
Starry: Multi-master Transaction Processing on Semi-leader
Architecture

Zihao Zhang
East China Normal University†
zihaozhang@stu.ecnu.edu.cn

Huiqi Hu∗
Xuan Zhou

East China Normal University†
{hqhu,xzhou}@dase.ecnu.edu.cn

Jiang Wang
Huawei Co., Ltd.

wangjiang16@huawei.com

ABSTRACT

Multi-master architecture is desirable for cloud databases in sup-
porting large-scale transaction processing. To enable concurrent
transaction execution onmultiple computing nodes, we need an effi-
cient transaction commit protocol on the storage layer that ensures
ACID as well as consensus among replicas. A leader-based protocol
is easy to implement. However, it faces the single-node bottleneck
and suffers from high transaction latency in cross-region deploy-
ment. While a leaderless protocol can achieve a higher degree of
parallelism, it is inefficient in resolving conflicts.

This paper proposes the semi-leader protocol, which is a new
type of transaction commit protocol for multi-master transaction
processing. In a nutshell, the semi-leader protocol is a hybrid pro-
tocol that offers separate commit paths for conflicting transac-
tions and non-conflicting transactions. A centralized node, known
as the sequencer, is employed to perform precise conflict resolu-
tion for conflicting transactions, while non-conflicting transactions
can be committed timely in a decentralized manner. Based on the
semi-leader protocol, we designed Starry, a multi-master trans-
action processing mechanism. Experimental results demonstrate
that Starry is 1.4× and 4.21× as performant as the leaderless and
leader-based protocols respectively in throughput. When dealing
with high-contention workloads, Starry can significantly reduce
the abort rates.

PVLDB Reference Format:

Zihao Zhang, Huiqi Hu, Xuan Zhou, and Jiang Wang. Starry:
Multi-master Transaction Processing on Semi-leader Architecture. PVLDB,
16(1): 77 - 89, 2022.
doi:10.14778/3561261.3561268

1 INTRODUCTION

Resource separation and elasticity are the preeminent design prin-
ciples to cloud database systems. Most recent cloud databases[1–
3, 9, 10, 14, 36, 37] have chosen to disaggregate the computation
and storage into separate layers, so that both layers can expand
and shrink independently.

Under the disaggregated architecture, most cloud database sys-
tems claim to support high availability, strong consistency, and

∗represents the corresponding author.
† Shanghai Engineering Research Center of Big Data Management.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:10.14778/3561261.3561268

0 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 9
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

No
rm

aliz
ed

Th
rou

ghp
ut

Z i p f C o e f f i c i e n t

 T w o - m a s t e r s
 S i n g l e - m a s t e r

Figure 1: Comparison of Aurora’s single-master and multi-

master architectures under the contention workload.

scalability of transaction processing. ❶ To provide high availabil-
ity, the storage layer must maintain multiple replicas. To tolerate
regional failures, the replicas even need to be geographically dis-
tributed. ❷ To ensure consistency of data, the storage layer needs
to perform global concurrency control to achieve serializability of
transactions. At the same time, a consensus protocol is required to
reach a consistent transaction order among replicas, thus achieving
linearizability. ❸ To enable scalability of transaction processing,
the computing layer needs to support adding additional computing
nodes to execute transactions concurrently. Following the notion
proposed in Aurora[4, 36], this is called multi-master transaction
processing in cloud databases. Other than improving the through-
put of transaction processing, a multi-master architecture can also
enhance the availability, as each computing node can provide indi-
vidual transaction services[4, 5], especially when the computing
nodes are deployed in different regions.

In this paper, we study how to design a transaction processing
mechanism to meet the aforementioned properties in an efficient
way. Fig. 2 illustrates three ways to support cross-region multi-
master transaction processing on the disaggregated-storage archi-
tecture. The storage layer consists of multiple replicas, which can
provide unified data access services for all computing nodes. In a
cross-region deployment, the computing nodes and storage replicas
are distributed in multiple regions to enable high availability. When
the workload increases, more computing nodes can be deployed
to execute transactions concurrently. This enables scalability of
transaction processing.

When multiple computing nodes process transactions concur-
rently, inter-node conflicts can become a major setback for perfor-
mance. To verify this, we conducted a simple set of experiments on
Aurora (in May 2022). We measured the performance variation of
Aurora’s single-master and multi-master clusters in dealing with
varying degrees of contention. As shown in Fig. 1, when contention
intensifies, the performance of both clusters drops. However, the
performance of the multi-master cluster drops substantially faster
than that of the single-master cluster. This clearly indicates that

77

https://doi.org/10.14778/3561261.3561268
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3561261.3561268

Replica Leader Replica Replica Replica Replica

(a) Leader-based (b) Leaderless

Replica Sequencer Replica

Data Log Conflicts

(c) Semi-leader

Database

Txn Executor

①
②

③

① ②

③

① ②

③

④

Region 1 Region 2 Region 3 Region 1 Region 2 Region 3

Computation

Layer

Storage Layer

Database

Txn Executor
Database

Txn Executor

Database

Txn Executor
Database

Txn Executor
Database

Txn Executor

Region 1 Region 2 Region 3

Database

Txn Executor
Database

Txn Executor
Database

Txn Executor

Figure 2: Multi-master transaction processing based on different protocols. Circled numbers show the message flows: ① reading

data; ② committing transaction; ③ replicating log entry and ④ delivering conflicts.

inter-node conflicts have a significant negative impact on perfor-
mance. It motivates us to devise a mechanism to efficiently resolve
inter-node conflicts.

In a disaggregated-storage architecture, it is impractical to rely
on computing nodes to perform conflict resolution, as they are
designed to be stateless and independent. A common approach is
to resolve conflicts at the storage layer [4, 36], since transactions
should be committed to the storage layer to persist results. This
requires a transaction commit protocol that combines both concur-
rency control and consensus protocols, the former is required to
handle inter-node conflicts and the latter ensures the consistency of
storage replicas. Regarding concurrency control, as all transactions
must be committed on the storage layer, it is natural to choose
OCC [20] which will detect conflicts during committing. As for
consensus protocols, different consensus mechanisms can result in
completely different effects. Existing consensus protocols can be
classified into two categories. One is known as leader-based proto-
cols, which requires a centralized node, called leader, to process all
commands. Examples include Multi-Paxos [11] and Raft [31]. The
other is known as leaderless protocols, which allow all replicas to
process commands and collectively reach an agreement about the
order of commands. An example is EPaxos [28].

Fig. 2(a) and (b) illustrate two multi-master transaction process-
ing architectures based on leader-based and leaderless protocols
respectively. As we can see, if a leader-based protocol is adopted,
all transaction commit requests are submitted to the leader to
be processed. Therefore, the leader will be more loaded than the
other replicas and become a potential bottleneck. Moreover, remote
clients have to bear the latency of cross-region communication
with the leader. In a leaderless protocol, all replicas can share the
workload evenly, enabling better scalability of transaction process-
ing. In addition, each client can be served by the nearest replica,
which helps reduce the latency. However, a leaderless protocol has
to resort to a decentralized approach for conflict resolution, which
can be either imprecise or costly.

Fig. 3 illustrates the problem of decentralized conflict resolution.
After execution, three concurrent conflicting transactions are sent
to three different replicas for committing. Due to the different ar-
rival times, each replica may see different orders of transactions
(consider R1 and R2). One may even miss some transactions (con-
sider R3). One approach to resolve conflicts is that each replica
makes decision independently according to some rules, and tries to
reach a consensus on the decision. If OCC is applied, the commit
of one transaction will force all its conflicting transactions to abort

Transactions:
T1: R(a), W(b), W(c)
T2: R(b), W(c)
T3: R(c), W(b)

T1→T2→T3

R1

T2→T3→T1

R2 R3

T3→T2

T1
commit

result

T3T2

Figure 3: An example of decentralized committing.

(e.g., the commit of T1 will force R1 to abort T2 and T3). As a result,
after collecting decisions from all replicas, none of the three trans-
actions can commit, since none of them reaches a commit decision
on a majority. The other approach is to let all replicas communicate
and reach an agreement about the order of conflicting transactions.
However, this may incur prohibitive communication costs. Thus,
the limitation of leaderless protocols in resolving conflicts motivates
us to design a protocol that can achieve precise conflict resolution
while ensuring efficient transaction processing.

In this paper, we introduce Starry, an efficient mechanism for
multi-master transaction processing that is built upon a new trans-
action commit protocol called semi-leader protocol. As illustrated
in Fig. 2(c), the core idea of semi-leader protocol is to offer two
separate commit paths, a centralized one for conflicting transac-
tions and a decentralized one for non-conflicting transactions. For
non-conflicting transactions, the protocol works in a decentralized
manner, so that transactions can commit on any replica to achieve
good scalability and fast committing. When conflicts occur, it turns
into the conflict path, which employs a special replica known as
sequencer to perform precise centralized conflict resolution. Once
a conflict is detected on a replica, the conflict information will be
messaged to the sequencer, who uses its global view to identify
an optimal serial order for conflicting transactions by reordering
technology. This enables Starry to minimize the negative impact
of inter-node conflicts on performance.

Such a hybrid protocol changes the coordination pattern of ex-
isting protocols, since it combines decentralized and centralized
coordination. Moreover, the separation of commit paths poses a
number of challenges to the design of the semi-leader protocol.
First, as a transaction may reach inconsistent commit decisions
on two paths, it is important to ensure the uniqueness of the final
decision. Second, the sequencer should collect as complete conflict
information as possible in time, to enable more precise conflict
resolution. Third, we need a new recovery protocol to ensure that
transactions on both paths survive failure. Last, these methods must
be integrated into a correct and efficient protocol. In this paper, we
show how semi-leader protocol can cope with these challenges.

78

Table 1 summarizes the advantages of semi-leader protocol in
supporting multi-master transaction processing. In comparison
with leader-based protocols, semi-leader protocol allows for better
scalability and lower latency. In comparison with leaderless proto-
cols, semi-leader protocol offers more precise conflict resolution.

The contributions of this paper are summarized as follows:
• We proposed a semi-leader transaction commit protocol,

which enables the combination of fast decentralized com-
mitting and precise centralized conflict resolution. Based on
it, we designed Starry, a newmulti-master transaction pro-
cessing mechanism for disaggregated-storage architecture
that can minimize the impact of inter-node conflicts.

• We further extended Starry to support distributed transac-
tions, and optimized the read-only transaction algorithm
for better performance.

• We conducted extensive experiments to evaluate Starry’s
performance in multi-master transaction processing.

The rest of the paper is organized as follows: § 2 introduces the
background and related work. § 3 describes Starry in detail, in-
cluding the semi-leader protocol, the conflict reordering technique
and the recovery mechanism. Their correctness is also analyzed.
§ 4 presents the designs to support distributed transactions and
read-only transactions. Experimental results are presented in § 5.

2 BACKGROUND AND RELATEDWORK

Starry aims to support multi-master transaction processing on
the architecture of typical cloud database, in which storage and
computation are disaggregated. The key lies in how to integrate the
concurrency control and consensus protocols. This section intro-
duces the current development of transactional cloud databases and
the related work on concurrency control and consensus protocols.

2.1 Transaction Processing on Cloud Databases

In cloud-native databases with separated computation and storage
layers, each computing node runs an instance to process requests
from clients, and the storage layer provides unified data access
interfaces to the computing nodes. Systems such as Aurora [36, 37]
and PolarDB [1, 9, 10] lay out computing nodes as one primary
read/write (RW) node and multiple read-only (RO) nodes. Only the
RW node can process read/write transactions, and the RO nodes
only serve read-only transactions. Data is synchronized through
redo logs. In Aurora, after the storage layer applies the redo logs
from the RW node, the updates are visible to all RO nodes.

As a single RW node has limited capacity, some systems ex-
plored ways to support multiple RW nodes. Some early on-premise
databases, such as Oracle RAC, use synchronization techniques,
such as cache fusion [21], to enable concurrent transaction pro-
cessing on multiple DB instances. Some cloud databases, such as
Aurora and PolarDB have recently renewed their architectures to
support multiple masters. However, conflict resolution between
multiple RW nodes is a challenge. In Aurora’s multi-master cluster,
the work of conflict detection is pushed down to the storage. Aurora
only checks write conflicts at a coarser granularity of page (fixed
as 16KB). On receiving redo logs from RW nodes, the storage node
checks if multiple transactions modify the same page. If a conflict
is detected, the transaction has to be rolled back. So far, Aurora’s

Table 1: Comparison of the different protocols in supporting

multi-master transaction processing.

Protocols

Performance

limitation

Wide-area

transaction

latency (RTT)

Conflict

resolution

Leader-based leader N+2 centralized
abort & retry

Leaderless / non-conflict: 1
conflict: 2

decentralized
abort & retry

Semi-leader / non-conflict: 1
conflict: 2.5

centralized
reorder & re-commit

multi-master cluster can support single region deployment with up
to 4 RW nodes [4].

2.2 Concurrency Control and Consensus

In distributed database systems, concurrency control mechanisms
and consensus protocols need to work together to ensure the cor-
rectness of transaction processing [12, 16, 18, 19, 30, 33, 38, 39]. In
the literature, two types of consensus protocols were studied for
transaction processing.

Leader-based consensus protocol. Many database systems
build concurrency control mechanisms over leader-based consen-
sus protocols such as Paxos [23] and Raft [31]. For example, Span-
ner [12, 13] adopts two-phase-locking (2PL) over Paxos, while Cock-
roachDB [33] and TiDB [18] adopt multi-version concurrency con-
trol (MVCC) over Raft. In both approaches, concurrency control
and consensus work independently, that is, the leader first applies
its concurrency control protocol to schedule transactions and then
replicates updates to other servers using the consensus protocol.

However, in supporting multi-master transaction processing
(Fig. 2(a)), leader-based protocols may cause severe performance
penalties. As summarized in Table 1, the overall performance is
limited by the capacity of the leader, which hurts the scalability
of the computing layer. Besides, as Fig. 2(a) shows, a transaction
usually needs N rounds of cross-region communication to read
data from the leader (where N is the number of read operations in
the transaction) and additional two rounds for transaction commit
and replication(➁ and ➂ in Fig. 2(a)). The overall latency of N+2
wide-area RTTs may be high in some application scenarios.

Leaderless consensus protocol. Leaderless consensus proto-
cols such as EPaxos [28] allow all replicas to process requests. A
number of systems, such as TAPIR [39], MDCC [19], Carousel [38]
and Janus [30], have applied the idea to distributed database systems.
In these systems, concurrency control mechanisms and consensus
protocols are integrated. When a transaction is committed, conflict
detection and replication are performed at the same time. If no
conflicts are detected in a super quorum, the transaction can be
committed directly. This integration reduces the communication
cost in the commit phase to one round trip, and thus significantly
shortens the latency.

However, thesemethods struggle in handling conflicts. MDCC [19]
suffers from both transaction conflicts and Paxos collisions to fail
on fast commits [19, 24, 25] (collision occurs when replicas receive
transactions in different orders), and it simply aborts conflicting
transactions for conflict resolution. TAPIR [39] adopts the same

79

strategy except that it is free from Paxos collisions. More specif-
ically, TAPIR employs an inconsistent replication (IR) protocol,
which allows operations to be executed in any order, while the
final consensus decision is made in the application layer. In TAPIR,
transaction logs are sent to each replica, where the transaction
will be validated using OCC-liked rules. After receiving replies
from replicas, the application layer invokes the DECIDE function to
decide the results. Transactions that are Prepare-OK on majority
replicas can be committed. As for conflicting transactions, unlike
OCC that directly aborts them, TAPIR gives some conflicts a chance
to re-commit. For example, in Fig. 3, T1’s write keys have been read
by others. On receiving T1, R2 replies to re-commit it with a larger
timestamp, which orders T1 after T2 and T3. But for T2 and T3, they
are not eligible for re-committing and are eventually aborted.

Another way to resolve conflict is to order the transactions prior
to their execution. For instance, Janus [30] and Carousel [38] adopt
this approach. However, this requires that each transaction knows
its read and write sets in advance, which is not generally applicable.

If we adopt leaderless protocol for multi-master transaction pro-
cessing (Fig. 2(b)), it can eliminate the single-leader bottleneck,
and enable low latency of one wide-area RTT (③ in Fig. 2(b)) when
conflict-free. However, as illustrated by the example shown in Fig. 3,
the different transaction orders seen by replicas will lead to incon-
sistent decisions, which may lead to a large number of aborts. Even
though TAPIR tries to re-commit a transaction when conflicts occur,
it still faces high abort rates. This is a fundamental limitation of a
leaderless protocol in handling conflicts. Without a global view of
conflicts, it is unable to perform precise conflict resolution.

2.3 Transaction Reordering in OCC

OCC has been widely adopted in recent database systems because
it offers excellent performance when there is little conflict. How-
ever, studies [6, 17] showed that OCC performs poorly under the
workload of high contention. To address this issue, some systems
adopted the strategy of transaction reordering [8, 15, 29, 30].

For instance, Rococo [29] and Janus [30] reorder transactions
based on their dependencies before execution and let each server
executes transactions in the same order. Reordering before execu-
tion targets one-shot transactions that the write and read sets are
known in advance. Post-execution reordering can get rid of such
prerequisites by reordering transactions in batches in the validation
phase [15]. This inspires us to design the conflict resolution strategy
of Starry.

Since Starry aims to serve general-purpose transactions, the
sequencer in Starry performs post-execution reordering during
the transaction commit phase. Recalling the example in Fig. 3, after
the sequencer has collected three transactions, Starry only aborts
T3 to break the dependency cycle, and reorders T1 and T2 to be
able to commit T1 and re-commit T2. This results in an optimal
decision, that is hardly achievable with leaderless methods.

3 DESIGN OF STARRY

In this section, we describe Starry in detail, including the process
of the commit protocol, the technique for reordering conflicting
transactions to reduce the abort rate, the recovery approach, as
well as correctness guarantees.

Table 2: Replica state and log structure in Starry.

State on all Replicas

counter - incremented counter for assigning timestamps
active list - log entries of all received active transactions

Log[][] - a two-dimensional array to store transaction log entries

State on Sequencer

txn_graph - the dependency graph of conflicting transactions
results - decisions of conflicting transactions made by sequencer

Log Entry Format

ts - the commit timestamp of the transaction
wset - the write set of the transaction
rset - the read set of the transaction

3.1 Preliminaries

This subsection presents the basics for understanding the protocol
of Starry.

Roles of Replicas. The storage layer consists of 2F +1 replicas
(or storage servers) that can tolerate up to F non-Byzantine failures.
All replicas act as normal replicas that can receive and process
transaction requests. When a replica receives the commit request,
it acts as the proposer to replicate and commit the transaction.
Although each replica is able to process requests, only one replica,
known as 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟 , is responsible for centrally resolving conflicts
when they occur.

Transaction Order. Transactions are ordered according to the
commit timestamp assigned by replicas. Since there is no synchro-
nized clock across regions, we use the Lamport logical clock [22]
to generate timestamps. Each replica maintains a local monotoni-
cally increasing counter 𝐶𝑖 for generating logical timestamps, 𝐶𝑖 is
updated as follows:

• Each time replica 𝑅𝑖 assigns a timestamp for a new com-
mitting transaction, 𝐶𝑖 is incremented by 1.

• Each time 𝑅𝑖 sends a message to other replicas, 𝐶𝑖 is at-
tached to the message.

• Each time 𝑅𝑖 receives a message from 𝑅 𝑗 , 𝐶𝑖 is updated to
𝑚𝑎𝑥 (𝐶𝑖 ,𝐶 𝑗).

First, such a logical timestamp can capture the happened before re-
lations between transactions. In other words, the logical timestamps
assigned by our system satisfy the constraint that the transaction
order is consistent with the real-time order, which means, if 𝑡1 com-
mits before 𝑡2 starts, then 𝑡1’s timestamp is less than 𝑡2’s. This is
required by linearizability.

Second, both linearizability and serializability require a total
order for global transactions, which means that the timestamp of
each transaction must be unique. To this end, we set each logical
timestamp as a tuple ⟨𝐶𝑖 , 𝑅𝑖 ⟩, in which 𝑅𝑖 represents the id of the 𝑖-
th replica, and𝐶𝑖 represents the counter on the replica. Timestamps
are first ordered by counter values. If they have identical counter
values, they are ordered by the replica ids. For instance, ⟨2, 3⟩ is
less than ⟨3, 1⟩, and ⟨3, 1⟩ is less than ⟨3, 2⟩.

Transaction Lifecycle. When a computing node receives a
transaction request from the client, the transaction enters the exe-
cute phase. The computing node reads data from the closest replica
and caches the value into its private space for future reading. As

80

R0

R1

R2

R3

R4

R0

R1

R2
(sequencer)

R3

R4

L1 :W(A), ts: <1,0>

L2 :R(B), ts: <1,4>

L1 commit

L2 commit

L3 :W(A), ts: <2,0>

L4 :R(A), ts: <2, 4>

L3 re-commit with ts <3,0>

L4 commit

(a) non-conflicting transactions (b) conflicting transactions

RepTxn Reply(pre-commit) Reply(conf) NotConf ReqDec NotDec

conflict

Figure 4: The examples of message flow in Starry.

for write operations, new values is also stored locally. The commit
phase starts after finishing execution. First, a new log entry, which
contains the read and write sets of the transaction, is generated.
Then, the computing node sends the new entry to the closest replica
𝑅 to commit. 𝑅 assigns the entry a logical timestamp as the com-
mit timestamp, and adds it into the log array, then replicates it to
other replicas to check if it can be committed. After replicas reach
a consensus on the final result of the transaction, the result will be
notified to the computing node, which will in turn respond to the
client and end the transaction.

CopingWith Conflicts. Conflicts can occur among concurrent
transactions. Given two concurrent transactions 𝛼 and 𝛽 , their write
and read sets are represented as 𝑤𝑠𝑒𝑡 and 𝑟𝑠𝑒𝑡 respectively, they
conflict if one of the following conditions holds:

• Write-write conflict: if𝑤𝑠𝑒𝑡𝛼 ∩𝑤𝑠𝑒𝑡𝛽 ≠ ∅, they are consid-
ered to have a write-write conflict (ww-conflict).

• Read-write conflict: if𝑤𝑠𝑒𝑡𝛼 ∩ 𝑟𝑠𝑒𝑡𝛽 ≠ ∅, we say there is a
read-write dependency from 𝛽 to𝛼 . Because two concurrent
transactions cannot see each other’s writes, 𝛽 cannot be
serialized after 𝛼 . Therefore, if the commit timestamp is
𝑡𝑠𝛼 < 𝑡𝑠𝛽 , which means that the commit order is 𝛼 ≺ 𝛽 ,
the two transactions are considered to have a read-write
conflict (rw-conflict).

Each record in Starry is attached with timestamps of the last
transactions that update and read on it, represented by write_ts and
read_ts respectively. According to the Thomas write rule [35], if the
data has been modified by a transaction with a larger timestamp,
we can safely ignore the write of an earlier transaction. Therefore,
during conflict detection, Starry ignores ww-conflicts, since it
can always use write_ts attached on each record to decide if a
transaction’s update should take effect.

States of Replicas. As shown in Table 2, each replica maintains
a series of metadata to record its state. First, it needs a 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 for
generating logical timestamps. Second, it maintains an active list
which records all the transactions that are in the commit phase. For
the sequencer, it also needs to store the conflicting transactions in a
directed graph denoted by txn_graph, in which vertexes represent
transactions and edges represent read-write dependencies. After
resolving all conflicts in the graph (see details in § 3.4), the sequencer
determines whether each transaction should commit, re-commit,
or abort, and records decisions in the structure called results.

Besides, all replicas maintain an array named 𝐿𝑜𝑔[] [], where
each instance in the array is a log entry recording the updates

Table 3: Messages Types in Starry. P, R and S represent

Proposer, Normal replicas and Sequencer respectively.

Message Description From→ To

RepTxn Replicate transaction log entry P→ R
Reply Reply status of entry R→ P

ReqDec Request decision of conflicting txn P→ S
NotDec Notify decision of conflicting txn S→ R & R→ P

NotConf Notify conflict information R→ S

of a transaction. In Starry, all replicas can act as a proposer to
propose log entries. To avoid different replicas compete for the
same position in a single log sequence, the log structure is designed
as a two-dimensional array, each row in the array is dedicated to
one replica. When receiving a new log entry, the replica simply
appends it to its own log sequence, thus avoiding the competition.
The format of a log entry is also shown in Table 2. It contains three
variables ts, wset and rset, which represent the commit timestamp
of the transaction and its write set and read set respectively. The
write set contains the keys of the updated records and their new
values, and the read set contains the keys and the versions that
have been read.

3.2 An Intuitive Example

In theory, if there is no conflict among transactions, they can be
committed in one round trip of communication among replicas. If
there is a conflict, extra rounds of communication are required to
resolve it on the sequencer. Fig. 4 provides an example to illustrate
how our commit protocol works. The detailed messages in Fig. 4
are described in Table 3.

Example 3.1. Example in Fig. 4(a) shows the commit process of
non-conflicting transactions. 𝐿1 and 𝐿2 represent the log entries of
transactions𝑇1 and𝑇2 respectively. 𝐿1 is sent to 𝑅0 and be assigned
a timestamp of ⟨1, 0⟩. Similarly, 𝐿2 is sent to 𝑅4 which assigns it a
timestamp of ⟨1, 4⟩. As𝑇1 and𝑇2 do not conflict, during replicating,
𝑅1, 𝑅2 and 𝑅3 all reply pre-commit to 𝑅0 and 𝑅4. Thus, both of
them commit in a single round trip of communication. Then 𝑅0 and
𝑅4 notify other replicas of the commit decision.

The commit process of conflicting transactions is shown in
Fig. 4(b). Suppose 𝑅2 acts as the sequencer.𝑇3 and𝑇4 are rw-conflict
and their log entries are assigned the timestamps of ⟨2, 0⟩ and ⟨2, 4⟩

81

P
TryCommit

HandleRepTxn

HandleRepReply

HandleConflict

PersistDecision

ResolveConflict

Finalize

R

S

1

Phase1: Replication and conflict detection Phase2: Conflict resolution

2

3

4 5

6

7

Roles

Non-Conflict Path Conflict Path

Figure 5: The complete semi-leader protocol for committing transactions in Starry. P, R and S represent Proposer, Normal

replicas and Sequencer respectively.

respectively. As the replication messages arrive at each replica in
different orders, the decisions made by the replicas are also different.
As 𝑅1 and 𝑅2 (the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟) receive 𝐿3 before 𝐿4, they attempt to
commit 𝐿3 and reply pre-commit to 𝑅0 and conf to 𝑅4. On the con-
trary, 𝑅3 attempts to commit 𝐿4 and identifies 𝐿3 as a conflict. Since
both transactions are identified as conflicts by some replicas, they
fail to commit in the first round of communication. Instead, they
launch the second round of communication to ask the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟
for conflict resolution. Therefore, 𝑅0 and 𝑅4 request 𝑅2 to make the
final decision. Based on the received conflict information (red dot-
ted arrow in Fig. 4(b)), 𝑅2 reorders two transactions (details in §3.4),
then decides to commit 𝐿4 and re-commit 𝐿3 with timestamp ⟨3, 0⟩.
Please note that re-commit only needs to restart the commit phase,
instead of re-executing the entire transaction. Through the conflict
resolution on the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟 , both transactions avoid aborting.

3.3 The Semi-leader Transaction Commit

Protocol

Fig. 5 shows the complete protocol in the absence of failures. Once
a replica 𝑅 receives the commit request of transaction 𝛼 (denote
as T𝛼), it acts as the proposer (denote as 𝑃) and starts phase 1 to
commit T𝛼 ’s log entry (denote as 𝐿𝛼).

Phase 1: Replication and conflict detection. In phase 1, 𝐿𝛼
will be replicated to all replicas and be checked if conflict occurs.
Phase 1 consists of the following 3 processes.

Process ❶: TryCommit. 𝑃 first verifies that if 𝐿𝛼 conflict with
other local transactions it has received. If not, 𝑃 assigns 𝐿𝛼 a commit
timestamp and adds 𝐿𝛼 into its log array. Then, 𝑃 sends a RepTxn
message to all replicas and waits for replies from a super quorum
(set as ⌈ 32F ⌉ +1, explained in §3.5.1). Note that, after sending out
the RepTxn message, the proposer adds 𝐿𝛼 to a pending list and
continues to process other transactions. The whole process contains
no blocking point.

Process ❷: HandleRepTxn. When a replica 𝑅 receives a Rep-
Txn message, it applies Algorithm 1 to process the message. 𝑅 first
adds 𝐿𝛼 into its log array and calls the function OCC_Check to
validate the transaction (lines 1-2). The validation works as follows:

1. A running transaction is deemed to read stale data if a
record in its read set has been updated by a committed
transaction (lines 12-13). If this occurs, the transaction has
to be aborted.

2. A transaction will be re-committedwith a new timestamp,
if its write set has been read or overwritten by a committed

Algorithm 1: HandleRepTxn(𝐿𝛼)
1 𝐿𝑜𝑔𝑅 [𝑃] [𝐿𝛼 .𝑙𝑠𝑛] ← 𝐿𝛼

2 𝑠𝑡𝑎𝑡𝑢𝑠 ← OCC_Check(𝐿𝛼)
3 if 𝑠𝑡𝑎𝑡𝑢𝑠 == conf then

// Conf𝑃,𝛼 is the set of log entries that

𝑟𝑤 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 with 𝐿𝛼

4 𝑑𝑒𝑝𝛼 ← Conf𝑃,𝛼
5 send NotConf (𝐿𝛼 , 𝑑𝑒𝑝𝛼) to 𝑆
6 reply Reply(conf, 𝑑𝑒𝑝𝛼) to 𝑃
7 else

// pre-commit, abort or re-commit

8 reply Reply(𝑠𝑡𝑎𝑡𝑢𝑠) to 𝑃
9 Function OCC_Check(𝐿𝛼)

10 for ∀ 𝑘𝑒𝑦, 𝑟𝑒𝑎𝑑_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ∈ 𝐿𝛼 .𝑟𝑠𝑒𝑡 do
11 𝑎𝑤 ← entries in 𝑎𝑐𝑡𝑖𝑣𝑒 𝑙𝑖𝑠𝑡 that𝑤𝑠𝑒𝑡 contains 𝑘𝑒𝑦
12 if 𝑟𝑒𝑎𝑑_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 < 𝑠𝑡𝑜𝑟𝑒 [𝑘𝑒𝑦] .𝑤𝑟𝑖𝑡𝑒_𝑡𝑠 then
13 return abort

14 else if 𝐿𝛼 .𝑡𝑠 > 𝑚𝑖𝑛(𝑎𝑤.𝑡𝑠) then
15 return conf

16 for ∀ 𝑘𝑒𝑦 ∈ 𝐿𝛼 .𝑤𝑠𝑒𝑡 do
17 𝑎𝑟 ← entries in 𝑎𝑐𝑡𝑖𝑣𝑒 𝑙𝑖𝑠𝑡 that 𝑟𝑠𝑒𝑡 contains 𝑘𝑒𝑦
18 𝑚𝑎𝑥_𝑟𝑤𝑡𝑠 ←

𝑚𝑎𝑥 (𝑠𝑡𝑜𝑟𝑒 [𝑘𝑒𝑦] .𝑤𝑟𝑖𝑡𝑒_𝑡𝑠, 𝑠𝑡𝑜𝑟𝑒 [𝑘𝑒𝑦] .𝑟𝑒𝑎𝑑_𝑡𝑠)
19 if 𝐿𝛼 .𝑡𝑠 < 𝑚𝑎𝑥_𝑟𝑤𝑡𝑠 then
20 return re-commit,𝑚𝑎𝑥_𝑟𝑤𝑡𝑠 + 1
21 else if 𝐿𝛼 .𝑡𝑠 < 𝑚𝑎𝑥 (𝑎𝑟 .𝑡𝑠) then
22 return conf

23 return pre-commit

transaction with a larger timestamp (lines 19-20). The new
timestamp should be greater than that of the conflicting
transaction, to ensure a correct order.

3. A transaction is identified as a conflict if it has an rw-conflict
with an active transaction (line 14 and line 21).

If 𝐿𝛼 is not identified as conflict (conf), replica 𝑅 directly replies
to 𝑃 its intentions, which can be pre-commit, abort or re-commit
(line 8); otherwise,𝑅 will enumerate all transactions that rw-conflict
with it, and add them as dependencies into 𝑑𝑒𝑝𝛼 (line 4). After
that, 𝑅 sends the conflict information to the sequencer 𝑆 through a

82

Algorithm 2: HandleRepReply(𝑠𝑡𝑎𝑡𝑢𝑠)
24 𝑟𝑒𝑝𝑙𝑖𝑒𝑠 ← Union(𝑠𝑡𝑎𝑡𝑢𝑠 in all Reply)
25 if contains at least ⌈ 32F ⌉ + 1 pre-commit then

26 𝐿𝛼 .𝑠𝑡𝑎𝑡𝑢𝑠 ← pre-commit

27 reply commit to the computing node
28 else if abort ∈ 𝑟𝑒𝑝𝑙𝑖𝑒𝑠 then
29 𝐿𝛼 .𝑠𝑡𝑎𝑡𝑢𝑠 ← abort

30 reply abort to the computing node
31 else if ⟨re-commit, 𝑛𝑒𝑤_𝑡𝑠⟩ ∈ 𝑟𝑒𝑝𝑙𝑖𝑒𝑠 then
32 𝐿𝛼 .𝑡𝑠 ←𝑚𝑎𝑥 (𝑛𝑒𝑤_𝑡𝑠 in 𝑟𝑒𝑝𝑙𝑖𝑒𝑠)
33 resends RepTxn(𝐿𝛼) to all replicas
34 else

// identified as conflict to be resolved

35 𝑑𝑒𝑝𝛼 ← Union(𝑑𝑒𝑝𝛼 in all Reply)
36 send ReqDec(𝐿𝛼 , 𝑑𝑒𝑝𝛼) to 𝑆

NotConf message (line 5), this is a faster way for the sequencer to
be aware of conflict (the other way is ReqDec message sent by the
proposer), which can help the sequencer collects conflicts in time.
Then, 𝑅 replies conf and 𝑑𝑒𝑝𝛼 to 𝑃 (line 6).

Process ❸: HandleRepReply. After the proposer 𝑃 receives
replies from the majority, it checks if 𝐿𝛼 can pass the non-conflict
path or goes into the conflict path (shown in Algorithm 2):

1. If 𝑃 receives pre-commit from a super quorum, it is guar-
anteed that none of its conflicting transactions can pass
the validation on a super quorum. Therefore, 𝐿𝛼 is directly
committed through the non-conflict path (lines 25-27).

2. If abort exists in replies, it means that transaction 𝛼 reads
stale data. Therefore, 𝐿𝛼 must be aborted (lines 28-30).

3. If re-commit exists in replies, 𝐿𝛼 will restart Phase 1 with
the new timestamp (line 31-33).

If 𝐿𝛼 is decided to commit or abort, 𝑃 first replies the result to
the computing node and then notifies other replicas of the decision.

In other situation, 𝐿𝛼 will turn to conflict path and enter the
conflict resolution phase. 𝑃 takes the union of all 𝑑𝑒𝑝𝛼 and sends
ReqDec message to the sequencer (lines 34-36), then waits asyn-
chronously for the decision of 𝐿𝛼 .

Phase 2: Conflict resolution. The sequencer maintains a con-
flict dependency graph (txn_graph). When receiving NotConf mes-
sages, it updates the graph accordingly. When reordering is trig-
gered, the sequencer reorders the conflicting transactions and noti-
fies all other replicas about the final decisions.

Process ❹: HandleConflict.When the sequencer receives
at least ⌊ F2 ⌋ +1 NotConf messages of 𝐿𝛼 , it knows for sure that 𝐿𝛼
has not been committed on the non-conflict path. Then, 𝑆 will adds
𝐿𝛼 and 𝑑𝑒𝑝𝛼 to txn_graph.

Process ❺: ResolveConflict. After the 𝑆 receives a ReqDec
message from a proposer 𝑃 , it unions the 𝑑𝑒𝑝𝛼 collected on the
proposer to gain a more complete view of conflicts. Then, it invokes
the Reordering function (details in §3.4) to reorder conflicting trans-
actions and decide the fate of each transaction.

1. If it decides to re-commit 𝐿𝛼 , it does not need to notify
other replicas, but directly sends a NotDec message to the

proposer 𝑃 . Then, 𝑃 updates 𝐿𝛼 ’s timestamp as new_ts and
restarts TryCommit.

2. If it decides to commit or abort 𝐿𝛼 , it notifies other replicas
about its decision. Each replica that receives the decision
enters Process ❻, which persists the decision of 𝐿𝛼 and
route the decision to the proposer. If the proposer 𝑃 receives
at least F notifications, it enters Process ❼ to finish the
commit of 𝐿𝛼 and replies the result to the computing node.

After entries are committed, they will be applied in timestamp
order, so that all updates in their write sets will take effect.

Latency analysis. The green arrows in Fig. 5 show the commit
path of the non-conflicting transaction. After phase 1, if at least
⌈ 32F ⌉ + 1 replicas reply pre-commit, the proposer can safely notify
the computing node about the commit of the transaction, which
will in turn respond to the client. In this case, it takes only one
wide-area RTT to finish the transaction.

If conflict occurs, the proposer requests the sequencer for final
decision and waits for notifications from F replicas. The whole
process of phase 2 will take 1.5 wide-area RTTs (as shown by the
red arrows in Fig. 5). In this case, the overall latency to finish a
transaction will be 2.5 wide-area RTTs.

3.4 Conflict Resolution on Sequencer

Conflict resolution is the process of serializing conflicting transac-
tions. For a given set of conflicting transactions (denote as 𝑆), we
aim at finding a serially ordered subset𝐶 , such that the complement
set𝐴 = 𝑆\𝐶 (the set of aborted transactions) is minimized. To select
aborted transactions, we need to know the conflicting relationships
among transactions, which are actually read-write dependencies
(denoted as rw-dependencies). As shown in Fig. 6, the sequencer
builds a graph (txn_graph), in which each node denotes a conflict-
ing transaction and each edge denotes an rw-dependency. If the
graph is cyclic, some transactions must be aborted to break the de-
pendency cycle. Then, a serial order can be found by topologically
sorting the remaining transactions in the graph. If the conflicting
transaction’s timestamp violates the serial order, the sequencer will
assign a new timestamp to it. We call this operation reordering.

When receiving a ReqDec about a transaction, the sequencer will
extract a subgraph to be reordered from the txn_graph (those can
connect to the transaction and it can connect to). A transaction that
has been committed on non-conflict path may also have been added
to the txn_graph as the dependency of a transaction that requires
conflict resolution. To ensure the uniqueness of the final decision
on the two paths, the status of committed transaction cannot be
changed by reordering. Therefore, before reordering, the sequencer
must check the status of transactions to be reordered.

Specifically, if a transaction T𝑎 has already committed on the
non-conflict path (i.e., received the commit decision from its pro-
poser), the sequencer will mark it as committed that cannot be
changed during reordering. Then, its in-dependency T𝑏 (T𝑎 .𝑤𝑟𝑖𝑡𝑒 ∩
T𝑏 .𝑟𝑒𝑎𝑑 ≠ ∅) will be aborted, since T𝑏 does not see the new value
written by T𝑎 . The aborted transactions will be removed from
txn_graph. T𝑎 ’s out-dependency T𝑐 (T𝑎 .𝑟𝑒𝑎𝑑 ∩ T𝑐 .𝑤𝑟𝑖𝑡𝑒 ≠ ∅) will
be assigned a larger timestamp and re-committed, so that T𝑐 can
be ordered after T𝑎 . For other pending conflicting transactions (i.e.,
received a ReqDec message or more than ⌊ F2 ⌋ + 1 NotConf mes-
sages), the sequencer can safely reorder them. If a network failure

83

T1 T2 T3

T4

T5 T6

T7 T8 T1 T2 T3

T4

T5 T6

T7 T8

T1 T2 T3

T5

T7 T8

T3 T5 T2

T8 T7

T1

(a) (b) (c) (d)

3 5 6 7

8 9

Figure 6: The example of conflicting transaction reordering. (a) shows the origin txn_graph; (b) shows the SCCs; (c) shows the

remaining transactions after breaking dependency cycles; (d) shows the commit order after reordering.

Algorithm 3: Reordering
37 𝑆𝐶𝐶 ← 𝑇𝑎𝑟 𝑗𝑎𝑛(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ)
38 for 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∈ 𝑆𝐶𝐶 do

39 if 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 .𝑠𝑖𝑧𝑒 > 1 then
40 𝑒 ← 𝑒𝑛𝑡𝑟𝑦 with the largest 𝑝𝑟𝑜𝑑_𝑑𝑒𝑔𝑟𝑒𝑒
41 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 [𝑒] ← abort

42 remove 𝑒 from the graph
43 𝑠𝑜𝑟𝑡 ← 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦𝑆𝑜𝑟𝑡 (remain entries in 𝑆𝐶𝐶)
44 𝑛𝑒𝑤_𝑡𝑠 ← 0
45 for 𝑒 ← 𝑠𝑜𝑟𝑡 .𝑓 𝑟𝑜𝑛𝑡 () do
46 if 𝑒.𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒 == 0 then
47 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 [𝑒] ← commit

48 𝑛𝑒𝑤_𝑡𝑠 ←𝑚𝑎𝑥 (𝑛𝑒𝑤_𝑡𝑠, 𝑒 .𝑡𝑠)
49 else

50 𝑛𝑒𝑤_𝑡𝑠 ← 𝑛𝑒𝑤_𝑡𝑠 + 1
51 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 [𝑒] ← ⟨re-commit, 𝑛𝑒𝑤_𝑡𝑠⟩
52 remove 𝑒 from 𝑡𝑥𝑛_𝑔𝑟𝑎𝑝ℎ

occurs, which is rare, the sequencer fails to receive the commit de-
cision or NotConf messages in time, and the status of a transaction
can be uncertain. In this case, the sequencer will execute a status
confirmation process to learn its status from other replicas.

The sequencer executes reordering as follows (the pseudocode
is shown in Algorithm 3):

1. Because the dependency cyclemust be contained in a strongly
connected component (SCC), the sequencer divides the sub-
graph into SCCs by using the Tarjan SCC algorithm [34]
(line 37).

2. For the SCC of more than one entry, it contains a depen-
dency cycle. To break the cycle, sequencer chooses the
entry with the largest prod_degree (product of in-degree
and out-degree) to abort and removes it from the graph
(lines 39-42).

3. After breaking the dependency cycle, the sequencer topo-
logically sorts remaining entries and stores the results in
an array named sort (line 43). After that, the sequencer tra-
verses the entries in sort. For an entry that does not have
in-dependency, the sequencer decides to commit it with
the initial timestamp (lines 46-48); otherwise, the sequencer
assigns it a new_ts, which is larger than all in-dependencies’
timestamps, and re-commits it (lines 50-51).

As conflicting transactions constantly arrive, the size of txn_graph
continues to grow. The sequencer chooses to reorder a bunch of
connected conflicting transactions when it receives the first Re-
qDec message. Following that, it removes them from the graph.

Periodic reordering divides conflicting transactions into batches,
which avoids the graph growing to a size that we cannot manage.
As reordering can only resolve conflicts within a batch, transactions
that conflict with previous batches have to be aborted.

Example 3.2. Fig. 6 shows a case of reordering. There are eight
transactions in txn_graph, represented by T1, T2, ..., T8 respectively,
with timestamps of 1∼8 (note that the replica id in timestamp is not
shown here). Their dependencies are shown in (a). During reorder-
ing, the sequencer first divides the graph into four SCCs, as shown
by the shading in (b). According to the algorithm, the transactions
with the largest prod_degree, i.e., T4 and T6, are chosen to abort.
After trimming the aborted transactions and their dependencies,
the graph becomes the one in (c). Then, the sequencer topologically
sorts the graph, and gets two new orders as {T3 ≺ T5 ≺ T2 ≺ T1}
and {T8 ≺ T7}. As T3, T5 and T8 do not have in-dependencies, their
timestamps remain unchanged and can be committed. In contrast,
T2, T1 and T7 are assigned new timestamps of 6, 7 and 9 respec-
tively and to be re-committed later. The new commit order after
reordering is shown in (d).

3.5 Failure Recovery

Node failure is inevitable in distributed systems. We designed a
recovery approach to ensure fault tolerance. In the following, we
describe how to handle the failures of normal replicas and the
sequencer respectively.

3.5.1 Normal Replica Failure. When a normal replica fails, its pro-
posed transaction commits requires another replica to take over.
Since more than one replica may detect the replica failure and take
over its entries, this will cause confusion, thus we only allow the
sequencer to handle normal replica failures. Therefore, when an
active replica times out when waiting for the result of 𝐿𝛼 , they
will notify the sequencer. The sequencer then starts the recovery
phase by sending Recovery(𝐿𝛼) to other replicas (including itself)
and waits for at least F + 1 replicas reply the status of 𝐿𝛼 . After
that, sequencer determines the status of 𝐿𝛼 according to the fol-
lowing rules: ① If any replica replies with the final result of 𝐿𝛼 ,
the sequencer will choose the result and sync it to other replicas.
Then, it waits for acks from F replicas to end the process of 𝐿𝛼 .
② If no one has received the finalized result, and less than ⌊ F2 ⌋ +
1 replicas respond pre-commit, 𝐿𝛼 cannot pass non-conflict path,
the sequencer can safely abort it. ③ If at least ⌊ F2 ⌋ + 1 replicas
response pre-commit, in case that 𝐿𝛼 has passed the non-conflict
path and has been replied to the client, the sequencer will commit
it and abort all others that conflict with 𝐿𝛼 .

Assuming that T1 commits on the non-conflict path, and then F
replicas fail. If the sequencer wants to recover T1, we must ensure
that in the remaining F + 1 replicas, there are still a majority of

84

replicas that decide to reply pre-commit. To guarantee this, T1
needs to receive ⌈ 32F ⌉ + 1 pre-commit replies to pass the non-
conflict path, which is why the super quorum is introduced.

3.5.2 Sequencer Failure. In the event of a sequencer failure, a new
sequencer should be elected to continue to resolve conflicts. The
states of the failed sequencer to be recovered include its undeter-
mined log entries and txn_graph. The former can be handled in the
same way as a normal replica failure after the new sequencer can
provide services. Therefore, the focus of recovering the sequencer
is on reconstructing txn_graph.

As what Raft[31] does, we call the periods hosted by different
sequencers as terms. Only one replica can act as the sequencer in
one term. Each replica maintains a current term, which contains a
monotonically increasing term number and the sequencer id. The
term is attached to every message between replicas. Once a replica
finds a higher term number, it requests the majority of replicas for
the newest term. The process of sequencer recovery can be divided
into two phases:

(i) Sequencer election.When a replica times out waiting for
the response from the sequencer, it will increment its term number
and becomes a candidate. Then it sends the RequestVote message
with the term number to others. On receiving RequestVote mes-
sage with a higher term number, a replica will reply a vote to the
candidate. Each replica can vote for at most one candidate in a
given term. The vote also piggybacks all undetermined conflicting
entries’ information, which can help the sequencer to reconstruct
txn_graph. After receiving votes from more than F replicas, the
candidate becomes the new sequencer. It then notifies other replicas
of the new term number and sequencer id.

(ii) Dealing with undetermined conflicts. The key require-
ment of sequencer recovery is that the new sequencer cannot
change the commit and abort decisions made by the last sequencer,
because those may have been replied to the client. To ensure this,
new sequencer collects all conflicting entries that are attached to
votes as a set C, then asks other replicas for the status of entries in C
and waits for replies from a majority. If an entry has been decided
by the last sequencer, the new sequencer accepts the decision. For
those entries which have not seen the decision in replies, they will
be added into txn_graph to be decided later by reordering.
3.6 Correctness

Similar to other Paxos variants, Starry guarantees the properties
of non-triviality , linearizability and fault tolerance for safety.

Non-triviality.Non-triviality requires that the committed trans-
action must be proposed by a client rather than predetermined
transactions. As replicas only accept transaction logs from comput-
ing nodes, which is the result of transaction requests from clients,
this property is naturally satisfied.

Linearizability. Linearizability can be further decomposed into
two properties: (1) all replicas apply the same entries in the same
order; (2) the order is consistent with the real-time order.

Property (1) means that each log entry should be placed in the
same slot of log arrays in all replicas, and the timestamp of a com-
mitted log entry is consistent among replicas. As each proposer
in Starry owns an exclusive row in the log array, the slot of each
log entry can be uniquely determined. Besides, as the timestamp
of a log entry is determined either by only the proposer or the

sequencer, it must be unique and consistent in the entire system.
Thus we can guarantee that all replicas apply the same committed
entries in the same order.

Property (2) means that if two transactions 𝛼 and 𝛽 operate on
the same data, and 𝛽 is proposed after 𝛼 is committed, 𝛼 must be
executed before 𝛽 . According to our protocol, after 𝛼 commits, the
set of replicas that have seen 𝛼 (denote as 𝑆) contains at least F +1
replicas. If 𝛽 is proposed by 𝑅 and 𝑅 ∈ 𝑆 , the proposed timestamp
of 𝛽 must be larger than 𝛼 ’s commit timestamp. Thus, 𝛼 will be
ordered before 𝛽 . If 𝑅 ∉ 𝑆 , which means that 𝑅 falls behind, 𝛽 can
be assigned a timestamp that is smaller than 𝛼 . In this situation, 𝛽
cannot commit before 𝛼 in the following three possible cases:

(i) 𝛼.𝑤𝑟𝑖𝑡𝑒 ∩ 𝛽.𝑟𝑒𝑎𝑑 ≠ ∅. In this case, as majority replicas have
already committed 𝛼 , 𝛽 will be aborted when other replicas run
OCC_Check.

(ii) 𝛼.𝑟𝑒𝑎𝑑 ∩ 𝛽.𝑤𝑟𝑖𝑡𝑒 ≠ ∅. In this case, 𝛽 will be assigned a new
timestamp that is larger than 𝛼 during OCC_Check (line 19-20 in
Algorithm 1). Thus, 𝛽 can only commit after 𝛼 .

(iii) 𝛼.𝑤𝑟𝑖𝑡𝑒 ∩ 𝛽.𝑤𝑟𝑖𝑡𝑒 ≠ ∅. Similar to Case (ii), 𝛽 will be reas-
signed a larger timestamp and ordered after 𝛼 .

In summary, regardless of the relationship between 𝛼 and 𝛽 , if 𝛽
can be committed, the commit order is always 𝛼 ≺ 𝛽 . Because the
log entries are applied according to the transaction commit order,
thus the operation of 𝛽 is always executed after 𝛼 , which ensures
the real-time order.

Fault tolerance. The recovery protocol must ensure that no
committed transaction is lost after a failure. For a transaction T1
that has committed on non-conflict path, at least ⌈ 32F ⌉ +1 replicas
have replied pre-commit. Even if F replicas fail, the sequencer
can still receive at least ⌊ F2 ⌋ +1 pre-commit replies when recover-
ing T1. According the rule ③ in §3.5.1, sequencer will eventually
commit it. For a transaction T2 that has committed on the conflict
path, the commit decision must have been stored on F +1 replicas.
Therefore, during recovery, the sequencer will see the commit deci-
sion on at least one replica, which ensures that T2 can be recovered.
In summary, the recovery protocol can make sure no committed
transaction will be lost.

Serializability. Starry also guarantees serializability among
transactions. In Starry, once a transaction 𝛼 is committed, no
other concurrent transactions that conflict with it, say 𝛽 , can be
committed. No matter whether 𝛼 is committed on non-conflict path
or conflict path, its status is already stored on the majority of nodes.
Therefore, 𝛽 cannot get enough pre-commit from a super quorum
and be committed on the non-conflict path. If 𝛽 enters the conflict
path, it can only be aborted or reordered after 𝛼 by the sequencer.
In both two cases, 𝛽 no longer conflicts with 𝛼 .

4 EXTENSIONS

Starry also adopts measures to further optimize the performance
of distributed transactions and read-only transactions.

4.1 Distributed Transactions

To handle continuously growing data volumes, a distributed data-
base system usually partition the storage into shards to gain scal-
ability. So does a cloud database with disaggregated storage. Dis-
tributed transaction processing requires an atomic commitment
protocol, such as two-phase commit (2PC), to ensure atomicity.

85

Table 4: Network latency between data centers (ms).

Shanghai San Francisco Frankfurt

Shanghai 0.3 140 231
San Francisco 0.3 147
Frankfurt 0.25

In 2PC, a coordinator is in charge of collecting votes from all par-
ticipants to decide whether a transaction should commit or abort. In
Starry, the computing node works as a coordinator. Before starting
to commit, the computing node acquires the current timestamp
from each participant (a shard), and chooses the largest one as
the timestamp of the entire transaction. Since the coordination of
timestamp only interacts with local replicas, it does not hurt the
latency. In the first phase of 2PC, each participant shard makes the
decision according to the protocol in § 3.3. If all participant shards
reply pre-commit or anyone replies abort, the computing node
decides to commit or abort the transaction respectively, then the
notifications to all participants are asynchronous. Besides, a par-
ticipant can also reply re-commit. After receiving all re-commit
messages, the computing node will choose the largest re-commit
timestamp as the new timestamp and restart the commit phase.

With the high availability design in the storage layer, Starry can
avoid the blocking problem caused by coordinator failure [7, 32].
It is unnecessary to resort to complicated solutions such as three-
phase commit [32] and Paxos commit [16]. When a participant
times out waiting for the coordinator’s decision, it will execute
the termination protocol to check the transaction status on other
participants to learn the final decision, and then terminate the
transaction. Since each participant’s decision is already stored on
at least F +1 servers, the final decisions can always be found as
long as less than F replicas fail. Similar to the approaches in [19,
39], Starry does not allow the coordinator to abort transactions
unilaterally (if all participants decided to commit a transaction,
the coordinator must commit it). This prevents the termination
protocol from making a decision that is different from the one made
by the failed coordinator.

4.2 Read-only Transactions

Read-only (RO) transactions are common in practice [26]. Starry
can treat RO transactions and read/write (RW) transactions equally
to achieve strict-serializability. When a computing node executes a
RO transaction, it replicates it to other replicas to detect conflict.
Once a RO transaction commits, it can be ensured that no other
concurrent transactions which update the read set commit before
the transaction. Therefore, a RO transaction only reads the most
up-to-date values, which guarantees strict-serializability.

As RO transactions do not perform updates, it is unnecessary for
them to conduct replication. In most applications, read operations
are latency-sensitive. This motivates us to skip asmuch cross-region
communication as possible in RO transactions. Therefore, we ex-
tended Starry to support the consistency level of process-ordered
serializability (POS) [27] for RO transactions. POS only requires that
each replica executes RW transactions in the same order, without
demanding that RO transactions follow the real-time order. This
allows RO transactions to read out-of-date data.

When relaxing the consistency level to POS, RO transactions can
be served in the local replica without cross-region communication,

Table 5: Transaction profile for Retwis workload.

Transaction Type # gets # puts workload%

Add User 1 3 5%
Follow/Unfollow 2 2 15%

Post Tweet 3 5 30%
Load Timeline rand(1,10) 0 50%

which significantly reduces the transaction latency. For a single-
shard RO transaction, there is no need for coordinating a read
timestamp amongmultiple shards. The computing node can directly
read the local replica. As to cross-shard RO transactions, we must
ensure consistent reads on multiple shards. This requires all shards
to agree on a read timestamp before execution. Therefore, Starry
only allows transactions whose read set can be predetermined to
run at the POS level. In POS, the computing node first asks each
involved shard for the latest write_ts of each read key in a RO
transaction, and chooses the largest one as the read timestamp for
all reads. Then, the computing node directly reads data on each
involved shard’s local replica.

5 EVALUATION

5.1 Experimental Setup

5.1.1 The Testbeds. We conducted experiments on both local clus-
ter and cross-region cloud servers. The local cluster was deployed
on servers with two Intel Xeon Silver 4110 processors with 32 cores
and 196 GB RAM.We configured the system as 5 shards. Each shard
had 3-9 replicas. One server ran a replica of each shard or multiple
computing nodes.

Experiments on the cloud servers were conducted on Alibaba
Cloud ECSs instances across three data centers: Asia (Shanghai),
US West (San Francisco), and Europe (Frankfurt). The network
latencies between data centers are shown in Table 4. Each instance
in the experiments had 2 virtual CPU cores and 8 GB of memory.
We set the configuration to 3 shards, each with 3 replicas. This
requires a total of 9 servers used as storage servers. In each data
center, only one replica of a shard was deployed. Therefore, the
setup can tolerate data center failures.

5.1.2 Candidates for Comparative Study. We compared Starry
against TAPIR, one of the most representative leaderless meth-
ods. We modified its open-source implementation to support multi-
master transaction processing. As introduced in §2.2, the outcome
of a transaction in TAPIR is determined by the DECIDE function in
application layer. To adapt TAPIR to the architecture of cloud data-
base, we moved the DECIDE function in TAPIR to the storage layer,
on which we could build an independent and scalable computing
layer that is responsible for processing transaction requests from
the application layer.

For fairness of comparison, we implemented Starry on the code-
base of TAPIR, by replacing the IR protocol with the semi-leader
commit protocol. We also implemented a Raft-based prototype on
the same codebase to create a leader-based method. To be clear, in
Starry and Raft-based, each shard has its own sequencer or leader,
and those for different shards are located on different nodes.

86

1 2 4 6 8 1 0 1 2
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

2 4 6 8 1 0 1 20 . 0

0 . 1

0 . 2

0 . 3

1 5 1 0 1 5 2 0 2 5
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0
1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0
1 8 0 0 0
2 0 0 0 0

5 1 0 1 5 2 0 2 5
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

Th
rou

ghp
ut

(tp
s)

N u m b e r o f C o m p u t i n g N o d e s

 R a f t - b a s e d
 T A P I R
 S T A R R Y

Ab
ort

 Ra
te

N u m b e r o f C o m p u t i n g N o d e s

 R a f t - b a s e d
 T A P I R
 S T A R R Y

Th
rou

ghp
ut

(tp
s)

N u m b e r o f C o m p u t i n g N o d e s

 R a f t - b a s e d
 T A P I R
 S T A R R Y

Ab
ort

 Ra
te

N u m b e r o f C o m p u t i n g N o d e s

 R a f t - b a s e d
 T A P I R
 S T A R R Y

3 5 7 90
4 0 0 0
8 0 0 0
1 2 0 0 0
1 6 0 0 0
2 0 0 0 0

N u m b e r o f R e p l i c a s

 R a f t - b a s e d T A P I R S T A R R Y

Th
rou

ghp
ut

(tp
s)

(a) S i n g l e - s h a r d (b) S i n g l e - s h a r d (c) M u l t i - s h a r d (d) M u l t i - s h a r d (e) M u l t i - s h a r d
Figure 7: Performance under different computing node and replica numbers.

0 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 92 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0
1 0 0 0 0
1 2 0 0 0
1 4 0 0 0

0 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 9
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

Th
rou

ghp
ut

(tp
s)

Z i p f C o e f f i c i e n t

 R a f t - b a s e d
 T A P I R
 S T A R R Y

(a) M u l t i - s h a r d (b) M u l t i - s h a r d

Ab
ort

 Ra
te

Z i p f C o e f f i c i e n t

 R a f t - b a s e d
 T A P I R
 S T A R R Y

0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 90
5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0

Z i p f C o e f f i c i e n t

 N o r m a l R e p l i c a S e q u e n c e r

Th
rou

ghp
ut

(tp
s)

(c) M u l t i - s h a r d
Figure 8: Performance under contention workload.

4 6 8 1 0
5 0 0
1 0 0 0

3 5 0 0
4 0 0 0
4 5 0 0
5 0 0 0

5 1 0 1 5 2 0 2 51 0 0 0
2 0 0 0

9 0 0 0
1 0 0 0 0
1 1 0 0 0
1 2 0 0 0
1 3 0 0 0

Th
rou

ghp
ut

(tp
s)

N u m b e r o f C o m p u t i n g N o d e s

 O v e r a l l
 N o r m a l R e p l i c a
 S e q u e n c e r

(a) S i n g l e - s h a r d (b) M u l t i - s h a r d

Th
rou

ghp
ut

(tp
s)

N u m b e r o f C o m p u t i n g N o d e s

 O v e r a l l
 N o r m a l R e p l i c a
 S e q u e n c e r

Figure 9: Scalability of the sequencer.

5.1.3 Workload. We used two workloads for evaluation. The first
one was a synthetic workload of Retwis application, which sim-
ulates Twitter’s functionality. The workload of Retwis contains
4 types of transactions as shown in Table 5, each accessing 4-10
data items across 2-3 shards on average. The second workload was
YCSB+T, which is the extension of YCSB to support transactions
and has been widely used for evaluating NoSQL databases. The
evaluation of TAPIR[39] also used them as the main workload.

5.2 Performance on the Local Cluster

We first ran experiments on the local cluster to demonstrate the
performance improvement made by Starry. The workload adopted
was Retwis. Its Zipf coefficient was set to 0.7.

We evaluated the performance of the protocols on single-shard
(Fig. 7(a) and (b)) and multi-shard (Fig. 7(c) and (d)) deployments
respectively. It can be seen that Starry always performed the best.
In the single shard deployment, Starry could scale to 10 computing
nodes and achieve the peak throughput of 8258 tps, which is 1.4×
and 3.42× as high as the peak throughputs of TAPIR and Raft-based
respectively. When we partitioned data into 5 shards, Starry could
scale to 20 computing nodes and achieve 1.33× the throughput of
TAPIR and 4.21× that of Raft-based.

Starry and TAPIR were more scalable than Raft-based, because
they could make use of the computation resources of all replicas.
The performance gap between Starry and TAPIR can be attributed
to their differences in conflict resolution. Benefiting from the cen-
tralized reordering strategy, Starry could avoid a large fraction of
unnecessary aborts. As shown in Fig. 7(b) and (d), Starry managed
to reduce the abort rate by more than 60%.

We also varied the number of replicas per shard to see how
the size of consensus group impacts performance. The results are
presented in Fig. 7(e). We can see that when the replica number
was less than 7, more replicas could contribute more computation
resources to Starry and TAPIR, thus gaining higher throughputs.
However, when there were more than 7 replicas, the throughputs
started to decline. This is expected, as each replica needs to send

at least O(𝑛) (𝑛 is the replica number) network messages in each
round of consensus. When the number of replicas reaches a certain
threshold, the network could be saturated, so that further increase
of this number would only hurt the overall throughput. As for Raft-
based, more replicas would burden the leader, which means that
increasing the replica number always hurts performance.

5.3 Performance under Contention

We varied the degree of contention by adjusting the coefficient of
the Zipf distribution, to see how the performance is affected by
contention. The experiments were conducted on the local cluster
using the Retwis workload. The number of computing nodes was
fixed to 10.

Fig. 8(a) and (b) show the throughputs and abort rates with
different Zipf coefficients. We excluded the cases where the Zipf
coefficient is less than 0.5, as contention is rare in these cases. When
the Zipf coefficients were greater than 0.5, the abort rates of Raft-
based and TAPIR increased sharply, causing the throughputs to
drop quickly. As Starry could reorder conflicting transactions to
minimize the abort rate, its abort rate was stable before the Zipf
coefficient reached 0.7. Even after it passed 0.7, Starry was subject
to fewer aborts than TAPIR (by up to 70%). The throughput of
Starry was 1.43× and 1.5× as good as that of TAPIR when the Zipf
coefficient was set to 0.8 and 0.9 respectively. When the Zipf factor
was greater than 0.9, Starry’s abort rate also rose rapidly, because
transaction reordering became almost ineffective under such a high
degree of contention.

Fig. 8(c) shows the impact of reordering on the sequencer’s
throughput. As the Zipf coefficient increased, the performance
gap between the sequencer and a normal replica widened. This
can be attributed to the growing workload of reordering on the
sequencer, as depicted in Table 6. We also noticed that the batch
size for reordering rose quickly at Zipf=0.9 in Table 6, which ex-
plains the rise of the abort rates in Fig. 8(b). When resolving a large
batch of conflicts, a large number of transactions can be forced to
re-commit, they may be identified as conflict again. This may cause

87

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0
2 0 0

2 5 0

4 5 0

5 0 0

0 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 9
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

0 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 9
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

La
ten

cy
(m

s)

T h r o u g h p u t (t p s)

 S T A R R Y
 T A P I R
 R a f t - b a s e d

Th
rou

ghp
ut

(tp
s)

N u m b e r o f C o m p u t i n g N o d e s

 R a f t - b a s e d
 T A P I R
 S T A R R Y

Ab
ort

 Ra
te

Z i p f C o e f f i c i e n t

 R a f t - b a s e d
 T A P I R
 S T A R R Y

0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 90
2 0 0
4 0 0
6 0 0
8 0 0
1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0

La
ten

cy
(m

s)

Z i p f C o e f f i c i e n t

 T R P I R M e d i a n
 S T A R R Y M e d i a n
 T A P I R 9 9 %
 S T A R R Y 9 9 %

(a) (b) (c) (d)
Figure 10: Performance in cross-region settings.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0

Th
rou

ghp
ut

(tp
s)

C o m p u t i n g N o d e s N u m b e r

 P r o c e s s - o r d e r e d S e r i a l i z a b i e
 S t r i c t S e r i a l i z a b l e

1 0 3 0 6 0 9 0 1 2 00
5
1 0
1 5
2 0
1 9 5
2 0 0
2 0 5
2 1 0

La
ten

cy
(m

s)

C o m p u t i n g N o d e s N u m b e r

 P r o c e s s - o r d e r e d S e r i a l i z a b l e
 S t r i c t S e r i a l i z a b l e

(a) (b)
Figure 11: Performance with read-heavy

workload.

Table 6: Reordering times and batch size in 10 seconds.

Zipf Coefficient 0.5 0.6 0.7 0.8 0.9 0.99

Reordering Times 54 240 529 2020 3716 4203
Batch Size 2.09 3.75 4.07 6.10 13.48 15.49

a vicious cycle, which weakens the effect of conflict resolution in
dealing with extremely high contention.

Scalability of the sequencer under contention.We further
verified whether the sequencer will become a bottleneck under a
high-contention workload. We set the Zipf coefficient to 0.9 and
evaluated the performance of Starry in both single-shard and
5-shard deployments. Fig. 9(a) shows that in the single-shard de-
ployment, when the number of computing nodes increases to 6, the
throughput of the sequencer starts to decline, which suppresses the
growth of the overall throughput. Similar trends can be seen in the
5-shard deployment (Fig. 9(b)). However, the system can scale to
more computing nodes than the single-shard deployment. There-
fore, under a high-contention workload, the sequencer can indeed
become a bottleneck, while data sharding can effectively alleviate
the burden of the sequencer for better scalability. Nevertheless, this
seeming bottleneck is not necessarily a drawback of our approach.
Even without this bottleneck, the conflicts themselves will impose
constraints on the transaction order, and thus suppress the degree
of parallelism. As Fig. 8 demonstrates, TAPIR performs even worse
in face of a high-contention workload, even though it does not
appear to have such a bottleneck. This is because decentralized
approaches are inferior to centralized ones in resolving conflicts.

5.4 Performance on the Cross-Region Cloud

Our third set of experiments were conducted on the cross-region
cloud of Alibaba ECSs. For Raft-based and Starry, we set the
leader and sequencer to be in US West by default. The workload we
adopted was YCSB Workload A (50% write and 50% read), in which
each transaction contained 4 operations.

Fig. 10(a) shows the average latency of transactions at different
throughputs. We varied the number of computing nodes to adjust
the workload. When the workload was low, Starry and TAPIR
were 50% faster than Raft-based in latency, because they could
commit transactions in a single wide-area round-trip. In contrast,
Raft-based needs more than two if the computing node is not co-
located with the leader. As the load increased, Starry showed its
advantages. Because its abort rate was smaller, its throughput was
1.25× as high as that of TAPIR.

Fig. 10(b) and (c) show the performance under contention.We can
see that Starry performed the best. Its abort rate was 60% of TAPIR,
which helped it achieve better throughput. The abort rate of Raft-
based was the highest because its long-duration transactions caused

more conflicts. We also compared the latencies between Starry
and TAPIR. As shown in Fig. 10(d), the median latencies of them
were close, while Starry’s tail latency was higher than TAPIR’s
under high-contention load. This is because conflict resolution on
Starry requires 2.5 RTTs, while TAPIR takes only 2 RTTs.

5.5 Performance of Different Consistency

Levels

We evaluated the performance of Starry at two consistency lev-
els - strict serializable (SS) and process-ordered serializable (POS).
The experiments were conducted on the cross-region cloud. The
workload adopted was YCSB Workload B, which is a read-heavy
workload (5% write and 95% read).

Fig. 11 shows the performance difference. In POS, RO transac-
tions are not required to read the up-to-date values. Thus, RO trans-
actions can be served at the closest replica without communicating
with remote servers. The elimination of cross-region communica-
tion significantly reduced the latency. As shown in Fig. 11(b), under
a read-heavy workload, POS achieved the average latency of 12-19
ms. In contrast, transactions at SS needed hundreds of milliseconds
to commit, because SS requires RO transactions to conduct replica-
tion for detecting conflicts. The low latency of POS also helped in
improving its throughput, which was 10× higher than that of SS,
as shown in Fig. 11(a).

6 CONCLUSION AND FUTUREWORK

This paper proposed the semi-leader transaction commit protocol.
The key insight is that the combination of decentralized transaction
processing and centralized conflict resolution can boost the perfor-
mance of multi-master transaction processing. Compared to the
pure centralized approaches, it can significantly improve the per-
formance in terms of scalability and latency in a cross-region setup.
Compared to the pure decentralized approaches, it is significantly
more robust against contention. Based on the semi-leader protocol,
we designed Starry, a mechanism of multi-master transaction pro-
cessing for typical cloud database architecture, with disaggregated
storage and computation layers. Our experimental study demon-
strated its promising characteristics. In the future, we plan to further
evaluate its practicality in real-world cloud databases, and explore
ways (e.g., caching and sharding on the computing layer) to improve
its applicability to a variety of real-world workloads.

ACKNOWLEDGMENTS

This work was sponsored by the National Science Foundation of
China under grant number 61772202. It was also sponsored by
CCF-Huawei Database System Innovation Research Plan.

88

REFERENCES

[1] 2018. PolarDB. https://www.alibabacloud.com/product/polardb.
[2] 2018. Presto. https://prestodb.io/.
[3] 2020. Amazon Redshift. https://aws.amazon.com/cn/redshift/.
[4] 2020. Aurora multi-master. https://docs.aws.amazon.com/AmazonRDS/latest/

AuroraUserGuide/aurora-multi-master.html.
[5] 2022. IBM multi-master. https://www.ibm.com/docs/en/sgklm/4.1?topic=

redundancy-configuring-multi-master-cluster.
[6] Rakesh Agrawal, Michael J. Carey, and Miron Livny. 1987. Concurrency Control

Performance Modeling: Alternatives and Implications. ACM Transactionos on
Database Systems 12, 4 (1987), 609–654.

[7] Ozalp Babaoglu and Sam Toueg. 1993. Understanding Non-Blocking Atomic
Commitment. In Distributed systems.

[8] Rudolf Bayer, Klaus Elhardt, Johannes Heigert, and Angelika Reiser. 1982. Dy-
namic Timestamp Allocation for Transactions in Database Systems. In Proceed-
ings of the Second International Symposium on Distributed Data Bases, Berlin,
F.R.G., September 1-3, 1982. North-Holland Publishing Company, 9–20.

[9] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Linqiang
Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu, Feng Zhu, and Tong
Zhang. 2020. POLARDB Meets Computational Storage: Efficiently Support
Analytical Workloads in Cloud-Native Relational Database. In FAST. 29–41.

[10] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. In SIGMOD.
2477–2489.

[11] Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos
made live: an engineering perspective. In PODC. 398–407.

[12] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-Distributed
Database. In OSDI. 251–264.

[13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3 (2013), 8:1–8:22.

[14] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In SIGMOD. 215–226.

[15] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving Optimistic Concur-
rency Control Through Transaction Batching and Operation Reordering. Proc.
VLDB Endow. 12, 2 (2018), 169–182.

[16] Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. ACM
Trans. Database Syst. 31, 1 (2006), 133–160.

[17] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
2008. OLTP through the looking glass, and what we found there. In SIGMOD.
981–992.

[18] Dongxu Huang, Qi Liu, Qiu Cui, et al. 2020. TiDB: A Raft-based HTAP Database.
Proc. VLDB Endow. 13, 12 (2020), 3072–3084.

[19] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan D. Fekete.
2013. MDCC: multi-data center consistency. In EuroSys. 113–126.

[20] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency
Control. ACM Trans. Database Syst. 6, 2 (1981), 213–226.

[21] Tirthankar Lahiri, Vinay Srihari, Wilson Chan, N. MacNaughton, and Sashikanth
Chandrasekaran. 2001. Cache Fusion: Extending Shared-Disk Clusters with
Shared Caches. In VLDB. 683–686.

[22] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (1978), 558–565.

[23] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(1998), 133–169.

[24] Leslie Lamport. 2005. Generalized consensus and Paxos. (2005).
[25] Leslie Lamport. 2006. Fast Paxos. Distributed Comput. 19, 2 (2006), 79–103.
[26] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd. 2016.

The SNOW Theorem and Latency-Optimal Read-Only Transactions. In OSDI.
135–150.

[27] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd. 2020. Performance-Optimal Read-
Only Transactions. In OSDI. 333–349.

[28] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more
consensus in Egalitarian parliaments. In SOSP. 358–372.

[29] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting
More Concurrency from Distributed Transactions. In OSDI. 479–494.

[30] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating
Concurrency Control and Consensus for Commits under Conflicts. In OSDI.
517–532.

[31] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In ATC. 305–319.

[32] Dale Skeen. 1981. Nonblocking Commit Protocols. In Proceedings of the 1981 ACM
SIGMOD International Conference on Management of Data, Ann Arbor, Michigan,
USA, April 29 - May 1, 1981. 133–142.

[33] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and
Peter Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database.
In SIGMOD. 1493–1509.

[34] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput. 1, 2 (1972), 146–160.

[35] Robert H. Thomas. 1979. A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases. ACM Trans. Database Syst. 4, 2 (1979),
180–209.

[36] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In SIGMOD. 1041–1052.

[37] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey, Kamal Gupta,
Murali Brahmadesam, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice,
Tengiz Kharatishvili, and Xiaofeng Bao. 2018. Amazon Aurora: On Avoiding
Distributed Consensus for I/Os, Commits, and Membership Changes. In SIGMOD.
789–796.

[38] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,
Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-Latency Transaction
Processing for Globally-Distributed Data. In SIGMOD. 231–243.

[39] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. 2015. Building consistent transactions with inconsistent
replication. In SOSP. 263–278.

89

https://www.alibabacloud.com/product/polardb
https://prestodb.io/
https://aws.amazon.com/cn/redshift/
https://docs.aws.amazon.com/AmazonRDS/latest/ AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/ AuroraUserGuide/aurora-multi-master.html
https://www.ibm.com/docs/en/sgklm/4.1?topic=redundancy-configuring-multi-master-cluster
https://www.ibm.com/docs/en/sgklm/4.1?topic=redundancy-configuring-multi-master-cluster

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Transaction Processing on Cloud Databases
	2.2 Concurrency Control and Consensus
	2.3 Transaction Reordering in OCC

	3 Design of Starry
	3.1 Preliminaries
	3.2 An Intuitive Example
	3.3 The Semi-leader Transaction Commit Protocol
	3.4 Conflict Resolution on Sequencer
	3.5 Failure Recovery
	3.6 Correctness

	4 Extensions
	4.1 Distributed Transactions
	4.2 Read-only Transactions

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance on the Local Cluster
	5.3 Performance under Contention
	5.4 Performance on the Cross-Region Cloud
	5.5 Performance of Different Consistency Levels

	6 Conclusion and Future Work
	Acknowledgments
	References

