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ABSTRACT

We propose quasi-stable coloring, an approximate version of stable

coloring. Stable coloring, also called color refinement, is a well-

studied technique in graph theory for classifying vertices, which can

be used to build compact, lossless representations of graphs. How-

ever, its usefulness is limited due to its reliance on strict symmetries.

Realdatacompressesverypoorlyusingcolor refinement.Wepropose

the first, to our knowledge, approximate color refinement scheme,

which we call quasi-stable coloring. By using approximation, we al-

leviate the need for strict symmetry, and allow for a tradeoff between

the degree of compression and the accuracy of the representation.

We study three applications: Linear Programming, Max-Flow, and

Betweenness Centrality, and provide theoretical evidence in each

case that a quasi-stable coloring can lead to good approximations

on the reduced graph. Next, we consider how to compute a maxi-

mal quasi-stable coloring: we prove that, in general, this problem

is NP-hard, and propose a simple, yet effective algorithm based on

heuristics. Finally, we evaluate experimentally the quasi-stable col-

oring technique on several real graphs and applications, comparing

with prior approximation techniques.
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1 INTRODUCTION

A well known technique for finding structure in large graphs is

the color refinement, or 1-dimensional Weisfeiler-Lemanmethod. It

consists of assigning the nodes in the graph some initial color, for ex-

ample based on their labels. Then one repeatedly refines the coloring,

by assigning distinct colors to two nodeswhenever those nodes have

a different number of neighbors of the same color; when no more

refinement is possible, then this is called a stable coloring. We show a

simple illustration in Fig. 1 (a): for example nodes 5 and 11 have the

same dark purple color, because both have one purple, one lavender,

and one dark purple neighbor, while node 7 has a different color be-

cause it additionally has an olive neighbor. The stable coloring can be
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a) Stable coloring

b) Quasi-stable coloring,�=3

Figure 1: Coloring Zachary’s karate club graph [45] where

|� | =34, |� | =78. While the stable coloring requires 27 colors,

for a quasi-stable color 6 colors suffice when �=3. Note in 1b

the club leaders {1,34} are put into their own color.

computed efficiently, in almost linear time [34], can be generalized to

labeled graphs, weighted graphs, directed or undirected graphs, and

multigraphs, and is used by graph isomorphism algorithms [17], in

graphkernels [41], andmorerecentlyhasbeenused toexplainanden-

hance thepowerofGraphNeuralNetworks [12, 29, 31, 44].Wereview

stable coloring in Sec. 2. Excellent surveys of color refinement and its

recent applications to machine learning can be found in [12, 13, 30].

In this paper we apply stable coloring as a compression technique

for large graphs. A stable coloring naturally defines a reduced graph,

whose nodes are the classes of colors of the original graph. The new

graph preserves many important properties of the original graph,

which makes it a good candidate for compression. For example, an

elegant theoretical result states that the reduced graph satisfies pre-

cisely the same properties expressible in the�2 logic as the original

graph [14]. Motivated by the fact that the reduced graph preserves

key properties of the original graph, Grohe et al. [15, 16] propose

using color refinement as a dimensionality reduction technique, and

show two applications: to Linear Programming and to graph kernels.
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Figure 2: Comparing the robustness of stable and q-stable

coloring. A synthetic graph with |𝑉 | = 1 000, |𝐸 | = 21 600 is

generated with a size 100 stable and q-stable coloring. As

a small fraction of edges (no more than 1.5%) are added,

the brittleness of stable coloring causes compression to

degenerate—quasi-stable colors are immune to this.

However, we notice that stable coloring is not effective for dimen-

sionality reduction because, in practice, the “reduced” graph is only

slightly smaller than the original graph. For example, the graph in

Fig 1 (a) has 34 nodes, but 27 colors, which means that the reduced

graph has 80% of the number of nodes of the original. We show in

Sec. 6 that, for typical large graphs, the size of the reduced graph is

between 70% - 80% that of the original graph. Moreover, even when

a graph happens to have a small reduced graph, any tiny update, e.g.

adding or deleting an edge, will immediately lead to a huge increase

of the reduced graph.We illustrate this phenomenon briefly in Fig. 2:

we started with an artificially regular graph, which compressed well

from 1000 nodes to only 100 colors, but the compression degrades

very rapidly when we add only a few edges.

In this paper we propose a generalization of stable coloring to

quasi-stable coloring, with a goal of reducing the size of the com-

pressed graph while still allowing applications to be processed ap-

proximatively. Our definition of 𝑞-stable coloring, given in Sec. 3,

allows two nodes to be in the same color if they have a number of

neighbors to any another color that differs by at most 𝑞, where 𝑞≥ 0
is a parameter. This has dual effect. First, it can dramatically reduce

the size of the compressed graph, since more nodes can now be as-

signed the same color. For example, the quasi-stable coloring in Fig. 1

(b) allows nodes 5 and 7 to have the same color, even though their

number of green neighbors differs by 1; the new compressed graph

has only 6 nodes. Second, this makes the technique less sensitive to

data updates, because it can tolerate nodes with a slightly different

number of neighbors. We can see in Fig. 2 that the number of quasi-

stable colors increases only marginally with the addition of random

edges. By varying the parameter 𝑞, the quasi-stable colors offer a

tradeoff between the compression ratio and the degree to which the

reduced graph preserves the properties of the original graph.

We start by investigating in Sec. 4whether the result of an applica-

tion over the reduced graph is a good approximation of the result on

the original graph. We consider three applications: linear program-

ming,max flow, and betweenness centrality. In all three caseswe pro-

videa theoretical justification forwhythe resulton the reducedgraph

should be close to the true value. First, for linear programs, we prove

that the optimal value of the reduced program converges to the opti-

mal valueof theoriginal programwhen𝑞→0. This generalizes the re-

sult in [16],whichproved that,when the coloring is stable (𝑞=0) then

the LP has the same optimal value on reduced program and the orig-

inal program. Next, for the max flow problemwe prove that, while

pathological cases exist where a “good” quasi-stable coloring has a

totally different max-flow than the original graph, under reasonable

assumptions the two are close and, in particular, when the coloring

is stable (𝑞=0) then they are equal. Third, we examine betweenness

centrality, and show that, even a stable coloring can, in pathological

cases, lead to different centrality scores, but we prove that the 2-WL

method (a refinement of 1-WL) always preserves the centrality score.

Next, in Section 5 we study the algorithmic problem of efficiently

computing a quasi-stable coloring for a graph. While the stable

coloring can be computed in almost linear time, we prove, rather

surprisingly, that finding an optimal quasi-stable coloring is NP-

hard. The main difference is that there is always a maximum, “best”,

stable coloring, but none exist in general for quasi-stable coloring.

Based on this observation, we propose a heuristic-based algorithm

for computing a quasi-stable coloring, whose decisions are informed

by our theoretical analysis in Sec. 4.

Finally, we conduct an empirical evaluation of quasi-stable color-

ing inSection6.Testingon twentydatasets fromavarietyof domains,

we find q-stable colorings favorably trade-off accuracy for speed.

For example, on the qap15 linear program, an exact solution takes

22minutes to computewhile the q-stable approximation reduces the

problem size by 100×, solving it end-to-end within 17 seconds while
introducing only a 5% error. We observe similar trends for max-flow

and centrality applications. Next, we study the characteristics of

the compressed graphs, finding that they avoid the pitfalls of stable

colorings. We conclude by characterizing our algorithm, analyzing

its runtime, its ability to progressively improve the approximations

and testing its robustness to noise.

In summary, we make the following contributions in this paper:

• We propose a relaxation of stable coloring, called quasi-

stable coloring; Sec. 3.

• We provide theoretical evidence that the reduced graph de-

fined by a quasi-stable coloring can be useful in three classes

of applications; Sec. 4.

• We prove that an optimal quasi-stable coloring is NP-hard

to compute, and propose an efficient, heuristic-based algo-

rithm; Sec. 5.

• Weconductanexperimentalevaluationonseveral realgraphs

and applications; Sec. 6.

2 BACKGROUNDONCOLORREFINEMENT

Fix an undirected graph𝐺 = (𝑉 ,𝐸). We denote by 𝑁 (𝑥) the set of
neighbors of a node 𝑥 ∈𝑉 . A coloring of𝐺 is a partition of 𝑉 into

𝑘 disjoint sets,𝑉 =𝑃1∪···∪𝑃𝑘 . We say that a node 𝑥 ∈ 𝑃𝑖 has color
𝑖 , or that it has color 𝑃𝑖 . We denote the coloring by 𝑷 =

{︁
𝑃1,...,𝑃𝑘

}︁
.

A stable coloring is a coloring with the property that, for any two

colors, all nodes in the first color have the same number of neighbors

in the second color. Formally:

∀𝑖, 𝑗,∀𝑥,𝑦 ∈𝑃𝑖 : |𝑁 (𝑥)∩𝑃 𝑗 |= |𝑁 (𝑦)∩𝑃 𝑗 |

Given two colorings 𝑷 ,𝑷 ′ we say that the first is a refinement of the

second, and denote this by 𝑷 ⊆ 𝑷 ′, if for every color 𝑃𝑖 ∈ 𝑷 , there
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exists a color 𝑃 ′𝑗 ∈ 𝑷
′ such that 𝑃𝑖 ⊆ 𝑃 ′𝑗 . Any two colorings 𝑷 ,𝑷 ′

have a greatest lower bound, 𝑷∧𝑷 ′, and a least upper bound, 𝑷∨𝑷 ′.
The greatest lower bound is easily constructed, by considering the

partition {𝑃𝑖∩𝑃 ′𝑗 | 𝑃𝑖 ∈𝑷 ,𝑃
′
𝑗 ∈𝑷

′}; for a construction of 𝑷 ∨ 𝑷 ′, we
refer the reader to [42].

The smallest coloring, where each node 𝑥 is in a separate color,

denoted 𝑷⊥, is trivially a stable coloring. Somewhat less obvious is

the fact that, if both 𝑷 and 𝑷 ′ are stable colorings, then their least

upper bound 𝑷∨𝑷 ′ is also a stable coloring (see also Th. 12 below).
This implies that every graph has a unique, maximum stable color-

ing, often called the stable coloring of𝐺 , namely 𝑷1∨𝑷2∨···, where
𝑷1,𝑷2, ... are all stable colorings of the graph. The stable coloring

can be computed quite efficiently using the color refinement method,

sometimes also called the 1-dimensional Weifeiler-Leman method

(1WL). Start by coloring all nodes with the same color, then repeat-

edly choose two colors 𝑃𝑖 ,𝑃 𝑗 and refine the set 𝑃𝑖 by partitioning its

nodes based on their number of neighbors in𝑃 𝑗 ; the stable coloring is

obtainedwhen nomore refinement is possible. There exist improved

algorithms that compute the stable coloring in time𝑂 (𝑛+𝑚log𝑛),
where 𝑛,𝑚 are the number of nodes and edges respectively [30]. The

reduced graph, �̂� , has one node 𝑖 for each color 𝑃𝑖 , and an edge from

𝑖 to 𝑗 if some node 𝑥 ∈𝑃𝑖 has a neighbor𝑦 ∈𝑃 𝑗 (in which case every
node 𝑥 ∈𝑃 𝑗 has a neighbor𝑦 ∈𝑃 𝑗 ).

Color refinement can be generalized to directed graphs, to labeled

graphs, tomulti-graphs, and toweighted graphs.We refer the reader

to [30] for an extensive survey of the theoretical properties of the

color refinement method. In this paper we will consider directed,

weighted graphs, but defer their discussion to Sec. 3.

Most applications of stable coloringwork best on graphs that have

many colors, i.e. where there are many, small sets 𝑃𝑖 . For example,

in order to check for an isomorphism between two graphs𝐺,𝐺 ′, one
first computes the stable coloring of the disjoint union of𝐺 and𝐺 ′,
then restricts the isomorphismscandidates to functions thatpreserve

the color of the nodes. The best case is when the stable coloring is

𝑷⊥, because then the only possible isomorphism is the function that

maps 𝑥 ∈𝐺 to the similarly colored𝑦 ∈𝐺 ′. In general, applications
of the 1WLmethod work best when there are many colors.

In this paper we use coloring for dimensionality reduction and

approximate query processing. Instead of solving the problem on

the original, large graph𝐺 , we solve it on the reduced graph �̂� . This

technique works best when there are few colors, because then the

reduced graph is small. Real graphs tend to have many colors; we

found (see Sec. 6) that the number of colors is typically around 70% of

the number of nodes. This observation has a theoretical justification:

if𝐺 is a random graph, then with high probability its stable coloring

is 𝑷⊥ [30, Sec.3.3]. This motivated us to introduce a new notion,

quasi-stable coloring, which relaxes the stability condition, in order

to allow us to construct fewer, larger colors.

3 QUASI-STABLE COLORING

We have seen that the stable coloring of a graph has many elegant

properties, but offers poor compression in practice. In this section

we introduce a relaxed notion, which preserves some of the desired

properties while improving the compression.

Aweighted directed graph𝐺 = (𝑋,𝐸,𝑤) is a directed graph with
a function𝑤 mapping edges to real numbers. We will assume that

the edge (𝑥,𝑦) exists iff𝑤 (𝑥,𝑦) ≠ 0, and therefore we often omit 𝐸

and simply write the directed graph as𝐺 = (𝑋,𝑤). Conversely, given
a standard graph𝐺 = (𝑋,𝐸), we assume a default weight function

𝑤 (𝑥,𝑦) = 1 when (𝑥,𝑦) ∈ 𝐸 and 𝑤 (𝑥,𝑦) = 0 otherwise. A bipartite

graph is a graphwhere the nodes consist of two sets𝑋,𝑌 and all edges

go from some node in 𝑋 to some node in 𝑌 . We denote a bipartite

graph by (𝑋,𝑌,𝐸) or (𝑋,𝑌,𝑤) if it is weighted.
Given a weighted graph (𝑋,𝑤) and two subsets of nodes𝑈 ,𝑉 , we

denote by𝑤 (𝑈 ,𝑉 ) the total weight from𝑈 to𝑉 :

𝑤 (𝑈 ,𝑉 ) def=
∑︂

𝑥 ∈𝑈 ,𝑦∈𝑉
𝑤 (𝑥,𝑦) (1)

Fix a reflexive and symmetric relation ∼ onR.
Definition 1. (1) Let𝐺 = (𝑋,𝑌,𝑤) be a weighted, bipartite graph

(i.e.𝑤 :𝑋 ×𝑌 → R). We say that𝐺 is ∼regular if the following two
conditions hold:

∀𝑥1,𝑥2 ∈𝑋 : 𝑤 (𝑥1,𝑌 ) ∼𝑤 (𝑥2,𝑌 )
∀𝑦1,𝑦2 ∈𝑌 : 𝑤 (𝑋,𝑦1) ∼𝑤 (𝑋,𝑦2)

(2) Let𝐺 = (𝑋,𝑤) be any weighted, directed graph, and 𝑷 =
{︁
𝑃1,...,𝑃𝑘

}︁
be a partition of its nodes. We say that 𝑷 is ∼quasi-stable, or quasi-
stable w.r.t.∼, if, for any two colors 𝑃𝑖 ,𝑃 𝑗 (including 𝑖 = 𝑗 ), the bipartite

graph (𝑃𝑖 ,𝑃 𝑗 ,𝑤) is ∼regular.
Thus, a quasi-stable coloring partitions the nodes in such a way

that for any two colors 𝑃𝑖 ,𝑃 𝑗 , any two nodes in 𝑃𝑖 have similar (ac-

cording to ∼) outgoing weights to 𝑃 𝑗 , and any two nodes in 𝑃 𝑗 have
similar incoming weights from 𝑃𝑖 .

3.1 Examples

We illustrate with several examples.

Biregular Graphs, and Stable Coloring Recall that a bipartite

graph (𝑋,𝑌,𝐸) is (𝑎,𝑏)-biregular, or simply biregular when 𝑎,𝑏 are

clear from the context, if every node 𝑥 ∈𝑋 has outdegree𝑎 and every

node in𝑦 ∈𝑌 has indegree𝑏. Let∼ be the equality relation onR:𝑢∼𝑣
iff𝑢=𝑣 . Then (𝑋,𝑌,𝐸) is =regular iff it is biregular. Furthermore, if𝐺

is a directed graph, then a coloring 𝑷 is =quasi-stable iff it is stable.

𝑞-Stable Coloring The main type of quasi-stable coloring that

we use in this paper is called 𝑞-stable. Fix some number 𝑞 ≥ 0, and
define the following similarity relation on R: 𝑢 ∼𝑞 𝑣 if |𝑢 − 𝑣 | ≤ 𝑞.
Notice that ∼𝑞 is reflexive and symmetric, but not transitive. In a

∼𝑞regular bipartite graph any twonodes in𝑋 have outgoingweights

that differ by atmost𝑞, and similarly for the incomingweights of the

nodes in𝑌 . To reduce clutter, wewill call a∼𝑞quasi-stable coloring a
𝑞-stable coloring, or simply a𝑞-coloring. The standard stable coloring

is the special case when 𝑞=0.

𝜀-Relative ColoringWhile 𝑞-stable coloring imposes a bound

on the absolute error, we briefly discuss an alternative: imposing

a bound on the relative error. Fix some number 𝜀 ≥ 0, and define

𝑢∼𝜀 𝑣 as𝑢 ·𝑒−𝜀 ≤ 𝑣 ≤𝑢 ·𝑒𝜀 . This relation is reflexive and symmetric,

but not transitive. We call a ∼𝜀quasi-stable coloring simply a 𝜀-

relative coloring. Notice that isolated nodes (i.e. without incoming

or outgoing edges) are in a separate color. This is because zero is

similar only to itself: 𝑢 ∼𝜀 0 implies 𝑢 = 0. More generally, for any

two colors, either every node in the first color is connected to some

node in the second, or none is, and similarly with the role of the two

colors reversed.
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BisimulationRelationAs a last example, define𝑢≡𝑣 as𝑢=𝑣 =0
or𝑢≠0,𝑣 ≠0. In other words, ≡ checks if both𝑢,𝑣 are zero, or none is
zero. This is an equivalence relation. Then, a ≡quasi-stable coloring
is a bisimulation relation on that graph [14].

3.2 The Reduced Graph

Let𝐺 = (𝑋,𝑤) be a directed, weighted graph and let 𝑷 =
{︁
𝑃1,...,𝑃𝑘

}︁
be any coloring, not necessarily quasi-stable. The reduced graph, is

defined as �̂�
def
= (�̂� ,�̂�), where the nodes �̂� def

= {1,2,...,𝑘} correspond to
the colors.Wewill consider different choices for theweight function;

one example is that we can set it to be the sum of all weights between

two colors, i.e. �̂� (𝑖, 𝑗) def= ∑︁
𝑥 ∈𝑃𝑖 ;𝑦∈𝑃 𝑗

𝑤 (𝑥,𝑦), but we will consider
other options too. Our goal in this paper is to use the reduced graph

to compute approximate answers to problems that are expensive to

compute on the original, large graph.

4 APPLICATIONS

Stable coloring preserves many nice properties of the graph. Will

a 𝑞-quasi stable coloring preserve such properties to some degree?

We explore this question here, and provide theoretical evidence that

quasi stable colorings provide some useful approximations for three

problems: linear optimization, maximum flow, and betweenness

centrality. In Section 6 we validate experimentally these findings.

4.1 Linear Optimization

We start with Linear Optimization. Consider the following linear

program:

maximize 𝑐𝑇 𝑥 where𝐴𝑥 ≤𝑏 and 𝑥 ≥ 0 (2)

where𝐴∈R𝑚×𝑛 , 𝑏 ∈R𝑚 , 𝑐 ∈𝑅𝑛 . We will denote by OPT (𝐴,𝑏,𝑐) the
optimal value of 𝑐𝑇 𝑥 . In general, it is possible to have OPT =−∞
(namely when the set of constraints is infeasible), or OPT =∞, but
we will not consider these cases. We will apply quasi-stable color-

ing only to LPs that are well behaved, meaning that OPT (𝐴,𝑏,𝑐)
is finite, and continues to be finite when 𝑏,𝑐 range over some small

neighborhood.

In this section, we view a matrix𝐴 as a function𝐴(𝑖, 𝑗). Follow-
ing the notation in (1), we denote𝐴(𝑃,𝑄) def= ∑︁

𝑖∈𝑃,𝑗 ∈𝑄𝐴(𝑖, 𝑗) when
𝑃 ⊆ [𝑚],𝑄 ⊆ [𝑛], and similarly, 𝑏 (𝑃) def= ∑︁

𝑖∈𝑃𝑏 (𝑖), 𝑐 (𝑄) =
∑︁

𝑗 ∈𝑄𝑐 ( 𝑗).
We write boldface𝑨 for the extended matrix of the LP:

𝑨
def
=

(︄
𝐴 𝑏

𝑐𝑇 ∞

)︄
(3)

The last row,𝑚+1, is the vector (𝑐𝑇 ,∞), and the last column, 𝑛+1,
is the vector (𝑏,∞). We associate the LP with the weighted bipartite

graph 𝐺 = ( [𝑚 + 1], [𝑛 + 1],𝑨), where the weights are the matrix

entries (they may be <0).

Consider a coloring (𝑷 ,𝑸) of the bipartite graph𝐺 ; it partitions
the [𝑚 + 1] rows into 𝑃1, ... ,𝑃𝑘 ,𝑃𝑘+1, and the [𝑛 + 1] columns into

𝑄1,...,𝑄ℓ ,𝑄ℓ+1. We further assume that the last row and last column

of𝑨 have a unique color, namely 𝑃𝑘+1 = {𝑚+1}, and𝑄ℓ+1 = {𝑛+1}.
Thepartitiondefines a reducedbipartite graph,�̂� = ( [𝑘+1],[ℓ+1],�̂�),

where we define the weights as follows:

�̂�(𝑟,𝑠) def= 𝑨(𝑃𝑟 ,𝑄𝑠 )√︁
|𝑃𝑟 | · |𝑄𝑠 |

(4)

In other words, the weight of the edge from color 𝑟 to color 𝑠 is the

sum of all 𝑨𝑖 𝑗 with 𝑖 in color 𝑃𝑟 and 𝑗 in color 𝑄𝑠 , normalized by√︁
|𝑃𝑟 | · |𝑄𝑠 |. The reduced LP is the LP defined by the matrix �̂� of the

reduced graph. In other words, the reduced LP is the following:

maximize 𝑐𝑇 �̂� where �̂��̂� ≤ �̂� and �̂� ≥ 0 (5)

where �̂�,�̂�,𝑐 are defined as:

�̂�(𝑟,𝑠) def= 𝐴(𝑃𝑟 ,𝑄𝑠 )√︁
|𝑃𝑟 | · |𝑄𝑠 |

�̂� (𝑟 ) def= 𝑏 (𝑃𝑟 )√︁
|𝑃𝑟 |

𝑐 (𝑠) def= 𝑐 (𝑄𝑠 )√︁
|𝑄𝑠 |

(6)

We prove that, if the coloring is quasi-stable, then the solution to

problem (2) is close to that of problem (5).

Theorem 2. Assume that the LP defined by𝐴,𝑏,𝑐 is well behaved.

Then there exists 𝑞0 > 0 that depends only on𝐴,𝑏,𝑐 , such that, for all

𝑞≤𝑞0, for any𝑞-quasi stable coloring, |OPT (𝐴,𝑏,𝑐)−OPT (�̂�,�̂�,𝑐) | ≤
𝑞Δ, where �̂�,�̂�,𝑐 is the reduced LP associated to the coloring, and the

constant Δ depends only on𝐴,𝑏,𝑐 .

We give the proof in Appendix A. The theorem guarantees that,

by improving the quality of the quasi-stable coloring, the value of

the reduced linear program eventually converges to the true value.

Example 3. Consider the linear program in Fig. 3 (a). Its matrix

has dimensions 5×3. Fig. 3 (b) shows a block-parition of the extended
matrix𝑨, which corresponds to a 𝑞-quasi stable coloring, for 𝑞=1.

More precisely, in each block, the row-sums differ by at most 1, and

the column sums differ by at most 1. For example, the three rows in

the first block have sums 4+8=12 and 6+5=11 and 7+4=11, so they
differ by at most 1, while the column-sums are equal. The reduced

matrix is shown in Fig. 3 (c). The optimal value of the original LP is

128.157 and that of the reduced LP is 130.199.

DiscusssionMladenov et al. [28] andGrohe et al. [16] used stable

coloringof thematrix (which is also called there an equitable partition

of𝑨) to reduce the dimensionality of a linear program.We recover

their result as the special case when 𝑞=0: in that case, our theorem

above implies OPT (𝐴,𝑏,𝑐)=OPT (�̂�,�̂�,𝑐). The reduced LP in [16]
is different from ours, however, we explain here that both are special

cases of amore general form of reduction. To explain that, recall that

a fractional isomorphism from𝑨 to �̂� (Equations (5.1), (5.2) in [16])

is a pair of stochasticmatrices 𝑼 ,𝑽 such that:

𝑨𝑽𝑇 =𝑼𝑇 �̂� 𝑼𝑨=�̂�𝑽 (7)

Our proof in Appendix A in fact shows the following:

Theorem 4 (Informal). If �̂�, 𝑼 , 𝑽 are three matrices such that

Equations (7) hold exactly, or hold approximatively, and 𝑼 , 𝑽 are

non-negative, then OPT (𝐴,𝑏,𝑐) and OPT (�̂�,�̂�,𝑐) are equal, or are
approximatively equal.

Notice that we do not require 𝑼 ,𝑽 to be stochastic, only non-

negative. In fact, our particular choice 𝑼 ,𝑽 in (10) are not stochastic.

By using this result we derive many other choices for the reduced

LP, as follows. Let 𝑴,𝑵 be any diagonal matrices of dimensions
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maximize 9𝑥1+10𝑥2+50𝑥3
where 4𝑥1+8𝑥2+2𝑥3 ≤ 20

6𝑥1+5𝑥2+𝑥3 ≤ 20
7𝑥1+4𝑥2+2𝑥3 ≤ 21
3𝑥1+𝑥2+22𝑥3 ≤ 50
2𝑥1+3𝑥2+21𝑥3 ≤ 51

Optimal value: 128.157

(a)

𝑨=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 8 2 20

6 5 1 20

7 4 2 21

3 1 22 50

2 3 21 51

9 10 50 ∞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
�̂�=

⎛⎜⎜⎜⎜⎝

34√
3·2

5√
3·1

61√
3·1

9√
2·2

43√
2·1

101√
2·1

19√
1·2

50√
1·1 ∞

⎞⎟⎟⎟⎟⎠
(b)

maximize
19
√
2
�̂�1+50�̂�2

where
34
√
2
𝑥1+5𝑥2 ≤ 61

9
√
2
+43𝑥2 ≤ 101

Optimal value: 130.199

(c)

Figure 3: Example of (a) Linear Program, (b) constraint matrix reduced via q-stable coloring, and (c) the reduced Linear Program.

(𝑘+1)× (𝑘+1) and (ℓ+1)× (ℓ+1) respectively, where all elements

on the diagonal are >0, and define:

�̂�
′ def
=𝑴�̂�𝑵−1 𝑼 ′

def
=𝑴𝑼 𝑽 ′

def
= 𝑵𝑽

The reader may check that equations (7) continue to hold (exactly

or approximatively) when we replace �̂�,𝑼 ,𝑽 with �̂�
′
,𝑼 ′,𝑽 ′. Nowwe

can explain the construction of the matrix that defines the reduced

LP in [16]. Start from (4) (or, equivalently, from (6)), and define the

diagonal matrices:

𝑴
def
= diag(

√︁
|𝑃1 |,...,

√︁
|𝑃𝑘+1 |) 𝑵

def
= diag(

√︁
|𝑄1 |,...,

√︁
|𝑄ℓ+1 |)

Then the newmatrix �̂�
′
defines reduced LP in [16]. More precisely:

�̂�
′(𝑟,𝑠) def=𝐴(𝑃𝑟 ,𝑄𝑠 )/|𝑄𝑠 | �̂�

′(𝑟 ) def= 𝑏 (𝑃𝑟 ) 𝑐 ′(𝑠) def= 𝑐 (𝑄𝑠 )/|𝑄𝑠 |

4.2 Maximum Flow

Next, we consider the maximum flow problem.We show that, while

ingeneral quasi-stable coloringmaynotnecessarily lead toagoodap-

proximate solution, we describe a reasonable property under which

it does. In particular, our result implies that stable coloring always

preserves the value of the maximum flow.

In the network flow problemwe are given a network𝐺 = (𝑋,𝑐,𝑆,𝑇 )
where𝑋 is a set of nodes, 𝑐 :𝑋 ×𝑋→R+ is a capacity function, and
𝑆,𝑇 ⊆𝑋 are sets of nodes called source and target nodes. A flow is a

function 𝑓 :𝑋 ×𝑋→R+ satisfying the capacity condition, 𝑓 (𝑥,𝑦) ≤
𝑐 (𝑥,𝑦),∀𝑥,𝑦 ∈𝑋 , and the flow preservation condition, 𝑓 (𝑋,𝑧)= 𝑓 (𝑧,𝑋 )
for all nodes 𝑧 ∉ 𝑆 ∪𝑇 (following the notation (1)). The quantities

𝑓 (𝑋,𝑧) and 𝑓 (𝑧,𝑋 ) are called the incoming flow and outgoing flow

at the node 𝑧. The value of the flow is value(𝑓 ) def= 𝑓 (𝑆,𝑋 )= 𝑓 (𝑋,𝑇 ).
The problem asks for themaximum value of a flow, whichwe denote

by maxFlow(𝐺). A cut in the network is a set of edges1 𝐶 ⊆ 𝑋 ×𝑋
whose removal disconnects𝑆 from𝑇 , and its capacity is the sumof ca-

pacities of all its edges. Themax-flow, min-cut theorem [40, Th.10.3]

asserts that maxFlow(𝐺) equals the minimum capacity of any cut.

Despite significant algorithmic advances for the max-flow problem,

see e.g. [25], practical algorithms are based on the augmenting path

method and remain slow in practice. We show here how to use the

reduced graph of a quasi-stable coloring to compute an approximate

flow. For that, we need to examine flows in bipartite graphs.

When𝐺 = (𝑋,𝑌,𝑐) is abipartitegraph, thenwewill assume that the

1Usually the cut is defined as a set of nodes; in this paper we find it more convenient
to define it as a set of edges.

source nodes are𝑋 and the target nodes are𝑌 . Obviously, the max-

imum flow is the total capacity of all edges, maxFlow(𝐺) =𝑐 (𝑋,𝑌 ).
Next, we consider a restricted notion of a flow.

Definition 5. We say that a flow 𝑓 :𝑋 ×𝑌 → R+ in a bipartite

graph𝐺 isuniform if all∀𝑥1,𝑥2 ∈𝑋 , 𝑓 (𝑥1,𝑌 )= 𝑓 (𝑥2,𝑌 ) and∀𝑦1,𝑦2 ∈𝑌 ,
𝑓 (𝑋,𝑦1)= 𝑓 (𝑋,𝑦2); in other words, all source nodes have the same out-

going flow, and all target nodes have the same incoming flow.

Wedenote by maxUFlow(𝐺) themax. value of a uniform flow in𝐺 .

Theorem 6. Consider a network flow problem defined by 𝐺 =

(𝑋,𝑐, {𝑠} , {𝑡}), with a single source and a single target node, 𝑠 ≠ 𝑡 .

Let 𝑷 =
{︁
𝑃0,𝑃1,...,𝑃𝑘−1,𝑃𝑘

}︁
be any coloring, such that 𝑃0 = {𝑠} and

𝑃𝑘 = {𝑡}, i.e. the source and target nodes have their own unique colors.
Define two capacity functions on the reduced graph:

𝑐1 (𝑖, 𝑗)
def
= maxUFlow(𝑃𝑖 ,𝑃 𝑗 ,𝑐) 𝑐2 (𝑖, 𝑗)

def
= maxFlow(𝑃𝑖 ,𝑃 𝑗 ,𝑐)

Let �̂�1,�̂�2 be the reduced graphs with nodes {0,1,...,𝑘} and capacity
functions 𝑐1,𝑐2 respectively. Then:

maxFlow(�̂�1) ≤maxFlow(𝐺) ≤maxFlow(�̂�2)

Proof. The second inequality follows immediately from the fact

that the total amount of flow from a set 𝑃𝑖 to a set 𝑃 𝑗 cannot exceed

𝑐 (𝑃𝑖 ,𝑃 𝑗 ) = 𝑐2 (𝑖, 𝑗). We prove the first inequality. Fix any flow 𝑓 in

�̂�1; we show how to construct a flow 𝑓 in𝐺 with the same value,

value(𝑓 )=value(𝑓 ). The idea is to take the flow 𝑓 (𝑖, 𝑗) between any
two colors 𝑖, 𝑗 of the reduced graph, and divided it uniformly between

the nodes in 𝑃𝑖 and those in 𝑃 𝑗 . For that purpose, we use themaximal

uniform flow 𝑓 ′ in the bipartite graph (𝑃𝑖 ,𝑃 𝑗 ,𝑐). Since 𝑓 satisfies the
capacity condition, we have 𝑓 (𝑖, 𝑗) ≤ 𝑐1 (𝑖, 𝑗) = 𝑓 ′(𝑃𝑖 ,𝑃 𝑗 ). Then, we
define 𝑓 on the bipartite graph 𝑃𝑖 ,𝑃 𝑗 to be equal to 𝑓

′ scaled down by
the factor 𝑓 (𝑖, 𝑗)/𝑓 ′(𝑃𝑖 ,𝑃 𝑗 ). Then 𝑓 (𝑃𝑖 ,𝑃 𝑗 )= 𝑓 (𝑖, 𝑗). Importantly, 𝑓 is

a uniform flow from 𝑃𝑖 to 𝑃 𝑗 , which means that all nodes 𝑥 ∈𝑃𝑖 have
exactly the same outgoing flow to 𝑃 𝑗 , namely 𝑓 (𝑖, 𝑗)/|𝑃𝑖 |, and sim-

ilarly all nodes𝑦 ∈𝑃 𝑗 have the same incoming flow 𝑓 (𝑖, 𝑗)/|𝑃 𝑗 |. This
allows us to prove that 𝑓 satisfies the flow preservation condition

on𝐺 (since 𝑓 is a flow on �̂�), and that value(𝑓 )=value(𝑓 ).
□

We use theorem to approximate the flow in a network as follows.

Compute a quasi-stable coloring, construct the reduced graph, set

the capacities 𝑐2 (𝑖, 𝑗)=
∑︁
𝑥 ∈𝑃𝑖 ,𝑦∈𝑃 𝑗

𝑐 (𝑥,𝑦), and use the upper bound
in the theoremas an approximate value for themax-flow. The quality
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Figure 4: A networkwith 𝑛2+2 nodes and a 𝑞-stable coloring

with 𝑞=1. Themaximumflow is 2, because there exists a cut

of size 2 (the blue lower left and green upper right edges).

Themaximumuniformflow of the bipartite graph induced

by 𝑃𝑖−1 and 𝑃𝑖 , for 𝑖 = 2,𝑛 − 1, is 0, hence 𝑐1 = 0. The capacity

between any two consecutive colors is 𝑛 or 𝑛+1 respectively,
hence 𝑐2 (𝑖−1,𝑖) ≥𝑛.

of this approximation depends on the how far apart 𝑐1 and 𝑐2 are.We

show below in Corollary 9 that 𝑐1=𝑐2 if the reduced graph is defined

by the stable coloring. However, if we relax the coloring to be quasi-

stable, then the upper bound can be arbitrarily bad, as we show next.

Example 7. Consider the network in Figure 4, where each edge

has capacity 1. Themaximumflow is 2, because there exists a cutwith

only two edges (lower left edge, and upper right edge in the figure).

The figure shows a coloring that is 𝑞-stable, for 𝑞=1; in other words

this is a “good” quasi-stable coloring, as close as it can get to a stable

coloring.Let’s examine theupperand lowerbounds inTheorem6.On

one hand, 𝑐2 (𝑖−1,𝑖)=𝑛+1 for 𝑖 =2,𝑛−1, and 𝑐2 (0,1)=𝑐2 (𝑛−1,𝑛)=𝑛.
Therefore, theupper boundgivenby the theorem is𝑛,which is ahuge

overestimate. The reason is that the maximum uniform flow from

𝑃𝑖−1 to 𝑃𝑖 is 0. For example, if 𝑓 is a uniform flow from 𝑃1 to 𝑃2, then

𝑓 (1,1) + 𝑓 (1,2) = 𝑓 (2,3) (uniformity at nodes 1,2 ∈ 𝑃1) and 𝑓 (1,1) =
𝑓 (1,2)= 𝑓 (2,3) (uniformity at nodes 1,2,3∈𝑃2), which implies 𝑓 =0.

Despite this negative example, we show that, under some reason-

able assumptions, the two bounds in the theorem can be guaranteed

to be close:

Lemma 8. Let 𝐺 = (𝑋,𝑌,𝑐) be a bipartite graph, with capacity

𝑐 (𝑥,𝑦) ≥ 0. Let𝑎,𝑏 >0be twonumbers such that, for all𝑥 ∈𝑋 ,𝑐 (𝑥,𝑌 ) ≥𝑎
and for all 𝑦 ∈ 𝑌 , 𝑐 (𝑋,𝑦) ≥ 𝑏, and denote by 𝐹 def

= min(𝑎 · |𝑋 |,𝑏 · |𝑌 |).
Assume that for any two sets of nodes𝑆 ⊆𝑋 ,𝑇 ⊆𝑌 , the followingholds:2

𝑐 (𝑆,𝑇 )+𝐹 ≥𝑎 · |𝑆 |+𝑏 · |𝑇 | (8)

Then maxUFlow(𝐺)=𝐹 .

Weprove the lemma inAppendixA.Here,we showanapplication.

A bipartite graph 𝐺 = (𝑋,𝑌,𝑐) is (𝑎,𝑏)-biregular if 𝑐 (𝑥,𝑌 ) = 𝑎 and

𝑐 (𝑋,𝑦)=𝑏 for all 𝑥,𝑦. We show:

Corollary9. (1) If𝐺 is an (𝑎,𝑏)-biregular graph, then condition (8)
holds. (2) If 𝑷 is stable coloring of a network𝐺 , then 𝑐1=𝑐2 and the two

2The condition is somewhat similar to Hal’s marriage theorem [40, Th.16.7].

Figure 5: The two nodes 𝑢 and 𝑣 have the same color, but

different betweenness centrality values: 𝑔(𝑢)=6,𝑔(𝑣)=5.

bounds in Theorem 6 are equal.

Proof. (1) In a biregular graph, the quantity 𝐹 defined in the

lemma is 𝐹 =min(𝑎 · |𝑋 |,𝑏 · |𝑌 |)=𝑎 · |𝑋 |=𝑏 · |𝑌 |=𝑐 (𝑋,𝑌 ), and:
𝐹 =𝑐 (𝑆,𝑇 )+𝑐 (𝑆,𝑌−𝑇 )+𝑐 (𝑋−𝑆,𝑇 )+𝑐 (𝑋−𝑆,𝑌−𝑇 )
𝑎 · |𝑆 |=𝑐 (𝑆,𝑇 )+𝑐 (𝑆,𝑌−𝑇 ) 𝑏 · |𝑇 |=𝑐 (𝑆,𝑇 )+𝑐 (𝑋−𝑆,𝑇 )

Condition (8) simplifies to 𝑐 (𝑋−𝑆,𝑌−𝑆) ≥0, which is true since all
edge capacities are ≥ 0.

(2) If 𝑷 is a stable coloring of a network, then every bipartite graph

(𝑃𝑖 ,𝑃 𝑗 ,𝑐) is (𝑎,𝑏)-biregular for some 𝑎,𝑏 and, furthermore 𝑐1 (𝑖, 𝑗) =
maxUFlow(𝑃𝑖 ,𝑃 𝑗 ,𝑐)=𝑎 · |𝑋 |=𝑐 (𝑃𝑖 ,𝑃 𝑗 )=𝑐2 (𝑖, 𝑗), provingtheclaim. □

4.3 Centrality

Finally, we consider the betweenness centrality in a graph and show

two results. The first is negative, showing that, even if we compute

a stable coloring, nodes with the same color may have different

centrality values. The second is positive, assuming we compute the

2-WL coloring instead of 1-WL.

The betweenness centrality is a measure of influence for graph

vertices [9]. The betweenness centrality of a vertex 𝑣 is defined as:

𝑔(𝑣) def=
∑︂

𝑠,𝑡 :𝑠≠𝑣≠𝑡≠𝑠

𝜎 (𝑠,𝑡 | 𝑣)
𝜎 (𝑠,𝑡) (9)

over all vertices 𝑠,𝑡 , where 𝜎 (𝑠,𝑡) is the number of shortest paths

between 𝑠,𝑡 and 𝜎 (𝑠,𝑡 | 𝑣) is the number of those that pass through 𝑣 .

We usually need to compute the centrality vector, consisting of

the values 𝑔(𝑣), for all nodes 𝑣 . To speed up this computation, we

first compute a quasi-stable coloring, then assume that all nodes of in

the same color have the same centrality value: this reduces the cost

of the computation, since we only need to compute (9) once for each

color (by randomly sampling some 𝑣 in that color). The question is

how reasonable is the assumption that nodes with the same color

have similar centrality values.

We observe that, even if the coloring is stable, two nodes𝑢,𝑣 of

the same color do not necessarily have the same centrality value.

This is shown in Fig. 5, where nodes𝑢 and 𝑣 have the same color, but

their centrality values differ.

However, we prove a positive result that still justifies our heuris-

tics. Recall that the stable coloring consists of a partition of the

nodes of the graph, also called the 1Weisfeiler-Lehmanmethod, or

1-WL. We prove that, if two nodes are equivalent under the 2-WL
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Figure 6: A graphwith twomaximal q-colorings, for 𝑞=1, or

twomaximal 𝜀-relative coloring, for 𝜀=1/𝑛. All nodes at the
top are in the same color (green) since all have exactly one

incoming edge. The nodes at the bottom can be partitioned

into either {1,2} and {3} (as shown) or {1} and {2,3}. Both are

maximal 1-stable colorings (because the degrees of two nodes

differ by atmost 1), and also 1/𝑛-relative colorings (because
the relative error is at most (𝑛+1)/𝑛≤𝑒1/𝑛).

equivalence, then they have the same centrality value. We refer the

reader to [30, pp.9] for the definition of 2-WL (and, more generally,

of k-WL), but instead use the following beautiful characterization

of k-WL proved by Cai, Fürer, and Immerman [6, Th.5.2], which we

review here in a slightly simplified form:

Theorem 10. Let𝐶𝑘+1 be the logic obtained by (a) extending First
OrderLogicwith countingquantifiers of the form∃≥𝑚𝑥𝜑 ,whichmeans

“there are at last𝑚 distinct values 𝑥 that satisfy𝜑”, and (b) restricted to

use only 𝑘+1 variables. Then two nodes 𝑎,𝑏 in a graph have the same

𝑘-WL color iff they satisfy the same𝐶𝑘+1 formulas.

We prove in Appendix A:

Theorem 11. Let𝑢,𝑣 be two nodes in a graph that have the same

2-WL color. Then they have the same centrality.

We anticipate further applications for our compression. Promis-

ing problems to approximate are those whose solutions are robust

to edge perturbations, capturing graph-wide properties, including:

clustering, node embedding, and computing graph layouts.

5 ALGORITHM

We have defined two variants of quasi-stable colorings, which allow

us to trade off the degree of stability (e.g. by varying 𝑞 or 𝜀) for the

compression ratio (number of colors). It turns out that computing a

quasi-stable coloring ismore difficult than computing the traditional

stable coloring, for both variants.Wewill describe the challenge first,

then introduce our proposed algorithm.

5.1 Complexity

The notion of stable coloring has the elegant property that every

graph has a unique, maximal stable coloring. We show here that

this property fails for quasi-stable. We use standard terminology

from partially ordered sets and call a valid coloringmaximal when

no valid coarsening exists, i.e. it cannot be greedily improved, and

call it maximum or greatest element when it is a coarsening of all

valid colorings. Equivalently, a valid coloring is maximum if and

only if it is the unique maximal valid coloring. Consider the graph in

Fig. 6: there are two distinctmaximal 1-stable colorings, and also two

distinct 1/𝑛-relative colorings, because we can partition the nodes
1,2,3 either as {1,2},{3} or as {1},{2,3}, but cannot leave them in the

same color. In fact, we prove:

Theorem 12. (1) If ∼ is a congruence w.r.t. addition (i.e. an equiv-
alence relation satisfying 𝑥 ∼𝑦⇒(𝑥+𝑧) ∼ (𝑦+𝑧)) then any graph ad-
mits auniquemaximum∼quasi stable coloring,which canbe computed

in PTIME. (2) Computing a maximal q-stable coloring is NP-complete,

and similarly for an 𝜀-stable coloring.

For a simple illustration, fix 𝑐 ≥ 0 and define 𝑥 ∼𝑦 ifmin(𝑥,𝑐) =
min(𝑦,𝑐); then ∼ is a congruence. The theorem implies that there is

a unique maximal ∼quasi stable coloring. When 𝑐 =1 then this is the

maximal bisimulation, and when 𝑐 =∞ then it is the stable coloring.

The theorem implies that while finding a quasi-stable coloring

is trivial (a unique color per node suffices), finding a coloring that

cannot be improved is difficult. The question of the practicality of

finding a “good enough” coloring is addressed in subsection 5.2.

Proof. (1) Assume ∼ is a congruence. We first prove that, if 𝑷 ,𝑸

are ∼-stable colorings of a graph, then so is 𝑷∨𝑸 . A color𝐶 of 𝑷∨𝑸
can be characterized in two ways: (a) for any two nodes 𝑥,𝑥 ′ ∈𝐶 ,
there exists a sequence 𝑥0 :=𝑥,𝑥1,𝑥2,...,𝑥𝑛 :=𝑥

′ such that every pair
(𝑥𝑖−1,𝑥𝑖 ) is either in the samecolorof𝑷 , or the samecolorof𝑸 , and (b)

𝐶 is both adisjoint unionof𝑷 -colors, and adisjoint unionof𝑸-colors,

and is minimal such. Let𝐶,𝐷 be two colors of 𝑷∨𝑸 , let 𝑥,𝑥 ′ ∈𝐶 , let
𝑤 =𝑤 (𝑥,𝐷),𝑤 ′=𝑤 (𝑥 ′,𝐷) be theiroutgoingweights to𝐷 , and let𝑥0 :=

𝑥,𝑥1,𝑥2,...,𝑥𝑛 :=𝑥
′ be the sequence given by (a). Fix 𝑖 =1,𝑛, and assume

w.l.o.g. that𝑥𝑖−1,𝑥𝑖 have the same𝑷 -color.Thenweuse the fact that𝐷

is a unionof𝑷 -colors,𝐷 =𝑃 𝑗1∪···∪𝑃 𝑗𝑘 , andobserve that𝑤 (𝑥𝑖−1,𝐷)=
𝑤 (𝑥𝑖−1, 𝑃 𝑗1 ) + ··· + 𝑤 (𝑥𝑖−1, 𝑃 𝑗𝑘 ) and 𝑤 (𝑥𝑖 , 𝐷) = 𝑤 (𝑥𝑖 , 𝑃 𝑗1 ) + ··· +
𝑤 (𝑥𝑖 , 𝑃 𝑗𝑘 ). Since 𝑷 is ∼-stable, we have 𝑤 (𝑥𝑖−1, 𝑃 𝑗ℓ ) ∼ 𝑤 (𝑥𝑖 , 𝑃 𝑗ℓ )
for all ℓ , which implies𝑤 (𝑥𝑖−1,𝐷) ∼𝑤 (𝑥𝑖 ,𝐷) because ∼ is a congru-
ence. Finally, we derive𝑤 (𝑥,𝐷) =𝑤 (𝑥 ′,𝐷) because ∼ is transitive.
Thus proves the claim that 𝑷∨𝑸 is∼stable. Finally, let 𝑷1,𝑷2,... be all
∼stable colorings. Then 𝑷1∨𝑷2∨··· is the unique maximum ∼stable
coloring, and can be computed in PTIME using color refinement.

(2) By reduction from the 2-dimensional Geometric Set Cover

problem, more specifically from BOX-COVER, which is NP com-

plete [8]: we are given a set of points 𝑆 =
{︁
(𝑎1,𝑏1),...,(𝑎𝑛,𝑏𝑛)

}︁
⊆R2,

with integer coordinates, and are asked to cover it with a minimum

number of squares with a fixed width 𝑞. Given this instance of BOX-

COVER, we construct the following 3-partite graph (𝑋,𝑌,𝑍,𝐸). All
edges go from𝑋 to𝑌 or from𝑌 to𝑍 . The set𝑌 has𝑛 nodes. Eachnode

𝑦𝑖 ∈𝑦 has exactly 𝑎𝑖 incoming edges from𝑋 , and exactly𝑏𝑖 outgoing

edges to𝑍 : thus |𝑋 |=∑︁
𝑖𝑎𝑖 and |𝑍 |=

∑︁
𝑖𝑏𝑖 . Any 𝑞-stable coloring of

the graph corresponds to a cover of 𝑆 with 𝑞×𝑞 squares. □

5.2 RothkoAlgorithm

Given the negative results above, we settle for a heuristic-based al-

gorithm for finding quasi-stable colorings that may not be maximal.

The main idea is that, instead of imposing some 𝑞, the algorithm

repeatedly applies a variant of color refinement, until a maximum

number of colors is reached. The value of 𝑞 is the computed on this

coloring. The guarantees given by the theorems in Sec. 3 still hold

on the resulting colored graph, but the quality of the approximation

depends on how good the value 𝑞 is when the algorithm terminates.
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We call the Algorithm 1 Rothko. Its method of dividing matrices

into a few large regions and giving them distinct colors resembles

Rothko’s famous color field paintings.

This iterativealgorithmoperatesbyrefiningonecolorat a time,be-

ginning with the coarsest (i.e., single color) partition. At every step a

witness is identified: that is, the pair of partitions 𝑃𝑖 ,𝑃 𝑗 thatmaximize

error in the𝑃𝑖→𝑃 𝑗 direction.The source color is then split into𝑃
′
𝑖 ,𝑃
′′
𝑖

to reduce the sum of errors 𝑃 ′𝑖 → 𝑃 𝑗 and 𝑃
′′
𝑖 → 𝑃 𝑗 . This process is

repeated until the desired error bound or number of colors is reached.

A witness is identified by calculating the maximum, minimum

degrees between all colors (𝑈 ,𝐿 respectively) and taking the differ-

ence of the two matrices. This produces the error matrix 𝐸𝑟𝑟 =𝑈 −𝐿,
whose (𝑖, 𝑗)th entry records the q-error of color 𝑃𝑖 with respect to

𝑃 𝑗 . Then, a threshold is set by taking the mean degree into 𝑃 𝑗 of the

nodes in 𝑃𝑖 . The elements of 𝑃𝑖 are then split depending on whether

their degree exceeds this threshold. We break ties arbitrarily–notice

if we have a tie, often at the next around we will split the other

tied-with color. We find ties to be rare in our experiments.

For some applications, it is desirable toweight the error by the size

of the partition, so that a q-error in a large partition is considered

worse than a q-error in a small partition. As such, the algorithm

accepts twoparameters,𝛼,𝛽whichallow for buildingaweightmatrix

𝐶 . These parameters control the weight assigned to the source and

target colors, respectively. 𝐶 is multiplied element-wise by 𝐸 to

produce the weighted error matrix 𝐸𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 . In practice, we set

𝛼 =𝛽 =0 for max-flow problems, as neither the number of source nor

target nodes affects theflow, but only the total edge capacity between

the colors; for linear programs, 𝛼 =1,𝛽 =0which prioritizes colors

withmorerows; forbetweennesscentrality,𝛼 =𝛽 =1as thenumberof

paths dependsonboth thenumberof nodes in source and target color.

Further, for applications where all weights are non-negative, we

observe that using the geometric rather than arithmetic mean re-

sults in a more compact coloring. The intuition can be gleaned from

scale-free networks, where the proportion of nodes with degree 𝑘

tends is proportional to 𝑘−𝛾 . Under the most common scale-free

model, Barabási–Albert [3], where 𝛾 =3 and the average degree is

2𝑚, splitting using arithmetic mean yields unbalanced partitions

with 1/(8𝑚3) fraction of nodes. Even for modest values of𝑚 this

quickly becomes unbalanced (i.e. when𝑚 = 3 the partition will be

split 1 :216). Since the geometricmean is equivalent to the arithmetic

mean in log-space, the split is much less unbalanced (in the previous

example, it would be 1 : 4). Many natural networks—such as the

internet—are thought to be scale-free [2].

Rothko is an anytime algorithm. It can be interrupted and will

still produce in a valid coloring. The longer it is allowed to run, the

better the resulting coloring is. Further, the stopping condition can

be set depending on a desired number of colors, or target𝑞-error, en-

coded inAlgorithm 1 as𝑛,𝜀 respectively. This is particularly valuable

in interactive applications, whereRothko can be run as a co-routine,

with the application alternating between color refinement and up-

dating its approximation based on the new colors.

Termination is guaranteed. At each iteration, a color is chosen

to be split. Singleton colors are never selected for splitting, as their

degree-difference into any partition is zero. After enough iterations

either the algorithmwill reach its desired error bound, or refine into

only singleton partitions and so zero max 𝑞-error.

Algorithm 1: Rothko

Computing an approximate partition over a weighted graph

𝐺 , with 𝑛 colors or 𝜀 maximum 𝑞-error

Data:𝐺 = (𝑉 ,𝐸),𝑊 :𝑉 ×𝑉→R+
Parameters: 𝑛 ∈Z+,𝜀 ∈R≥0, 𝛼,𝛽 ∈R
Result: 𝑃 ⊂P(𝑉 )

1 𝑃←{𝑉 };
2 while |𝑃 |<𝑛 do

3 𝑈𝑖 𝑗 ,𝐿𝑖 𝑗←max𝑣∈𝑃𝑖 deg(𝑣,𝑃 𝑗 ),min𝑣∈𝑃𝑖 deg(𝑣,𝑃 𝑗 );
4 𝐸𝑟𝑟←𝑈 −𝐿;
5 if max𝐸𝑟𝑟 ≤ 𝜀 then
6 break;

7 𝐶𝑖 𝑗←|𝑃𝑖 |𝛼×|𝑃 𝑗 |𝛽 ; // weights

8 𝐸𝑟𝑟weighted←𝐸𝑟𝑟 ⊙𝐶; // element-wise product

9 𝑖, 𝑗←argmax𝑖, 𝑗𝐸𝑟𝑟weighted; // witness

10 threshold←mean(
{︁
𝑥 |𝑥 =deg(𝑣,𝑃 𝑗 ),𝑣 ∈𝑃𝑖

}︁
) ;

// Split 𝑃𝑖 at threshold

11 𝑃retain←
{︁
𝑣 ∈𝑃𝑖 |deg(𝑣,𝑃 𝑗 ) ≤ threshold

}︁
;

12 𝑃eject←𝑃𝑖 \𝑃retain;
13 𝑃←𝑃 \{𝑃𝑖 }∪

{︂
𝑃retain,𝑃eject

}︂
;

6 EVALUATION

We empirically evaluate our notion of quasi-stable coloring, address-

ing three questions:

(1) End-to-end performance: how good is the system down-

stream? Can it effectively trade-off accuracy for speedup?

(2) What are the characteristics of the colors? What are the

properties of the compressed graphs?

(3) How efficient and scalable is the Rothko algorithm?

We use 20 datasets for evaluation. Graphs are outlined in Table 2,

linear programs in Table 3. We list the primary sources in the table,

many of these graphs were found via dataset repositories [1, 24].

Trials are run on aMacOSmachinewith a 3.2 GHzARMv8 processor

and 16GB of main memory. A single core is used for all experiments.

All code is run on Julia v1.7, with linear programs being solved

with the Tulip solver and max-flow problems with the GraphsFlows

library. Tulip is the fastest open-source solver [43], while Graphs-

Flows uses the state-of-the-art push-relabel algorithm [11]. Our

coloring implementation, as tested in this paper, is packaged as

QuasiStableColorsversionv0.1.0and is available fordownload.3

6.1 End-to-end performance

In this section, we consider howwell q-stable colors work as a func-

tion of downstream performance.We evaluate the trade-off between

accuracy and speed when using the colorings for approximating

linear-optimization, maximum-flow, and centrality tasks. On all

tasks, we compare against the baseline of solving the problem di-

rectly on the graph or linear system.

Formaximum-flow and linear-optimization tasks, we use the rela-

tive error as the performancemetric.We define this asmax(𝑣/𝑣,𝑣/𝑣)

3https://github.com/mkyl/QuasiStableColors.jl

810

https://github.com/mkyl/QuasiStableColors.jl


a) Maximum-flow b) Linear optimization c) Centrality

Figure 7: Speed-accuracy trade-offs for three task types and 20 datasets. Runtime reported is end-to-end, including the time

taken for graph coloring, building an approximate instance of the problem and solving it.

a) Maximum-flow b) Linear optimization c) Centrality

Figure 8: Accuracy as a function of the number of colors, across the same three tasks.

Table 1: Runtime comparison of q-stable colors vs. prior

approximations (Riondato-Kornaropoulos [37] and early-

stopping [33]) and exact algorithms (Brandes [5] and interior-

point solver [43]). Runtime to achieve a target approximation

quality ismeasured; target is correlation (�)withground truth

values for centrality and relative error for linear optimization.

“×” is 20-minute timeout. Units in seconds, lower is better.

Betweenness centrality: ours, [37], and [5]

� =0.90 � =0.95 � =0.97 Exact

Ours Prior Ours Prior Ours Prior

Astroph. 0.13 15.2 1.03 41.4 2.49 61.1 223

Facebook 0.07 3.2 0.53 7.1 2.23 12.6 221

Deezer 0.05 3.6 1.11 7.2 8.56 14.8 295

Enron 0.41 2.6 3.06 5.6 10.8 8.7 380

Epinions 0.18 17.1 3.15 36.5 7.95 58.2 2552

Linear optimization: ours, [33], and [43]

rel. err.=3.0 rel. err.=2.0 rel err.=1.5 Exact

Ours Prior Ours Prior Ours Prior

qap15 3.20 112. 4.91 524. 11.4 × 1 320

nug08. 5.40 1 027. 6.65 × 6.65 × 6 000

support. 0.51 143. 4.98 143. × × 1 860

ex10 0.247 795. 14.0 795. 14.0 795. 1 440

Table 2: Summary of graphs used for evaluation

Name Vertices Edges Real/

Sim.

Source

General evaluation

Karate 34 75 R [10]

OpenFlights 3 425 38 513 R [35]

Dblp 317 080 1 049 866 R [7]

Centrality

Astrophysics 18 772 198 110 R [23]

Facebook 22 470 171 002 R [26]

Deezer 28 281 92 752 R [38]

Enron 36 692 183 831 R [21]

Epinions 75 879 508 837 R [36]

Maximum-flow

Tsukuba0 110 594 506 546 R [32]

Tsukuba2 110 594 500 544 R [32]

Venus0 166 224 787 946 R [39]

Venus1 166 224 787 716 R [39]

Sawtooth0 164 922 790 296 R [39]

Sawtooth1 164 922 789 014 R [39]

SimCells 903 962 6 738 294 S [18]

Cells 3 582 102 31 537 228 R [18]
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Table 3: Summary of the linear programs used for evaluation.

All instances are from real problems.

Name Rows Cols. Non-

zeros

Sol.

time

Source

qap15 6 331 22 275 110 700 22min [27]

nug08-3rd 19 728 20 448 139 008 100min [27]

supportcase10 10 713 1 429 098 4287094 31min [27]

ex10 69 609 17 680 1179680 24min [27]

Table 4:Runtimeand compression ratios of quasi-stable color-

ing vs.priorwork (stable coloring [4, 22]) for selecteddatasets.

Dataset Max 𝑞 Mean 𝑞 Colors Compression Time

OpenFlights stable (𝑞=0) 2 637 1.29:1 150ms

q = 64 15.8 9 380:1 10ms

q = 32 6.96 17 200:1 20ms

q = 16 2.22 39 87:1 60ms

q = 8 0.52 106 32:1 350ms

Epinions stable (𝑞=0) 53 068 1.42:1 49s

q = 64 4.42 71 1 000:1 2.39s

q = 32 1.17 144 526:1 8.95s

q = 16 0.79 316 240:1 40.5s

q = 8 0.22 869 87:1 5m19s

DBLP stable (𝑞=0) 233 466 1.35:1 14m52s

q = 64 11.94 21 15 000:1 2.28s

q = 32 2.22 89 3 500:1 22.6s

q = 16 0.39 373 850:1 6m39s

q = 8 0.06 1513 210:1 2h38m

for an actual, predicted 𝑣, 𝑣 so that 1.0 is the ideal score. For be-

tweenness centrality, the actual and predicted scores are compared

pair-wise using Spearman’s rank correlation coefficient, where 1.0

is also the ideal score. In all experiments, the time reported is end-

to-end i.e., includes coloring the graph or matrix, computing the

reduced problem, and solving it.

Figure 7 illustrates the trade-off for three task types across twenty

datasets. Overall, accuracy can be exchanged for speed favorably:

in the average case, using a budget of 1% of the baseline (i.e., a 100×
speedup) results in an average error within 12% of the optimal value.

Figure 8 shows the number of colors required to achieve the same

accuracy. Across all tasks, no more than 150 colors are required to

converge to an approximation.We observe a consistent diminishing-

returns pattern: the initial color refinement results in large gains in

accuracy, but as more and more colors are added the gains shrink in

size. Comparing the densities of the graphs (omitted for brevity)with

the difficulty of coloring them, we find no consistent trend. Next, we

consider the tasks individually.

Maximum Flow. We test our algorithm on problem instances de-

fined by min-cut/max-flow benchmarks [1, 19]. This involves com-

puting maximum flows over the eight flow networks. We compare

against a baseline of computing the exact flow using the push-relabel

algorithm, considered to be the benchmark for max-flow [11].

Figure 7(a) shows the results: our approximation achieves an av-

erage geometric-mean error of 1.17while using less than 1% of the

time needed for direct solution. At the same time, as outlined in Fig-

ure 8(a), this error is achieved using no more than 35 colors. Recall

that the flow networks are composed of 100K-2M nodes.

We consider comparing with prior approximation algorithms.

The state-of-the-part push-relabel algorithm for max-flow cannot

be stopped early, as it computes pre-flows which are not valid flows

and violate the principle of flow conservation. Further, while linear-

time approximations have been developed in the theory [20], these

algorithms remain slower than push-relabel algorithm in practice.

Linear programs. Next, we evaluate the ability of quasi-stable

coloring to approximate solutions to linear systems of equations.We

test on four real-world linear programs, outlined inTable 3. These are

relatively difficult tasks: the easiest can be solved in 20minuteswhile

the most difficult requires about two hours for an exact solution.

𝑞-stable colors provide a good speed-accuracy tradeoff, shown in

Figure 7(b). On average, a geometric-mean relative-error of 1.13 is

reached in under 0.5% of the direct runtime. Figure 8(b) shows the

number of colors required for the results. Similarly to max-flow, a

relatively small number of colors is required for an accurate answer.

Unlike other tasks, the error on LPs is not monotone.

Table 1 (bottom) compares our approximation with early stop-

ping the interior-point-method solver, the recommended approach

in practice [33]. We set a relative error and solve until that bound

is met. Q-stable coloring outperforms the baseline runtime by 102×
on average and times out in only one configuration (vs. five).

Centrality. Next, we test the utility of q-stable colorings in ap-

proximating betweenness centrality.Wemeasure the approximation

error using Spearman’s rank correlation coefficient. We compare

against the baseline of solving for exact centralities using Brandes

algorithm [5], the algorithmwith the best asymptotic runtime.

Figure 7c shows the speedup-accuracy tradeoff on five medium-

size datasets. On all datasets, the approximation is favorable: using

1% of the time of the direct computation, it produces centralitieswith

correlation 0.973 to the ground truth. Figure 8 outlines the number

of colors required for these results. We find that using 50 colors is

sufficient to ensure a rank correlation of greater than 0.948, while

100 colors allow for 0.965. Recall the graphs have 18–75K vertices.

We exclude the datasets dblp and larger because the baseline timed

out after 16 hours.

Wenote a fewtrends. First, the speed-accuracy trade-off ismore fa-

vorable the larger the dataset. The largest dataset, epinions, shows

the steepest slope at the beginning; the dataset with the fewest ver-

tices,Astrophysics, shows the shallowest slope.Aswithmaximum-

flow, the approximation error is found to be monotone over all

datasets: the more colors used, the better the correlation is.

Table 1 (top) compares the performance of our approximation

with prior works [37]. By compressing all nodes in the graph rather

than focusing on selecting paths to sample, we obtain a 30× better
average runtime across various tasks and approximation budgets.

6.2 Coloring Characteristics

Coloring size. Table 4 compares the q-stable coloring of three

datasets with stable coloring. Stable coloring results in compressed
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Table 5: Characteristics of the constraint matrix for some

compressed linear programs.

Dataset Colors Rows Cols. Non-

zeros

Comp-

ression

ratio

Rel.

error

qap15 10 4 7 11 104 18.91

50 27 24 179 103 1.45

100 52 49 478 102 1.05

nug08-3rd 5 3 3 5 104 8.19

50 30 21 254 103 1.45

100 61 40 930 103 1.45

supportcase10 5 3 3 4 105 1010

50 30 21 131 103 1.39

100 62 39 368 103 1.51

ex10 5 5 1 4 106 5.28

50 25 26 347 103 1.02

100 51 50 864 103 1.02

Table 6: Average latency and responsiveness of theRothko

algorithm across task types.

Task Time-to-

first-result

Update

frequency

Time to

converge

Linear opt. 560 ms 2.71 s 72.2 s

Max-flow 845 ms 1.57 s 21.0 s

Centrality 32 ms 1.60 s 5.88 s

graphs with 70%-78% of the full graph size. We find that small max-

imum values of 𝑞, such as 𝑞 = 8 result in an order-of-magnitude

improvement in the compression ratios over stable coloring. Mod-

erate maximum values of 𝑞, such as 𝑞 = 16 result in a two or more

orders-of-magnitude improvement. While the choice of 𝑞 caps the

worst-case degree error, the average errors are much smaller, on

average <1.0 on all datasets: less than one differing edge per color.

Color distribution. Unlike stable coloring, single-element parti-

tions do not dominate any dataset. For example, on cells, DBLP,

nug08-3rd and epinions, the median partition contains 6, 14, 56,

206 nodes in each dataset respectively. This evidences the ability of

𝑞-stable colors to avoid stable-coloring-like single-color partitions.

Compression ratios. Table 5 shows the compression ratios enabled

by using quasi-stable colors on linear programs. Amaximum com-

pression of 106× is recorded, but corresponds to a large error of

5.28. Typical space savings of a ratio of 102-103 while maintain-

ing a geometric mean error of 1.23. The outlier error of 1010 on

supportcase10 is explained by the measured q-error of 107 when

only 5 colors are used–this sharply decreases with more colors.

6.3 Algorithm Properties

Runtime. Table 4 compares runtime against the state-of-the-art

stable-coloring algorithm [4] with complexity O((𝑛 + 𝑚) log𝑛).

Rothko’s runtime is competitive against this highly optimized im-

plementation [22], with an order-of-magnitude better compression.

Responsiveness. Because of the progressive nature of the Rothko

algorithm,an initial prediction isproducedpromptly.Table6outlines

the latency and responsiveness metrics. The first prediction occurs

within 480 ms on average, with centrality tasks having the consis-

tently lowest latency and max-flow the highest. Average latency is

strongly influenced by outliers, such as cellswith 6.5s of latency.

Further, the algorithm iterates well, with a new color computed

every 1.96𝑠 on average. The time taken for the subtasks varies: for

max-flowand linear-programproblems, the coloring step dominates,

using>99.9% of the runtime on themeasured datasets. For centrality

the solving step dominates, taking up 68%–94% of the runtime.

Robustness. We compare the robustness of q-colors to graph per-

turbations against that of stable coloring. We construct a synthetic

graph |𝑉 |=1000,𝐸= |21 600| with a compact, 100-color stable color-

ing.Then inFigure2, a small numberof edges is addedat random.The

initial stable coloringhas a compression ratio of 10×. Perturbing 1.5%
of edges causes the stable coloring to degrade to a compression ratio

of 75% (750 nodes, down from 1000), with a majority of nodes given

a unique color. Computing a 𝑞-stable color (𝑞=4), the compression

ratio can be maintained at 6.5×with the same perturbation.

7 CONCLUSION

We have introduced quasi-stable colorings, an approach for vertex

classification that allows for the lossy compression of graphs. By

developing an approximate version of stable coloring, we are able to

practically color real-world graphs. We show the ability of these col-

orings as approximations of max-flow/min-cut, linear optimization

and betweenness centrality and prove their error bounds. Discover-

ing that the construction of maximal q-stable colorings is NP-hard,

we develop a heuristic-based algorithm to efficiently compute them.

We empirically evaluate the characteristics and approximation util-

ity of quasi-stable colors; validating their practicality on wide range

of real datasets and tasks.

ACKNOWLEDGMENTS

This projectwas partially supported byNSF IIS 1907997 andNSF-BSF

2109922.

A APPENDIX

Proof of Theorem 2. Weprove here Theorem 2. In general, it is well

known thatOPT (𝐴,𝑏,𝑐) is a continuous function in𝐴,𝑏,𝑐 . We prove

here a stronger statement: if𝐴,𝑏,𝑐 is well behaved (see Sec. 4.1), then

the function is Lipschitz continuous in 𝑏,𝑐 .

Lemma 13. Given𝐴,𝑏,𝑐 as above, there exists𝑞0>0 such that, forall

𝑢 ∈R𝑚,𝑣 ∈R𝑛 , if | |𝑢 | |∞ ≤𝑞0 and | |𝑣 | |∞ ≤𝑞0, then |OPT (𝐴,𝑏+𝑢,𝑐+
𝑣)−OPT (𝐴,𝑏,𝑐) |=𝑂 ( | |𝑢 | |∞+||𝑣 | |∞).

Proof. Recall that the optimal solution 𝑥∗ can always be chosen
to be a vertex of the polytope defined by the LP. More precisely, con-

sider the𝑚+𝑛 inequality constraints𝐴𝑥 ≤𝑏, 𝑥 ≥ 0. Choose any 𝑛 of
them and convert them to equalities; if they uniquely define 𝑥 , then

we call𝑥 a candidate solution, andwedenote by𝑥1,...,𝑥𝑁 all candidate

solutions. Let𝑥𝑖 be candidate solution that is feasible and optimal for
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𝐴,𝑏,𝑐 , and let 𝑥 𝑗 be the candidate solution that is feasible and optimal

for 𝐴,𝑏,𝑐 +𝑣 respectively. Then |OPT (𝐴,𝑏,𝑐 +𝑣) −OPT (𝐴,𝑏,𝑐) | =
|𝑣𝑇 (𝑥 𝑗 −𝑥𝑖 ) | ≤ | |𝑣 | |∞ | |𝑥 𝑗 −𝑥𝑖 | |1 ≤𝑂 (𝑞), where the constant in𝑂 (−)
is 2max𝑖 | |𝑥𝑖 | |1. By applying the same argument to the dual LP we

obtain |OPT (𝐴,𝑏 +𝑢,𝑐) −OPT (𝐴,𝑏,𝑐) | =𝑂 (𝑞). Returning to the

primal LP, we notice that if we replace 𝑏 with 𝑏 +𝑢, then the can-

didate solutions 𝑥𝑖 will change to some 𝑥 ′𝑖 ; since 𝑢 ranges over a

compact set, sup𝑢 | |𝑥 ′𝑖 | |1 exists and is finite, for all 𝑖 = 1,𝑁 , which

implies |OPT (𝐴,𝑏 + 𝑢, 𝑐 + 𝑣) − OPT (𝐴,𝑏 + 𝑢, 𝑐) | = 𝑂 (𝑞). Thus,
|OPT (𝐴,𝑏+𝑢,𝑐+𝑣)−OPT (𝐴,𝑏,𝑐) |=𝑂 (𝑞) as required. □

Using the lemma, we can now prove Theorem 2. Define:

𝑼 (𝑟,𝑖) def=
1𝑖∈𝑃𝑟√︁
|𝑃𝑟 |

𝑽 (𝑠,𝑗) def=
1𝑗∈𝑄𝑠√︁
|𝑄𝑠 |

(10)

where 1𝜋 is the indicator function of a predicate𝜋 , equal 1when𝜋 is
true, and equal 0 otherwise.𝑼 and𝑽 representmappings between the
original LP and the reduced LP, and we will show that they satisfy a
relaxedversionofEq. (7).Observe that the last rowand last columnof
both 𝑼 and 𝑽 are 0,0,...,0,1, and denote by𝑈 ,𝑉 (without boldface) the
matrices obtained by removing the last row and last column. Then

�̂� =𝑈𝐴𝑉𝑇 , �̂� =𝑈𝑏, and 𝑐𝑇 = 𝑐𝑇𝑉𝑇 (see their definitions in Eq. (6)).
Next, we define the following matrices 𝑫,𝑬 , which capture the error

introduced by the mapping from𝐴,𝑏,𝑐 to �̂�,�̂�,𝑐 . We also show them
as block matrices, by exposing the last row and last column:

𝑫
def
= 𝑨𝑽

𝑇 −𝑼𝑇
�̂�= 𝑬

def
= 𝑼𝑨−�̂�𝑽 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑑1 :=
𝑏

𝐷 :=𝐴𝑉𝑇 −𝑈𝑇 �̂� −
𝑈𝑇 �̂�

𝑐𝑇𝑉𝑇 −𝑐𝑇 =0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝑈𝑏
−

𝐸 :=𝑈𝐴−�̂�𝑉 �̂�
=0

𝑒𝑇2 :=𝑐𝑇 −𝑐𝑇𝑉 0

⎞⎟⎟⎟⎟⎟⎠
(11)

We show that the error matrices are small:

|𝑫 (𝑠,𝑖) | ≤ 𝑞√︁
|𝑄𝑠 |

|𝑬 (𝑟, 𝑗) | ≤ 𝑞√︁
|𝑃𝑟 |

(12)

We only show the first inequality, the second is identical:

𝑫 (𝑠,𝑖) =
∑︂
𝑗

𝑨(𝑖, 𝑗)1𝑗∈𝑄𝑠√︁
|𝑄𝑠 |

−
∑︂
𝑟

1𝑖∈𝑃𝑟 �̂�(𝑟,𝑠)√︁
|𝑃𝑟 |

=
𝑨(𝑖,𝑄𝑠 )√︁
|𝑄𝑠 |

− 𝑨(𝑃𝑟 ,𝑄𝑠 )
𝑃𝑟 ·

√︁
|𝑄𝑠 |

=
1√︁
|𝑄𝑠 |

(︃
𝑨(𝑖,𝑄𝑠 )−

𝑨(𝑃𝑟 ,𝑄𝑠 )
|𝑃𝑟 |

)︃

where in the last line 𝑟 is the unique color that contains 𝑖 . The quan-

tity𝑨(𝑖,𝑄𝑠 ) represents the total weight from 𝑖 to the color𝑄𝑠 , while

𝑨(𝑃𝑟 ,𝑄𝑠 )/|𝑃𝑟 | is the average of this quantity over all 𝑖 ∈𝑃𝑟 . Since the
coloring is 𝑞-quasi stable, this difference is bounded by 𝑞.

For any feasible solution 𝑥 to the LP (2), define �̂�
def
= 𝑉𝑥 . Since

𝐴𝑥 ≤ 𝑏, we derive 𝑈𝐴𝑥 ≤ 𝑈𝑏, which becomes (�̂�𝑉 + 𝐸)𝑥 ≤ �̂�, or

�̂�𝑉𝑥 ≤ �̂� − 𝐸𝑥 . Moreover, 𝑐𝑇 𝑥 = (𝑐𝑇𝑉 + 𝑒𝑇2 )𝑥 = 𝑐𝑇 �̂� + 𝑒𝑇2 𝑥 . It fol-
lows that OPT (𝐴,𝑏,𝑐) ≤ OPT (�̂�,�̂� −𝐸𝑥,𝑐) + 𝑒𝑇2 𝑥 . We set 𝑥 := 𝑥∗

(an optimal solution to the LP) and observe that Eq. (12) implies

| |𝐸𝑥∗ | |1 ≤ 𝑞 | |𝑥∗ | |1, and | |𝑒𝑇2 𝑥
∗ | |1 ≤ 𝑞 | |𝑥∗ | |1. Therefore, Lemma 13

implies OPT (�̂�,�̂�−𝐸𝑥,𝑐) ≤OPT (�̂�,�̂�,𝑐)+𝑞Δ, for some constant Δ.

We have proven that OPT (𝐴,𝑏,𝑐) ≤OPT (�̂�,�̂�,𝑐)+𝑂 (𝑞).
Conversely, for �̂� any feasible solution to (5), define 𝑥

def
= 𝑉𝑇 �̂� .

Since �̂��̂� ≤ �̂�, we derive𝑈𝑇 �̂��̂� ≤𝑈𝑇 �̂�, or (𝐴𝑉𝑇 −𝐷)�̂� ≤𝑏−𝑑1, which
we rearrange as𝐴𝑥 ≤ 𝑏+ (𝐷�̂� −𝑑1). Moreover, 𝑐𝑇 𝑥 = 𝑐𝑇𝑉𝑇 �̂� = 𝑐𝑇 �̂� .

It follows that OPT (�̂�, �̂�,𝑐) ≤ OPT (𝐴,𝑏 + (𝐷�̂� − 𝑑1),𝑐). We set

�̂� := �̂�∗ (an optimal solution to the reduced LP), and observe that

| |𝐷�̂�∗−𝑑1 | |1=𝑂 (𝑞). Therefore, Lemma13 impliesOPT (𝐴,𝑏+(𝐷�̂�−
𝑑1),𝑐) ≤OPT (𝐴,𝑏,𝑐)+𝑞Δ, for some constant Δ. This completes the

proof of the theorem.

Proof of Lemma 8. We prove here Lemma 8. Extend𝐺 to a net-

work by adding two nodes 𝑠, 𝑡 and setting 𝑐 (𝑠, 𝑥) def
= 𝐹/|𝑋 | and

𝑐 (𝑦, 𝑡) def= 𝐹/|𝑌 | for all 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 . We claim that this network
admits a flow of value 𝐹 . The claim implies that the flow is uniform,
since all edges (𝑠,𝑥) and (𝑦,𝑡) must have a flow up to their capacity.
To prove the claim it suffices to show that every cut in the network
has a capacity ≥ 𝐹 . Let𝐶 be any cut. Define the sets:

𝑆
def
= {𝑥 |𝑥 ∈𝑋,(𝑠,𝑥) ∉𝐶 } 𝑇

def
= {𝑦 | 𝑦 ∈𝑌,(𝑦,𝑡 ) ∉𝐶 }

The cut must contain all edges (𝑥,𝑦) with 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 , hence its
capacity is:

𝑐 (𝑆,𝑇 ) +
(︁
|𝑋 |− |𝑆 |

)︁ 𝐹

|𝑋 | +
(︁
|𝑌 |− |𝑇 |

)︁ 𝐹

|𝑌 |

=

(︃
𝑐 (𝑆,𝑇 ) +𝐹− |𝑆 | 𝐹|𝑋 | − |𝑇 |

𝐹

|𝑌 |

)︃
+𝐹 ≥

(︁
𝑐 (𝑆,𝑇 ) +𝐹−𝑎 · |𝑆 |−𝑏 · |𝑇 |

)︁
+𝐹 ≥𝐹 . □

Proof of Theorem 11. Wewrite𝑑 (𝑎,𝑏) for the length of the shortest
path from 𝑎 to 𝑏 in the graph.We claim that, for all numbers𝑀 ≥0
and 𝑑 ≥ 0, the following formula Φ𝑀,𝑑 can be expressed in𝐶3:

Φ𝑀,𝑑 (𝑠,𝑣)
def
= (𝑑 (𝑠,𝑣) =𝑑)∧ (𝜎 (𝑠,𝑣) ≥𝑀)

The claim implies the theorem, becausewe canwrite𝑔(𝑣) as follows.
Notice that 𝜎 (𝑠,𝑡 | 𝑣)=𝜎 (𝑠,𝑣)𝜎 (𝑣,𝑡) when 𝑑 (𝑠,𝑡)=𝑑 (𝑠,𝑣)+𝑑 (𝑣,𝑡) and
𝜎 (𝑠,𝑡 | 𝑣)=0 otherwise. Then:

𝑔 (𝑣) =
∑︂

𝑀1,𝑀2,𝑀,𝑑1,𝑑2,𝑠,𝑡

{︃
𝑀1𝑀2

𝑀
|Ψ𝑀1,𝑑1

(𝑠,𝑣)∧Ψ𝑀2,𝑑2
(𝑣,𝑡 )∧Ψ𝑀,𝑑1+𝑑2 (𝑠,𝑡 )

}︃

where Ψ𝑀,𝑑
def
= Φ𝑀,𝑑 ∧¬Φ𝑀+1,𝑑 asserts that 𝜎 =𝑀 . The claim im-

plies that, if𝑢,𝑣 have the same 2-WL color, then, by Theorem 10, we
have Φ𝑀,𝑑 (𝑠,𝑢) ≡Φ𝑀,𝑑 (𝑠,𝑣) for all𝑀,𝑑,𝑠 , and similarly Φ𝑀,𝑑 (𝑢,𝑡) ≡
Φ𝑀,𝑑 (𝑣,𝑡), which implies 𝑔(𝑣)=𝑔(𝑢). It remains to prove the claim.
Recall that, for all 𝑑 ≥0, the formula Π≤𝑑 (𝑥,𝑦) saying “there exists
a path of length ≤𝑑 from 𝑥 to 𝑦” is expressible in𝐶3. For example,
Π≤4 (𝑥,𝑦) = ∃𝑧 (𝐸 (𝑥,𝑧) ∧ ∃𝑥 (𝐸 (𝑧,𝑥) ∧ ∃𝑧 (𝐸 (𝑥,𝑧) ∧ 𝐸 (𝑧,𝑦)))). Then
Π=𝑑 (𝑥,𝑦)

def
= Π≤𝑑 (𝑥,𝑦)∧¬Π≤(𝑑−1) (𝑥,𝑦) asserts that 𝑑 (𝑥,𝑦)=𝑑 .

𝜎 (𝑠,𝑣) =
∑︂

𝑤:𝐸 (𝑤,𝑣)∧(𝑑 (𝑠,𝑣)=𝑑 (𝑠,𝑤)+1)
𝜎 (𝑠,𝑤) (13)

If 𝑛 is the number of nodes in the graph, then for each ℓ = 1,𝑛 we
denote byMℓ the set of all strictly increasing ℓ-tuples of natural
numbers 𝑴 = (𝑀1, ... ,𝑀ℓ ), where 0 < 𝑀1 < 𝑀2 < ··· < 𝑀ℓ ≤ 𝑀 .
Similarly, denote by Cℓ the set of all ℓ-tuples of natural numbers
𝒄 = (𝑐1,...,𝑐ℓ ), where 0<𝑐𝑖 ≤𝑀 . Then:

Φ𝑀,𝑑 (𝑠,𝑤) =
⋁︂

𝑴 ∈M;𝒄 ∈ C∑︁
𝑖𝑐𝑖𝑀𝑖 ≥𝑀

⋀︂
𝑖=1,ℓ

∃≥𝑐𝑖𝑤 :Π=(𝑑−1) (𝑠,𝑤)∧Ψ𝑀𝑖 ,𝑑−1 (𝑠,𝑤)

In other words, for every combination of numbers𝑀𝑖 ,𝑐𝑖 such that∑︁
𝑖𝑐𝑖𝑀𝑖 ≥𝑀 , the formula checks if, for each 𝑖 , there exists at least

𝑐𝑖 parents𝑤 at distance 𝑑−1 from 𝑠 , where 𝜎 (𝑠,𝑤) =𝑀𝑖 . We prove

that the formula is correct. Suppose the RHS is true. Then, for each

𝑖 , there are at least 𝑐𝑖 distinct nodes 𝑤 that satisfy the formula

Π=(𝑑−1) (𝑠,𝑤)∧Ψ𝑀𝑖 ,𝑑−1 (𝑠,𝑤). For each such𝑤 , we have 𝜎 (𝑠,𝑤)=𝑀𝑖 ,

and therefore their contribution to the sum in (13) is 𝑐𝑖𝑀𝑖 . Since the

numbers𝑀1,...,𝑀ℓ are distinct, it follows that the set of nodes𝑤 asso-

ciated to distinct values 𝑖 are disjoint, hence their total contribution

to (13) is
∑︁
𝑖𝑐𝑖𝑀𝑖 , which is ≥𝑀 as required.
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