
SubStrat: A Subset-Based Optimization Strategy for Faster
AutoML

Teddy Lazebnik
University College London

t.lazebnik@ucl.ac.uk

Amit Somech
Bar-Ilan University
somecha@cs.biu.ac.il

Abraham Itzhak Weinberg
Bar-Ilan University

abraham-itzhak.weinberg@biu.ac.il

ABSTRACT

Automated machine learning (AutoML) frameworks have become

important tools in the data scientist’s arsenal, as they dramatically

reduce themanual work devoted to the construction ofML pipelines.

Such frameworks intelligently search among millions of possible

ML pipelines - typically containing feature engineering, model

selection, and hyper parameters tuning steps - and finally output

an optimal pipeline in terms of predictive accuracy.

However, when the dataset is large, each individual configuration

takes longer to execute, therefore the overall AutoML running times

become increasingly high.

To this end, we present SubStrat, an AutoML optimization strat-

egy that tackles the data size, rather than configuration space. It

wraps existing AutoML tools, and instead of executing them di-

rectly on the entire dataset, SubStrat uses a genetic-based algorithm

to find a small yet representative data subset that preserves a par-

ticular characteristic of the full data. It then employs the AutoML

tool on the small subset, and finally, it refines the resulting pipeline

by executing a restricted, much shorter, AutoML process on the

large dataset. Our experimental results, performed on three popu-

lar AutoML frameworks, Auto-Sklearn, TPOT, and H2O show that

SubStrat reduces their running times by 76.3% (on average), with

only a 4.15% average decrease in the accuracy of the resulting ML

pipeline.

PVLDB Reference Format:

Teddy Lazebnik, Amit Somech, and Abraham Itzhak Weinberg. SubStrat: A

Subset-Based Optimization Strategy for Faster AutoML. PVLDB, 16(4): 772 -

780, 2022.

doi:10.14778/3574245.3574261

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/teddy4445/SubStrat.

1 INTRODUCTION

Automated machine learning (AutoML) frameworks [17, 25] are be-

coming increasingly popular, as they facilitate the time-consuming,

difficult task of developing a machine learning model, allowing

even non-expert users to build accurate and robust models for

their datasets at hand. To automatically develop a model, AutoML

frameworks compare millions of ML pipeline configurations, and

finally output the optimal pipeline, which typically includes data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574261

pre-processing, feature engineering, model selection, and hyper-

parameters optimization [20].

Clearly, a naive brute-force search scanning all pipeline configu-

rations is often infeasible [49], therefore different AutoML frame-

works employ a variety of optimizations and search heuristics, such

as Bayesian optimization [24], meta-learning [28], reinforcement

learning [21], and genetic algorithms [40], in order to reduce the

search space and the number of expensive pipeline executions.

However, when the training data is large ś each pipeline execu-

tion takes longer to run, which can add up to hours of search time,

even when using state-of-the-art AutoML frameworks [20]. While

cloud-based AutoML services may suggest using stronger hardware

(e.g., larger RAM, more GPUs) when working with large datasets ś

this results in much higher costs to the user. To this end, we present

SubStrat, a new strategy for reducing AutoML computation costs,

tackling the data size rather than the configuration search space. In

a nutshell, instead of employing an existing AutoML tool directly

on the entire dataset, we first compute a special data subset that

preserves some characteristics of the original one. We then employ

the AutoML tool over the subset (which is significantly faster), and

last, we refine the resulting model configuration by executing a

limited, shorter AutoML process over the original dataset.

The main advantage of our system is the compatibility with

state-of-the-art existing AutoML tools ś allowing data scientists

to continue using their favorite frameworks while significantly

reducing computation times. Our experiments show that our

system, when applied to Auto-Sklearn [16], TPOT [41], and

H2O [30], three of the most popular AutoML frameworks,

successfully reduced computation times by an average of

76.3%, while retaining 95.85% of the best model accuracy. The

main contribution of this work is as follows:

(1) We present a subset-based optimization strategy for AutoML,

aimed at reducing AutoML computation costs with a minimal de-

crease in model performance.

(2) We introduce the general notion of measure-preserving data

subsets and formulate their generation as an optimization problem.

We then devise a dataset entropy measure and provide an effective

genetic algorithm that is able to efficiently generate such entropy-

preserving subsets.

(3) We implemented SubStrat and performed an extensive exper-

imental evaluation over 18 datasets from various domains and

shapes, and compared our results to 10 different baselines

1.1 Problem & Solution Overview

In a typical AutoML scenario, a data scientist builds an ML model

for predicting the value of some target feature𝑦 in dataset𝐷 . Rather

thanmanually constructing themodel, the data scientist employs an

AutoML tool𝐴which intelligently scans multitudes of ML pipelines

(i.e., feature engineering, model selection, and hyper-parameters

772

https://www.acm.org/publications/policies/artifact-review-and-badging-current

optimizations) and outputs a configuration which achieves the high-

est predictive performance1. We denote the application of AutoML

tool 𝐴 over dataset 𝐷 to predict the target 𝑦 by 𝐴(𝐷,𝑦) → 𝑀★,

where𝑀★ is the best configuration that 𝐴 could find.

As mentioned above, the larger the dataset, the higher the com-

putational cost of the AutoML, since each candidate-pipeline takes

longer to execute. Let 𝑇𝑖𝑚𝑒 (𝑀★) be the time it takes 𝐴 to generate

𝑀★, with final model accuracy, denoted by 𝐴𝑐𝑐 (𝑀★).

The goal of SubStrat, our subset-based optimization strategy, is to

utilize a data subset in order to reduce AutoML computation times,

while retaining the output model performance. Namely, to generate

a model configuration 𝑀𝑠𝑢𝑏 s.t. 𝑇𝑖𝑚𝑒 (𝑀𝑠𝑢𝑏) << 𝑇𝑖𝑚𝑒 (𝑀★) but

𝐴𝑐𝑐 (𝑀𝑠𝑢𝑏) ≈ 𝐴𝑐𝑐 (𝑀★). Importantly,𝑇𝑖𝑚𝑒 (𝑀𝑠𝑢𝑏) includes the time

it takes to discover the data subset.

Abstractly, given a dataset 𝐷 of size 𝑁 ×𝑀 and a target feature

𝑦, SubStrat works in three steps (See Figure 1 for illustration):

(1) Find a small data subset 𝑑 , of size 𝑛 ×𝑚, s.t. 𝑛 << 𝑁 and

𝑚 << 𝑀 .

(2) Employ the AutoML tool over 𝑑 , i.e., 𝐴(𝑑,𝑦) → 𝑀 ′.

(3) Fine-tune the intermediate pipeline configuration 𝑀 ′, by

employing a restricted, faster instance of 𝐴 back on 𝐷 to

obtain the final configuration𝑀𝑠𝑢𝑏 .

Although it is quite obvious that employingAutoML on a fraction

of the data takes less time, finding an adequate subset in a timely

fashion is challenging. For instance, one could easily take a random

subset of the data, and employ AutoML over it. Unfortunately, as

further discussed in Section 4.3, using such random subsets in our

framework reduces the final model accuracy by more than 27%

compared to the accuracy of𝑀★.

While 27% accuracy loss in ML is unanimously considered too

low, there is an ongoing discussion about the acceptability of model

accuracy for different applications in light of other objectives such

as interpretability, and training time (See, e.g., [19, 26, 51]). Follow-

ing these discussions, in this work we assume that a decrease of

more than 5% in accuracy is largely unacceptable for AutoML.

Solution & Paper Outline. We begin by reviewing related work

(Section 2). We then describe the architecture and methods of

SubStrat in Section 3: we first introduce the notion of measure-

preserving data subsets, which are designed to capture qualities

of the original data (Section 3.1). Next, since finding the optimal

measure-preserving subset is computationally infeasible, we formu-

late an optimization problem (Section 3.2), and present a genetic-

based algorithm to efficiently solve it (Section 3.3). Last, we discuss

our method for fine-tuning the intermediate model configuration,

adapting it to fit the full dataset (Section 3.4). Our experimental

evaluation is brought in Section 4, and we conclude in Section 5.

2 RELATED WORK

We survey related works in the field of AutoML as well as other

works which aim to reduce datasets’ size in different contexts.

Automated Machine Learning (AutoML). Existing AutoML can

be roughly divided into two main categories: search-space opti-

mizations and meta-learning solutions. Search space optimizations

1Note that other AutoML objectives can be used, such as finding the most compact
configuration [20], which is easier to deploy in a production environment.

Dataset

Intermediate ML Pipeline Conf.

AutoML tool

SubStrat

Compute Gen-DST

Employ autoML

Fine-tuning by
Restricted autoML

Measure-preserving Data Subset

Final ML Pipeline

Figure 1: SubStrat Workflow

employ intelligent search strategies and heuristics to perform the

configuration selection more efficiently on ad-hoc datasets. Ex-

ample methods used are Bayesian optimization [14, 24], directed

search [48, 53] and genetic programming [41]. Meta-learning so-

lutions for AutoML [12, 21] take a different approach in order to

produce an optimal pipeline configuration ś by training, in advance,

an ML model on a large corpus of datasets, then predicting the opti-

mal configuration given the dataset and task at hand. This solution,

while significantly faster, is more resource-intensive and assumes

the user has a suitable collection of datasets to train on [48]. In

particular, we note the works in [14, 15], describing the popular

Auto-Sklearn system, which combines the two approaches and uses

meta-learning with search optimizations to obtain further speedup.

AutoML has also recently attracted the attention of the database

community. First, industryworks fromOracle [54] andAmazon [34]

describe the challenges and solutions in deploying AutoML systems

in their proprietary cloud environments. Similarly, Ease-ML [32]

tackles the problem of executing multiple AutoML processes by dif-

ferent users, on the same server. SystemDS [5] and VolcanoML [33]

take a different direction and suggest declarative languages and

abstract building blocks for AutoML and data science components,

facilitating the composition of DB-like execution plans.

Other works in our community focus on AutoML as a meta-

learning task: Auto-Model[47] infers the model and parameters by

mining research papers, Assassin [38] does so by efficiently mining

previous experience, and KGpip [22] builds ML pipelines using a

meta-learning model based on graph neural networks.

Differently from these works, which all suggest different, end-to-

end AutoML tools, the goal of SubStrat is to improve the running

773

time of existing AutoML tools. This is by running the majority of

computation on a significantly smaller data subset, discovered by

our genetic-based algorithm (See Section 3.3).

Coresets for Deep Learning. Several recent papers, e.g., [27, 36,

37], focus on finding data coresets to improve the training of deep

learning models. Namely, given a set of training instances 𝑋 , the

goal is to find a subset 𝑆 ⊂ 𝑋 which minimizes or maximizes some

objective function. The latter can be, for example, training loss [36],

denoising [37], and training robustness [27].

SubStrat differs from these methods in two key aspects: (1) since

it is designed for tabular data, it jointly selects rows (samples)

and columns. (2) The coresets methods mentioned above assume a

particular network architecture, and take its weights as input. In

contrast, SubStrat is particularly designed for AutoML, where the

ML pipeline steps, including the predictive model and its hyper-

parameters, are yet unknown.

Additional Data Reduction Methods. Reducing the dataset size is

considered in previous work, where numerous methods are sug-

gested for selecting either rows or columns (features).

Feature selection [7, 52] is a prominent step inmanyML pipelines,

where the goal is to reduce the number of input variables consid-

ered by the model. This is done in order to reduce training times

as well as the complexity of the model. There is a plethora of re-

search works (See [7] for a survey), roughly categorized as Filter-

based techniques, that yield the Top-k features in terms of a given

metric (e.g., Chi-Square, ANOVA, and Information-Gain) [52]; as

well as Embedded and Wrapper methods, which directly utilize

the ML models to determine the important features [8]. Selecting

dataset rows is also widely considered in previous research, for

either general-purpose methods that produce a norm-preserving

sub-matrix [9] or for specific tasks such as search-results diversifi-

cation [13] and faster generation of data visualizations [43]. The

latter use dedicated, task-dependent utility definitions.

SubStrat is different from these works as it generates data subsets

by selecting both rows and columns, hence solving a different,

more complex optimization problem. We show in our experimental

evaluation, that data subsets composed by separately applying

feature-selection and row-sampling methods yield inferior results

to the ones generated by SubStrat.

3 SOLUTION ARCHITECTURE

We next describe the components of SubStrat in more detail.

3.1 Measure-Preserving Data Subsets

As mentioned above, our goal is to find a subset of the original

dataset which preserves a particular characteristic of the data.

Let 𝐷 be a dataset of 𝑁 rows and𝑀 columns. Denote its row and

column indices by 𝑅 = 1, 2, . . . , 𝑁 and 𝐶 = 1, 2, . . . , 𝑀 , respectively.

Intuitively, a data subset (referred to as DST, for short) of a full

dataset 𝐷 is simply a subset of the rows of 𝐷 , projected over a

subset of the columns.

Definition 3.1 (Data Subset (DST)). Given a dataset 𝐷 with row-

indices 𝑅 and column-indices 𝐶 , a DST of size 𝑛 ×𝑚 is defined

as follows. Let [𝑅]𝑛 be the set of all 𝑛-subsets of 𝑅, i.e., [𝑅]𝑛 =

Age Gender
Flight

distance

Delay

[minutes]

Satisfied

(target)

𝑹1 25 1 460 18 1

𝑹2 62 1 460 0 0

𝑹3 25 0 460 40 1

𝑹4 41 0 460 0 1

𝑹5 27 1 460 0 1

𝑹6 41 1 1061 0 0

𝑹7 20 0 1061 0 0

𝑹8 25 0 1061 51 0

𝑹9 13 0 1061 0 1

𝑹10 52 1 1061 0 1

Figure 2: An example dataset with two 5X3 subsets marked

in green and red. 𝑑𝑔𝑟𝑒𝑒𝑛 is a measure-preserving subset (w.r.t.

the dataset-entropy measure), while 𝑑𝑟𝑒𝑑 is not.

{𝑅′ |𝑅′ ⊆ 𝑅 ∧ |𝑅 | = 𝑛}, and [𝐶]𝑚 be the set of all 𝑚-subsets of

𝐶 . Then, given 𝑟 ∈ [𝑅]𝑛 and 𝑐 ∈ [𝐶]𝑚 , the DST is defined by 𝐷 [𝑟,

𝑐], i.e., the rows in 𝐷 indicated in 𝑟 , projected over the columns

indicated in 𝑐 . We also denote a dataset by 𝑑 , when possible.

Last, since the target column is crucial for the AutoML process,

our framework automatically inserts it into every DST.

Example 3.2. Consider the 10X5 dataset in Figure 2, taken from

the flight service review dataset in our experiments (See Section 4.1).

The green and red cells represent two different 5X3 data subsets:

𝑑𝑔𝑟𝑒𝑒𝑛 = 𝐷 [(1, 2, 3, 6, 8) (1, 4, 5)] and 𝑑𝑟𝑒𝑑 = 𝐷 [(4, 5, 7, 9, 10), (2,

3, 5)]. Note that both contain the target column (the right-most

column in Figure 2).

As will be shown in Section 4, simply using a random DST (in

which the row and column subsets are chosen uniformly at random)

in our solution induces a substantial decrease in the accuracy of the

AutoML process. Our goal is therefore to find a more representative

DST, that preserves some characteristic of the original dataset. Let

𝐹 : D→ R be a dataset measure which takes a dataset as input and

evaluates a characteristic of it by a real number.

We define a measure-preserving DST as follows.

Definition 3.3 (Measure-Preserving DST). Given a dataset 𝐷 , a

DST 𝑑 = 𝐷 [𝑟, 𝑐], and a dataset-measure 𝐹 : D→ R, we call a DST

𝑑 measure-preserving if 𝐹 (𝑑) ≈ 𝐹 (𝐷).

While any measure that evaluates a characteristic of the data

may be applicable, in this work we use a dataset entropy function,

which assesses the łamount of informationž conveyed in the data.

In our context, we define dataset entropy as follows.

Definition 3.4 (Dataset Entropy). Given dataset 𝐷 of size 𝑁 ×𝑀 ,

Let 𝐷𝑖 𝑗 be the value in row 𝑖 and column 𝑗 .

𝐻 (𝐷) =

∑𝑀
𝑗=1

(

∑𝑁
𝑖=1 𝑃 𝑗 (𝐷𝑖 𝑗) · 𝐿𝑜𝑔2𝑃 (𝐷𝑖 𝑗)

)

𝑀

Where 𝑃 𝑗 (𝐷𝑖 𝑗) is a probability function corresponding to the fre-

quency of the value in 𝐷𝑖 𝑗 w.r.t. Column 𝑗 . For 𝐷𝑖 𝑗 = 𝑣 :

𝑃 𝑗 (𝑣) =

∑𝑁
𝑘=1

𝐼 [𝐷𝑘 𝑗 = 𝑣]

𝑁

774

Example 3.5. Consider again the dataset and two subsets depicted

in Figure 2. Calculating the dataset entropy we obtain:

𝐻 (𝐷) =
2.65 + 1 + 1 + 1.4 + 0.97

5
= 1.395

We indeed observe that 𝐷 contains two columns with high entropy

(‘Age’ and ‘Delay’). These columns are also selected in the green

DST, which obtains the score:

𝐻 (𝑑𝑔𝑟𝑒𝑒𝑛) =
1.37 + 1.92 + 0.97

3
= 1.42

𝑑𝑔𝑟𝑒𝑒𝑛 is the 5X3 DST which obtains the closest dataset-entropy

score to 𝐷 . However, the red DST, which contains low-entropy

columns, obtains a lower score of 𝐻 (𝑑𝑟𝑒𝑑) = 0.89. Hence, 𝑑𝑔𝑟𝑒𝑒𝑛 is

considered a measure-preserving DST, whereas 𝑑𝑟𝑒𝑑 is not.

Suitability of entropy & alternative dataset measures. Entropy-

based measures such as KL-divergence, cross-entropy and infor-

mation gain are widely used to characterize data (e.g., in data pro-

filing [1] and meta-learning [6]). Such measures determine the

łclosenessž of two data distributions (which is widely used for vari-

ational inference [3], regression and classification loss [18], and

more).

In our context, the dataset-entropy measure has three main ad-

vantages: (1) It is a non-parametric measure, having no prior as-

sumption on the data distributions. This allows SubStrat to support

a wide range of datasets. (2) Our suggested measure focuses on

the data distributions rather than the values themselves (as is com-

mon for distance metrics such as Euclidean distance or Manhattan

distance). This is more suitable to our setting, where the size of

the compared arrays greatly differ. (3) A low entropy difference

between distributions 𝑃 and 𝑄 implies that a model based on 𝑃

can very well predict 𝑄 . This property is well suited for the down-

stream task in our setting, which is choosing an ML pipeline for the

original dataset, based on computations performed on the subset.

Last, note that while dataset-entropy worked well in our experi-

ments (see Section 4.5), our optimization algorithm, as described

below, is generic and can take other possible dataset measures as

input (e.g., 𝑝-norm, mean-correlation, and coefficient of variation).

3.2 DST as an Optimization Problem

Ideally, we would like to find the best-preserving DST for a dataset

𝐷 . Namely, the best DST of size 𝑛 ×𝑚 can be found by:

argmin
𝑟 ∈[𝑅]𝑛,𝑐∈[𝐶]𝑚

|𝐹 (𝐷 [𝑟, 𝑐]) − 𝐹 (𝐷) |

If 𝑛 and𝑚 are small, then finding the best-preserving DST can

be done in𝑂 (𝑁𝑛 ·𝑀𝑚) time, by a brute-force search that traverses

through all possible DST of size 𝑛 ×𝑚. Clearly, this becomes infea-

sible for large datasets or when a larger DST is needed.

We therefore define an optimization problem, which is to mini-

mize the difference between the DST and the original dataset, i.e.,

L(𝑟, 𝑐) = |𝐹 (𝐷 [𝑟, 𝑐]) − 𝐹 (𝐷) |

Note that while numerous methods and algorithms can be used

to minimize L(𝑟, 𝑐) (See Section 4.2), we must use an approach that

also obtains short convergence times. Otherwise, the optimization

Algorithm 1 Gen-DST

1: Input: dataset (𝐷), dataset-measure (𝐹),DST size (𝑛,𝑚)

2: Output: data subset (𝑑)

3: 𝑃0 ⇐ generate (𝜙) candidates in random

4: 𝑏𝑒𝑠𝑡_𝑑𝑠𝑡 ⇐ 𝑎𝑟𝑔𝑚𝑎𝑥𝐺 ∈𝑃0𝐹 (𝐺,𝐷)

5: for generation 𝑖 ∈ [1, . . . ,𝜓] do

6: 𝑃𝑖 ⇐ 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑃𝑖 , 𝜉, 𝑝𝑟𝑐)

7: 𝑃𝑖 ⇐ 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑃𝑖 , 𝑝𝑚)

8: 𝑃𝑖+1 ⇐ 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑃𝑖 , 𝛼)

9: if max𝐺 ∈𝑃𝑖+1 𝐹 (𝐺,𝐷) > 𝐹 (𝑏𝑒𝑠𝑡_𝑑𝑠𝑡, 𝐷) then

10: 𝑏𝑒𝑠𝑡_𝑑𝑠𝑡 ⇐ 𝑎𝑟𝑔𝑚𝑎𝑥𝐺 ∈𝑃𝑖+1𝐹 (𝐺,𝐷)

11: end if

12: end for

13: return 𝑑 := 𝐷 [𝑏𝑒𝑠𝑡_𝑑𝑠𝑡 (𝑟), 𝑏𝑒𝑠𝑡_𝑑𝑠𝑡 (𝑐)]

process will take too long, hence diminishing the efficacy of our

overall solution in reducing AutoML running times.

3.3 A Genetic-Based Algorithm for Finding DST

Our framework employs a Genetic Algorithm (GA), a well-known

and commonly-used meta-heuristic search method, based on the

biological theory of evolution [23]. Briefly, GA simulates evolu-

tion through a natural selection process: First, a population of 𝜙

candidate-solutions, each comprising a set of properties, referred to

as genes is selected at random. The algorithm then iteratively mu-

tates and alters the genes in order to create łbetterž solutions w.r.t.

a fitness function, which corresponds to the optimization objective.

In particular, at each generation (i.e., iteration), the GA typically per-

forms several stochastic operators [4, 10]: (1) a mutation operator

which induces random noise into the genes of a candidate-solution,

(2) a cross-over operator which combines the genes of two candidate-

solutions, and (3) a selection operator which refines the population

of the next generation, by keeping fitter candidate-solutions with

higher probability than less-fitting solutions. Finally, after a num-

ber of generations (𝜓 - chosen according to predefined stopping

criteria), the fittest candidate-solution is selected as the output of

the GA algorithm.

We next describe Gen-DST, our genetic-based algorithm for

finding measure-preserving DSTs. Importantly, Gen-DST jointly

selects rows and columns, and therefore uses dedicated genetic

representation and operators, adapted from the standard ones as

appear in [4, 10, 23]. The adaptations made in Gen-DST ensure a

balanced mutation and combination of candidate solutions, w.r.t.

both rows and columns, as described below.

Genetic representation of candidate-DSTs. The genetic rep-

resentation of a candidate-DST, denoted 𝐺 , comprises of 𝑛 + 𝑚

chromosomes: 𝑛 row-chromosomes, that correspond to 𝑛 row in-

dices of dataset 𝐷 , and𝑚 column-chromosomes, that correspond to

𝑚 column-indices. More formally, 𝐺 ≔ (𝑟, 𝑐), 𝑟 ∈ [𝑅]𝑛, 𝑐 ∈ [𝐶]𝑚 ,

where 𝑅 and 𝐶 denote the row and column indices of dataset 𝐷 .

Fitness Function. The fitness function 𝑓 (𝐺) is simply the negative

loss of the DST-candidate 𝐺 = (𝑟, 𝑐), Namely,

𝑓 (𝐺) ≔ −L(𝑟, 𝑐) = − |𝐹 (𝐷 [𝑟, 𝑐]) − 𝐹 (𝐷) |

775

Gen-DST Workflow & Operators. Gen-DST, as depicted in Algo-

rithm 1, works as follows. First, an initial population 𝑃 of candidate

DSTs is randomly generated, s.t. each candidate-DST 𝐺 (𝑟, 𝑐) con-

tains the target column 𝑦, i.e. 𝑡 ⊂ 𝑐 . Then, for each generation 𝑖 , we

perform (1) mutation, (2) cross-over and (3) selection, in order to

generate the next-generation population 𝑃𝑖+1:

(1) Mutation. The mutation operator is stochastically employed, for

each candidate-solution 𝐺 = (𝑟, 𝑐) in the population 𝑃𝑖 with prob-

ability 𝜉 . First, we randomly decide if to mutate rows or columns

w.r.t. probability 𝑝𝑟𝑐 , which we define to be 𝑁 /(𝑁 +𝑀) (for choos-

ing rows). If, for example, a row-mutation is decided upon, we

randomly replace one of the row-indices in 𝑟 . Namely, we mutate

𝐺 and form 𝐺 ′ s.t.

𝐺 (𝑟 ′, 𝑐), 𝑟 ′ ∈ [𝑅]𝑛 ∧ |𝑟 ∩ 𝑟 ′ | = 𝑛 − 1

A similar process is performed for column mutations, only that the

target column 𝑦 cannot be mutated.

(2) Cross-Over. Cross-over is employed for two candidate-DSTs𝐺𝑎 =

(𝑟𝑎, 𝑐𝑎) and𝐺𝑏 = (𝑟𝑏 , 𝑐𝑏) in population 𝑃𝑖 with the goal of creating

two next-generation DSTs, 𝐺𝑎𝑏 and 𝐺𝑏𝑎 . We begin by selecting

whether to cross rows or columns (similar to the mutation operator),

with probability 𝑝𝑟𝑐 . Then, assuming (w.l.o.g.) that columns cross-

ever is selected, we randomly choose a split-size 1 < 𝑠 < 𝑚, and

use it to split both 𝑐𝑎 and 𝑐𝑏 , each to two random subsets - one of

size 𝑠 and one of size𝑚 − 𝑠 , i.e., 𝑐𝑎 = 𝑐𝑠𝑎 ∪ 𝑐𝑚−𝑠
𝑎 and 𝑐𝑏 = 𝑐𝑠

𝑏
∪ 𝑐𝑚−𝑠

𝑏
.

The cross-over then unifies complementing subsets from 𝑎 and 𝑏,

creating 𝑐𝑎𝑏 and 𝑐𝑏𝑎 :

𝑐𝑎𝑏 = 𝑐𝑠𝑎 ∪ 𝑐𝑚−𝑠
𝑏

, 𝑐𝑏𝑎 = 𝑐𝑠
𝑏
∪ 𝑐𝑚−𝑠

𝑎

Finally, the next-generation DSTs are set as 𝐺𝑎𝑏 = (𝑟, 𝑐𝑎𝑏) and

𝐺𝑏𝑎 = (𝑟, 𝑐𝑏𝑎)
2. The cross-over operation is performed over the

entire population 𝑃𝑖 : 𝑃𝑖 is first split into disjointed pairs of candidate-

DSTs, then the cross-over is performed on each such pair.

(3) Selection. Last, after employing mutation and cross-over, we

employ the selection operator which forms the next-generation

population 𝑃𝑖+1. We use the royalty tournament operator [4], which

selects the best 𝛼 ·𝜙 candidate-DSTs from 𝑃𝑖 according to the fitness

function 𝑓 (𝐺). The rest of the 𝜙 (1 − 𝛼) DSTs are sampled (with

repetitions) according to their fitness score, i.e., with probability:

𝑝𝑠𝑒𝑙𝑒𝑐𝑡 (𝐺) =
𝑓 (𝐺)

∑

𝐺′∈𝑃𝑖 𝑓 (𝐺
′)

Last, the stopping criterion of Gen-DST is either reaching a pre-

defined limit on the generations number, or a convergence criterion

that stops the execution when the fittest DST of population 𝑃𝑖+1 is

not significantly better than the fittest solution in 𝑃𝑖 . In this case,

we return the DST that obtained the highest fitness score, over all

previous generations.

3.4 Fine-Tuning the Intermediate Configuration

Gen-DST generates a DST 𝑑 , which is then given as input to the

Auto-ML tool 𝐴, instead of the full dataset 𝐷 , which in turn output

an intermediate ML pipeline configuration𝑀 ′.

2In case the size of 𝑐𝑎𝑏 or 𝑐𝑏𝑎 is smaller than𝑚, we insert the required amount of
columns at random, while also making sure the target column 𝑦 is contained in both.

The final step performed by SubStrat is to fine-tune the inter-

mediate configuration𝑀 ′ by a restricted execution of 𝐴 on the full

dataset 𝐷 . The restriction of the process is twofold: (1) We restrict

the configuration search space by forcing it to use the same ML

model discovered in𝑀 ′. (2) We further restrict the process by time,

using a stopping condition on the predictive accuracy of the cur-

rent best pipeline. In our implementation, if the derivative of the

obtained accuracy is less than 0.02 for three consecutive steps, the

fine-tuning process is terminated.

As shown in our experimental results in Section 4.3, this step

slightly increases the running times of SubStrat, but boosts the

relative accuracy (compared to the full AutoML) by about 6%.

4 EXPERIMENTS

We conducted a thorough experimental study with the goal of

examining the effectiveness of SubStrat in reducing the running

times of existing AutoML tools while retaining the accuracy of their

output ML pipelines.

4.1 Setup & Methodology

Experimental Framework & Methodology. Given an input dataset

and a target feature, we first directly employ an AutoML tool and

obtain its output ML pipeline configuration.

We record both the running time and the accuracy of the re-

sulting model, which serve as our primary baseline, denoted Full-

AutoML. We then examine whether our subset-based strategy can

indeed reduceAutoML running times, and still generateML pipelines

as accurately as Full-AutoML. To generate the data subsets, we used

Gen-DST as well as 10 other baselines (see below). For each instance,

we compute the relative running time (including the generation of

the subset) and accuracy w.r.t Full-AutoML.We report the following

metrics: time-reduction, which indicates how much time was saved:

𝑇𝑖𝑚𝑒-𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 1 −
𝑇𝑖𝑚𝑒 (𝑀𝑠𝑢𝑏)

𝑇𝑖𝑚𝑒 (𝑀★)

We also report the relative accuracy, indicating the proportion of

accuracy of Full-AutoML that was successfully retained:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒-𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝐴𝑐𝑐 (𝑀𝑠𝑢𝑏)

𝐴𝑐𝑐 (𝑀★)

Datasets. We used 18 public datasets from Kaggle [50], UCI Ma-

chine Learning Repository [46], and OpenML [42]. The datasets, as

depicted in Table 1, are of different shapes that can be categorized

as follows: (1) standard, containing several thousand rows and a

few dozen columns, as most datasets in the popular OpenML-C18

benchmark [2]; (2) Long, containingmore than 1M rows and a dozen

columns; (3) HighDim are high dimensional dataset, with several

hundred columns; (4) HighDim-Wide are particularly wide datasets

that contain up to 11K columns, and have a columns-to-rows ratio

of at least 70%. Links to the full datasets can be found in our code

repository [45].

Auto-ML methods. We evaluated SubStrat using Auto-Sklearn,

TPOT, and H2O, three highly-popular AutoML tools. The tools

have a substantially different underlying technology: (1) Auto-

Sklearn[14, 15], an industry-standard tool that uses Bayesian op-

timization methods together with meta-learning. It works on top of

the Python Scikit-Learn library [44], and generates an ML pipeline

776

Table 1: Dataset descriptions and properties

Symbol Domain #Rows #Cols #Cells

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑-1 Heart disease 79K 7 0.55M

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑-2 Flight service review 130K 23 2.98M

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑-3 Signal processing 10K 5 70K

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑-4 Air quality 57K 7 0.40M

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑-5 Bike demand 17K 9 150K

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑-6 Car insurance 10K 18 180K

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑-7 Lead generation form 7K 15 100K

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑-8 Mushroom classif. 8K 23 180K

𝐿𝑜𝑛𝑔-1 Criteo Click Predict. 2M 12 24M

𝐿𝑜𝑛𝑔-2 Poker matches 1M 12 12M

𝐻𝑖𝑔ℎ𝐷𝑖𝑚-1 KDD 98 82K 478 39.19M

𝐻𝑖𝑔ℎ𝐷𝑖𝑚-2 Myocardial infarction 1.7K 123 210K

𝐻𝑖𝑔ℎ𝐷𝑖𝑚-3 KDD Cup 2009 50K 231 11.55M

𝐻𝑖𝑔ℎ𝐷𝑖𝑚-4 Philippine 6K 309 1.80M

𝐻𝑖𝑔ℎ𝐷𝑖𝑚-5 Isolet 8K 614 4.78M

𝐻𝑖𝑔ℎ𝐷𝑖𝑚-𝑊 -1 AP Breast Colon 630 11K 6.88M

𝐻𝑖𝑔ℎ𝐷𝑖𝑚-𝑊 -2 Micro-mass 571 1301 0.74M

𝐻𝑖𝑔ℎ𝐷𝑖𝑚-𝑊 -3 Gisette 7K 5K 35M

configuration comprising of feature prepossessing, model selection,

and hyper-parameters optimization. (2) Tree-Based Pipeline Op-

timization Tool (TPOT) [39], a tool that also utilizes Scikit-Learn

but uses a genetic programming approach to explore the configu-

ration search space. (3) H2O [30] uses a narrower configuration

search space but focuses on stacked ensembles of models.

Implementation & Hardware. SubStrat and the rest of the baseline

algorithms were implemented in Python 3. Our source code is fully

available in [45]. We ran the experiments on an Ubuntu Server with

an Intel Core i7-9700K CPU and 64GB RAM.

4.2 Baseline Methods

We implemented 10 different baselines in 6 different categories

(A-F). To clarify the scope of comparison, recall again that AutoML

methods require the raw data as input, therefore any approach

that alters the data (e.g., PCA, embedding) is inapplicable. Also,

we only compare SubStrat to other methods for reducing the data

size rather than the configuration space, as the latter is performed

by the chosen AutoML tool. The baselines in categories A-F were

therefore devised to answer the following questions:

i. Can a trivial, random DST perform well enough? (Category A)

ii. Canwe use different, existing optimizations for findingmeasure-

preserving DSTs? (Categories A-C)

iii. Can we generate effective DSTs using existing techniques for

row sampling and column selection? (Categories D-E)

iv. Can SubStrat obtain good performance without the fine-tuning

phase? (Category F)

A. Monte-Carlo Search. We began with a simple random search

technique, which given a predefined time/iteration budget 𝐵, ran-

domly generates DSTs, calculates their measure-preserving loss

(as defined in Section 3.2), and at the end of the time limit (or max

iteration) returns the DST that obtained the minimal loss. We use

three instances with different budgets: (1)MC-100, which examines

100 DSTs, (2) MC-100K , designed to have approximately the same

running- times as Gen-DST, allowing it to compare about 100K

DSTs. Last, to demonstrate the optimization challenge of finding

DSTs, we also examined (3) MC-24H , which stops after 24 hours.

While the latter cannot improve the running time of AutoML, we

examine its performance only in terms of relative accuracy.

B. Multi-Arm Bandit. Additionally, we implemented a more sophis-

ticated Multi-Arm Bandit (MAB) baseline, which also attempts to

find a measure-preserving DST. MAB is a well-known search frame-

work that balances exploration and exploitation within the search

space[31]. We implemented the MAB baseline by formulating two

types of arms: row-arms and column-arms. At each round, the

model needs to choose 𝑛 rows and 𝑚 columns, and balance the

exploration/exploitation of its choices using an 𝜖-greedy policy.

C. Greedy Selection.Another possible optimization is to use a greedy

selection process. Since the loss is dependent on both the rows and

the columns, we used two instances of the algorithm: (1) (Greedy-

Seq) which first selects 𝑛 rows and then𝑚 columns. The 𝑛 rows are

found in a greedy manner, s.t. at each step we add to the DST 𝑑 a

new row from 𝐷 which locally diminishes the local loss of 𝑑 (while

using all columns in 𝐷). In the second step we choose𝑚 columns

in a similar manner, only that the loss is computed w.r.t. the rows

already found in the row-selection phase. We also implemented (2)

Greedy-Mult which attempts to greedily select both a row and a

column at each step.

D. Clustering-Based Approach. This method does not attempt to find

measure-preserving DSTs, yet tries to select representative rows

and columns using clustering. The KM Baseline first clusters the

rows in 𝐷 into 𝑛 clusters, by employing K-means clustering [35].

Then, to choose 𝑛 representative rows, we pick the ones that are the

closest to each of the 𝑛 cluster centroids. To select𝑚 columns, we

do the same process by applying K-Means on the column vectors.

E. Information-Gain (Feature Selection). Information-gain (IG) is a

commonly used technique for feature selection [29]. Similarly to our

dataset-entropy measure, it is also based on entropy calculations,

where the goal is to select𝑚 columns that have the highest IG, w.r.t.

the target feature 𝑦. Intuitively, these are the columns that provide

the most łinformationž about 𝑦. As IG can only be used for feature

selection, we implemented two different baselines here: (1) IG-Rand

which selects columns using 𝐼𝐺 and chooses the rows at random,

and (2) IG-KM , which uses IG for column selection, and the KM

baseline to choose the rows.

F. SubStrat Without Fine-Tune. Last, we examine the importance

of the fine-tuning phase, by using a limited version of SubStrat,

denoted SubStrat-NF. This version outputs the intermediate con-

figuration𝑀 ′ ś resulted by applying the AutoML tool only on the

DST generated by Gen-DST, without employing fine tuning on the

full dataset.

Baselines Default Configurations. For each dataset shape category

(as depicted in Table 1) we performed a grid search, optimizing on

the harmonic mean of time reduction and relative accuracy. The

DST size grid used for all baselines is {𝑠𝑞𝑟𝑡, 𝑙𝑛} ∪ {0.05𝑖 · 𝑛}19𝑖=1 for

the rows and columns (replacing 𝑛 with𝑚). We further varied the

following parameters in SubStrat:𝜓 (num. of generations), ranged

in (30,40,45); 𝜙 (population size) ranged in (200,250,300,350). For

the baselines, MAB has an additional hyper-parameter (other than

the DST size) of 𝜖 (varied from 0.001 to 0.05, in intervals of 0.005).

777

778

779

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. The VLDB Journal 24, 4 (2015), 557ś581.
[2] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang,

Rafael G Mantovani, Jan N van Rijn, and Joaquin Vanschoren. 2017. Openml
benchmarking suites. arXiv preprint arXiv:1708.03731 (2017).

[3] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 2017. Variational inference:
A review for statisticians. Journal of the American statistical Association 112, 518
(2017), 859ś877.

[4] Z. W. Bo, L. Z. Hua, and Z. G. Yu. 2006. Optimization of process route by genetic
algorithms. Robotics and Computer-Integrated Manufacturing 22 (2006), 180ś188.

[5] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert
Ginthör, Kevin Innerebner, Florijan Klezin, Stefanie Lindstaedt, Arnab Phani,
Benjamin Rath, et al. 2020. SystemDS: A declarative machine learning system for
the end-to-end data science lifecycle. The Conference on Innovative Data Systems
Research (CIDR).

[6] Ciro Castiello, Giovanna Castellano, and Anna Maria Fanelli. 2005. Meta-data:
Characterization of input features for meta-learning. In International Conference
on Modeling Decisions for Artificial Intelligence. Springer, 457ś468.

[7] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection
methods. Computers & Electrical Engineering 40, 1 (2014), 16ś28.

[8] Andrzej Cichocki. 2014. Era of big data processing: A new approach via tensor
networks and tensor decompositions. arXiv preprint arXiv:1403.2048 (2014).

[9] Michael B Cohen and Richard Peng. 2015. Lp row sampling by lewis weights. In
Proceedings of the 47th annual ACM symposium on Theory of computing. 183ś192.

[10] L. Davis. 1985. Applying adaptive algorithms to epistatic domains. Proceedings
of the international joint conference on artificial intelligence (1985), 162ś164.

[11] Alfonso Delgado-Bonal and Alexander Marshak. 2019. Approximate entropy
and sample entropy: A comprehensive tutorial. Entropy 21, 6 (2019), 541.

[12] Iddo Drori, Yamuna Krishnamurthy, Remi Rampin, Raoni de Paula Lourenco,
Jorge Piazentin Ono, Kyunghyun Cho, Claudio Silva, and Juliana Freire. 2021.
AlphaD3M: Machine learning pipeline synthesis. arXiv (2021).

[13] Marina Drosou and Evaggelia Pitoura. 2010. Search result diversification. ACM
SIGMOD Record 39, 1 (2010), 41ś47.

[14] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and
Frank Hutter. 2020. Auto-sklearn 2.0: Hands-free automl via meta-learning. arXiv
preprint arXiv:2007.04074 (2020).

[15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and robust automated machine
learning. Advances in neural information processing systems 28 (2015).

[16] M. Feurer, A. Klevin, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter.
2019. Auto-sklearn: Efficient and Robust Automated Machine Learning.

[17] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and
Joaquin Vanschoren. 2019. An open source AutoML benchmark. arXiv preprint
arXiv:1907.00909 (2019).

[18] Elliott Gordon-Rodriguez, Gabriel Loaiza-Ganem, Geoff Pleiss, and John Patrick
Cunningham. 2020. Uses and abuses of the cross-entropy loss: Case studies in
modern deep learning. (2020).

[19] Suyog Gupta, Wei Zhang, and Fei Wang. 2016. Model accuracy and runtime
tradeoff in distributed deep learning: A systematic study. In 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, 171ś180.

[20] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A Survey of the
State-of-the-Art. Knowledge-Based Systems 212 (2021), 106622.

[21] Yuval Heffetz, Roman Vainshtein, Gilad Katz, and Lior Rokach. 2020. Deepline:
Automl tool for pipelines generation using deep reinforcement learning and
hierarchical actions filtering. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2103ś2113.

[22] Mossad Helali, Essam Mansour, Ibrahim Abdelaziz, Julian Dolby, and Kavitha
Srinivas. 2022. A Scalable AutoML Approach Based on Graph Neural Networks.
Proc. VLDB Endow. 15, 11 (jul 2022), 2428ś2436. https://doi.org/10.14778/3551793.
3551804

[23] J. H. Holland. 1992. Genetic Algorithms. Scientific American 267, 1 (1992), 66ś73.
[24] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-

based optimization for general algorithm configuration. In International confer-
ence on learning and intelligent optimization. Springer, 507ś523.

[25] Shubhra Kanti Karmaker, MdMahadi Hassan, Micah J Smith, Lei Xu, Chengxiang
Zhai, and Kalyan Veeramachaneni. 2021. AutoML toDate and Beyond: Challenges
and Opportunities. ACM Computing Surveys (CSUR) 54, 8 (2021), 1ś36.

[26] Matthew Kay, Shwetak N Patel, and Julie A Kientz. 2015. How good is 85%?
A survey tool to connect classifier evaluation to acceptability of accuracy. In
Proceedings of the 33rd annual ACM conference on human factors in computing
systems. 347ś356.

[27] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and
Rishabh Iyer. 2021. Glister: Generalization based data subset selection for ef-
ficient and robust learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 8110ś8118.

[28] Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Young-
duck Choi, Yongseok Choi, Dong-Yeon Cho, and Jiwon Kim. 2018. Auto-meta:
Automated gradient based meta learner search. arXiv preprint arXiv:1806.06927
(2018).

[29] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating
mutual information. Physical review E 69, 6 (2004), 066138.

[30] Erin LeDell and Sebastien Poirier. 2020. H2o automl: Scalable automatic machine
learning. In Proceedings of the AutoML Workshop at ICML, Vol. 2020.

[31] Mian Li, Shapour Azarm, and Vikrant Aute. 2005. A multi-objective genetic algo-
rithm for robust design optimization. In Proceedings of the 7th annual conference
on Genetic and evolutionary computation. 771ś778.

[32] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease. ml: Towards
multi-tenant resource sharing for machine learning workloads. Proceedings of
the VLDB Endowment 11, 5 (2018), 607ś620.

[33] Yang Li, Yu Shen, Wentao Zhang, Ce Zhang, and Bin Cui. 2022. VolcanoML:
speeding up end-to-end AutoML via scalable search space decomposition. The
VLDB Journal (2022), 1ś25.

[34] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh
Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, et al. 2020.
Elastic machine learning algorithms in amazon sagemaker. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 731ś737.

[35] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. 2003. The global k-means
clustering algorithm. Pattern recognition 36, 2 (2003), 451ś461.

[36] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. 2020. Coresets for data-
efficient training of machine learning models. In International Conference on
Machine Learning. PMLR, 6950ś6960.

[37] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. 2020. Coresets for robust
training of deep neural networks against noisy labels. Advances in Neural
Information Processing Systems 33 (2020), 11465ś11477.

[38] Tianyu Mu, Hongzhi Wang, Shenghe Zheng, Shaoqing Zhang, Cheng Liang,
and Haoyun Tang. 2021. Assassin: an automatic classification system based on
algorithm selection. Proceedings of the VLDB Endowment 14, 12 (2021), 2751ś
2754.

[39] Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore. 2016.
Evaluation of a tree-based pipeline optimization tool for automating data science.
In Proceedings of the genetic and evolutionary computation conference 2016. 485ś
492.

[40] Randal S Olson and Jason H Moore. 2016. TPOT: A tree-based pipeline optimiza-
tion tool for automating machine learning. InWorkshop on automatic machine
learning. PMLR, 66ś74.

[41] R. S. Olson and J. H. Moore. 2016. TPOT: A Tree-based Pipeline Optimization
Tool for Automating Machine Learning. In JMLR: Workshop and Conference
Proceedings, Vol. 64. 66ś74.

[42] OpenML. 2022. https://www.openml.org/.
[43] Y. Park, M. Cafarella, and B. Mozafari. 2016. Visualization-aware sampling

for very large databases. In 2016 IEEE 32nd International Conference on Data
Engineering (ICDE). 755ś766. https://doi.org/10.1109/ICDE.2016.7498287

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825ś2830.

[45] SubStrat Github Repository. 2022. https://github.com/teddy4445/SubStrat.
[46] UCI Machine Learning Repository. 2022. https://archive.ics.uci.edu/.
[47] Chunnan Wang, Hongzhi Wang, Tianyu Mu, Jianzhong Li, and Hong Gao. 2020.

Auto-model: utilizing research papers and HPO techniques to deal with the cash
problem. In 2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 1906ś1909.

[48] Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. 2021. FLAML: a fast
and lightweight AutoML Library. Proceedings of Machine Learning and Systems 3
(2021), 434ś447.

[49] Jonathan Waring, Charlotta Lindvall, and Renato Umeton. 2020. Automated
machine learning: Review of the state-of-the-art and opportunities for healthcare.
Artificial Intelligence in Medicine 104 (2020), 101822.

[50] Kaggle Website. 2022. https://github.com/teddy4445/SubStrat.
[51] Abraham Itzhak Weinberg and Mark Last. 2019. Selecting a representative deci-

sion tree from an ensemble of decision-tree models for fast big data classification.
Journal of Big Data 6, 1 (2019), 1ś17.

[52] DuchWlodzislaw, TadeuszWieczorek, Jacek Biesiada, and Marcin Blachnik. 2004.
Comparison of feature ranking methods based on information entropy, Vol. 2.
1415 ś 1419 vol.2. https://doi.org/10.1109/IJCNN.2004.1380157

[53] Qingyun Wu, Chi Wang, and Silu Huang. 2021. Frugal optimization for cost-
related hyperparameters. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 10347ś10354.

[54] Anatoly Yakovlev, Hesam Fathi Moghadam, Ali Moharrer, Jingxiao Cai, Nikan
Chavoshi, Venkatanathan Varadarajan, Sandeep R Agrawal, Sam Idicula, Tomas
Karnagel, Sanjay Jinturkar, et al. 2020. Oracle automl: a fast and predictive
automl pipeline. PVLDB 13, 12 (2020), 3166ś3180.

780

	Abstract
	1 introduction
	1.1 Problem & Solution Overview

	2 Related Work
	3 Solution Architecture
	3.1 Measure-Preserving Data Subsets
	3.2 DST as an Optimization Problem
	3.3 A Genetic-Based Algorithm for Finding DST
	3.4 Fine-Tuning the Intermediate Configuration

	4 Experiments
	4.1 Setup & Methodology
	4.2 Baseline Methods
	4.3 Overall Baseline Comparison Results
	4.4 BlackScalability Analysis
	4.5 BlackEffectiveness of Dataset Entropy

	5 Conclusion & Future Work
	References

