet it does not spec-
ify the order or execution-style of these operations, and instead tries
to create independence of these operations; thus providing freedom
to execute them in different ways. The challenge of determining
the best execution flavor for a query plan, out of the thousands of
possibilities, was left as future work in [20], and is the topic of this
paper. The classic approach would have been to construct detailed
physical cost models for VOILA, and solve the problem of finding
the best flavor statically, before query execution starts, as a physical
query optimization problem. However, such physical cost models
would need to be created for every hardware type that exists, as
we found that flavor performance varies strongly among different
hardware [21], and would never be future-proof. Instead, we pursue
a micro-adaptive approach [42]. A crucial property we exploit is
that all flavors generated from a VOILA program operate on the
same data structures, which allows to switch flavors in-flight and at
fine granularity: switching flavors can be done for the whole query,
or only for one pipeline, or just a fragment of a pipeline.
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Figure 1: Excalibur Architecture. Excalibur uses multiple layers to generate code and allows adaptive re-optimization based
on runtime feedback. Instead of full compilation and re-compilation, Excalibur allows reusing already compiled fragments.

In this paper we describe Excalibur, an adaptive query execution
engine, that at its core runs a VOILA Virtual Machine (VM) and
automatically generates flavors and exploits those that run fastest,
given observed performance (an interaction of query and hardware,
data distributions and concurrent workload).
Contributions. A novel architecture for analytic engines that:

(a) uses a high-level DSL (VOILA [20]) to flexibly combine vec-
torized, data-centric and other execution flavors in a single
code-base. Importantly, VOILA flavors use the same state and
data-structures, so execution can seamlessly switch flavors
even in the middle of executing a query.

(b) integrates adaptivity into a JIT-compiled system, using a Vir-
tual Machine (VM) architecture that can execute a query com-
bining different execution flavors, generating JIT-compiled frag-
ments on the granularity of an execution pipeline or even parts
of a pipeline, and explores and exploits these combinations
(tactics) on-the-fly.

(c) addresses the problem of finding good execution tactics, by
defining a search space for tactics using Mutation Rules, and
sparsely exploring this space with efficient Search Strategies
(e.g. a heuristic-based strategy or MCTS) that limit the amount
of code fragments that need to be compiled and tested, casting
this into a Multi-Armed Bandit (MAB) problem [32].

Structure. The following section briefly introduces preliminary
concepts. In Section 3 we explain query execution in Excalibur,
and in Section 4 describe two basic code generation flavors (vector-
ized [12] and data-centric [40]) that Excalibur can mix into execu-
tion tactics. Section 5 explains micro-adaptive execution in Excal-
ibur and in Section 6, we present multiple stretagies for exploring
the large design space, followed by an experimental evaluation in
Section 7. Finally, we discuss related work and conclusions.

2 BACKGROUND
This section introduces preliminary concepts, starting from the
domain-specific language VOILA, the Multi-Armed Bandit problem
and the Upper Confidence Bound algorithm.
VOILA. Excalibur builds on top of the domain-specific language
VOILA [20]. VOILA allows describing operators in a way that ex-
poses data-parallelism and, thus, implicitly allows synthesizing

SIMDized code or vectorized execution. Using VOILA, different
back-ends can generate very different code styles and query exe-
cution paradigms [20]. We have shown that the VOILA synthesis
framework covers a large design space [20].
Multi-Armed Bandits (MAB). In practice, we often have choices
but we do not know which one is best. Instead we want to find the
best choice at runtime (online learning). We can either explore (try
new or re-try old choices) or exploit (use the best choice found, so
far). This is commonly abstracted using the MAB problem. The
MAB problem can be imagined as a row of slot machines and we
want to maximize our possible reward by using the machine most
favorable to us. To achieve this, we need to observe the distributions
of all slot machines (exploration). Once we are confident about
the distributions, we can pull the lever on the most favorable slot
machine (exploitation) and pocket the rewards. The goal is to solve
this problem with a low, hopefully sub-linear, regret (loss compared
to best possible choice).
UpperConfidenceBound (UCB).One algorithm that solvesMAB
optimally is the Upper Confidence Bound algorithm (UCB) [6]. UCB
tends to be an elegant and effective solution to the MAB problem
with an attractive sub-linear regret. For each arm 𝑖 , we define a
score 𝑢𝑐𝑏𝑖 (𝑇 ) and we always choose the arm with the highest score
i.e. 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑢𝑐𝑏𝑖 (𝑇 ), at a time-step𝑇 (number of calls to algorithm),
For an arm 𝑖 , let 𝑁𝑖 be the number of samples collected so far, 𝑋𝑖
the empirical mean of rewards, and a independent constant 𝑐 . The
score is defined as:

𝑢𝑐𝑏𝑖 (𝑇 ) =
{︄
∞ if 𝑁𝑖 = 0

𝑋𝑖 + 𝑐 ∗
√︂
𝑙𝑜𝑔 (𝑇 )
𝑁𝑖

otherwise
(1)

3 EXCALIBUR
Excalibur is a system prototype1 intending to make query execution
flexible & dynamic. It allows trying and exploiting many different
execution styles (flavors), while executing the query.Wenowwalk
through its architecture in Figure 1.

To execute a query, its query plan is handed over to Excalibur,
along with readers that allow scanning the base tables involved
in the query. From there on, Excalibur translates the plan into its
own plan representation (Low-Level Plan). In the Low-Level Plan

1Source code and scripts can be found under https://github.com/t1mm3/db_excalibur
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representation, the query is split into pipelines (Pipeline 1 and
Pipeline 2) with simple operator chains inside each pipeline. These
operator chains can be and are pipelined to minimize the size of
intermediates. Afterwards, we expand plan operators into code in
the domain-specific language VOILA (shown for Pipeline 1). The
VOILA program is used to generate byte code which can efficiently
be interpreted. This step also involves generating the required code
fragments that are invoked by the byte code. These fragments could
already be cached and then do not require compilation. After the
code generation has finished, the pipeline is evaluated by inter-
preting each operator in a (vectorized) iterator-based fashion, i.e.
calling a next() method that returns batches of tuples (typically
1024) produced by the operator. Inside the next() method, the byte
code interpreter calls compiled code fragments for each byte code.

Instead of fully evaluating the pipeline, we can interrupt ex-
ecution after a certain number of tuples or CPU cycles. This is
handled by the Controller, which triggers the evaluation of the top-
most operator (in the chain) and suspends evaluation by choking
the scan (get_morsel() returning 0 tuples). This interrupt allows
making changes to the current execution flavor ("Trigger Adapta-
tion" in Figure 1). Whether Excalibur can explore new points in
the design space (flavors) or rather exploit the already explored
points is decided through a Budget 𝛽 . If there is enough budget,
new flavors are explored, otherwise the best discovered flavor will
be run. After Trigger Adaptation, any Changes are applied to the
VOILA byte code and execution of the pipeline is resumed. For
example, to switch to executing a query in data-centric flavor, we
inline all operators into the top-most operator, compile this into one
code fragment and reconfigure the byte code of the top operator,
de-activating the other operators.

3.1 Execution Model
Excalibur uses two levels of relational operators: (a) high-level op-
erators like HashJoin and (b) low-level operators that encode which
operations a high-level operator , e.g. HashJoin, must perform.

High-Level operators are rather a logical construct than a part
of physical query execution. They own the state shared by the
low-level operators (most notably data structures) and provide
high-level features such as progress estimation (needed later).

Low-level operators specify the physical implementation of a
corresponding high-level operator. Each low-level operator uses the
vectorized Volcano model i.e. it is an iterator with a next() method
that returns multiple tuples stored as an array of columnar vectors.
While our low-level operators share some similarity with LOLE-
POPs [37], they are different from DB2 BLU [43] or Starburst [23].
Specifically, we further decompose the join into sub-operators.

Instead of a monolithic HashJoin operator, we use a sequence of
JoinProbe, JoinCheck and JoinGather, of course after building the
hash table using JoinBuild. Consequently, our joins can be easily
extended in the future, e.g. JoinProbe can be replaced by using a
perfect hash [7, 11, 19]. Low-level operators are the physical unit
of query execution. An operator can be white-box (expressed in
our domain-specific language VOILA) or black-box, which allows
integrating operators for which no representation in VOILA ex-
ists (e.g. the Output operator that materializes the query result).
White-box operators expose VOILA code and, therefore, qualify for
compilation and interpretation-compilation hybrids.

Table 1: Byte Code instructions. Certain instructions are not
strictly necessary but exist for performance-purpose, these
instructions are marked with an asterisk (*).

Byte Code Instruction Description

GotoCond If condition == constant: Goto "line"
GotoUncond Goto "line"
EndOfFlow Signal end of stream
End End of program
Copy Copy value/vector
Emit Returns tuples from operator
ScanPos Allocates a position for reading a table
ScanCol Reads a column chunk from ScanPos

SelNum Turns position inside table into predicate
WritePos Allocate a position for writing a table

CompiledFragment Call compiled VOILA fragment

BucketInsert* (Complex) VOILA operation
SelUnion* (Complex) VOILA operation

Almost all relational operators in Excalibur are implemented
using VOILA (white-box). Notable black-box exceptions are Output,
which produces the query result, and JoinBuild, that builds the
hash table of a join, after the inner relation has been materialized
(resembling the Morsel-driven parallel hash join with a shared hash
table [35]). Excaliburis a interpreter (VM) that evaluates VOILA
plans, while being able to leverage VOILA’s flexibility.

3.2 Interpretation
Excalibur executes query plans as block-based pull iterators (i.e.
vectorized execution [12]), exploiting the fact that VOILA programs
can always be executed as vectorized primitives, which provides
low-latency efficient interpreted execution as a starting point.
Vectorized Byte Code. The VOILA code is translated into an easily
and efficiently interpretable representation (byte code). Our byte
code encodes auxiliary operations required to execute (vectorized)
VOILA code, while keeping VOILA code mostly encapsulated in
fragments. VOILA fragments are invoked via CompiledFragment.
The supported instructions are shown in Table 1.
Generating Byte Code.While generating the byte code, we check
for fragments that need to be compiled. This could be atomic opera-
tions (e.g. adding two columns) or complex fragments (e.g. gathering
a multi-column join probe result). For each, we generate a corre-
sponding CompiledFragment instruction and trigger compilation.

3.3 Compilation into Vectorized Primitives
VOILA fragments are compiled into machine code with LLVM [33],
a widely used framework for building compilers. Especially for
short-running queries, compilation is quite costly (10 − 100 ms).
Caching. Fortunately, compilation can often be omitted be caching
frequently used fragments. Especially for simple code fragments
(e.g. consisting of 1-2 VOILA operations) this method is quite effec-
tive, as small fragments can often be re-used. Re-use can happen
inside the same pipeline, query, or across queries. Essentially, this
caching mechanism approximates vectorized execution (very sim-
ple cached fragment with only one operation = vectorized primitive)
while still allowing complex custom-tailored fragments.
Parallel Compilation. Besides reducing compilation time (thanks
to caching), code fragments also provide a means to parallelize
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Listing 1: Example JIT-ed vectorized primitive computing
−𝑥 and 𝑥 ∗ 𝑦. Only the selective scalar path is required, the
other paths can be omitted to decrease compilation time.
void jit_1(PrimArg* arg) {

int i=0;

// Deserialize inputs and outputs
int* sel = arg ->sources[0]->first;
int num = arg ->sources[0]->num;
long* in_val1 = arg ->sources[1]->first;
long* in_val2 = arg ->sources[2]->first;
long* out_val1 = arg ->sinks[0]->first;
long* out_val2 = arg ->sinks[1]->first;

if (ignore_selvector(sel , num , true , 2*64, 2)) { // optional
// Optional unrolling
for (; i+16<num; i+=16) { /* ... */ }

for (; i<num; i++) {
out_val1[i] = -in_val1[i];
out_val2[i] = in_val1[i]* in_val2[i];

}
} else { // Use selection vector , mandatory

// Optional unrolling
for (; i+16<num; i+=16) { /* ... */ }

for (; i<num; i++) {
out_val1[sel[i]] = -in_val1[sel[i]];
out_val2[sel[i]] = in_val1[sel[i]]* in_val2[sel[i]];

} } }

compilation, even inside a single pipeline. Code fragments are in-
dependent pieces of VOILA code that are glued together by the
surrounding byte code. Therefore, code fragments can be compiled
independently of each other which allows parallelizing compilation.
Compiling Vectorized Primitives.We generate vectorized prim-
itives, functions that operate on columnar chunks of data. Note
that data-centric compilation fits into the vectorized model (e.g.
Hyper uses morsels [35], table chunks like vectors, delivered by its
vectorized scan operator that decompresses DataBlocks [31]).

The basic function template is illustrated in Listing 1. It iterates
over the input predicate (selection vector, which in our system
always exists and then evaluate the VOILA code value-at-a-time.
Furthermore, this generic template allows interesting variations:

• We can choose to ignore the predicate. This, however, is not
always possible (e.g. for example operations that can raise an
error), but can lead to better SIMD performance [19]. Choosing
only requires a quick density check on the selection vector, like
illustrated in Listing 2.

• Important code paths can be unrolled. This means splitting the
loop into the unrolled loop that processes 𝑁 values (e.g. 16 using
SIMD) at once and a residual loop that processes the remainder.

• Code can be annotated to enable/disable SIMDization of the code,
or define different SIMD widths (e.g. triggering AVX2 instead of
AVX-512 to prevent down-clocking on some processors [2, 30]).

Later, we expand this template for specific flavors such as vec-
torized and data-centric execution. Note that the performance of
these variations is hard to predict. Therefore, Excalibur will chose
the best one dynamically at query runtime.

3.4 Code Cache
The idea is to fingerprint code fragments and look the fingerprint
up in the cache. For this cache, however, lookup performance under

Listing 2: Decision to ignore selection vector. Ignore selec-
tion vector for dense predicates without filtered out tuples,
average bits per VOILA node are above a certain limit.
bool ignore_selvector(int* sel , int& num , bool can_full_eval ,

double sum_bits , double num_nodes) {
if (!num && !can_full_eval) return false;

double score = sum_bits / num_nodes / SCORE_DIVISOR;
double min_size = (scope * VECTOR_SIZE) / (score + 1.0);
return num > min_size;

}

updates is crucial. Therefore, we use an asynchronous eviction
process that does not require write latches during lookups.
Asynchronous Eviction. Instead of replacing during lookups, we
have an asynchronous processes that cleans up excess fragments
in the cache. Therefore, during lookups we just need to update
a reference counter and a last-updated timestamp, using atomics.
This only requires a shared latch to prevent concurrent updates.
Eviction. Periodically cleanup is triggered. We mark the 𝑁 least
recently used fragments evictable. When eviction is triggered again
and if they have not been touched in between, we safely evict them.
Adapting 𝑁 . Typically, we aim for a constant cache size (≤ 𝑇

fragments) with a margin for new fragments (say 10%). Let 𝐹 be
the current number of fragments in the cache. To stay within the
bounds, we have to evict 𝑇 − 𝐹 fragments. However, we cannot
guarantee that our eviction process will clean up 𝑁 = 𝑇 − 𝐹 frag-
ments, because they might have been updated/used in between
(there is a time lag). Therefore, we measure the number of frag-
ments, we were able to evict, calculate the eviction rate (out of 𝑋 ,
we evicted 𝑌 ) and over-allocate the number of eviction candidates
by the corresponding factor (𝑋

𝑌
) during the next iteration.

Footprint per Fragment. Ideally all code fragments are cached
and do not incur JIT-overhead. Practically, however, this is not
feasible. The important question is, how many fragments can real-
istically be cached i.e. what is their memory footprint.

Each code fragment can be compiled in parallel, thus LLVM
requires each fragment to use its own instances of LLVMContext and
TargetMachine, an abstraction for hardware-specific details. This
led to memory footprint of roughly 400 kB per fragment, while,
for simple fragments, the machine code fits in roughly 1 kB. The
extra footprint stems from LLVM which is only needed during
compilation. Therefore, after compilation is done, we can safely
deallocate LLVM-related objects. This, however, is a non-intended
LLVM use-case and requires providing a custom memory manager,
which it uses to store compiled machine code. After compilation
is done, we dispose the allocated LLVM compilation utilities and
just keep the machine code, which is now owned by our memory
manager. This pushes the footprint of a code fragment to around
10 kB (40× smaller than the naive implementation). This currently
allows roughly 100.000 fragments in 1 GB code cache.

The footprint of cached code fragments could be improved fur-
ther by sharing pages between multiple fragments. Sharing pages,
however, is non-trivial to do in a portable manner, because one
needs to allocate physical pages, modify page flags (make writable,
remove writable flag and make executable), handle concurrency
(fragments compiled in parallel) and, of course, find a memory
layout that satisfies the requirements of the CPU.
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4 CODE GENERATION FLAVORS
Excalibur’s rather generic means of query execution allows very
different execution flavors. Keep in mind that there are no well-
defined guidelines, rather vague rules of thumb, to decide which
execution flavor is best to execute a query [21]. This makes it
impossible to decide the best flavor a priori because its performance
depends on the current environment (hardware at hand, #cores used
...). Therefore, we provide a bouquet of paradigms and choose the
best flavor adaptively at runtime. In the following, we describe
two different flavors (a) atomic fragments, resembling vectorized
execution [12] and (b) fused statements which is similar to data-
centric compilation [40].

4.1 Atomic Fragments (Vectorized Execution)
Our base (and fallback) flavor is to only compile the smallest pos-
sible (indivisible = atomic) fragments. For VOILA operators, this
means that such fragments are basic operations in VOILA (e.g. add,
bucket_lookup, seltrue). Interestingly, when compiling atomic frag-
ments, the resulting strategy is basically vectorized execution very
similar to MonetDB/X100 [12] that became Vectorwise and later
Vector. Consequently, this (1) generates many small fragments that
can be compiled in parallel and can likely be re-used (2) allows
efficient memory access, inherited from vectorized execution and
(3) has good chances for micro-adaptive [19, 42] optimizations like
full-execution by ignoring the selection vector. Since this is the
default base flavor, it is used whenever we decide to not use any
other flavors, which happens for short-running queries, or when
the other flavors yield worse performance.
Specialized Implementations forComplexOperations.VOILA
has two complex operations: bucket_insert, which allocates new
buckets in a hash table but can fail, and selunion, which ORs two
predicates together (in the vectorized model concatenates two se-
lection vectors). For these operations we provide specialized hard-
coded implementations.

4.2 Fused Statements (Data-Centric)
Data-centric compilation [40] is the extreme of compound primi-
tives (or fused expressions), as it inlines the whole pipeline into a
single function. For, a static engine with black-box operators, this
inlining process is impossible as operator borders, typically, cannot
be crossed. In Excalibur, operators can be black-box, i.e. hard-coded
with one static implementation like Output (delivers query results),
or white-box, yielding VOILA code that can be analyzed, modified,
inlined etc. Note that the (performance-wise) most impactful op-
erators (join, group-by, filter, projection) are white-box operators,
which allows us to inline them. Hence, the presence of black-box
operators breaks the inlining into multiple fragments. From the
inlined VOILA code, we can, then, generate data-centric code [20].

5 (MICRO-)ADAPTIVE EXECUTION
We use vectorized execution as our base execution flavor and, dur-
ing query execution, try to further improve performance by generat-
ing different execution flavors and observing whether they improve
performance. Note that there is both a choice of execution flavor,

as well as granularity (which parts of the query plan to use it in).
The combination of these two choices we call execution tactic.
Exploration vs. Exploitation. During execution, we attempt two
different things: (a) find the best possible execution tactic (explo-
ration) and (b) use the best found tactic to improve runtime (ex-
ploitation). Consequently, to improve the runtime, we need to spend
cycles exploring potentially not very useful tactics with no clear
guarantees for success, i.e. a risky bet. In addition, we want to learn
good tactics and exploit them as much as possible. Such problems
are typically formalized as multi-armed bandits (MAB).

A naive MAB approach would be to explore all possible tactics at
least once, and then exploit the best one. Note that the set of possible
tactics is very large, especially since combinations of choices (query
fragmentation and flavor) get flattened into separate points in the
search space (actions in the MAB formalism)2. In order to limit the
amount of alternative code fragments that need to be compiled and
tested, we focus on sparsely searching the design space, followed
by exploiting the best point found.

5.1 Constraints on Adaptive Execution
Suppose, we want to improve the runtime of a query fragment
and we were given some method to decrease its runtime by 4×
(4× speedup, 𝑠 = 4). If this fragment only constitutes 50% of query
runtime (𝑓 = 0.5), the overall expected speedup will drop to a dis-
appointing 1.6×. Further suppose that we find this faster fragment
not at the beginning of the query, but rather in the middle (at 50%
progress, 𝜙 = 0.5), then the final speedup will decrease further. In
the following, we aim at finding a sweet spot for micro-adaptive
optimizations which will guide the choices made by Excalibur.
Amdahl’s Law.We model the impact of adaptive choices by using
Amdahl’s law [3]. Normally, Amdahl’s law is used to compute the
speedup of parallelizable computations with a sequential fraction.
Here, instead parallelizing, we just accelerate the previously parallel
fraction by a given factor.

We apply Amdahl’s law for the progress 𝜙 : 𝑆 = (𝜙 + 1−𝜙
𝑦 )−1

with 𝑦 being the speedup at the specific progress (𝜙) in the query.
Then, we apply Amdahl’s law to determine 𝑦 based on improving a
fraction of the query 𝑓 : 𝑦 = (1 − 𝑓 + 𝑓

𝑠 )
−1 , combining both yields:

𝑆 =
1

𝜙 + (1 − 𝜙)
(︂
1 − 𝑓 + 𝑓

𝑠

)︂ (2)

From Equation (2) we can derive that ideally we have to make good
decisions (a) early and (b) on a large portion of the pipeline.
Limits on Exploration. The problem with exploring in constant
intervals, as e.g. proposed by Raducanu et al. [42], is that towards
the end of the query, it is still looking for better alternatives (explor-
ing). Even though, their potential benefit cannot yield a significant
improvement anymore (because it is found late).

2Alternatively, our problem could be modelled as a combinatorical MAB, by skipping
the flattening and assuming that combinations of actions behave like the sum of its
parts. This is an powerful concept that allows learning e.g. shortest paths or rankings.
Solution approaches typically require an oracle to predict best actions [32], something
we do not know a priori. A notable approach is the Follow-the-Perturbed-Leader
algorithm [32], which introduces additional and complex tuning knobs, like well-
chosen distributions for the perturbation (add random noise) to balance exploitation
and exploration.

833



Table 2: Mutation nodes. A sequence of such nodes allows
describing a specific point in the design space.
Mutation Description

JitFragm(begin, end, flavorMod) Compile fragment between begin and end,
apply given flavorMod

SetScope(begin, end, flavorMod) Set flavorMod for statements and
expressions between begin and end

Inline() Inline all VOILA operators
SetDefault(flavorMod) Set default flavorMod for the whole pipeline
SetConf(vectorSize, fullEval) Set vector size and

different full evaluation threshold points
BloomFilter(op) Enable Bloom filter [10, 22] at operator op
SwapOps(a, b) Swap operators a and b

To mitigate this exploration problem, we define a specific explo-
ration budget (30% query runtime). Specifying a budget has two
major advantages: (1) it forces most of the exploration to be done
at the beginning of the pipeline (greedily) and (2) it limits the nega-
tive impact of over-exploring. Using a budget makes adaptivity a
favorable asymmetric bet (limited loss, unbounded gain).

When running a query, we estimate the progress of the current
pipeline (by tracking the data source). By estimating the progress
and measuring the time spent for achieving the progress, we esti-
mate the absolute budget used for exploration (in cycles)3: Absolute
budget 𝐵 = (𝑡 + 𝜙

𝑡 ∗ (1 − 𝜙)) ∗ 𝛽 with relative budget 𝛽 (typically
0.3 = 30% of query time), time 𝑡 and progress 𝑝 ∈ [0, 1].

If exploration (and compilation) exceeds this budget, exploration
is canceled and the residual budget is returned. Note, in case the
query decelerates (starts running sub-optimally), the budget will
increase, hence giving opportunity for more exploration. Further,
we stop generating new tactics after 40% progress as we do not
expect significant overall/net performance gains afterwards.
Other Applications. Equation (2) has many applications. For ex-
ample, it can be applied to offloading work to accelerators. When
an accelerator improves performance of an operation covering 40%
of query performance by 10× and is triggered at the start, the best
overall improvement we can possibly expect is a meagre 1.5×. If
our accelerator improves performance by 100×, all else equal, we
can maximally expect a rather disappointing 1.7×.

5.2 Exploitation
After the exploration budget is consumed, or the space is fully
explored, our adaptive framework switches to exploiting the best
points found so far. We choose the point with the lowest cost (CPU
cycles per input tuple). However, during exploitation, we still main-
tain our performance metrics i.e. if performance of the current best
choice degrades, we can still retry the already generated tactics.

5.3 Encoding the Design Space
Excalibur allows switching between tactics (i.e. different flavors
applied to different fragments). Each tactic is a point in the design
space. Here we discuss how Excalibur encodes points in that space.
Mutation Sequences.We define a point in the design space as a
sequence of mutations that are created through rules. Currently, we

3These estimation techniques have previously been used by Kohn et al. [29] and
Gubner [17].

Table 3: Rules create and extend mutation sequences.
Rule Description

JitBiggestFragment(flavorMod, JIT compiles the biggest fragment with
reqInline) flavorMod & introduces Inline before

when reqInline is true

ReorderFilterBySel Modifies plan to order filters by selectivity.
BloomFilterMostSelJoin Introduces BloomFilter into most

selective hash join.

SetScopeFlavor(flavorMod) Find most expensive scope,
introduces SetScope

SetScopeFlavorSel(flavorMod) Like SetScopeFlavor, but scope must include
VOILA’s SelTrue, SelFalse

SetScopeFlavorMem(flavorMod) Like SetScopeFlavor, but scope must include
VOILA’s BucketLookup, BucketNext,
BucketScatter, BucketGather

SetDefaultFlavor(flavorMod) Introduces SetDefault, if flavorMod
is not already set.

SetConfig(vectorSize, fullEval, Introduces SetConf, if not already set.
scoreDiv, simdOpts)

have mutation nodes for (a) plan changes, (b) local configuration
changes, (c) fragment JIT-ting and (d) flavor specifications. The
specific nodes are listed in Table 2. Additionally, mutations can
have also parameters. Most notably, flavorMod defines: specific
unroll factors and SIMD widths for selective and, similarly, for
the non-selective path of the vectorized primitive. Additionally, it
allows using predicated execution using techniques described by
Crotty et al. [13] or using conditional moves (cmov).

For instance, we can choose to combine SwapOps and JitFragm.
SwapOps first modifies the plan and, afterwards, JitFragm would
JIT-compile a specific fragment. Full data-centric execution can be
expressed using JitFragm by selecting all of the pipeline.
Rule-based Generation. During exploration, we extend existing
or create new mutation sequences (i.e. extending empty sequence).
Table 3 shows the rule templates currently used in Excalibur. In
practice, we expand the rule templates with common values for
flavor and configurations. Rule-based generation provides two ad-
vantages (a) it is easily extensible and (b) we can iteratively expand
the design space by applying rules onto a previous mutation se-
quence. Considering that over time the number of rules will likely
grow, the design space will grow exponentially (assuming rules
are not mutually exclusive). The rules in Table 3 were chosen to
provide a minimal set of useful optimizations without inflating the
design space too much. Still, materializing this large space is not
practical due to compilation time and code-cache space overhead.

Therefore, how we explore the space matters.

6 EXPLORATION STRATEGIES
In this section, we present different exploration strategies, reaching
from a simple randomized search, to hill-climbing with hard-coded
heuristics and Monte Carlo Tree Search (MCTS).

6.1 Randomized Exploration (rand)
One could explore the space using random choices, and there are
good reasons for this: randomized search is relatively easy to imple-
ment, can fully explore the space and can provide a "good" coverage
of the space [15]. But for huge spaces randomized exploration might
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easily get "lost in the space" (i.e. not focus on interesting sub-spaces)
and can take extremely long until the space is fully explored. This,
while the budget of a short running query can only afford running
a limited number of tactics.

6.2 Hard-Coded Heuristic (heur)
An intuitive approach is to try what database architects believe
are good choices. This further makes the assumption that simpler
choices, with shorter mutation sequences, are better (similar to
Occam’s razor). Therefore, we define a list of rules to apply and try:

(1) Reorder filters by increasing selectivity
(2) Introduce Bloom filter for selective joins
(3) Heuristically JIT fragments:

• If SelTrue/SelFalse and 𝜎 < 95% and 𝜎 > 5%: Do not cross
• If MemAccess and Cyc/Tup > 𝑁1: Do not cross

(4) Try fully data-centric
(5) Try different vector sizes
(6) Give up: Exploit

Clearly, iteratively improving an execution tactic by applying
these rules in order reflects its creator’s biases and potentially
ignores large parts of the search space. Also, when new generator
rules are added, this approach needs to be maintained (extended
and re-evaluated) which is recurring time-consuming process. Note
that the other strategies (randomized and, the following, Monte
Carlo Tree Search) do not require hard-coded decisions and, hence,
are less influenced by creator’s biases and are maintenance-free.

6.3 Monte Carlo Tree Search (MCTS)
When rethinking our approach of exploring large spaces, we can
draw analogies to Artificial Intelligence (AI) used in complex games
(e.g. chess or go). For an AI to make the next choice, it commonly
first builds a tree (state/search tree) that represents all possible
choices made by players, multiple steps ahead. For complex games,
like chess, these trees quickly become very (exponentially) large.
One of the relatively new approaches, e.g. used in AlphaGo along-
side Neural Networks, is Monte Carlo Tree Search (MCTS) [44].
Generic MCTS is a randomized approach to search a tree. It starts
with exploring parts of the tree and, will given enough time, even-
tually have fully explored the tree. MCTS has 4 phases which are
repeated, until typically a time limit is reached:

(1) Selection: A node will be selected using some policy.
(2) Simulation: Multiple paths from the selected node to the

leaves are simulated.
(3) Node Expansion: The selected node is expanded.
(4) Back Propagation: The information from the simulation is

propagated back towards the root.

The Selection phase has significant impact on which areas of the
large tree are explored. Ideally, these should be the most important
areas. Suppose, we had some measure of reward, then we could visit
areas with the highest reward first (exploitation). This, however,
should be balanced with more risky exploration. To balance explo-
ration and exploitation with some measure of reward is a classical
MAB problem, with arms corresponding to child nodes. A problem

that can be solved optimally using the Upper Confidence Bound
algorithm (UCB, Equation (1)).
UCB applied to trees (UCT). For trees, or MCTS in specific, there
is a variant of UCB, called UCT [28]. Until a given point in time, the
following variables specific historical metrics collected so far: Let
𝑋𝑖 be the empirical mean (of rewards) for child node 𝑖 , 𝑐 be some
constant, 𝑡 be the number of samples in the parent node and 𝑠 be
the number of samples of the current node:

𝑢𝑐𝑡𝑖 = 𝑋𝑖 + 𝑐 ∗
√︃
𝑡

𝑠

During the Selection phase, this score is computed for each potential
child node, then the child node with the highest score is chosen.
This is repeated until a leaf is found. Later, during Back Propagation,
we need to update the metrics (reward and number of samples) for
our selected node and all nodes on the back towards the root.
Application to our Exploration Problem. The application of
MCTS to our problem, efficiently exploring the design space, is
relatively straightforward. Each mutation node becomes a node
in the MCTS. We adapt the Simulation and Node Expansion steps:
during Simulation, we execute the mutation sequences that result
from the path in the tree and collect runtime statistics. Then, we
expand existing node simply by applying our generator rules. In our
case, MCTS brings two major advantages: (1) MCTS almost never
evaluates the full search space, unless given an huge exploration
budget. Instead, it focuses on promising sub-spaces, which is a
crucial advantage for exploring large spaces. (2) Assuming the
same pipeline is run multiple times, we can extend the existing
tree in the new run (i.e. learning). Especially in a cold run, our
tree does not yet contain useful information (many UCT scores are
∞ i.e. highest possible score). In the following, we aim at further
improving the order in which we traverse the search space by
heuristics for breaking ties between UCT scores.
Propagating Information across Branches. Supposewe already
have partial knowledge, e.g. we know that whole-pipeline data-
centric works well on this platform. But that knowledge is part of
a different branch of the tree, one we have not traversed yet during
Selection. Consequently, we would have to re-discover that data-
centric execution is beneficial. To ease the burden of re-discovering
good choices, we remember rewards and #samples for all mutations
(many tree nodes can encode a mutation in different branches, also
tree nodes can encode mutation sequences). This allows us to for-
mulate this guessing problem as a MAB, but this time for mutations
(and mutation sequences), rather than MCTS tree nodes. This steers
the exploration into the direction with the highest confidence (us-
ing UCB). In practice, this turns out to work quite well, because on
the first level of the tree (i.e. close to the root), we likely discover
most possible decisions.
Maximum Distance. If, we are, however, at the very beginning
of building the tree, we do not have such knowledge, yet. In this
case, we try to steer away from already explored nodes (or clusters).
Therefore, given a set of already explored siblings (children of
the same parent node), we should preferably explore the most
dissimilar point next. We define the similarity of two nodes 𝑥 and 𝑦
as 1 − 𝑑 (𝑥,𝑦) according to a distance function 𝑑 . Using 𝑑 , we select
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the nodes with the maximal distance to already explored nodes, to
break ties. If there are multiple such nodes, we chose randomly.
Gower Distance. Our choice chains (mutation sequences) are
rather complex objects, composed of categorical integers, quan-
titative integers and lists thereof. Therefore, we use Gower dis-
tance [16], a distance function able to handle complex objects. It is
defined as the arithmetic mean of its components 𝐾 :

𝑑 (𝑥,𝑦) = 1
|𝐾 |

∑︂
𝑘∈𝐾

𝑑 ′(𝑥,𝑦, 𝑘) (3)

Each component has slightly different formula (𝑑 ′) depending on its
type.We only describe quantitative (𝑑 ′𝑞 ) and categorical components
𝑑 ′𝑐 , other types are defined as well but are not relevant here.

For a quantitative component 𝑘 and its range 𝑟𝑘 , we define

𝑑 ′𝑞 (𝑥,𝑦, 𝑘) :=
|𝑥𝑘 − 𝑦𝑘 |

𝑟𝑘

For a categorical component 𝑘 , we define

𝑑 ′𝑐 (𝑥,𝑦, 𝑘) :=
{︄
1 if 𝑥𝑘 ≠ 𝑦𝑘

0 otherwise

Since we only need to measure the distance between sibling
nodes in the tree, we can directly apply Equation (3) for two nodes
𝑥 and 𝑦. Note that to find the node(s) with maximal distance, we
need to compute the pair-wise distances between all siblings. Thus,
for trees with many siblings computing the distance can become
costly. The trees we create are typically not very wide (nodes have
roughly up to 40 siblings). When extending the mutation nodes and
mutation rules over time, trees widen. In this case, we can use a
random sample of sibling nodes to compute the distances.

6.4 Remembering the Past
The proposed exploration strategies have to re-explore the search
space before any positive changes can be done, for each query. Fig-
ure 2a illustrates this for TPC-H Q1. One can increase the Risk
Budget to explore a bigger part of the space, but consequently, over-
all query performance suffers as precious CPU cycles are wasted:

In longer-running workloads, we can exploit past knowledge.
While we cannot fully rely on the accuracy of the past (under-

lying data may have changed causing different performance), we
should not fully disregard past knowledge.
Quick Start - Remembering Good Points. After exploring a
pipeline, or query, we can remember the best choices. On the next
iteration of the query, we can start checking whether these choices
are still the best. While this delays the regular exploration process
by a few steps, it directly feeds good points back into the exploration
process. We call this Quick Start.

We implemented Quick Start by generating a fingerprint of the
pipeline and mapping the fingerprint to the historic data. The his-
toric data contains a mapping from the (design space) point to
a histogram of runtimes. Both mappings can grow quite large, if
they grew over a certain threshold, we use sampling to determine
the surviving data points. Our fingerprints contain operator types
as well operator properties (e.g. global aggregation, key join). An
improved mapping could also include performance information
(e.g. pipeline throughput tuples/cycle, selectivities) or system state
(e.g. #threads used). Currently, we use an exact mapping between

Table 4: Excalibur often significantly outperforms other sys-
tems optimized for analytics (TPC-H SF50, multi-threaded).

Name Runtime (ms)

Q1 Q3 Q6 Q9

Umbra [41] 287 (1.5×) 326 (0.9×) 91 (1.8×) 854 (1.2×)
DuckDB [1] 1325 (6.9×) 2338 (6.7×) 341 (6.6×) 15306 (21.0×)
MonetDB [24] 5488 (28.6×) 1089 (3.1×) 190 (3.7×) 1178 (1.6×)
Excalibur (heur) 192 349 52 730

fingerprint and historical data. But, especially, when integrating
performance information into the fingerprint, a best-effort match
would be more desirable.
Incremental Monte Carlo Tree Search (MCTS). MCTS has the
convenient property that we can continue building the tree with
following runs of the same query. Consequentially, MCTS can incre-
mentally learn more about the design space, iteration by iteration.
The challenge is to identify the same pipeline, for which we use
the same fingerprinting scheme as for Quick Start.

7 EXPERIMENTAL EVALUATION
In this section we provide a compact experimental evaluation of the
Excalibur VM, which we implemented in C++. For each operator, it
first generates VOILA [20] code, which it then translates into LLVM
IR using a particular flavor; and then into machine code on-the-fly
(using LLVM’s C++ API). The VM support multiple adaptive deci-
sions (presented in Table 2) and a bouquet of exploration strategies
(discussed in Section 6).
Hardware. In small scale experiments, scale factor 50 and below,
we used a dual-socket Intel Xeon Gold 6126 with 24 SMT cores (12
physical cores) and 19.25 MB L3 cache each. The system is equipped
with 187 GB of main memory. For large scale experiments with
scale factors ≥ 100 the previous system did not have enough main
memory. Therefore, for large scale experiments, we used an (older)
quad-socket Xeon E5-4657L v2 with 96 SMT cores (48 "real" cores)
in total, 30 MB L3 cache per chip and a total of 1 TB main memory.
Structure. First we compare Excalibur to other state-of-the-art
system as well as hand-written implementations. Then, we analyze
impact of the Risk Budget onto finding possible improvements and,
consequently, performance. Afterwards, we compare the different
exploration strategies on the TPC-H data set and investigate the
adaptation with respect to various parameter values in TPC-H Q6.
Then we investigate the impact of the code cache and, lastly, show
the adaptation over the runtime of a query.

7.1 State-of-the-Art Competitors vs. Excalibur
To judge the performance of Excalibur on a relative as well as
absolute level, we compare it to state-of-art systems and hand-
written implementations. We selected a diverse set of queries: TPC-
H Q1, Q3, Q6 and Q9. We ran these queries against the TPC-H data
set with scale factor 50 and used all available hardware threads.
Systems. First, we compare to systems optimized for analytical
performance. In particular, we chose the well-known state-of-the-
art systems. This includes the open source systems MonetDB [24],
featuring classical columnar execution, and DuckDB [1], a vector-
ized system. In addition, we compare to the data-centric system
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Table 5: Compared to hand-written & optimized implemen-
tations, Excalibur’s implementation of vectorized & data-
centric execution still "leaves room for improvement".

Name Runtime (ms)

Q1 Q3 Q6 Q9

Vectorized Execution
Tectorwise [26] 248 (1.0×) 294 (0.7×) 66 (1.3×) 793 (0.9×)
Excalibur (vec) 225 394 49 917

Data-Centric Execution
Typer [26] 137 (0.8×) 437 (0.8×) 73 (1.2×) 1193 (0.9×)
Excalibur (dc) 163 541 61 1337

Overall
Tectorwise [26] 248 (1.3×) 294 (0.8×) 66 (1.3×) 793 (1.1×)
Typer [26] 137 (0.7×) 437 (1.3×) 73 (1.4×) 1193 (1.6×)
Excalibur (heur) 192 349 52 730
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Figure 2: Impact of Risk Budget 𝛽

Umbra [41] which uses a simple VM-based approach to dynamically
switch between different JIT-compiled flavors [27]. The results are
summarized in Table 4. We can see that Excalibur outperforms the
three other systems on most queries, as none of the fixed execution
strategies (column-at-a-time, data-centric, vectorized) dominates
across all queries and Excalibur adaptively finds a good strategy and
the code generated using VOILA has competitive raw performance.
Hand-written Implementations. To further delve in raw perfor-
mance, we compare with the hand-optimized implementations of
state-of-the-art query execution paradigms by Kersten et al. [26]:
Typer, an instance of data-centric compilation [40] and Tectorwise,
an implementation of vectorized execution [12]. Both, Typer and
Tectorwise, perform roughly on par with the system that pioneered
its respective paradigms Hyper and Vectorwise [26]. Table 5 shows
the results. Most queries perform roughly on par. However, we
noticed that the implementations of Excalibur are slightly slower.
Most notably, the data-centric implementation of Q1, where LLVM
"optimizes" our data-centric code by, instead of merging branches,
replaces them with conditional move instructions (cmov).

7.2 Impact of Risk Budget
In this experiment, wemeasure the effect the Risk Budget, the budget
for adaptive exploration, has on overall performance. We chose
a relatively simple query, TPC-H Q1 (on SF10, single-threaded),
where the best execution paradigms currently known are data-
centric, or variations thereof. Consequently, our system has to
switch to a completely different execution paradigm, which first
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Figure 3: On medium-sized data sets, Excalibur can adapt to
the best flavors (TPC-H SF50, multi-threaded).
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Figure 4: On the older hardware platform used for the larger
scale, the difference between data-centric and vectorized ex-
ecution blurs. The extra execution time does allow mcts to
consistently beat heur (TPC-H SF300, multi-threaded).

has to be discovered. Here, we differentiate between non-learning
exploration strategies (naive exploration), without knowledge of
the past, and learning strategies, able to leverage past knowledge.
Naive Exploration. Figure 2a visualizes impact of varying Risk
Budgets on overall query performance for non-learning exploration
strategies. We can see that there is no clear optimal budget and it
depends on the exploration strategy: We need a minimum budget
to be able to discover a reasonably good solution, but using too
much is counter-productive. For large search spaces, it is hard to
adapt to the better flavor in time, especially with a low budget.
Learning Exploration. Using Quick Start, we remember good
points and, in the next run, explore them early. Figure 2b shows
that using Quick Start allows lowering the Risk Budget needed to
find good points. For example, using the MCTS strategy, it could be
lowered to 5% whereas without learning even with a Risk Budget
of 50% we were not likely to discover good points.

7.3 Various Scale Factors & Multi-Threading
Analytical queries tend to behave differently with (a) varying data
sizes as well as (b) with/without parallelism (i.e. multi-threading).
Larger tables significantly impact query performance, e.g. hash
tables grow bigger leading to increased memory access cost. Simi-
larly, parallelism also causes different performance characteristics.
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When running using one core that core can consume most of the
system’s memory bandwidth. On the other hand, when using all
available cores, memory bandwidth has to be shared between them,
which leads to higher memory access cost on each core (more cy-
cles spent on memory accesses/waiting for memory locally). Since,
these factors impact performance, it is reasonable to assume they
can also impact the best flavor of a query. Therefore, we experiment
on different scale factors of the TPC-H data set.
Medium-Scale Multi-Threaded. We start with a multi-threaded
experiment on scale factor 50. The resulting runtimes are visualized
in Figure 3. We see that there is significant performance diversity
between the data-centric and vectorized flavors, most notably in
Q9 and Q18, but less extreme also in Q1 and Q3. It is visible that
Excalibur can adapt to the best flavor, depending on the exploration
strategy used. Notably adaptive strategies can beat static flavors (e.g.
on Q9 heuristic beats vectorized and data-centric leading to roughly
2× improvement). Usually the heuristic strategy (heur) behaves best
thanks to the relatively small space explored (certain hard-coded
points), but is closely followed by the Monte Carlo Tree Search-
based strategy (mcts). Less elaborate strategies (i.e. the randomized
approach rand) tend to perform worse than MCTS, this is due to
(a) to the learning nature, trees can be extended over multiple runs,
and (b) better exploration behaviour, as good candidate sub-trees
more likely to be re-visited. In these multi-threaded experiments,
the absolute budget is relatively low (high throughput, queries
run quickly), thus exploration strategies do not have much time to
discover good points.
Large-Scale Multi-Threaded. Large data sets, however, give Ex-
calibur more time for exploration, thanks to the higher query run-
time. Thus, we ran the same queries on a roughly 6× bigger data
set. Figure 4 shows the resulting runtimes. The underlying hard-
ware has more main memory and cores, but the older CPU means
queries have relatively higher runtime and performance of flavors
behaves differently. But also here Excalibur adapts to the best flavor.
The heuristic exploration is now consistently outperformed by the
MCTS strategy: thanks to significantly higher query runtime, the
absolute risk budget is higher (proportional to query runtime) and
allows exploring more points in the design space.

7.4 Adaptation to Varying Query Parameters
Especially in real-world queries, cardinalities are hard to predict and
frequently wrong by orders of magnitude [36]. One possible solution
is to use real-life observed metrics to optimize the query at runtime
(i.e. adaptivity) by e.g. re-ordering filters. This is (1) challenging for
JIT-compiling systems, as it would require expensive re-compilation
and (2) affects the best flavor. Therefore, we experiment how our
JIT-compiling system Excalibur adapts to changing selectivities. In
particular, we evaluate TPC-H Q6 with different parameters:

SELECT SUM(l_extendedprice*l_discount) AS revenue FROM lineitem

WHERE l_shipdate >= DATE '[DATE]' AND l_quantity < [QUANTITY]

AND l_shipdate < DATE '[DATE]' + INTERVAL '1' YEAR

AND l_discount BETWEEN [DISCOUNT] - 0.01 AND [DISCOUNT] + 0.01

Different parameter choices consequently lead to different selec-
tivities in each of the WHERE clauses. For simplicity, we chose the
DATE to start 01-01 (January 1st) in a specific year and from hereon
only specify the YEAR. Figure 5 shows our results. We observe that
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Figure 5: Adaptive execution beats static on Q6with varying
parameters. Values for DISCOUNT have been multiplied by 100
(i.e. 0.01 becomes 1). (TPC-H SF300, multi-threaded)

Table 6: Runtime of smaller scale factors is significantly af-
fected by compilation latency, which can be eased using a
code cache or using parallelism. Impact of code cache on
query runtime for TPC-H SF0.1 without adaptive execution.

Cache Size Runtime (s)

(#fragments) 1 Thread 8 Threads

Q1 Q9 Q18 Q1 Q9 Q18

0 29.1 54.6 59.0 5.1 (6×) 10.6 (5×) 11.2 (5×)
8 13.9 (2×) 29.6 (2×) 28.8 (2×) 2.9 (10×) 6.4 (9×) 7.7 (8×)
16 11.1 (3×) 25.9 (2×) 25.5 (2×) 2.6 (11×) 6.7 (8×) 6.0 (10×)
32 4.5 (6×) 19.3 (3×) 19.1 (3×) 1.8 (16×) 5.3 (10×) 4.8 (12×)
64 1.1 (27×) 6.0 (9×) 6.0 (10×) 0.4 (69×) 2.1 (26×) 2.3 (25×)
128 1.1 (26×) 1.9 (28×) 2.0 (30×) 0.4 (68×) 0.8 (68×) 0.9 (68×)
1024 1.1 (26×) 2.0 (28×) 2.0 (30×) 0.4 (72×) 0.8 (68×) 0.8 (74×)
16384 1.1 (26×) 2.0 (28×) 2.0 (30×) 0.4 (68×) 0.8 (68×) 0.8 (73×)

full vectorized execution often is the best tactic, beating full data-
centric execution. However, adaptive execution using the heuristic
search strategy is able to identify this: it generally is on par with
the best static tactic, and in Figure 5b even beats it.

7.5 Code Cache
For short-running queries, compilation latency tends to be a major
bottleneck. In our model, many fragments can be cached, thus
reducing compilation latency. In the following we investigate the
impact of the code cache’s size on the query runtime. This size
refers to the number of fragments stored. 0 refers to the code cache
being disabled. Table 6 shows the results.
General Observations. It can be seen that with increasing size
of the code cache, query runtime improves. For simple queries,
like Q1, with 32 fragments cached, we can improve the runtime by
6×. The plateau is reached at about 64 cached fragments, where
the runtime is roughly 26× faster than without the code cache.
More complex queries, like Q18, contain more code fragments and,
therefore, require larger code caches. In case of Q18, a code cache
size of around 128 fragments captures all code fragments at that
point runtime is roughly 30× faster than without the code cache.
Multi-Threaded Compilation. If we compare single-threaded ex-
ecution (mostly compilation time on SF0.1) against multi-threaded,
we see that compilation time improves significantly (5 − 6×). Un-
fortunately, compilation does not seem to scale linearly. When
compiling code fragments concurrently, we do not introduce any
additional locking (besides checking the code cache, reserving an
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Figure 6: Over time different flavors are tried and adapted.
P𝑖 denotes pipeline 𝑖. (TPC-H SF50, single-threaded).

entry in the cache and the execution pipeline waiting until compi-
lation is complete). Thus, we suspect the additional overhead must
come from LLVM.
High Compilation Time without Code Cache. It can be seen
that without code cache (size 0), the initial compilation time is ex-
tremely high as all vectorized primitives (code fragments) need to
be generated. This has multiple reasons: Machine Code generation
in Excalibur is not optimized: We generate relatively straightfor-
ward LLVM IR from VOILA and rely on compiler optimizations (like
auto-vectorization/SIMDzation, and others commonly included in
-O3) afterwards. This can of course be improved. For example, we
could directly emit SIMDized code, i.e. skipping compiler auto-
vectorization. We consider optimizing query compilation latency
a very relevant, yet rather orthogonal challenge for our research
into the possibility and benefits of an adaptive fine-grained runtime
exploration of the execution strategy search space. Thus, we expect
low-latency JIT query compilation techniques pioneered in other
code-generating systems, most notably Hyper [40] and Umbra [41]
(both regrettably not in open source), to be beneficial for Excalibur;
e.g. better register allocation [29], directly emitting assembly [27],
avoiding certain combinations of optimizations [40]. Improvements
in compilation latency will be even more impactful in Excalibur
than Hyper and Umbra, as we generate multiple alternative code
fragments during execution. This currently also leads to additional
setup and tear-down costs (LLVMContext and TargetMachine).

7.6 Adaptation over Query Runtime
Over the runtime of a query, Excalibur tries to find better execu-
tion tactics. To highlight this adaptive behaviour, we visualize the
execution traces as measured by Excalibur without Quick Start. If
a pipeline has less than 10 samples, we omit it in the plot. Note
that the x-axis shows query progress rather than the absolute time,
consequently all pipelines have the same length (from 0% to 100%).
Q1. The results for Q1 are visualized in Figure 6a. Both exploration
strategies, heuristic and MCTS, start at around 60 cycles/row, and
from there on quickly choose better flavors. Unsurprisingly, we
can see that with the hard-coded heuristic (heur) strategy more
quickly find a faster flavor. The reasons are that (a) the heuristic is
heavily biased and (b) only explores a rather small space. The other
strategy (mcts) explores a significantly larger space and is, in this
time frame, unable to find a flavor faster than 45 cycles/row.
Q12. The results for Q12 are visualized in Figure 6b. Again, the
heuristic tends to outperform. In the first pipeline 𝑃0, it finds a
faster flavor (30 cycles/row vs. 100 cycles/row initially). But it is

closely tracked by mcts. In the second pipeline in the plot (𝑃2),
the heuristic outperforms by a wider margin (20 cycles/row vs. 70
cycles/row initially). Also here, mcts tends to find better flavors (40
cycles/row) but is, due to the large search space, unlikely to find
the winning flavor in the time frame.

8 RELATEDWORK
Historically, database engines had to make a choice between inter-
preted execution and compilation i.e. they either ship and have to
maintain one, or both. Maintaining both engines will eventually
lead to significantly higher maintenance effort (and consequently
higher costs). Instead, Excalibur effectively operates as a virtual
machine that supports JIT-compilation. It features a very simple
(and low maintenance) interpreter with code generation being used
to bootstrap most expressions/statements. This work implements
many ideas sketched earlier [18] where we proposed a virtual ma-
chine that would (a) bridge the gap between interpretation and
compilation, (b) allow adaptive compilation and (c) adaptive of-
floading to heterogeneous hardware. The heterogeneous hardware
aspect, however, still remains as future work.

Kohn et al. [29] showed how Hyper was extended with an LLVM
interpreter. This way, Hyper can efficiently handle short queries us-
ing interpretation (skipping IR to assembly compilation), while long
running queries can benefit from optimized execution in assembly.
In Hyper a whole pipeline is either interpreted or compiled. Excal-
ibur operates on finer granularity (code fragments). Compared to
Hyper, code-fragment-granularity has two major benefits: (a) code
fragments can be cached, effectively minimizing compilation time,
and (b) code fragments can easily be replaced (e.g. with optimized
versions, essentially micro-adaptivity [42]). After the additions by
Kohn et al. Hyper effectively ships a compiler translating physical
plans to LLVM IR, and an interpreter running their LLVM IR-alike
language which needs to handle every expression in their language.
Excalibur, instead, ships a very simple interpreter where customized
code fragments can be plugged in. Consequently, Excalibur only
needs to explicitly handle a few auxiliary statements/expressions
while most relevant expressions can be JIT-ed and cached.

LLVM compilation is also used in Umbra [27] which as a low-
latency option provides an X86 back-end that directly generates
assembly (reducing JIT latency). However, generating assembly is
not portable to other platforms, which is problematic with the rise
of non-X86 high performance processors [21] (ARM, RISC-V plus
accelerators). Due to its architectural proximity to Hyper, it also
inherits Hyper’s limitations, namely compiling whole pipelines,
and a fixed choice for a single (data-centric) code generation flavor.

Other systems compile to languages that provide a JIT-compiling
virtual machine. A notable example is Spark which can (a) interpret
operations on Resilient Distributed Data Sets (RDDs) [46] or (b) gen-
erate Java code [4]. Both rely on the Java Virtual Machine providing
efficient interpretation and compilation. Evidently, performance
of these architectural choices on database workloads was sub-par,
culminating in the development of a new vectorized engine in C++
with "2-4x average speedups [...] on SQL workloads" [8].

Another interesting approach has been taken by the Collection
VM (CVM) project [39]. CVM constitutes a compilation framework
based around an Intermediate Representation with back-ends that
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compile to different targets. The IR is centered around processing
collections (bags, sets, structs thereof, and sets of structs ...). CVM
produces complex intermediates and, to guarantee top-notch per-
formance, will have to remove them with a computationally hard
process (i.e. Deforestation [45]), a problem VOILA [20] does not
struggle with (intermediates are vectors of atomics, or tuples of
such vectors). Moreover, CVM did not intend to cover different
query execution paradigms, and it is not clear, if it can. However,
CVM offers automatic parallelization on one or multiple machines.

MLIR [34] is a flexible Intermediate Representation (IR) which al-
lows combining different languages or programming paradigms and
allows optimization across languages. A new IR style can relatively
easily added. This is a orthogonal project regarding to VOILA [20],
e.g. VOILA could be integrated into MLIR [9]. LingoDB [25] is a
recent query executor prototype built on MLIR, which significantly
reduces software engineering effort, and allows it to blend query op-
timization and code optimization techniques. It compiles pipelines
using a single flavor, though, relying on static rules.

AWS Redshift is an analytical database service, built on what
was originally an on-premise MPP engine (ParAccel) but subse-
quently much evolved [5]. It uses JIT query compilation via textual
C++ code generation, and applies extensive code caching to miti-
gate compilation latency, including a cloud-based compilation and
caching service that Redshift instances contact for help if a frag-
ment is not in the local cache. We think that the more fine-grained
code fragments that Excalibur generates, could thrive in such an
architecture and lead to even higher cache hit ratios.
Adaptive Query Execution. Besides the adaptive execution pro-
vided by Virtual Machines, data processing systems tend to also ex-
plicitly implement adaptive execution. Hyper [29] and Umbra [27]
allow adaptivity on the pipeline-level i.e. switch the whole pipeline
against a better one. This comes down to a choice between a limited
number of back-ends for interpretation and compilation. Compared
to Excalibur, they cannot (a) make fine-grained expression-level de-
cisions, (b) do notmake high-level decisions adaptively, (c) minimize
compilation effort when switching pipelines (unaffected fragments
will hit Excalibur’s code cache) and (d) require a fully re-engineered
back-end for each target flavor.

Micro-adaptivity in Vectorwise only affects the current expres-
sion tree [42] and typically only affects single code fragments. Ex-
calibur, however, can leverage adaptivity on multiple levels and
additionally gain from JIT-compilation.

MonetDB [24] executes queries column-at-a-time. This allows
dynamically choosing processing kernels based on properties as-
signed to input columns, e.g. a join can be a merge join (kernel)
when both inputs are sorted on the join keys (properties). This,
property-based, approach ignores the impact of runtime effects, e.g.
a hash join could be faster than merge join when the hash table
is very small, thanks to data parallelism. But it also operates on a
too large granularity: we can only adjust execution after the full
column is processed i.e. we cannot execute part of the column and
find a reasonably well-performing kernel at runtime.

With Permutable Compiled Queries (PCQ), Menon et al. [38] pro-
pose techniques allowing adaptivity without recompilation. When
changes to the plan are made, Excalibur might recompile a small
part of the pipeline (often code fragments are in the code cache).

When, e.g., only operators are re-ordered all code fragments al-
ready reside in the cache and no actual compilation takes place
(happens e.g. in Section 7.4). PCQ introduces a layer of indirection
at specific points of the query. By using a Virtual Machine-based
approach, Excalibur, naturally operates with a layer of indirection
on the language-level. Consequently, Excalibur is not limited to a
handful of plan permutations, like PCQ, but allows to continuously
re-optimize the plan at runtime with limited compilation effort.

In SparkSQL [4], queries often contain shuffle operations that
redistribute data across nodes. However, such a shuffle requires
all results to be materialized first. Adaptive Query Execution in
Spark [14] allows re-optimizing the following stages based on in-
formation gain until the currently materialized shuffle.

9 CONCLUSION
With Excalibur, we presented a system that is aimed to exploit the
increasing performance diversity resulting from today’s ever more
heterogeneous hardware. It achieves adaptive execution of diverse
flavors using a single code-base, which avoids a software explosion
and the resulting technical debt. The key idea is to execute VOILA
query plans using an micro-adaptive Virtual Machine (VM). VOILA
is a high-level language to describe relational operator algorithms
and can generate code using many different flavors, among which
the well-known vectorized and data-centric execution strategies.
The Excalibur VM explores the design space of query execution and
dynamically exploits good points, on-the-fly. Exploring the search
space is cast into a Multi-Armed Bandit (MAB) problem.

In our experiments, Excalibur can outperform open-source sys-
tems by up to 28×, the state-of-the-art system Umbra by up to 1.8×,
and its static execution strategies by up to 2×, while its adaptive
execution is never much slower than any of them. When the design
space is large, the gains depend on the exploration strategy. In
experiments we see that on short-running queries, heuristic explo-
ration finds the best plans, while in long-running queries, Monte
Carlo Tree Search exploration finds even better plans.
Discussion. This research shows that the idea of a query code
generator that can not only generate many execution flavors (the
VOILA DSL), but also quickly and adaptively find a good flavor
without relying on brittle physical costing (the Excalibur VM) can
be realized in practice. This is an encouraging result. We do note
that Excalibur is a prototype with limited functionality and still suf-
fers from high compilation latencies. Also, its overall performance
gains are modest, such that at this point one can ask whether the
complexity of VOILA and Excalibur software infrastructure (which
also constitutes technical debt) already merits industrial adoption.
However, we believe hardware heterogeneity is likely to increase
and the benefits of approaches like Excalibur with that; and there
is plenty of future work to further improve our approach.
FutureWork. At runtime, Excalibur explores the design space and
adapts physical execution, if beneficial. However, a query might
have more than one optimal flavor which might change (i.e. be-
haviour is non-stationary). Currently, Excalibur would only detect
a deterioration in performance and choose the next best flavor.
Furthermore, Excalibur could certainly be extended to dynamically
offload certain tasks to accelerator devices, such as GPUs or FPGAs.

840



REFERENCES
[1] [n.d.]. https://duckdb.org/.
[2] 2022. https://web.archive.org/web/20220626185617/https://stackoverflow.com/

questions/56852812/simd-instructions-lowering-cpu-frequency. Accessed: 2022-
02-16.

[3] Gene M. Amdahl. 1967. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities (AFIPS ’67 (Spring)). 483–485.

[4] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD.
1383–1394.

[5] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-
niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian,
and Doug Terry. 2022. Amazon Redshift Re-invented. In SIGMOD. 2205–2217.

[6] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2 (2002), 235–256.

[7] Ronald Barber, Guy Lohman, Ippokratis Pandis, Vijayshankar Raman, Richard
Sidle, Gopi Attaluri, Naresh Chainani, Sam Lightstone, and David Sharpe. 2014.
Memory-efficient hash joins. PVLDB 8, 4 (2014), 353–364.

[8] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson,
Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa
Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bus-
sel, Herman Van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia. 2022.
Photon: A Fast Query Engine for Lakehouse Systems. In SIGMOD ’22: Interna-
tional Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 2326–2339.

[9] Paul Blockhaus. 2022. A Framework for Adaptive Reprogramming Using a JIT-
Compiled Domain Specific Language for Query Execution. Master’s thesis. Otto-
von-Guericke University Magdeburg.

[10] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422–426.

[11] Peter Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H analyzed: Hidden
messages and lessons learned from an influential benchmark. In Technology
Conference on Performance Evaluation and Benchmarking. 61–76.

[12] Peter Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In CIDR. 225–237.

[13] Andrew Crotty, Alex Galakatos, and Tim Kraska. 2020. Getting swole: Generating
access-aware code with predicate pullups. In ICDE. 1273–1284.

[14] Wenchen Fan, Herman van Hövell, and MaryAnn Xue. 2020. Adaptive Query
Execution: Speeding Up Spark SQL at Runtime. https://web.archive.org/
web/20200611173835/https://databricks.com/blog/2020/05/29/adaptive-query-
execution-speeding-up-spark-sql-at-runtime.html.

[15] César A. Galindo-Legaria, Arjan Pellenkoft, and Martin L. Kersten. 1994. Fast,
Randomized Join-Order Selection - Why Use Transformations?. In VLDB’94.
85–95.

[16] John C Gower. 1971. A general coefficient of similarity and some of its properties.
Biometrics (1971), 857–871.

[17] Tim Gubner. 2014. Achieving many-core scalability in Vectorwise. Master’s thesis.
Technical University of Ilmenau.

[18] Tim Gubner. 2018. Designing an adaptive VM that combines vectorized and JIT
execution on heterogeneous hardware. In ICDE. 1684–1688.

[19] Tim Gubner and Peter Boncz. 2017. Exploring Query Execution Strategies for
JIT, Vectorization and SIMD. In ADMS.

[20] TimGubner and Peter Boncz. 2021. Charting the Design Space of Query Execution
using VOILA. In PVLDB, Vol. 14. 1067–1079.

[21] Tim Gubner and Peter Boncz. 2021. Highlighting the Performance Diversity of
Analytical Queries using VOILA. In ADMS.

[22] Tim Gubner, Diego Tomé, Harald Lang, and Peter Boncz. 2019. Fluid Co-
processing: GPU Bloom-filters for CPU Joins. In DaMoN. 9:1–9:10.

[23] Laura M. Haas, Wendy Chang, Guy M. Lohman, John McPherson, Paul F. Wilms,
George Lapis, Bruce Lindsay, Hamid Pirahesh, Michael J. Carey, and Eugene
Shekita. 1990. Starburst Mid-Flight: As the Dust Clears. IEEE Trans. on Knowl.

and Data Eng. (1990), 143–160.
[24] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullender,

and Martin Kersten. 2012. MonetDB: Two Decades of Research in Column-
oriented Database Architectures. A Quarterly Bulletin of the IEEE Computer
Society Technical Committee on Database Engineering 35, 1 (2012), 40–45.

[25] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an Open
Framework for Query Optimization and Compilation. Proc. VLDB Endow. 15, 11
(2022), 2389–2401.

[26] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything you always wanted to know about compiled
and vectorized queries but were afraid to ask. PVLDB (2018), 2209–2222.

[27] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: fast compilation and fast execution of relational queries in Umbra. The
VLDB Journal (2021), 1–23.

[28] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.
In European conference on machine learning. 282–293.

[29] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In ICDE 2018. 197–208.

[30] Vlad Krasnov. 2017. On the dangers of Intel’s frequency scaling.
https://web.archive.org/web/20220810211446/https://blog.cloudflare.com/on-
the-dangers-of-intels-frequency-scaling/.

[31] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage using both Vectorization and Compilation. In SIGMOD. 311–326.

[32] Tor Lattimore and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge Univer-
sity Press.

[33] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04).

[34] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2020. MLIR: A compiler infrastructure for the end of Moore’s law.
arXiv preprint arXiv:2002.11054 (2020).

[35] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven Parallelism: A NUMA-aware Query Evaluation Framework for the Many-
core Age. In SIGMOD. 743–754.

[36] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? PVLDB 9, 3
(2015), 204–215.

[37] Guy M. Lohman. 1988. Grammar-like Functional Rules for Representing Query
Optimization Alternatives. SIGMOD Rec. (1988), 18–27.

[38] Prashanth Menon, Amadou Ngom, Lin Ma, Todd C Mowry, and Andrew Pavlo.
2020. Permutable compiled queries: dynamically adapting compiled queries
without recompiling. PVLDB 14, 2 (2020), 101–113.

[39] Ingo Müller, Renato Marroquín, Dimitrios Koutsoukos, Mike Wawrzoniak, Sabir
Akhadov, and Gustavo Alonso. 2020. The Collection Virtual Machine: An Ab-
straction for Multi-Frontend Multi-Backend Data Analysis (DaMoN ’20). Article
7.

[40] Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern
hardware. PVLDB 4, 9 (2011), 539–550.

[41] Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance.. In CIDR.

[42] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. 2013. Micro adaptivity in
vectorwise. In SIGMOD. 1231–1242.

[43] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M Lohman, et al. 2013. DB2 with BLU acceleration: So much more than just
a column store. PVLDB 6, 11 (2013), 1080–1091.

[44] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529 (2016), 484–489.

[45] Philip Wadler. 1988. Deforestation: Transforming Programs to Eliminate Trees.
In ESOP. 231–248.

[46] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

841

https://duckdb.org/
https://web.archive.org/web/20220626185617/https://stackoverflow.com/questions/56852812/simd-instructions-lowering-cpu-frequency
https://web.archive.org/web/20220626185617/https://stackoverflow.com/questions/56852812/simd-instructions-lowering-cpu-frequency
https://web.archive.org/web/20200611173835/https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://web.archive.org/web/20200611173835/https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://web.archive.org/web/20200611173835/https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://web.archive.org/web/20220810211446/https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://web.archive.org/web/20220810211446/https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

	Abstract
	1 Introduction
	2 Background
	3 Excalibur
	3.1 Execution Model
	3.2 Interpretation
	3.3 Compilation into Vectorized Primitives
	3.4 Code Cache

	4 Code Generation Flavors
	4.1 Atomic Fragments (Vectorized Execution)
	4.2 Fused Statements (Data-Centric)

	5 (Micro-)Adaptive Execution
	5.1 Constraints on Adaptive Execution
	5.2 Exploitation
	5.3 Encoding the Design Space

	6 Exploration Strategies
	6.1 Randomized Exploration (rand)
	6.2 Hard-Coded Heuristic (heur)
	6.3 Monte Carlo Tree Search (MCTS)
	6.4 Remembering the Past

	7 Experimental Evaluation
	7.1 State-of-the-Art Competitors vs. Excalibur
	7.2 Impact of Risk Budget
	7.3 Various Scale Factors & Multi-Threading
	7.4 Adaptation to Varying Query Parameters
	7.5 Code Cache
	7.6 Adaptation over Query Runtime

	8 Related Work
	9 Conclusion
	References

