
M2Bench: A Database Benchmark for Multi-Model
Analytic Workloads

Bogyeong Kim

Seoul National University

Seoul, Republic of Korea

bgkim@dbs.snu.ac.kr

Kyoseung Koo

Seoul National University

Seoul, Republic of Korea

koo@dbs.snu.ac.kr

Undraa Enkhbat

Seoul National University

Seoul, Republic of Korea

undraae@dbs.snu.ac.kr

Sohyun Kim

Seoul National University

Seoul, Republic of Korea

chloek409@dbs.snu.ac.kr

Juhun Kim

Seoul National University

Seoul, Republic of Korea

johnjhkim@dbs.snu.ac.kr

Bongki Moon

Seoul National University

Seoul, Republic of Korea

bkmoon@snu.ac.kr

ABSTRACT

As the world becomes increasingly data-centric, the tasks dealt

with by a database management system (DBMS) become more

complex and diverse. Compared with traditional workloads that

typically require only a single data model, modern-day computa-

tional tasks often involve multiple data sources and rely on more

than one data model. Unfortunately, however, there is currently

no standard benchmark program that can evaluate a DBMS in the

various aspects of multi-model databases, especially when the ar-

ray data model is concerned. In this paper, we propose M2Bench,
a new benchmark program capable of evaluating a multi-model

DBMS that supports several important data models such as re-

lational, document-oriented, property graph, and array models.

M2Bench consists of multi-model workloads that are inspired by

real-world problems. Each task of the workload mimics a real-life

scenario where at least two different models of data are involved.

To demonstrate the efficacy of M2Bench, we evaluated polyglot or

multi-model database systems with the M2Bench workloads and

unfolded the diverse characteristics of the database systems for

each data model.

PVLDB Reference Format:

Bogyeong Kim, Kyoseung Koo, Undraa Enkhbat, Sohyun Kim, Juhun Kim,

and Bongki Moon. M2Bench: A Database Benchmark for Multi-Model

Analytic Workloads. PVLDB, 16(4): 747 - 759, 2022.

doi:10.14778/3574245.3574259

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/snu-dbs/m2bench.

1 INTRODUCTION

The relational model has been the dominant data model for decades

due to its wide applicability in traditional business enterprises [13].

Since the emergence of the Internet era, however, data sources

and types have become more diverse, and the relational model

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.

doi:10.14778/3574245.3574259

Order.json

Review.json

Recommendation Matrix

customer_id

p
ro

d
u
ct

_
id

Expected rating

{

"order_id" : "016f6a4",

"customer_id" : “AAAABON”

"order_line" : [{ "product_id": "B000F", ... },

{ "product_id": "B002Q", ... }]

...

}

{

“review_id" : “00001A”,

“order_id" : “016f6a4”

“product_id" : “B000F”

“rating" : 3.5

…

}

{

“review_id" : “00001A”,

“order_id" : “016f6a4”

“product_id" : “B000F”

“rating" : 3.5

…

}

{

“review_id" : “00001A”,

“order_id" : “016f6a4”

“product_id" : “B000F”

“rating" : 3.5

…

}

Fill the expected rating values

(Matrix Factorization)

2

{

"order_id" : "016f6a4",

"customer_id" : “AAAABON”

"order_line" : [{ "product_id": "B000F", ... },

{ "product_id": "B002Q", ... }]

...

}

{

"order_id" : "016f6a4",

"customer_id" : “AAAABON”

"order_line" : [{ "product_id": "B000F", ... },

{ "product_id": "B002Q", ... }]

...

}

Initialize the

recommendation matrix

1

Figure 1: An example of a multi-model task

is no longer a one-size-fits-all solution to increasingly complex

data management needs. As a result, a variety of alternative data

models have arisen. The document-oriented model has emerged

and demonstrated its success in the NoSQL industry to manage

semi-structured data [9, 14, 45]. The graph data model has been

commonly used for representing knowledge graphs and social net-

works [1]. The array data model, which has been used to represent

scientific data, is gaining popularity in data analytics due to its

applicability in machine learning [4, 6, 19, 31, 38]. Evidently, the

tasks and workloads a database management system (DBMS) is

expected to deal with have become more complex and diverse.

Unlike traditional data management tasks based on a single data

model, recent workloads often require the management and pro-

cessing of multiple models of data simultaneously. For example, a

recommendation system relies on data stored in the JSON format

and computes rating values in a matrix to recommend products

to customers. As is shown in Figure 1, the attributes in Order and
Review (in the document model) are selected and joined to initialize

the Recommendation matrix (in the array model). Then, the ex-

pected rating values can be filled in via matrix factorization. Thus,

the underlying DBMS needs to support database workloads based

on both the document model and the array model. The demand

for multi-model data management is already around us, and we

anticipate that it will be even more prevalent in the future.

747

https://doi.org/10.14778/3574245.3574259
https://github.com/snu-dbs/m2bench
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574259
https://www.acm.org/publications/policies/artifact-review-and-badging-current

However, there is no standard benchmark program that can

test the performance of a DBMS for handling multiple models of

data. Most of the existing benchmarks do not encompass multiple

data models. Popular benchmarks such as TPC-H and TPC-DS [41]

assume only the relational data model to provide E-Commerce

analytic tasks. XMark [34] and NOBENCH [12] assume only the

document data model and consist of basic NoSQL queries (𝑒.𝑔.,

selection, projection, aggregation) or path-finding queries over the

document hierarchy. LinkBench [3], GooDBye [26], and LDBC-

SNB [17] assume the graph data model and consist of analytic

queries over the graphs as well as simple CRUD operations (𝑖 .𝑒 .,

Create, Read, Update, and Delete). SS-DB [15] and GenBase [39]

assume the array data model, and they consist of queries for ma-

nipulating arrays. Each of these benchmark programs confines its

query set to a certain data model.

There are indeed a few benchmark programs that assume multi-

ple data models, but the models they support are rather limited. For

example, BigBench [22] covers the semi-structured and unstruc-

tured data as well as the relational data model, but it does not sup-

port the graph data model or the array data model. UniBench [51]

is a recent benchmark proposed for a multi-model DBMS. However,

it does not support the array data model, which is essential and

common for machine learning and scientific data analytics. Given

that there are many practical use cases where the array data model

is used along with other data models [18, 25, 44, 48], the lack of

support for the array data model is a non-trivial limitation of these

benchmark programs.

In this paper, we propose M2Bench, a new benchmark program

for multi-model databases. M2Bench provides a set of complex ana-

lytic tasks encompassing four data models (relational, document,

graph, and array) and a data generator. For the model complexity

pertaining to workloads, each task is designed to involve at least

two different data models. In addition, to cover diverse workloads

from distinct fields, each task is designed to fall into one of the three

domain categories: E-Commerce, Healthcare, and Disaster & Safety.

The domain category, data models, and key operations associated

with each task are summarized in Table 1. The design objective of

M2Bench is to help users understand the impact of a data model

on the performance of a multi-model database system. The full

description of our workloads, data generator, and implementations

are available in our public repository [36].

In order to demonstrate the efficacy ofM2Bench, we tested three
multi-model database systems, namely, Polyglot persistence [46],

ArangoDB [2], and AgensGraph [5]. TheM2Bench was able to eval-

uate the overall performance of the database systems quantitatively

and comparatively on the multi-model workloads and offer ex-

planations why a certain system might be more appropriate for

certain tasks. Besides, the impact of native storage engines was

analyzed for individual tasks to better understand the performance

characteristics of the multi-model database systems.

The paper is organized as follows. In Section 2, the overview of

M2Bench is presented. In Section 3, the characteristics of M2Bench
are covered. In Section 4, the workload of M2Bench is introduced

along with schemas of data. In Section 5, the data generator of

M2Bench and the source of the dataset are covered. In Section 6, we

present the experimental results. Lastly, the related works and the

conclusion are covered in Sections 7 and 8, respectively.

Figure 2:M2Bench overview

2 M2BENCH OVERVIEW

This section briefly overviews the main components ofM2Bench. To
cover the diverse and realistic workloads, M2Bench provides a mul-

titude of tasks divided into three domain categories (or 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠),

namely, E-Commerce, Healthcare, and Disaster & Safety.
(1) E-Commerce: This is one of the most utilized domains in

benchmark studies. It analyzes data of online commercial

systems and provides insights into profit generation.

(2) Healthcare: This is an important research field directly re-

lated to human health. Many studies have been conducted to

extract information embedded in biomedical and healthcare

datasets to find better ways to prevent and treat diseases.

(3) Disaster & Safety: This field is related to environmental

problems, such as earthquakes and fine dust. Monitoring

these data is becoming increasingly important due to the

dangerous and unpredictable nature of disasters.

As is shown in Figure 2, each 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 consists of a set of tasks,
each of which is a series of multi-model queries producing an

analytic result. A task is designed to involve at least two different

data models for the model complexity. M2Bench provides a total of

seventeen multi-model tasks inspired by real-world problems. The

detailed descriptions of individual tasks are provided in Section 4.

The data generator of M2Bench produces multi-model base data

from real-world datasets and then scales up the base data by a

chosen scale factor. Different methods are adopted to scale up the

base data of different data models. Refer to Section 5 for the details.

The basic benchmarking steps are as follows. First, datasets pro-

duced by the data generator are loaded into a DBMS by executing

a provided script. Second, a set of provided queries are executed

by the DBMS. Lastly, the query executions are analyzed under a

given set of profiling rules. Three sets of query scripts are currently

provided – one for each of the polyglot (composed of MySQL, Mon-

goDB, Neo4j, and SciDB), ArangoDB, and AgensGraph systems.

3 CHARACTERISTICS OFM2BENCH
3.1 Data Models

The most commonly used data models for data analytics lately

include the relational model, the document-oriented model, the

property graph model, and the array model. Many applications can

represent their data in a combination of those four data models.

748

Table 1: Characteristics ofM2Bench tasks

Categories Tasks Relational Document Graph Array
Sel Agg Sel Agg Unw Dot Sel Agg Pat S.P Sel Agg L.A

E-Commerce

T0 ✓ ✓ ✓ ✓ ✓ ✓

T1 ✓ ✓ ✓ ✓ ✓ ✓

T2 ✓ ✓ ✓ ✓

T3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T5 ✓ ✓ ✓ ✓ ✓

Healthcare

T6 ✓ ✓ ✓ ✓ ✓

T7 ✓ ✓ ✓ ✓ ✓

T8 ✓ ✓ ✓ ✓ ✓ ✓

T9 ✓ ✓ ✓ ✓ ✓ ✓

Disaster & Safety

T10 ✓ ✓ ✓ ✓ ✓

T11 ✓ ✓ ✓ ✓ ✓ ✓

T12 ✓ ✓ ✓ ✓ ✓ ✓ ✓

T13 ✓ ✓ ✓ ✓

T14 ✓ ✓ ✓ ✓ ✓

T15 ✓ ✓ ✓ ✓

T16 ✓ ✓ ✓ ✓ ✓ ✓

Sel: selection, Agg: aggregation, Unw: unwind, Dot: nested attribute, Pat: pattern matching, S.P: shortest path, L.A: linear algebra

M2Bench also represents a database in a combination of those four

data models. This section briefly describes the data models focusing

on two aspects: data representation and data manipulation.

3.1.1 Data Representation. Each data model represents data in

different forms. The relational data model represents data as tables.

Each table consists of a set of records, each of which consists of a

fixed number of attributes. The tables can be connected to other

tables via the primary-foreign key relationships.

The document (oriented) model stores the name and value pair

of an attribute similarly to a key-value pair. A single document

stores one or more of these pairs in a more flexible way than the

relational model. While all the records in a relational table have

the same number of attributes, the documents in a collection may

have a varying number of attributes. Moreover, an attribute can be

another (nested) document or an array of attributes.

In the (property) graph model, data objects and their relation-

ships are represented by the vertices and edges of a graph. The

vertices and edges can have a set of attributes. The edges addition-

ally contain information about their source and destination vertices.

Social networks and road networks are often represented by the

graph model.

In the array model, each data point is represented as a cell in an

array, which is composed of dimensions and attributes. For example,

a satellite image can be represented as an array by mapping each

pixel to a cell in the array, where the coordinates and the RGB

colors of the pixel are considered its dimensions and its attributes,

respectively.

In M2Bench, we assume that data objects in one model can be

linked to data objects in another model via what we refer to as the

inter-model primary-foreign key relationships.

3.1.2 Data Manipulation. The key operations supported by the

data models are summarized in Figure 3. The relational data model

supports operations to manipulate table data. The relational data

Relational Model Document Model

Selection

Projection

Join

Aggregation

Selection / Projection

Pattern Matching

• E.g. N-Hop Query

Shortest Path

Aggregation

• E.g. Degree / Centrality

Selection

• E.g. Filter / Subarray

Projection

Aggregation

• E.g. Window

Linear algebra

Selection

Projection

Aggregation

Unwind

Dot Operation

Graph Model Array Model

Figure 3: Data models and key operations ofM2Bench

model and the document data model have a few common operations

due to the similarities in their data representation. The document

model, however, provides its own unique operations such as unwind
(or unnest) and dot. The unwind operation supports processing of an
array of attributes,

1
and the dot operation supports accessing nested

attributes. The graphmodel supports patternmatching operations to
facilitate graph exploration. Besides, various advanced operations

(𝑒.𝑔., a shortest path query) can also be supported by the graph

model. The array data model supports operations for manipulating

arrays such as subarray and filter and linear algebra operations for

processing matrix data.

The tasks of M2Bench are designed to cover all those key oper-

ations in Figure 3 so that a multi-model database system can be

evaluated effectively and thoroughly. Table 1 presents the char-

acteristics of all the tasks with respect to their data models, key

operations, and domain categories. The check marks in the table

1
While traditional RDBMSes do not define or support the ARRAY data type, some of

the recent systems actually support the unwind (unnest) operation.

749

indicate the specific key operations involved in a certain task. The

projection and join operations are omitted in the table, as they are

commonly used in all the data models.

Table 1 clearly shows that the tasks ofM2Bench reflect the diverse
workloads arising from the real-worldmulti-model applications. For

example, task T0 models an e-commerce application that involves

all four data models to carry out selection, aggregation, pattern

matching, and linear algebra operations. The performance impact

of individual data models can be identified by referencing Table 1

and profiling the execution results. Profiling can break down the

total elapsed time of a task into the times consumed separately by

different data models. The profiling rules adopted forM2Bench will

be described in Section 6.3.

3.2 Domain Categories for Diverse Workloads

M2Bench selects three domain categories to design workloads with

diverse characteristics. In the E-Commerce scenario, tasks are based

heavily on a large document collection called𝑂𝑟𝑑𝑒𝑟𝑠 . Consequently,

efficient query processing is more important for data in the docu-

ment datamodel than those in the othermodels.Matrix factorization
as an advanced array operation is also included, which requires a

large volume of matrix multiplication.

TheHealthcare scenario is mainly based on network datasets that

represent the relationships between drugs and diseases. Thus, the

tasks in this scenario utilize pattern matching queries to extract ad-

vanced information about drugs and diseases (𝑒.𝑔., interacting drugs,

similar diseases). Besides, an array operation, cosine-similarity, is
also included to calculate drug similarities.

The Disaster & Safety scenario is based on geospatial and raster

datasets. The tasks in this scenario include shortest path queries as

well as conventional geospatial queries utilizing spatial indexes. In

regard to the array model, the tasks in this scenario do not require

linear algebra operations but often rely on other array operations

such as window and subarray to analyze raster data.

4 WORKLOAD

Each benchmarking scenario of M2Bench consists of a set of tasks,

each of which functions as a standard workload for a single unit of

analysis (𝑒.𝑔., finding the groups of patients with similar diseases).

Though each task can be expressed as a single query, we break it

down to a series of smaller queries for higher readability. Conse-

quently, the queries of a task are processed sequentially, and each

query result is used as an input to the next query of the task. All

tasks of M2Bench are briefly summarized in Table 2.

It would be best for clarity to use a standard query language to

express the tasks. However, there does not exist such a standard

query language that covers all the four data models as yet. To get

around this limitation, we opt to augment the Structured Query

Language (SQL) by adopting a few essential features from existing

non-relation query languages or database systems. In particular,

the dot notation (.) and the unnest syntax are used to access nested

attributes in document data [27]. Some of the CYPHER language

features such as match and pattern are used to express pattern

matching queries over graph data [5, 20, 28]. Besides, the Array

Functional Language (AFL) of SciDB [38] is used to express the

manipulation of array data. The grammar of each language is not

Table 2: Tasks inM2Bench

Tasks Description

E
-
C
o
m
m
e
r
c
e

T0

Build a logistic regression model

to predict if a user prefers the given brand.

T1

Compute sales performance of each

product of a top-selling Brand.

T2

Perform product recommendations

based on past customer ratings.

T3

Analyze purchase propensities of people within

a 2-hop social network distance from the customer

who made the highest number of purchases.

T4

Find the interests of the top-N famous customers

who made more than a certain number of orders

from a given product category.

T5

Extract the social network graph of female customers

who purchased the given product and wrote a review

within the one year from the given date.

H
e
a
l
t
h
c
a
r
e

T6

Find drugs that interact with

the prescribed drugs of a given patient.

T7

Find the number of female and male patients

suffering from similar diseases.

T8

Find all potential interaction drugs

which share the same targets

as the given patient’s prescription drugs.

T9

For the prescription of a given patient, find

similar drugs based on the adverse effects.

D
i
s
a
s
t
e
r
&
S
a
f
e
t
y

T10

Find the road network sub-graph

within 5km from the earthquakes’ location.

T11

Find the cost of the shortest paths

for each GPS coordinate and shelter pair.

T12

For a shelter near a populous region

during the given time interval,

find the five closest buildings from the shelter.

T13

For earthquakes of magnitude 4.5 or above,

find the statistics of buildings near the earthquake.

T14

Find the nearest building from a finedust hot spot

for each date between two given timestamps.

T15

Find the shortest path from the current coordinates

to a hotspot of finedust between two given timestamps.

T16

For a given timestamp,

hindcast the pm10 values of the schools.

strictly followed unless it gives rise to ambiguity. Some of the key

syntactic structures and functions adopted in M2Bench are listed

in Table 3. Readers can refer to the public archive of M2Bench for

more detailed explanations [37].

The database schemas of the benchmarking scenarios are illus-

trated in Figures 4-6. The primary keys (PK) and foreign keys (FK)

of a database are annotated next to the corresponding attributes in

the figures. The inter-model primary-foreign key relationship is spec-
ified by a line linking the corresponding attributes. For example, in

Figure 4, the 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑 attributes are common in the𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

table and the𝑂𝑟𝑑𝑒𝑟𝑠 collection, and they are linked by a line to indi-

cate the one-to-many relationship between the two datasets. Each

database consists of scalable datasets and unscalable ones, which

are clearly distinguished in the corresponding schema diagram. A

detailed description of the database schema and a sample task is

presented for each benchmarking scenario in this section.

750

Table 3: Key syntactic structures and functions adopted inM2Bench

Syntax/Function Description

pattern: (a:A)-[r:R]-(b:B)
Node a is linked with node b through the edge r.
A, R and B denote the label or field name.

Directed edge can be represented using “ − [𝑟 : 𝑅] → ” instead of “ − [𝑟 : 𝑅] − ” .

MATCH 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 RETURN 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

Match all 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 satisfying the 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 in the graph

and return a set of 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 in the matched 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 .

Unnest
If a document or object contains a nested array,

perform a join of the nested array with its parent object and return the joined object.

Dot(.) Return the value of the corresponding nested field.

toArray(𝑑1,𝑑2,. . . ,𝑑𝑛, 𝐴1,𝐴2,. . . ,𝐴𝑛) Convert an object to an array of which size is (𝑑1,𝑑2,...,𝑑𝑛) having 𝐴1,𝐴2,..., 𝐴𝑛 as attributes.

MatMul(𝑚1, 𝑚2) Matrix multiplication on two matrices𝑚1 and𝑚2.

Factorization Perform the matrix factorization and produce two matrices,𝑚1 and𝑚2, containing the latent factors.

ST_ClosestObject(𝑑, 𝑜, 𝑐) In the dataset 𝑑 , find the object 𝑜 of which coordinate is closest from the coordinate 𝑐 .

ShortestPath(𝐺, 𝑠, 𝑒) Find the shortest path and its cost in the graph𝐺 with start node 𝑠 and end node 𝑒 .

OVER WINDOW (𝑑1, 𝑑2, ..., 𝑑𝑛) Calculate window aggregation with a size of 𝑑1 × 𝑑2 × · · · × 𝑑𝑛 .

4.1 E-Commerce Scenario
The database of the E-Commerce scenario includes customer and

order information and is analyzed to gain insight into profit gen-

eration. The social network data are also explored to utilize the

relationship among the customers. The workload in this scenario

consists of six multi-model tasks, from T0 to T5, which are inspired

by the previous studies [8, 25, 41, 51]. Below are the database schema

adopted in this scenario and the description of task T2 given as an

example.

Database Schema. The multi-model schema of the E-Commerce

database is shown in Figure 4. The relational data model includes

the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 , 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 , and 𝐵𝑟𝑎𝑛𝑑𝑠 tables. The document model

includes the 𝑂𝑟𝑑𝑒𝑟𝑠 and 𝑅𝑒𝑣𝑖𝑒𝑤𝑠 document collections. Lastly, the

graph model includes the Social Network property graph, which is

composed of nodes (𝑝𝑒𝑟𝑠𝑜𝑛𝑠 and ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑠) and edges (𝑓 𝑜𝑙𝑙𝑜𝑤𝑠 and

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠_𝑖𝑛). The Customer table, the Orders and Reviews collec-
tions, and the Social Network graph are scalable and annotated with

their relative cardinalities in Figure 4. For example, the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

table contains 9,949 rows when the scale factor is one (𝑆𝐹 = 1).

Example 1 (T2. Product Recommendation). This task in-
volves the generation of a product recommendation matrix based on
the past customer ratings.
Q1. A = SELECT customer_id, product_id, rating

FROM Reviews, Orders

WHERE Reviews.order_id = Orders.order_id

Q2. B, C = A.toArray(dim1: customer_id, dim2: product_id,

val: avg(rating))

.Factorization

Q3. D = MatMul(B,C)

Task T2 involves two data models, the document and array models,
and it consists of three queries (Q1, Q2, and Q3) that are executed
in sequence. Q1 fetches a set of tuples (𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑 , 𝑝𝑟𝑜𝑑𝑢𝑐𝑡_𝑖𝑑 ,
𝑟𝑎𝑡𝑖𝑛𝑔) from the document collections Orders and Reviews. Q2 first
transforms the result of Q1 to an array by setting the 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑 and
𝑝𝑟𝑜𝑑𝑢𝑐𝑡_𝑖𝑑 as dimensions and the average of 𝑟𝑎𝑡𝑖𝑛𝑔s as the attribute
value of an array cell. Q2 then factorizes the array to produce two

matrices, B and C. Finally, Q3 returns a recommendation matrix D
by multiplying the two matrices B and C.

Customers (SF*9,949)

customer_id <str> PK

person_id <str> FK

name <str>

zipcode <str>

Products (9,691)

product_id <str> PK

brand_id <int> FK

title <str>

price <float>

Brands (64)

brand_id <int> PK

name <str>

industry <str>

order_id <str> PK

customer_id <str> FK

total_price <float>

order_line <array<doc>>

product_id <str> FK

price <float>

review_id <str> PK

order_id <str> FK

product_id <str> FK

rating

feedback*

<int>

<str>

Relational Document Property Graph

Follows<Edge>

Orders (SF*142,257)

Reviews (SF*277,740)

Persons
<Vertex>
(SF*9,949)

Hashtags
<Vertex>
(SF*300)

Interested_in<Edge>

tag_id <int> PK
content <str>

person_id <str> PK
name <str>
gender <str>

Social Network

*optional field

Figure 4: E-Commerce schema

4.2 Healthcare Scenario
The database of the Healthcare scenario includes Electronic Health

Record (EHR) data as well as drug and disease data. The biomedical

information is extracted and analyzed to provide insight into the

medical records. The workload in this scenario consists of four

multi-model tasks from T6 to T9, which are derived from the previ-

ous studies of common use cases in healthcare [18, 33, 44].

Database Schema. The multi-model schema of the Healthcare

database is shown in Figure 5. The relational data model includes

the 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 , 𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 , and𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 tables. The graph model

includes the Disease Network property graph. Lastly, the document

model includes the 𝐷𝑟𝑢𝑔𝑠 document collection. Only the relational

tables are scalable in the database, and they are annotated with

their relative cardinalities in Figure 5.

Example 2 (T7. Patients with similar diseases). Given
the diseases of patient_id X, this task finds the number of female and
male patients suffering from similar diseases.

751

Patients (SF*46,520)

patient_id <int> PK

patient_name <str>

gender <str>

date_of_birth <date>

date_of_death <date>

Diagnoses (SF*457,844)

patient_id <int> FK

disease_id <int> FK

Prescriptions (SF*1,224,914)

patient_id <int> FK

drug_id <int> FK

start_date <date>

end_date <date>

drug_id <int> PK

drug_name <str>

drug_interaction_list <array<doc>>

interaction_drug <doc>

drug_name <str>

drug_id <int>

adverse_effect_list <array<doc>>

adverse_effect_name <str>

target_list <array<doc>>

id <int>

name <str>

organism <str>

action <str>

Relational Document Property Graph

Drugs(3,979)

Diseases
<Vertex>
(489,141)

Is_a<Edge>
(3,145,268)

disease_id <long> PK

term <str>

Disease Network

Figure 5: Healthcare schema

Q1. A = SELECT disease_id

FROM Diagnoses

WHERE patient_id = "X"

Q2. B = SELECT distinct(d3.disease_id)

FROM A,

(MATCH (d1: Diseases)-[:is_a]->(d2: Diseases)

<-[:is_a]-(d3: Diseases) RETURN d1, d2, d3)

WHERE A.disease_id = d1

Q3. C = SELECT distinct(patient_id)

FROM B, Diagnoses

WHERE Diagnoses.disease_id = B.disease_id

AND Diagnoses.patient_id != "X"

AND B.disease_id NOT IN A

Q4. D = SELECT gender, count(gender)

FROM Patients, C

WHERE Patients.patient_id = C.patient_id

GROUP BY gender

Task T7 consists of four queries from Q1 to Q4. For a given 𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑
X, Q1 fetches 𝑑𝑖𝑠𝑒𝑎𝑠𝑒_𝑖𝑑s from the 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 table. Q2 then finds
diseases that are in the sibling relationship with the 𝑑𝑖𝑠𝑒𝑎𝑠𝑒_𝑖𝑑s in the
Disease Network graph. Note that the subquery of Q2 in the CYPHER
language returns a set of matched node tuples (d1, d2, d3) of similar
diseases. Then, Q3 finds the patients who suffer from the diseases
returned by Q2. Lastly, Q4 aggregates the patients from Q3 by gender.
The relational and graph models are involved in this task.

4.3 Disaster & Safety Scenario
The database of the Disaster & Safety scenario includes earthquake

event data as well as shelter and road network information so that

it can support an earthquake response system and a fine dust alert

system. The workload for an earthquake response system includes

filtering the road network, finding the shortest paths, and searching

for specific buildings. It consists of four multi-model tasks from T10
to T13. The workload for a fine dust alert system includes finding

the sources of fine dust and providing route recommendations for

the cleaning vehicles [24, 48, 49]. It consists of three multi-model

tasks from T14 to T16.

Database Schema. The multi-model schema of the Disaster &

Safety database is shown in Figure 6. The relational data model

includes the Shelters, Earthquakes, and GPSes tables. The document

Earthquakes (56,345)

earthquake_id <int> PK

coordinates <point>

time <datetime>

magntiude <float>

Shelters (6,980)

shelter_id <int> PK

site_id <int> FK

capacity <int>

name <str>

GPSes (SF*8,400,000)

gps_id <int> PK

user_id <int>

coordinates <point>

time <datetime>

site_id <int> PK

geometry <GeoJson>

type <str>

coordinates <arr>

properties <doc>

type <str>

description* <str>

name*

address*

<str>

<str>

Relational

Document

Property Graph

Sites (11,241,681) RoadNodes
<Vertex>

(1,595,278)

Road Network

Roads<Edge>
(3,941,602)

roadnode_id <int> PK

site_id <int> FK

distance <int>

Array
Finedust (SF*5,664,033)

time

la
ti
tu
d
e

longitude

pm10 <float>
*optional field

Figure 6: Disaster & Safety schema

model and the graph model include the collection Sites and the

Road Network property graph, respectively. Lastly, the array model

includes the Finedust array. The GPSes table and the Finedust array
are scalable in the database, and they are annotated with their

relative cardinalities in Figure 6.

Example 3 (T15. Fine Dust Cleaning Vehicles). Given
a time interval [ts1, ts2] and the coordinates of a certain location X,
this task finds the shortest path from the location to a hotspot in the
Finedust array within the time interval.

Q1. A = SELECT (latitude, longitude) AS coo,

avg(pm10) AS pm10_avg

OVER WINDOW (*, 5, 5)

FROM FineDust

WHERE timestamp >= ts1 AND timestamp <= ts2

Q2. B = SELECT ShortestPath(

RoadNetwork,

ST_ClosestObject(Sites, RoadNodes, "X"),

ST_ClosestObject(Sites, RoadNodes, A.coo))

FROM A, RoadNetwork, Sites

WHERE Sites.site_id = RoadNodes.site_id

ORDER BY A.pm10_avg DESC

LIMIT 1

Task T15 consists of two queries, Q1 and Q2. Q1 first fetches a sub-
array within the time interval [ts1, ts2] from the Finedust array. It
then applies a window aggregation (e.g., PostgreSQL [40]) in order
to compute the average pm10 values for the array cells within the
5× 5 overlapping windows. Q2 locates a hotspot, a region that has the
maximum 𝑝𝑚10_𝑎𝑣𝑔 value, in the result from Q1. It then finds the
shortest path from the current location 𝑋 to the hotspot over the Road
Network graph. The array, graph, and document models are involved
in this task.

5 DATA GENERATOR

The data generator of M2Bench creates databases for multi-model

benchmarking purposes. This section describes the process of con-

structing the database of scale factor one for each scenario and

expanding it for larger scale factors. The databases generated for

M2Bench are summarized in Table 4 along with the scalability of

individual components.

752

5.1 Constructing Databases of Scale Factor One

M2Bench exploits public real-world datasets to build a realistic

multi-model database. M2Bench also uses the data generation tools

of existing benchmarks.

5.1.1 E-Commerce Database. We use the data generators of

UniBench [51] and TPC-DS [41] to construct the scale factor one

(SF1) E-commerce database. Specifically, the Products and Brands
tables, the Orders and Reviews document collections, and the So-
cial Network graph are constructed by adding and modifying the

attributes of the UniBench datasets [51]. The Persons vertices of the
Social Network graph and the Customers table are created by taking

the corresponding data from the TPC-DS database.

The primary-foreign key relationships between different sources

of data are established based on Customers and Orders. For example,

a person node of the Social Network graph corresponds to a person
ID of the Customers table, and a customer ID corresponds to the ID

of the person who has made his or her orders in Orders collection.

5.1.2 Healthcare Database. The Healthcare database is created
entirely from real-world datasets. The Patients, Diagnoses and Pre-
scriptions tables are derived from MIMIC Critical Care [23], which

is a collection of electronic health records associated with more

than 40,000 patients in the Beth Israel Deaconess Medical Center.

The Drugs documents are derived from Drugbank [47], and the

Disease Network graph is derived from SNOMED [35]. Drugbank is

a collection of detailed information about drugs such as side effects,

drug-drug interactions, enzymes, and targets. SNOMED is a dataset

for clinical terminology.

Data cleaning is necessary for the real-world datasets so that

unused attributes are pruned out and some of the attribute names

are conveniently aligned among the datasets. A script for data

cleaning is provided in the public repository of M2Bench [36]. The

primary-foreign key relationships between the different sources of

data are established based on the linked IDs provided by the data

sources or the attributes bearing the same name.

5.1.3 Disaster & Safety Database. The Disaster & Safety data-

base is created partially from real-world datasets. The Earthquakes
and Shelters tables and the Sites document collection are derived

from the U.S. Geological Survey (USGS) [43], the Homeland In-

frastructure Foundation Level Data (HIFLD) [42], and the Open-

StreetMap (OSM) [29], respectively. The Road Network graph is

derived from the 9th DIMACS Implementation Challenge [10]. The

GPSes table and the Finedust array are generated synthetically based
on real-world datasets. Specifically, the GPS coordinates of GPSes
follow the population distribution of the Gridded Population of the

World (GPW) dataset [11], and the Finedust array is generated from
the atmospheric scans made by the Lidar equipment installed in

Siheung, Korea [24] (with the coordinates remapped to the state

of California, USA so that the Finedust array is placed in the same

geographic location with the other aforementioned datasets). The

primary-foreign key relationships between the different sources of

data are established based on spatial proximity.

Table 4: Databases inM2Bench

Scenario Data Name
Source
dataset Scalability

E-Commerce

Customers TPC-DS [41] ✓
Products UniBench [51] ✓
Brands UniBench

Orders UniBench ✓
Reviews UniBench ✓

Social Network

TPC-DS

& UniBench

✓

Healthcare

Patients MIMIC-III [23] ✓
Prescriptions MIMIC-III ✓
Diagnoses MIMIC-III ✓
Drugs Drugbank [47]

Disease Network SNOMED [35]

Disaster

& Safety

Earthquakes USGS [43]

Shelters HIFLD [42]

GPSes GPW v4 [11] ✓
Sites OSM [29]

Road Network DIMACS [10]

Finedust MISE [24] ✓

5.2 Scaling Databases

The M2Bench databases can be scaled up by a given factor. Since

not every component of the database is scalable, the scalable com-

ponents of each database are clearly marked with a ✓symbol in

Table 4. The detailed steps of the scaling-up process for each data

model are depicted below.

5.2.1 Scaling Tables. When a table is scaled up, the value domain

of the primary key (PK) attribute is expanded by a given scale factor.

So is the value domain of a foreign key (FK) attribute referencing

the PK of the table being scaled up. For example, if the Patients table
is scaled up by a factor 𝑘 , then each Patients tuple with the primary

key 𝑝 is duplicated to 𝑘 tuples with their primary keys from 𝑝 × 𝑘

to 𝑝 × 𝑘 + (𝑘 − 1). If a table being scaled up contains a foreign key

attribute referencing the PK of a non-scalable table (e.g., categorical
values), each PK value is repeated 𝑘 times for the FK attribute. For

value domains such as timestamps and emails, perturbed values are

added to increase the cardinality of the domains.

5.2.2 Scaling Documents. Document collections are scaled up

in the same manner as the tables regardless of their fields being

nested or not. The number of documents increases by a given scale

factor for a collection being scaled up. Conversely, the array fields

of a document are not subject to scaling up and their lengths remain

the same. In the E-Commerce database, for example, the 𝑂𝑟𝑑𝑒𝑟𝑠

collection contains more documents as it gets scaled up, but the

length of 𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑛𝑒 in the document does not change.

5.2.3 Scaling Graphs. Most real world graphs including social

networks grow denser over time with the number of edges growing

super-linearly to the number of nodes. Thus, the (in/out) degree

distribution is considered an important feature to be preserved by

graph scaling. A graph scaling tool called EvoGraph is known to

preserve various graph properties such as degree distribution [32].

Thus, for example, the person-follows-person graph of the Social Net-
work can be scaled up by EvoGraph. However, EvoGraph cannot be

753

applied to bipartite graphs such as the person-InterestedIn-hashtag
graph. Therefore, the person-InterestedIn-hashtag graph is scaled up

by using our own generator. This graph is scaled up by increasing

the degree of the 𝑝𝑒𝑟𝑠𝑜𝑛 nodes linearly so that people become more

interested in diverse hashtags as the scale factor increases.

5.2.4 Scaling Arrays. The Finedust array is scaled up by increas-

ing the resolution of the time dimension. The time domain itself

remains unchanged, but the time interval between two adjacent ob-

servations is sliced further so that the size of the array increases by

a given scale factor. The scalar values stored in the array (e.g., dust
concentration measurements) are linearly interpolated between the

values stored in two adjacent observations.

6 EVALUATION

To demonstrate the efficacy of M2Bench, all the tasks were imple-

mented and evaluated on a few chosen multi-model database sys-

tems: Polyglot persistence [46], ArangoDB [2], and AgensGraph [5].

For analytic workloads, the elapsed time taken for executing an

individual task is commonly used as an evaluation metric for bench-

marking purposes. Therefore, in this section, we focus on the end-

to-end elapsed time of an individual task executed by each database

system. The databases were scaled-up with the M2Bench script to

evaluate the scalability of the database systems.

6.1 Database Systems for Evaluation

6.1.1 Polyglot Persistence. A DBMS is said to natively support a
data model𝑋 if the DBMS has a storage engine designed specifically

for the model 𝑋 . For example, SciDB’s storage engine is designed

to store array data. It provides efficient access to a group of ad-

jacent array cells by storing them as a set of partitioned arrays

called chunks. Polyglot persistence refers to a system that exploits

multiple DBMSes to solve complex problems. In our evaluation,

polyglot persistence relies on the storage engines of four popu-

lar DBMSes to perform multi-model tasks, namely, MySQL [30],

MongoDB [27], Neo4j [28], and SciDB [38]. Each of them natively
supports one of the four data models. A model-specific operation is

assumed to be performed by the corresponding DBMS. For example,

an aggregation of relational data is executed by MySQL.

To access data from multiple systems simultaneously, a coordi-

nating client is created atop the DBMSes. The client is involved in

collecting intermediate results from those DBMSes and processing

them for the next intermediate or the final result. The client is

assumed to have no memory space enough to store a large quantity

of intermediate data. When an intermediate result is required by

the next operation, the result may have to be written back to the

DBMS that produced it and fetched again from the DBMS. For a join

operation between different data models, the client orchestrates a

nested loop join between the DBMSes.

6.1.2 ArangoDB. ArangoDB is a DBMS that natively supports

two data models: the document model and the graph model. While

JSON documents are stored in RocksDB [16] in its own internal

format, graph data are stored in almost index-free adjacency storage.
It is almost index-free in that a hash index is also provided in

the form of modified adjacency storage. The relational and the

array data of M2Bench are stored as documents in ArangoDB for

evaluation. In particular, the array data are stored in the coordinate

list format (or COO format in short), which represents an array cell

𝑥 as an 𝑛-dimensional tuple (𝑑1, . . . , 𝑑𝑛, 𝑥) with its 𝑖𝑡ℎ coordinate

denoted by 𝑑𝑖 .

6.1.3 AgensGraph. AgensGraph is a DBMS that supports the

relational model and the graph model. As an extension of Post-

greSQL [40], AgensGraph natively supports the relational model.

AgensGraph relies on an additional storage engine for graph data,

but its internal architecture is similar to the relational storage en-

gine. Thus, AgensGraph is not considered natively supporting the

graph model. The document collections of M2Bench are stored in

the JSONB format, and the array data are stored in the COO format.

6.2 Settings

All the experiments were conducted on a standalone machine with

Intel i7-9700K CPU, 32GB RAM, and a 512GB SSD running Ubuntu

18.04.4 LTS.We configured the three chosen database systems to use

the same amount of memory insofar as possible. For the polyglot

system, 4GB memory was allotted as a page cache for each of the

four underlying DBMSes and additional 8GB memory was allotted

for the Java heap space of Neo4J following the recommendation of

Neo4J. Similar to the polyglot system, a total of 24GB memory was

allotted separately for AgensGraph and ArangoDB.
2

Indexes were built on the same or closely related attributes on all

the database systems. Queries were executed in a single thread, and

the elapsed times were measured by taking the average of five runs

per query. To avoid the cache effect, all the DBMSes were restarted

before each run to flush the page cache. For the geospatial queries

from T11 to T14, a new collection called Site_centroid was created
to include the centroid values additionally. This new collection

was used instead of the Sites collection because MongoDB did not

provide a centroid function.

6.3 Baseline Evaluation

Figure 7 shows the elapsed times of all tasks performed by the three

database systems, namely, the polyglot system, ArangoDB, and

AgensGraph. (Refer to Table 2 for the description of tasks.) Each

bar shows a measurement of elapsed time, and it is broken down

into different colors to identify separately the times consumed for

different data models.
3
Profiling was done by the following simple

rules listed below.

(1) The time consumed by a model-specific operation (shown

in Figure 3) accounts solely for the corresponding model.

(2) If two datasets of different models are joined or accessed

simultaneously, the times consumed to fetch the datasets

account separately for their corresponding data models.

(3) When the data model of intermediate data needs to be deter-

mined for profiling, the relational model is chosen if inter-

mediate data do not have any nested attribute or any array

attribute. Otherwise, the document model is chosen.

2
For ArangoDB, three-quarters of the total memory was used by RocksDB.

3
The legend “Others" indicates the elapsed time consumed by the client in the polyglot

system or the elapsed time that cannot be classified into a specific model.

754

Figure 7: Baseline evaluation

For the polyglot system with a coordinating client, the connection

delay between the client and each underlying DBMS is added to

the elapsed time of the corresponding data model.

6.3.1 Polyglot Persistence. The polyglot system outperformed

AgensGraph and ArangoDB for tasks that required intensive ar-

ray computations (𝑒.𝑔., T2, T9, T14, and T15). This is attributed to

SciDB with a native storage engine that stores an array in chunks

such that the locality of array cells is preserved. On the other hand,

AgensGraph and ArangoDB store an array in a table and a collec-

tion, respectively, where each row or each document represents an

array cell. Consequently, the locality of array cells is not preserved.

With the lack of locality, array operations such as matrix multi-

plication would have to access randomly scattered rows, which

causes excessive disk I/O operations. Task T16 also requires array

operations, but the performance of the polyglot system was not so

impressive for it. This is because T16 requires accessing array cells

randomly and iteratively. This access pattern was not particularly

beneficial for the polyglot system.

For the rest of the tasks, the performance of the polyglot system

was not the best and it was actually much worse than that of the

other database systems for a few tasks. This is due to what we call

polyglot latency, which can take up a large portion of the elapsed

time. It occurs when many data objects are fetched individually to

the client, for example, to be joined with data from another database

system. The polyglot latency was almost 42% of the total elapsed

time of T1. The polyglot latency will be discussed in more detail in

Section 6.4.

6.3.2 ArangoDB. ArangoDB outperformed the other database

systems for T4, T8, T11, T12, and T13. Among those, T11 and T12
require intensive computations over graphs, and T13 requires in-
tensive computations over documents. Due to the lack of a native

storage engine for arrays, ArangoDBwas outperformed by the poly-

glot system for T2, T9, T14, and T15 that involve array operations.

For these tasks, ArangoDB was slower than AgensGraph as well

due to their differential index performance. (Refer to Section 6.5.4.)

6.3.3 AgensGraph. AgensGraph outperformed the other data-

base systems for T0, T1, T3, T5 to T7, T10, and T16. Overall, it
performed well for tasks that involved intensive access to relational

tables. This is because AgensGraph relies on the relational storage

engine of PostgreSQL to support both the relational and the graph

models. Surprisingly, however, for some tasks with graph opera-

tions, AgensGraph was faster than ArangoDB which has a native

graph engine. (This is discussed in greater detail in Section 6.5.)

On the other hand, for tasks with shortest path queries (T11, T12,
and T15), AgensGraph was slower than the other database system.

AgensGraph yielded poorer performance than the polyglot system

for tasks with array operations (T2, T9, T14, and T15).

6.4 Polyglot Latency

Although the polyglot system takes advantage of native storage

engines for all the data models, its performance was poor for several

tasks. In the polyglot system, the client interacts with an individual

DBMS through a database connection such as ODBC or JDBC.

Whenever the client processes a query, the query is transmitted to

the DBMS and the result is returned back to the client. Both the

query and result are transmitted through the connection, and the

intrinsic overhead is not trivial especially when the client interacts

with the DBMS frequently. We call the additional latency caused

by this client-DBMS interaction the polyglot latency, because it is
inherent only in the polyglot system due to its peculiar architecture.

Consider a subquery𝑄 of task T1 shown below,which joins a rela-
tional table with a document collection. The Products table is stored
in MySQL, and the OrderLine collection produced by UNNESTing

the order_line field of the Orders collection is stored in MongoDB.

Subquery Q = SELECT product_name

FROM Products, OrderLine

WHERE OrderLine.product_id = Products.product_id

755

To process the query, the client of the polyglot system repeatedly

invokes a selection query to MySQL for each OrderLine.product_id
value. The repeated interaction with MySQL through the database

connection leads to significant performance degradation.

0

50

100

150

200

250

L
at

en
cy

 (
m

s)

Polyglot MySQL

P
o
lyg

lo
t L

a
ten

cy

(a) Subquery Q

0

200

400

600

800

Polyglot ArangoDB AgenGraph

E
lp

as
ed

T
im

s
(m

s)
Relational Document Polyglot Latency Other

(b) Elapsed times of the task T1

Figure 8: Polyglot latency in task T1

Figure 8a compares the total elapsed times taken by the polyglot

system and MySQL for the subquery 𝑄 . MySQL processed the

subquery 𝑄 by importing the OrderLine collection to a relational

table and performing a nested loop join operation. Therefore, the

difference in the elapsed times may be considered an upperbound of

the polyglot latency of 𝑄 . The polyglot latency was approximately

95% of the total elapsed time for𝑄 . Figure 8b shows the breakdown

of the elapsed times for task T1 by the three systems in comparison.

The polyglot latency was approximately 42% of the elapsed time

taken by the polyglot system. Without the polyglot latency, the

polyglot system would outperform ArangoDB.

The polyglot latency was incurred in all the tasks carried out

by the polyglot system. Although the polyglot latency can be elim-

inated for the subquery 𝑄 by importing the OrderLine collection,
this sort of optimization cannot be applied to every task. SciDB

and Neo4j do not support this kind of join for one. For the tasks

amenable to the reduction of polyglot latency, we measured the

potential improvement in Table 5.

Table 5: Improvement by avoiding the polyglot latency

Task T0 T1 T3 T5 T6 T11 T12

Improv. Rate 33.08% 41.92% 7.44% 2.66% 4.94% 5.89% 0.76 %

Improvement Rate = (Original Time − Improved Time)/Original Time × 100

6.5 Effect of Storage Engines

This section analyzes the effect of storage engines on the perfor-

mance of the database systems with respect to model-specific oper-

ations.

6.5.1 Relational Model. Figure 9 compares the elapsed times of

ArangoDB and AgensGraph for the tasks that involve the relational

model. Among those tasks, AgensGraph outperformed ArangoDB

for nine of them (T0, T1, T3, T6, T7, and T9 to T12). Overall, Agens-
Graph achieved higher performance in processing selection, aggre-

gation, and join operations. This is primarily because AgensGraph

is supported by a relational storage engine, while ArangoDB is not.

Figure 9: Elapsed times of relational operations

6.5.2 Document Model. There was no clear winner between

ArangoDB and AgensGraph for the document model, despite the

fact that ArangoDB is said to support the document model natively

while AgensGraph does not. We conjecture that this is because

ArangoDB stores JSON documents in RocksDB, which is a key-

value store but not a genuine storage engine for the document

model. The polyglot system with MongoDB was expected to yield

superior performance for processing document operations, but

its potential performance gain was canceled out by the polyglot

latency.

6.5.3 Graph Model. ArangoDB and AgensGraph are compared

in Figure 10 with respect to the elapsed times taken by graph oper-

ations. Tasks T0, T3 to T5, T7, T8, and T10 include pattern match-

ing queries, and T11, T12 and T15 include shortest path queries.

ArangoDB outperformed AgensGraph for the shortest path queries

up to three orders of magnitude. Recall that ArangoDB is supported

by a native storage engine for the graph model.

Figure 10: Elapsed times of graph operations

For pattern matching queries that require accessing the adjacent

vertices of a given vertex, the performance of ArangoDB and Agens-

Graph was dependent on the degree (i.e. the number of neighbors)

of the given vertex. ArangoDB relied on a hash index for vertices,

and the degree of the given vertex was its dominant cost factor.

In contrast, AgensGraph used a B-tree index for edges (clustered

756

by vertices), and the cost of B-tree traversal was dominant. Con-

sequently, ArangoDB outperformed (or underperformed) Agens-

Graph when the degree was low (or high).

6.5.4 Array Model. Among the three database systems, the poly-

glot system is the only one that is supported by the array storage

engine of SciDB. Figure 11 shows the elapsed times consumed by

array operations. Despite the polyglot latency included in the mea-

surement, the polyglot system outperformed the other systems for

all the tasks (except for T16). The array operations of those tasks

(e.g., matrix multiplications) access neighboring cells together, the

high locality of which can benefit from the chunking design of

the SciDB storage engine. For T16, however, the polyglot system
was slower than AgensGraph because the array cells are accessed

randomly. Moreover, cell-accessing queries are invoked iteratively

by the client, which elongates the polyglot latency too.

Figure 11: Elapsed times of array operations

AgensGraph outperformed ArangoDB for the array workloads,

due to the different ways their indexes were utilized. The index

of AgensGraph returns the physical address of a record. Hence

AgensGraph requires just one index search and one direct access to

the record. In contrast, the index of ArangoDB returns the key of

an entry stored in RocksDB, which requires another index search

to retrieve the record itself. Hence ArangoDB requires two index

searches rather than just one. The performance gap was wider for

T14 and T15 requiring range searches, which the compound index

of ArangoDB was not so effective for.

6.6 Changing Scale Factors

The performance of the three database systems was measured with

a few varying scale factors. For visual clarity, in Figure 12, a linear

scale is used to show the elapsed times for the first half of the chosen

tasks and a log scale for the rest. As the scale factor increased, the

elapsed time of all the systems increased for all the tasks. There

was no crossover for any pair of database systems with respect to

their relative processing speed. It is notable that the elapsed time

of the polyglot system for T1, T4, and T5 increased faster than for

the other tasks. This is because, as the scale factor increased, so

did the number of records to join from different data models. This

increased the join cost and the polyglot latency faster than linearly.

For T11 and T12, AgensGraph yielded low performance due to the

high cost of the shortest path queries.

6.7 Summary of Evaluation

There was no single winner that outperformed the other database

systems for all the tasks. Each database system performed differ-

ently for different tasks due to the disparate characteristics intrinsic

to the benchmarking tasks. A few key observations made in the

evaluation are summarized below.

• The performance of the polyglot system was degraded signif-

icantly due to the polyglot latency when data from different

models are joined. It was further aggravated by increased

scale factors.

• The polyglot latency could be avoided by importing data

from one model to another, but this optimization is not ap-

plicable to all the multi-model tasks.

• AgensGraph outperformed ArangoDB for relational work-

loads and array workloads as well (with the effective use of

indexes).

• AgensGraph tended to yield better performance when the de-

gree of vertices was high, but it yielded inferior performance

for tasks with shortest path queries.

• The storage engine of SciDB played a key role in delivering

superior performance for array workloads with high locality

in the access patterns.

7 RELATEDWORK

Benchmark programs have been an invaluable tool for the database

community for decades. This section reviews those benchmark

programs with respect to the data models they support and differ-

entiates them from M2Bench presented in this paper.

Single Model Benchmark Programs. TPC-H and TPC-DS are

among the most popular benchmarks aimed at evaluating a rela-

tional database system for analytic workloads [41]. They provide

relational database schemas and numerous analytic workloads aris-

ing in the E-commerce applications.

XMark and NOBENCH have been used for document-oriented

semi-structured databases. While XMark [34] provides pattern

matching queries as a benchmark for XML data, NOBENCH [12]

provides basic NoSQL queries such as selection, projection, and

aggregation for JSON documents.

Linkbench [3] is developed as a benchmark for evaluating a

graph database system. It provides simple CRUD operations that re-

produce query traces in Facebook’s graph database TAO [7]. LDBC-

SNB [17] provides an analytic workload that consists of pattern

matching queries and aggregation queries on a graph database.

GooDBye [26] is another benchmark that consists of graph analytic

queries similarly to LDBC-SNB.

SS-DB [15] is a benchmark for array database systems. Its work-

load is designed for astronomical data, and consists of subarray

queries and mulitidimensional aggregation queries. GenBase [39]

is another benchmark for the array data model, and provides a

workload for microarray genomic data. The workload of GenBase

is different from that of SS-DB in that the former consists mainly

of linear algebra queries such as matrix multiplications.

Multi-Model Benchmark Programs. Relatively recently, Big-

Bench [21, 22] and UniBench [50, 51] have been proposed to support

multiple data models. BigBench provides workloads for big data

757

Polyglot ArangoDB AgensGraph

0

2

4

6

8

10

12

14

SF1 SF2 SF5 SF10

E
la

p
se

d
 T

im
e

(s
)

(a) T1

0

500

1000

1500

2000

2500

3000

3500

4000

SF1 SF2 SF5 SF10

(b) T2

0

10000

20000

30000

40000

50000

60000

70000

80000

SF1 SF2 SF5 SF10

(c) T4

0

1

2

3

4

SF1 SF2 SF5 SF10

(d) T5

1

10

100

1000

10000

100000

SF1 SF2 SF5 SF10

E
la

p
se

d
 T

im
e

(s
)

(e) T11

1

10

100

1000

10000

100000

SF1 SF2 SF5 SF10

(f) T12

1

10

100

1000

10000

100000

SF1 SF2 SF5 SF10

(g) T14

1

10

100

1000

10000

100000

SF1 SF2 SF5 SF10

(h) T15

Figure 12: Elapsed times with varying scale factors

analytics based on both the relational and the document models.

BigBench V2, an improved version of BigBench, adds a key-value

data model to BigBench. UniBench provides OLTP and OLAP work-

loads for E-Commerce databases based on the relational, document

and graph data models.

Thesemulti-model benchmarks, namely BigBench andUniBench,

are different from our M2Bench in a few ways. First, they do not

support the array data model, which has become one of the essen-

tial tools for machine learning applications. M2Bench supports the

array model as one of its core data models. Second, they focus on

evaluating different aspects of a database system. BigBench and

BigBench V2 focus mainly on big data processing as their names

suggest, and UniBench focuses on the impact of join orders, com-

plex aggregations, and ACID properties. On the other hand, the

main focus of M2Bench is on identifying the impact of individual

data models on the performance. Third, while they are designed

around the E-Commerce use cases only, M2Bench provides more

diverse workloads arising from three domain categories, namely,

E-Commerce, Healthcare and Disaster & Safety.

The multi-model database systems, AgensGraph and ArangoDB,

have already been evaluated comparatively by UniBench [50]. It

should be noted that the UniBench’s verdict on these two systems

is not entirely equivalent to that ofM2Bench presented in this paper.
UniBench reports that ArangoDB performs queries on the JSON doc-

uments more efficiently than AgensGraph, while M2Bench reports

that AgensGraph and ArangoDB deliver comparable performance

for the document model. The discrepancy in these two bodies of

study is due to the fact that UniBench included a cross join oper-

ation for AgensGraph to flatten the nested arrays of documents

while M2Bench did not. Without the additional cross join opera-

tion, they both would arrive at the same conclusion. UniBench and

M2Bench report equivalent assessments for the relational and graph

data models. Both of them observed that AgensGraph outperforms

ArangoDB for the relational model and ArangoDB outperforms

AgensGraph for tasks with a shortest path operation.

Table 6 summarizes the benchmark programs discussed in this

section with the data models they support.

Table 6: Benchmark programs and data models

Benchmark Programs Relational Document Graph Array
TPC-H, TPC-DS [41] ✓

XMark [34] ✓

NOBENCH [12] ✓

LinkBench [3] ✓

GooDBye [26] ✓

LDBC-SNB [17] ✓

SS-DB [15] ✓

GenBase [39] ✓

BigBench [21, 22] ✓ ✓

UniBench [50, 51] ✓ ✓ ✓

M2Bench ✓ ✓ ✓ ✓

8 CONCLUSION

We propose a new benchmark program called M2Bench to evalu-

ate database management systems aimed for multi-model analytic

workloads. M2Bench covers four important data models: relational,

document-oriented, property graph, and array.M2Bench help users

identify the impact of specific data models on the performance of a

DBMS. It provides a diverse range of workloads inspired by three

representative real-world scenarios. By executing the M2Bench
workloads on a few chosen multi-model database systems, we have

demonstrated that M2Bench can effectively pinpoint the strengths

and weaknesses of each system in regard to individual data models.

We believe that these features will make M2Bench an essential tool

for evaluating multi-model database systems.

ACKNOWLEDGMENTS

This work was supported in part by the National Research Foun-

dation (NRF) of Korea (Grant No. NRF-2020R1A2C1010358). The

authors assume all responsibility for the content of the paper.

758

REFERENCES

[1] Renzo Angles and Claudio Gutierrez. 2008. Survey of Graph Database Models.

ACM Comput. Surv. 40, 1, Article 1 (Feb 2008), 39 pages.
[2] ArangoDB, Inc. 2022. ArangoDB. Retrieved December 12, 2022 from https:

//www.arangodb.com/

[3] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark

Callaghan. 2013. LinkBench: A Database Benchmark Based on the Facebook

Social Graph. In Proceedings of the 2013 ACM SIGMOD Conference. New York, NY,

USA, 1185–1196.

[4] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. 1998. The

Multidimensional Database System RasDaMan. SIGMOD Rec. 27, 2 (June 1998),
575–577.

[5] Bitnine Global Inc. 2021. AgensGraph. Retrieved December 12, 2022 from

https://bitnine.net/agensgraph/

[6] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-

fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-

erick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016.

SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13
(Sep 2016), 1425–1436.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark

Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-

mani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In

Proceedings of the 2013 USENIX Conference on Annual Technical Conference. San
Jose, CA, USA, 49–60.

[8] D. Brown and N. Hayes. 2008. Influencer Marketing: Who Really Influences Your
Customers? Elsevier/Butterworth-Heinemann.

[9] Peter Buneman. 1997. Semistructured Data. In Proceedings of the Sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Tucson,
Arizona, USA, 117–121.

[10] C. Demetrescu, A. Goldberg, D. Johnson. 2006. 9th DIMACS Implementation
Challenge - Shortest Paths. Retrieved October 10, 2022 from http://www.diag.

uniroma1.it/~challenge9/index.shtml

[11] Center for International Earth Science Information Network - CIESIN - Columbia

University. 2018. Gridded Population of the World, Version 4 (GPWv4): Adminis-
trative Unit Center Points with Population Estimates, Revision 11. Palisades, NY,
USA. Retrieved October 10, 2022 from https://doi.org/10.7927/H4BC3WMT

[12] Craig Chasseur, Yinan Li, and Jignesh M. Patel. 2013. Enabling JSON Document

Stores in Relational Systems. In Proceedings of the 16th International Workshop on
the Web and Databases. New York, NY, USA, 1–6.

[13] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.

Commun. ACM 13, 6 (June 1970), 377–387.

[14] Douglas Crockford and Chip Morningstar. 2017. Standard ECMA-404 The JSON

Data Interchange Syntax. https://doi.org/10.13140/RG.2.2.28181.14560

[15] Philippe Cudre-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Samuel

Madden, Michael Stonebraker, Stan Zdonik, and Paul Brown. 2010. SS-DB: A

standard science DBMS benchmark. In 4th Extremely Large Databases Conference.
Menlo Park, California, USA, 11.

[16] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. RocksDB:

Evolution of Development Priorities in a Key-Value Store Serving Large-Scale

Applications. ACM Trans. Storage 17, 4, Article 26 (Oct 2021), 32 pages.
[17] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,

Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Network

Benchmark: Interactive Workload. In Proceedings of the 2015 ACM SIGMOD
Conference. Melbourne, Victoria, Australia, 619–630.

[18] Reza Ferdousi, Reza Safdari, and Yadollah Omidi. 2017. Computational prediction

of drug-drug interactions based on drugs functional similarities. Journal of
Biomedical Informatics 70 (2017), 54–64.

[19] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.

An Overview of the HDF5 Technology Suite and Its Applications. In Proceedings
of the EDBT/ICDT 2011 Workshop on Array Databases (Uppsala, Sweden) (AD
’11). Association for Computing Machinery, New York, NY, USA, 36–47. https:

//doi.org/10.1145/1966895.1966900

[20] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and An-

drés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs. In

Proceedings of the 2018 ACM SIGMOD Conference. Houston, TX, USA, 1433–1445.
[21] Ahmad Ghazal, Todor Ivanov, Pekka Kostamaa, Alain Crolotte, Ryan Voong,

Mohammed Al-Kateb, Waleed Ghazal, and Roberto V. Zicari. 2017. BigBench V2:

The New and Improved BigBench. In 33rd IEEE ICDE Conference. San Diego, CA,

USA, 1225–1236.

[22] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain

Crolotte, andHans-Arno Jacobsen. 2013. BigBench: Towards an Industry Standard

Benchmark for Big Data Analytics. In Proceedings of the 2013 ACM SIGMOD
Conference. New York, New York, USA, 1197–1208.

[23] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng,

Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and

Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3, 1 (2016), 1–9.

[24] Kyoseung Koo, Juhun Kim, and Bongki Moon. 2021. MISE: An Array-Based

Integrated System for Atmospheric Scanning LiDAR. In Proceedings of the 33rd
SSDBM Conference. Tampa, FL, USA, 265–269.

[25] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Tech-

niques for Recommender Systems. Computer 42, 8 (2009), 30–37.
[26] Piotr Matyjaszczyk, Przemyslaw Rosowski, and Robert Wrembel. 2020. GooDBye:

a Good Graph Database Benchmark - an Industry Experience. In EDBT/ICDT
Workshops. Copenhagen, Denmark, 6.

[27] MongoDB, Inc. 2022. MongoDB. Retrieved December 12, 2022 from https:

//www.mongodb.com/

[28] Neo4j, Inc. 2022. Neo4j. Retrieved December 12, 2022 from https://neo4j.com/

[29] OpenStreetMap contributors. 2022. Planet dump October 10, 2022. Retrieved from
https://planet.osm.org .

[30] Oracle. 2022.MySQL. Retrieved December 12, 2022 from https://www.mysql.com/

[31] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy Mattson.

2016. The TileDB Array Data Storage Manager. Proc. VLDB Endow. 10, 4 (Nov
2016), 349–360.

[32] Himchan Park and Min-Soo Kim. 2018. EvoGraph: An Effective and Efficient

Graph Upscaling Method for Preserving Graph Properties. In Proceedings of the
24th ACM SIGKDD Conference. London, United Kingdom, 2051–2059.

[33] Abdul Quamar, Jannik Straube, and Yuanyuan Tian. 2020. Enabling Rich Queries

Over Heterogeneous Data From Diverse Sources In HealthCare.. In 10th Confer-
ence on Innovative Data Systems Research, CIDR, Online Proceedings. Amsterdam,

The Netherlands, 6.

[34] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana

Manolescu, and Ralph Busse. 2002. XMark: A Benchmark for XML Data Manage-

ment. In Proceedings of the 28th VLDB Conference. Hong Kong, China, 974–985.

[35] SNOMED International. 2022. SNOMED Terminolody. Retrieved October 10,

2022 from https://www.snomed.org/

[36] SNU-DBS. 2022. M2Bench Github Repository. Retrieved December 12, 2022 from

https://github.com/snu-dbs/m2bench

[37] SNU-DBS. 2022. M2Bench Task Explanation. Retrieved December 12, 2022 from

https://github.com/snu-dbs/m2bench/blob/publish/Tasks/alltasks.md

[38] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The

Architecture of SciDB. In Proceedings of the 23rd SSDBM Conference, Vol. 6809.
Portland, OR, USA, 1–16.

[39] Rebecca Taft, Manasi Vartak, Nadathur Rajagopalan Satish, Narayanan Sundaram,

Samuel Madden, and Michael Stonebraker. 2014. GenBase: A Complex Analyt-

ics Genomics Benchmark. In Proceedings of the 2014 ACM SIGMOD Conference.
Snowbird, Utah, USA, 177–188.

[40] The PostgreSQL Global Development Group. 2022. PostgreSQL. Retrieved

December 12, 2022 from https://www.postgresql.org/

[41] TPC. 2022. TPC Benchmarks. Retrieved December 12, 2022 from https://www.

tpc.org/

[42] U.S. Department of Homeland Security. 2021. National Shelter System Facilities.
Retrieved October 10, 2022 from https://hifld-geoplatform.opendata.arcgis.com/

datasets/geoplatform::national-shelter-system-facilities/about

[43] U.S. Geological Survey. 2022. Earthquakes. Retrieved October 10, 2022 from

https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes

[44] Santiago Vilar, Eugenio Uriarte, Lourdes Santana, Tal Lorberbaum, George Hripc-

sak, Carol Friedman, and Nicholas P Tatonetti. 2014. Similarity-based modeling

in large-scale prediction of drug-drug interactions. Nature protocols 9, 9 (2014),
2147–2163.

[45] W3C. 1998. Extensible Markup Language (XML) 1.0. Retrieved December 12,

2022 from https://www.w3.org/TR/1998/REC-xml-19980210.html

[46] Wikipedia contributors. 2022. Polyglot persistence — Wikipedia, The Free En-
cyclopedia. Retrieved December 12, 2022 from https://en.wikipedia.org/wiki/

Polyglot_persistence

[47] David S Wishart, Craig Knox, An Chi Guo, Savita Shrivastava, Murtaza Has-

sanali, Paul Stothard, Zhan Chang, and Jennifer Woolsey. 2006. DrugBank: a

comprehensive resource for in silico drug discovery and exploration. Nucleic
acids research 34, suppl_1 (2006), D668–D672.

[48] Jinhong Xian, Dongsong Sun, Wenjing Xu, Yuli Han, Jun Zheng, Jiancao Peng,

and Shaochen Yang. 2020. Urban air pollution monitoring using scanning Lidar.

Environmental Pollution 258 (2020), 113696.

[49] Manzhu Yu, Chaowei Yang, and Yun Li. 2018. Big Data in Natural Disaster

Management: A Review. Geosciences 8, 5 (2018), 26.
[50] Chao Zhang and Jiaheng Lu. 2021. Holistic evaluation in multi-model databases

benchmarking. Distributed and Parallel Databases 39, 1 (Mar 2021), 1–33.

[51] Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen. 2018. UniBench: A

Benchmark for Multi-model Database Management Systems. In Proceedings of
the Technology Conference on Performance Evaluation and Benchmarking (TPCTC
2018). Rio de Janeiro, Brazil, 7–23.

759

https://www.arangodb.com/
https://www.arangodb.com/
https://bitnine.net/agensgraph/
http://www.diag.uniroma1.it/~challenge9/index.shtml
http://www.diag.uniroma1.it/~challenge9/index.shtml
https://doi.org/10.7927/H4BC3WMT
https://doi.org/10.13140/RG.2.2.28181.14560
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://www.mongodb.com/
https://www.mongodb.com/
https://neo4j.com/
https://www.mysql.com/
https://www.snomed.org/
https://github.com/snu-dbs/m2bench
https://github.com/snu-dbs/m2bench/blob/publish/Tasks/alltasks.md
https://www.postgresql.org/
https://www.tpc.org/
https://www.tpc.org/
https://hifld-geoplatform.opendata.arcgis.com/datasets/geoplatform::national-shelter-system-facilities/about
https://hifld-geoplatform.opendata.arcgis.com/datasets/geoplatform::national-shelter-system-facilities/about
https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes
https://www.w3.org/TR/1998/REC-xml-19980210.html
https://en.wikipedia.org/wiki/Polyglot_persistence
https://en.wikipedia.org/wiki/Polyglot_persistence

	Abstract
	1 Introduction
	2 M2Bench Overview
	3 Characteristics of M2Bench
	3.1 Data Models
	3.2 Domain Categories for Diverse Workloads

	4 Workload
	4.1 E-Commerce Scenario
	4.2 Healthcare Scenario
	4.3 Disaster & Safety Scenario

	5 Data Generator
	5.1 Constructing Databases of Scale Factor One
	5.2 Scaling Databases

	6 Evaluation
	6.1 Database Systems for Evaluation
	6.2 Settings
	6.3 Baseline Evaluation
	6.4 Polyglot Latency
	6.5 Effect of Storage Engines
	6.6 Changing Scale Factors
	6.7 Summary of Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

