
Scalable Graph Convolutional Network Training on
Distributed-Memory Systems

Gunduz Vehbi Demirci∗

Imagination Technologies
United Kingdom

gunduz.demirci@imgtec.com

Aparajita Haldar
University of Warwick

United Kingdom
aparajita.haldar@warwick.ac.uk

Hakan Ferhatosmanoglu2

University of Warwick
United Kingdom

hakan.f@warwick.ac.uk

ABSTRACT

Graph Convolutional Networks (GCNs) are extensively utilized
for deep learning on graphs. The large data sizes of graphs and
their vertex features make scalable training algorithms and dis-
tributed memory systems necessary. Since the convolution opera-
tion on graphs induces irregular memory access patterns, design-
ing a memory- and communication-efficient parallel algorithm for
GCN training poses unique challenges. We propose a highly par-
allel training algorithm that scales to large processor counts. In
our solution, the large adjacency and vertex-feature matrices are
partitioned among processors. We exploit the vertex-partitioning
of the graph to use non-blocking point-to-point communication
operations between processors for better scalability. To further min-
imize the parallelization overheads, we introduce a sparse matrix
partitioning scheme based on a hypergraph partitioning model for
full-batch training. We also propose a novel stochastic hypergraph
model to encode the expected communication volume in mini-batch
training. We show the merits of the hypergraph model, previously
unexplored for GCN training, over the standard graph partitioning
model which does not accurately encode the communication costs.
Experiments performed on real-world graph datasets demonstrate
that the proposed algorithms achieve considerable speedups over
alternative solutions. The optimizations achieved on communica-
tion costs become even more pronounced at high scalability with
many processors. The performance benefits are preserved in deeper
GCNs having more layers as well as on billion-scale graphs.
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1 INTRODUCTION

Graph Convolutional Networks (GCNs) generalize the convolution
operation, performed by convolutional neural networks on struc-
tured data (e.g., images, time-series), to graphs [41, 50]. GCNs are
used in a wide range of data intensive graph applications such as
node classification [25, 40], traffic forecasting on road networks [64],
and recommender systems on user-item graphs [63].

While graph-based learning models have been highly successful,
the scale of large graphs, including their multi-dimensional features
for the vertices, necessitates the use of distributed memory sys-
tems [22, 37, 54, 69]. During the feedforward and backpropagation
phases in GCN training, the graph convolution operation involves
message passing and aggregation steps that induce irregular data
accesses due to complex graph inter-connectivity. Existing systems
use graph partitioning algorithms designed for traditional graph
algorithm workloads (e.g., connected components, shortest paths),
which do not take complex GCN data access patterns into con-
sideration. Therefore, intelligent message passing strategies need
to be employed to achieve a communication-efficient distributed-
memory parallel inference and training solution.

Sparse-dense matrix multiplication (SpMM) and dense matrix
multiplication (DMM) are core kernel operations in GCN train-
ing. SpMM achieves convolution whereas DMM corresponds to
propagating vertex-feature vectors through a single layer neural
network. There have been improved solutions proposed for parallel
SpMM [28, 32, 47] and DMM [2] problems. However, the special
requirements of combining SpMM and DMM for scalable GCN
training and ensuring efficient forward propagation and backprop-
agation phases in GCNs remain under-explored. In particular, com-
munications incur high latency and bandwidth costs to aggregate
feature matrices during feedforward as well as to aggregate gradi-
ents and update parameter matrices during backpropagation.

While recent parallel/distributed algorithms achieve GCN train-
ing for GPU clusters and cloud systems [54, 69], these typically
perform broadcast- and allreduce-type of collective communication
operations. Sparse data communication and compression methods
have been considered to alleviate the scalability issues of allre-
duce for larger models and processor counts [11, 14, 30, 33]. How-
ever, such redundant data and message transfer causes unnecessary
communication overheads. Moreover, in GCN training, model pa-
rameter matrices are significantly smaller than the adjacency and
vertex-feature matrices, so performance improvements in allreduce
communication are not significant in the overall parallel execution
time. Instead, efficient parallelization of SpMM performed on the
large graph data can lead to higher performance increase. For exam-
ple, Sancus [43] is a recent model that adaptively avoids broadcast
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communications to reduce network traffic in data-parallel GNNs.
However, parallel SpMM still requires broadcast-type communica-
tion, which is the main performance bottleneck in GCN training,
due to its high memory and bandwidth costs. A parallel algorithm,
CAGNET [54], performs broadcasts among processors turn-wise
to transfer vertex-features in small portions but suffers significant
latency overheads. Therefore, a viable alternative is to design a
mechanism that can utilize non-blocking point-to-point communi-
cations that move only the necessary data among processors.

We introduce a highly parallel algorithm for training GCNs on
distributed-memory systems. Our solution achieves scalability by
replacing the blocking broadcast communications in existing ap-
proaches with non-blocking point-to-point communications for
parallel SpMM and transferring only the necessary data with mini-
mal number of messages between processors. The solution employs
a one-dimensional (1D) partitioning on large adjacency, vertex-
feature, and gradient matrices for parallel SpMM computations in
feedforward and backpropagation phases. It replicates parameter
matrices across processors due to their relatively smaller sizes. This
enables data locality for performing DMM computations without
any communication. Allreduce communication is needed for ag-
gregating gradients, which has a negligible cost compared to the
communication costs incurred in parallel SpMM.

The use of point-to-point communication operations in our solu-
tion enables communication to be reduced further via sparse matrix
partitioning strategies [7]. We develop a sparse matrix partitioning
scheme to distribute the adjacency, vertex-feature, and gradient
matrices used in computations among processors, based on a hy-
pergraph partitioning model for the original graph. We show that
the hypergraph partitioning model encodes SpMM communication
costs more accurately than the graph partitioning model which
is in popular use (e.g., in DistDGL [69]). To capture the random-
ness when communication operations are performed for mini-batch
training instead of full-batch training, we also introduce a novel
stochastic hypergraph model. This model encodes the expected

communication volume in parallel mini-batch training and can be
utilized for any mini-batch sampling strategy.

We focus on large-scale CPU clusters, commonly used for big
sparse problem instances in scientific computing, since research
towards adapting existing, relatively inexpensive supercomputing
systems towards deep learning is gaining attention. We also demon-
strate our proposed solution on GPU clusters by replacing local
computations with GPU kernels and using NCCL [1].

We perform extensive experiments on real-world network datasets.
Experimental results show that our solution is highly efficient and
scales to large processor counts. We show that the proposed dis-
tributed solution achieves considerable speedups over the single-
node GCN implementation in Deep Graph Library (DGL) [56], es-
pecially on large graphs having low average node degrees. Our
hypergraph model generally outperforms the graph model as it
correctly encodes the tasks and data dependencies by exploiting
sparsity in connectivity patterns. The time spent on communication
operations decreases with the increasing number of processors. This
provides a scalability advantage over current alternatives that use
inefficient collective communications. Using the novel stochastic
hypergraph partitioning algorithm, we achieve further reductions
in the communication volume for mini-batch training.

A summary list of contributions of this paper is given below:

• We propose a highly parallel GCN training algorithm that
exploits sparsity in communications and data locality in
computations to scale the training process.
• We show the merits of our hypergraph-based data partition-
ing scheme over the more popular graph-based approach for
distributed full-batch training of GCNs, to reduce communi-
cation overheads while satisfying load balance.
• Wepropose a novel stochastic hypergraph partitioningmodel
which can be utilized in parallel mini-batch training.
• On a set of real-world graph datasets (e.g., citation graphs,
social networks, road networks, co-purchasing networks),
we evaluate the performance of the proposed algorithm and
data partitioning models, and provide further insights for
scalable data processing and training for GCNs.

2 RELATED WORK

2.1 Distributed Graph Processing

Distributed systems have been widely employed for graph ana-
lytics, from parallel processing to streaming graph updates and
cloud-based graph engines [17, 23, 27, 38, 49, 51]. Several graph
analytics APIs, such as GraphX [59], are built atop Apache Spark or
similar frameworks. These systems face CPU utilization bottlenecks
that can be avoided with our data parallelization solution, enabling
better scaling. In contrast to vertex-centric models, which suffer
high communication overheads [18, 36], graph- and block-centric
models utilize local graph partition structure to reduce communica-
tion and scheduling [53, 60]. Our parallel solution instead exploits
sparse connectivity patterns to achieve better data locality, enabling
efficient communication across thousands of compute nodes.

Graph partitioning is widely employed for improving the effi-
ciency of different types of queries [13, 45, 67], handling skewed
workloads [62], reducing communication overheads [16], and scal-
ability in network bound applications [9]. Methods that adaptively
determine partitioning strategies at run time [12] or are application-
driven [13] also motivate the need for our solution that employs
considerations specific to GCNs during partitioning stage.

2.2 Distributed Systems for GNNs

Graph learning tasks perform both forward and backward prop-
agation of model parameters, involving 𝑘-hop neighborhood ag-
gregations, which require different considerations in partitioning
compared to that of traditional graph processing. To efficiently train
GCNs, methods have been devised to restrict the neighborhood
considered by sampling, pruning, and caching [8, 39, 71].

Memory management and distributed training are essential for
scalable deep neural networks [3, 11, 57, 66]. Various frameworks
use distributed memory systems for parallel Graph Neural Network
(GNN) training [29, 72]. On GPUs, NeuGraph [37] uses dataflow
scheduling while ROC [22] utilizes dynamic regression-based par-
titioning to optimize communication, and G3 [35] leverages graph
native operations. To reduce communication in full-batch GNN
training, CAGNET [54] uses the aggregate memory of GPU clusters
and the NCCL multi-GPU communication library. The DGCL [4]
communication library instead reroutes communications to use fast
links with vertex replication. Despite distributing the graph data,
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none of these solutions adopt locality-aware partitioning to reduce
communication overheads without replication as we do.

As an alternative to whole-graph training systems, sampling ap-
proaches overcome the coordination and communication overheads
through mini-batches [48]. In DistDGL [69], reduction of network
communication traffic is achieved by partitioning and co-locating
the vertex/edge features with their corresponding local partition
data for distributed CPU. Solutions like AliGraph [61], AGL [65],
and PaGraph [34] all optimize the sampling step in different ways.
We also make use of mini-batch sampling techniques. By integrat-
ing the sampling step into our stochastic hypergraph construction
phase, we reflect the randomness in communication volumes more
accurately. DistDGLv2 [70] recently achieves a hybrid design with
asynchronous sampling to overlap CPU and GPU computations,
which motivates a future blended approach with our CPU/GPU
versions of our communication scheme.

The resource under-utilization problem is worse in GPUs since
mini-batch sampling overshadows training time [48], especially
for sparse graphs [68]. Hence, many works, including our own,
focus on CPU implementations. The communication architectures
on CPU also involve different optimization considerations com-
pared to GPU-based systems [42]. For example, Dorylus explores
a CPU-based serverless asynchronous pipeline for scalability [52].
ByteGNN [68] recently improves resource utilization on CPUs with
a partitioning strategy tailored for GNN sampling, however does
not account for sparsity as we do, which gives us better speedups.

2.3 Data-Parallelization for GNNs

There are numerous studies on improving the efficiency of GNN
computations, such as in cloud data processing systems on top of
MapReduce [15] or Hadoop [20]. Ours is a data-parallel approach
designed specifically for distributed training of GNNs, utilizing
non-blocking parallel SpMM alongside local DMM. We make use
of sparsity-based partitioning guided by a hypergraph model, to
achieve non-blocking point-to-point communications for lower-
ing communication costs. The potential of exploiting such data
access patterns in GNN training has been recently highlighted as
an open research question [31]. Graph convolution computations
and GCN training depend highly on SpMM and DMM operations,
therefore considering the access patterns in these computations is
important in improving the resource efficiency and scalability of
GCN training. The GE-SpMM algorithm [21] for GPUs allows inte-
gration with DGL for faster computation of GNNs by processing
columns in parallel and ensuring coalesced access to sparse matrix
data. Feat-Graph [19] co-optimizes graph traversal and feature di-
mension computation to offer efficient CPU/GPU implementations
of sampled dense-dense matrix product (SDDMM) and SpMM in
GNN training. FusedMM develops a general-purpose matrix mul-
tiplication kernel for graph embedding and GNN operations [44].
FusedMM unifies the matrix multiplications into a single opera-
tion since SpMM is frequently directly followed by DMM, but the
approach is only applicable to shared-memory systems. In our algo-
rithm, beyond point-to-point communications for SpMM and data
locality for DMM, we pay special attention to the requirements
of forward propagation and backpropagation during the training

phase (aggregating features/gradients and updating parameters),
and introduce a stochastic method to handle mini-batch sampling.

3 BACKGROUND

3.1 Graph Convolution

GCNs generalize the convolution operation to graphs having ar-
bitrary size and topology, using an adjacency matrix to describe
the (sparse) edge connections along which data aggregation takes
place for every layer in the neural network.

LetA∈R𝑛×𝑛 denote the adjacency matrix of a graph G= (V, E)

which consists of |V|=𝑛 vertices. Vertex setV is associated with a

feature matrixH𝑘 ∈R𝑛×𝑑𝑘 for every GCN layer, rows of which cor-
respond to 𝑑𝑘 -dimensional vertex features. Given an input feature
matrixH0, feedforward of GCN is defined as

Z
𝑘
= ˆ︁AH

𝑘−1
W

𝑘

H
𝑘
= 𝜎 (Z𝑘 ) (1)

for layers 𝑘 =1, 2, . . . 𝐿. Matrix ˆ︁A is formed as ˆ︁A=D
− 1

2 ˜︁AD
− 1

2 for

normalization, where matrix ˜︁A=A+I corresponds to the adjacency

matrix with self loops and matrix D(𝑖, 𝑖)=
∑︁

𝑗
˜︁A(𝑖, 𝑗) corresponds

to the diagonal matrix of vertex degrees. To ease the notation, we

will useA instead of ˆ︁A to denote the normalized adjacency matrix.
In Equation (1), only the A matrix is sparse and the remaining

matrices are dense. SpMM AH
𝑘−1 combines feature vectors for

each vertex (itself and neighbors). The resulting combined features
are then involved in a DMM and multiplied by trainable parameter

matrix W
𝑘 ∈ R𝑑𝑘−1×𝑑𝑘 . Finally, a non-linear activation function

𝜎 (·) is applied to each element of matrix Z𝑘 to compute H𝑘 .

The backpropagation phase requires a gradient matrix G𝐿 ∈

R
𝑛×𝑑𝐿 which is computed as

G
𝐿
= ∇

H𝐿 J ⊙ 𝜎 ′(Z𝐿) (2)

where ∇
H𝐿 J denotes the matrix of derivatives of the loss function J

with respect to output features in H
𝐿 , 𝜎 ′(·) denotes the derivative

of the activation function, and symbol ⊙ denotes element-wise
multiplication (i.e., Hadamard product). Gradient matrices for the
preceding layers for 𝑘 =𝐿, 𝐿−1, . . . , 1 are recursively computed as

S
𝑘
= AG

𝑘 (W 𝑘 )𝑇

G
𝑘−1

= S
𝑘 ⊙ 𝜎 ′(Z𝑘−1) (3)

In Equation (3), SpMM is performed with matrices A and G
𝑘 , and

the resulting matrix is used in DMM with (W 𝑘 )𝑇 . Each gradient

matrix G𝑘 ∈R𝑛×𝑑𝑘 is used to update parameter matrix W 𝑘 by the
following set of gradient update rules

𝛥W 𝑘
= (H𝑘−1)𝑇AG

𝑘 (4)

W
𝑘 ←W

𝑘 − 𝜂𝛥W 𝑘 (5)

where 𝛥W𝑘 denotes the matrix of derivatives of the loss function
J with respect to parameters in matrix W

𝑘 , and 𝜂 denotes the
learning rate. It is important to note that, if the input graph is

directed, transposeA𝑇 is used instead ofA in backpropagation (we
refer the reader to [54] for a more detailed description).
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3.2 Graph and Hypergraph Partitioning

Given a graphG= (V, E) with vertex setV and edge set E, a 𝑝-way
partitioning of G is defined as 𝛱 = {V1,V2 · · · V𝑝 } consisting of
subsets of verticesV𝑚 ⊂V that are mutually disjoint (V𝑚 ∩V𝑛 =∅
if𝑚 ≠𝑛) and nonempty (V𝑚 ≠ ∅ ∀V𝑚 ∈𝛱 ) where union of these
subsets gives the vertex set (

⋃︁
V𝑚 = V).

Each undirected edge {𝑣𝑖 , 𝑣 𝑗 } ∈ E between vertices 𝑣𝑖 , 𝑣 𝑗 ∈ V
is given a cost(𝑣𝑖 , 𝑣 𝑗 ) and each vertex 𝑣𝑖 ∈ V is associated with
a weight 𝑤 (𝑣𝑖 ), therefore the weight of a part V𝑚 ∈𝛱 is defined
as𝑊 (V𝑚)=

∑︁
𝑣𝑖 ∈V𝑚

𝑤 (𝑣𝑖 ). The partition 𝛱 is balanced if it satis-
fies the balancing constraint𝑊 (𝑉𝑚) ≤𝑊𝑎𝑣𝑔 (1 + 𝜖) for all 𝑉𝑚 ∈𝛱
where𝑊𝑎𝑣𝑔 =

∑︁
𝑣𝑖 ∈𝑉 𝑤 (𝑣𝑖 )/𝑝 is the average part weight and 𝜖 is

the maximum allowed imbalance ratio. Under a partitioning 𝛱 ,
an undirected edge {𝑣𝑖 , 𝑣 𝑗 } ∈ E is called cut edge if it connects
vertices belonging two different parts. The 𝑝-way graph partition-
ing problem is defined as finding a partitioning 𝛱 such that the
balancing constraint is satisfied and the total partitioning cost
𝜒 (𝛱 ) =

∑︁
{𝑣𝑖 ,𝑣𝑗 }∈E𝐶 cost(𝑣𝑖 , 𝑣 𝑗 ) is minimized where E𝐶 denotes

the set of cut edges.
Hypergraphs generalizes graphs by allowing hyperedges (nets)

to connect more than two vertices. Let H = (V,N) denote a hy-
pergraph consisting of vertex setV and net set N , with 𝛱 defined
as above. The set of vertices connected by a net 𝑛 𝑗 ∈N is denoted
by pins(𝑛 𝑗 ), where each net 𝑛 𝑗 is associated with cost(𝑛 𝑗 ). Un-
der the partition 𝛱 , the connectivity set 𝛬(𝑛 𝑗 ) is the set of parts
that net 𝑛 𝑗 connects (i.e., pins(𝑛 𝑗 ) ∩ V𝑚 ≠ ∅). The number of
such parts is called connectivity 𝜆(𝑛 𝑗 ) = |𝛬(𝑛 𝑗 ) |. If a net 𝑛 𝑗 con-
nects to multiple parts (i.e., 𝜆(𝑛 𝑗 ) > 1) it is said to be cut, and
uncut otherwise. The connectivity cut size under 𝛱 is defined as
𝜒 (𝛱 ) =

∑︁
𝑛 𝑗 ∈N cost(𝑛 𝑗 ) × (𝜆(𝑛 𝑗 ) − 1). The hypergraph partition-

ing problem is therefore finding a 𝑝-way partition that satisfies the
balancing constraint while minimizing the cut size, and is NP-Hard.
There are successful tools that produce quality results for both
graph and hypergraph partitioning problems [5, 24].

4 PARALLEL GCN TRAINING

We first present the feedforward and backpropagation steps of the
proposed algorithm. Next, we describe a hypergraph partitioning
model which reduces communication overheads over the graph
model. We also propose a stochastic hypergraph model which en-
codes expected communication volume in mini-batch training.

4.1 Feedforward

The proposed parallel feedforward algorithm executes on 𝑝 proces-
sors each of which is denoted by 𝑃𝑚 for𝑚=1, 2, . . . 𝑝 . Adjacency

matrixA and vertex feature matricesH𝑘 for all layers𝑘 =0, 1, . . . , 𝐿
are 1D row-wise partitioned among processors where each pro-

cessor 𝑃𝑚 stores submatricesA𝑚 ∈R
𝑛×𝑛 andH

𝑘
𝑚 ∈R

𝑛×𝑑𝑘 , which

only contain subsets of rows of matrices A and H𝑘 . Adjacency
matrix and feature matrices are conformably partitioned so that if
rowA(𝑖, :) is assigned to submatrixA𝑚 , then the corresponding

feature vectorsH𝑘 (𝑖, :) for all layers 𝑘 are assigned to submatrices

H𝑘
𝑚 , respectively (i.e., A(𝑖, :) ∈A𝑚 ⇔H𝑘 (𝑖, :) ∈H𝑘

𝑚 ∀𝑘). Param-

eter matrices W 𝑘 for all layers 𝑘 are replicated and stored by all
processors due to their relatively smaller sizes.

The matrix partitioning scheme encodes a vertex-partitioning

on graph G, since rowsA(𝑖, :) andH
𝑘 (𝑖, :) denote the adjacency

list and features of vertex 𝑣𝑖 ∈V . Moreover, this partitioning also
induces a task partitioning in feedforward phase: If a vertex 𝑣𝑖 is

assigned to a processor 𝑃𝑚 , the task of computing row Z (𝑖, :)𝑘 of

intermediate matrix Z
𝑘 in layer 𝑘 is performed by processor 𝑃𝑚

where row Z (𝑖, :)𝑘 is computed as

Z
𝑘 (𝑖, :) =

⎛⎜⎝
∑︂

𝑗 ∈cols(A(𝑖,:))

A(𝑖, 𝑗)H𝑘−1 ( 𝑗, :)
⎞⎟⎠
W

𝑘 . (6)

Hence, to compute submatrix Z𝑘
𝑚 , processor 𝑃𝑚 needs to receive

allH𝑘−1-matrix rows corresponding to all nonzero column indices

in A𝑚 , which are not locally stored in H
𝑘−1
𝑚 . Let H𝑘−1

𝑛𝑚 ∈R
𝑛×𝑑𝑘−1

denote the submatrix consisting of rows that are needed to be

transferred from processor 𝑃𝑛 to 𝑃𝑚 . That is, submatrixH𝑘−1
𝑛𝑚 con-

tains subset of rows of H𝑘−1
𝑛 corresponding to the intersection of

nonzero row indices of H𝑘−1
𝑛 and column indices of A𝑚 . More

formally, ∃𝑖 ∈ rows(H𝑘−1
𝑛𝑚 ) if 𝑖 ∈ cols(A𝑚)∩rows(A𝑛). We use non-

blocking point-to-point communications to transfer these subma-
trices between processors. After processor 𝑃𝑚 receives submatrix

H
𝑘−1
𝑛𝑚 from each processor 𝑃𝑛 for all 𝑛≠𝑚 such thatH𝑘−1

𝑛𝑚 ≠0, 𝑃𝑚
performs multiplication

Z
𝑘
𝑚 = (A𝑚H

𝑘−1
𝑚 +

∑︂
𝑛≠𝑚

A𝑚H
𝑘−1
𝑛𝑚 )W

𝑘 (7)

to compute submatrix Z𝑘
𝑚 ∈R

𝑛×𝑑𝑘 . Then, 𝑃𝑚 applies the nonlinear

activation functionH𝑘
𝑚 =𝜎 (Z𝑘

𝑚) to proceed to the next layer.
To manage sparse point-to-point communication operations,

each processor 𝑃𝑚 is provided with sets S𝑚 and R𝑚 which are
computed before training with respect to the partitioning of adja-
cency matrixA among processors. Set S𝑚 is composed of diagonal
matricesX𝑚𝑛 ∈R

𝑛×𝑛 for each processor 𝑃𝑛 ≠𝑃𝑚 . MatrixX𝑚𝑛 is
used in a special matrix multiplication to determine which local

H
𝑘−1
𝑚 -rows to be sent by processor 𝑃𝑚 to 𝑃𝑛 . Formally,

S𝑚 = {X𝑚𝑛 | X𝑚𝑛 ≠ 0 ∧X𝑚𝑛 (𝑖, 𝑖) = 1

∀𝑖 ∈ cols(A𝑛) ∩ rows(A𝑚)} .
(8)

That is, the 𝑖th diagonal entry X𝑚𝑛 (𝑖, 𝑖) = 1 if the intersection of
nonzero row and column indices of matrices A𝑚 and A𝑛 contains
index 𝑖 , otherwise it is set to zero. Set R𝑚 is composed of processors
from which 𝑃𝑚 receives at least one message. Formally,

R𝑚 = {𝑃𝑛 | 𝑃𝑛 ≠ 𝑃𝑚 ∧ 𝑐𝑜𝑙𝑠 (A𝑚) ∩ 𝑟𝑜𝑤𝑠 (A𝑛) ≠ ∅}. (9)

That is, processor 𝑃𝑛 is included inR𝑚 if the intersection of nonzero
row and column indices of matrices A𝑚 and A𝑛 is nonempty, and

processor 𝑃𝑚 receives at least one row ofH𝑘−1
𝑛 from 𝑃𝑛 .

Algorithm 1 describes the proposed parallel feedforward algo-
rithm.We used SuiteSparse:GraphBLAS (GB) [10] library to perform
the sparse matrix operations. In lines 3ś5, to overlap communica-
tion by computation, a non-blocking communication is performed
for each diagonal matrix X𝑚𝑛 ∈ S𝑚 by processor 𝑃𝑚 to send re-

quiredH𝑘−1
𝑚 -matrix rows to processor 𝑃𝑛 . MatrixH𝑘−1

𝑚𝑛 is formed

through a specialized matrix multiplication H
𝑘−1
𝑚𝑛 =X𝑚𝑛⊗H

𝑘−1
𝑚 .

By this matrix multiplication, if the 𝑖th diagonal entry isX𝑚𝑛 (𝑖, 𝑖)=

1, then the 𝑖th row H𝑘−1
𝑚 is copied into matrix H𝑘−1

𝑚𝑛 . Operator ⊗
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non-blocking
send to 

during feedforward 

(a) For graph G, the feature matrixH𝑘−1 for layer 𝑘 −1 has been conformably partitioned along withAwhile the weight matrixW 𝑘 has been

duplicated across all 3 processors. Processor 𝑃3 (in green) requiresH𝑘−1
13 andH

𝑘−1
23 from the other two processors (in blue and red respectively).

allReduce

during backprop 

during feedforward 

send to all 

(b) Computations are demonstrated here on the processor 𝑃3 (in green)which storesA3 andH
𝑘−1
3 locally butmust receiveH𝑘−1

13 andH𝑘−1
23 . The

resultingH𝑘
3 features are similarly computed for all layers (𝑘 = 1→ 𝐿) during the feedforward phase. Subsequently, during backpropagation

(𝑘 = 𝐿 → 1), these are used to generate 𝛥W 𝑘 for updation of the weight matricesW 𝑘 on all processors.

Figure 1: Communication and computation processes in feedforward and backpropagation of the distributed GCN algorithm.

denotes that the matrix multiplication is performed under semiring
GxB_PLUS_SECOND, defined by GB library, to replace the mul-
tiplication operator with a copy operator that will directly carry
the second operand to the resulting variable without multiply-
ing (i.e., 𝑧 = 𝑥 × 𝑦 ⇒ 𝑧 = 𝑦). In line 6, local matrix multiplica-

tion Z
𝑘
𝑚 = A𝑚H

𝑘−1
𝑚 W

𝑘 is performed without waiting for the

non-blocking communication operations to complete. Matrix Z𝑘
𝑚

is incomplete at this stage and its computation is finalized after
receiving all necessary data. In lines 7ś9, processor 𝑃𝑚 receives

H
𝑘−1
𝑛𝑚 from each 𝑃𝑛 ∈R𝑚 , and performs multiplication and addition

Z
𝑘
𝑚 = Z

𝑘
𝑚 +A𝑚H

𝑘−1
𝑛𝑚 W

𝑘 to compute the final matrix Z𝑘
𝑚 .

Figure 1 displays a sample execution of the feedforward phase.

The adjacency matrixA, and feature matrixH𝑘 for each layer 𝑘 are
conformably partitioned among the three processors. Thus, each

processor 𝑃𝑚 only stores submatricesA𝑚 andH𝑘−1
𝑚 . For instance,

the computation of matrix Z𝑘
3 by processor 𝑃3 (in green) requires

the other two processors to sendH
𝑘−1
13 andH

𝑘−1
23 corresponding

to nonzero indices, and local matrix multiplication is performed
without waiting for the completion of these non-blocking commu-

nications, to computeH𝑘
3 . Processor 𝑃3 retrieves features of 𝑣1 and

Algorithm 1: Parallel Feedforward

1 forall processors 𝑃𝑚 in parallel do

2 for 𝑘 = 1 to 𝐿 do

3 foreachX𝑚𝑛 ∈ S𝑚 do

4 H
𝑘−1
𝑚𝑛 = X𝑚𝑛 ⊗H

𝑘−1
𝑚

5 Non-blocking sendH
𝑘−1
𝑚𝑛 to processor 𝑃𝑛

6 Z
𝑘
𝑚 = A𝑚H

𝑘−1
𝑚 W

𝑘

7 foreach 𝑃𝑛 ∈ R𝑚 do

8 ReceiveH𝑘−1
𝑛𝑚 from processor 𝑃𝑛

9 Z
𝑘
𝑚 = Z

𝑘
𝑚 +A𝑚H

𝑘−1
𝑛𝑚 W

𝑘

10 H
𝑘
𝑚 = 𝜎 (Z𝑘

𝑚)

𝑣4 for convolution on vertex 𝑣5, and features of 𝑣2, 𝑣4 for vertex
𝑣6. Hence, H

𝑘−1
13 contains rows 1 and 2 of H𝑘−1 while H𝑘−1

23 con-
tains row 4, since these are the nonzero indices ofA𝑚 where the
feature matrix rows are not locally stored. Note that row 4 is only
transferred once to avoid a redundant communication.
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Algorithm 2: Parallel Backpropagation

1 forall processors 𝑃𝑚 in parallel do

2 G
𝐿
𝑚 = ∇

H
𝐿
𝑚
J ⊙ 𝜎 ′(Z𝐿

𝑚)

3 for 𝑘 = 𝐿 to 1 do
4 foreachX𝑚𝑛 ∈ S𝑚 do

5 G𝑘
𝑚𝑛 = X𝑚𝑛 ⊗G𝑘

𝑚

6 Non-blocking sendG𝑘
𝑚𝑛 to processor 𝑃𝑛

7 S𝑘
𝑚 = A𝑚G𝑘

𝑚 (W
𝑘 )𝑇

8 foreach 𝑃𝑛 ∈ R𝑚 do

9 ReceiveG𝑘
𝑛𝑚 from processor 𝑃𝑛

10 S𝑘
𝑚 = S𝑘

𝑚 +A𝑚G𝑘
𝑛𝑚 (W

𝑘 )𝑇

11 G𝑘−1
𝑚 = S𝑘

𝑚 ⊙ 𝜎
′(Z𝑘−1

𝑚 )

12 𝛥W𝑘
𝑚 = (H𝑘−1

𝑚 )𝑇 (A𝑚G𝑘 )

13 𝛥W𝑘 = Allreduce-sum(𝛥W𝑘
𝑚)

14 W𝑘 ←W𝑘 − 𝜂𝛥W𝑘

4.2 Backpropagation

In the backpropagation phase, similar to the vertex feature ma-

trices, gradient matrices G𝑘 for each layer 𝑘 are row-wise parti-
tioned among processors where each processor 𝑃𝑚 holds submatrix

G
𝑘
𝑚 ∈ R

𝑛×𝑑𝑘 in each layer 𝑘 . Gradient matrix G
𝑘 and adjacency

matrix A are conformably partitioned so that if row A(𝑖, :) is as-

signed to submatrixA𝑚 , then rowG
𝑘 (𝑖, :) is assigned to submatrix

G𝑘
𝑚 (i.e., A(𝑖, :) ∈ A𝑚 ⇔ G𝑘 (𝑖, :) ∈ G𝑘

𝑚 ∀𝑘). Hence, the task of

computing row S (𝑖, :)𝑘 of intermediate matrix S𝑘 is given to pro-
cessor 𝑃𝑚 if row A(𝑖, :) and corresponding vertex 𝑣𝑖 is assigned to

𝑃𝑚 . So, the same row-wise partitioning is induced on matrix S
𝑘

as with matricesA andG
𝑘 . Matrix S𝑘 is computed by following

similar steps of computation ofZ𝑘 in feedforward phase. Then, 𝑃𝑚
performs element-wise multiplicationG

𝑘−1
𝑚 =S

𝑘
𝑚 ⊙ 𝜎

′(Z𝑘−1
𝑚 ).

Algorithm 2 gives the proposed parallel backpropagation algo-

rithm. In line 2, each processor 𝑃𝑚 computes submatrix G
𝐿
𝑚 by

using the local vertex-feature matrixH𝐿
𝑚 in the final layer. Here,

∇
H

𝐿
𝑚
J denotes the matrix of partial derivatives of the loss function

with respect to H𝐿
𝑚 , and its formulation depends on the definition

of the loss function. In lines 4ś10, matrix S𝑘 is computed in a simi-

lar way to computation of Z𝑘 in Algorithm 1. In line 11, gradient

matrix G𝑘−1 for the preceding layer is computed via element-wise

multiplication of matrices S𝑘
𝑚 and 𝜎 ′(Z𝑘−1

𝑚 ). In line 12, each pro-

cessor 𝑃𝑚 computes partial results for gradient matrix 𝛥W𝑘 of the

loss function J with respect to parameter matrixW 𝑘 .

In the computation of 𝛥W𝑘 , matrix (H𝑘−1
𝑚 )𝑇 is computed in

feedforward phase, whereas (A𝑚G
𝑘 ) part is computed as a by-

product in lines 7 and 10. Here, if column (H𝑘−1)𝑇 (:, 𝑖) is stored in

(H𝑘−1
𝑚 )𝑇 , then the corresponding row (AG𝑘 ) (𝑖, :) is also stored

in (A𝑚G
𝑘 ). Therefore, multiplication (H𝑘−1

𝑚 )𝑇 (A𝑚G
𝑘 ) by pro-

cessor 𝑃𝑚 produces matrix 𝛥W𝑘
𝑚 of partial products where each

nonzero 𝛥W𝑘
𝑚 (𝑖, 𝑗) contributes to the corresponding nonzero

𝛥W𝑘 (𝑖, 𝑗)=
∑︂
𝑚

𝛥W𝑘
𝑚 (𝑖, 𝑗)

in the final matrix 𝛥W𝑘 . In line 13, the final gradient matrix 𝛥W𝑘

is computed via an allreduce-type communication operation which
combines (sums) partial matrices from all processes and distributes

the result back to all processes. In line 14, gradient update on W
𝑘

is performed by all processors on their local copies.
Figure 1 also displays the additional computations performed

in the backpropagation phase. As seen in the figure, the relatively

smaller-sized weight matricesW 𝑘 for each layer 𝑘 are replicated

among all processors. The computation of matrix S
𝑘 is identical

with the computation of matrix H
𝑘 and requires the same com-

munication steps which are determined by the partitioning on the

adjacency matrix A. Matrix S𝑘 is used together with matrix Z𝑘−1

to compute gradient matrix G
𝑘−1. The figure also shows the all-

reduce operation performed on locally computed matrices 𝛥W 𝑘
𝑚

to compute the final matrix 𝛥W 𝑘 for gradient update operations.

4.3 Partitioning Models

Different partitioning models may be used for partitioning the adja-
cency matrix among processors. We compare the graph and hyper-
graphmodels and highlight how the hypergraphmodel correctly en-
codes the total communication volume during the message-passing
operations. Finally, we present our novel stochastic hypergraph
model which encodes expected communication volume instead of
exact values, and therefore supports mini-batch training.

4.3.1 Graph Model.

In a graph model, a 𝑝-way partitioning 𝛱𝑝 = {V1,V2, . . . ,V𝑝 }

over vertex set V induces a row-wise partitioning on matrix A

among 𝑝 processors. If a vertex 𝑣𝑖 is assigned to part V𝑚 ∈ 𝛱𝑝 ,
then row A(𝑖, :) is assigned to processor 𝑃𝑚 . Note that the input
graph G = (V, E) in GCN training can be directed or undirected,
but graph partitioning tools (e.g., METIS) assume that the graph to
be partitioned is undirected, edges have integer costs, and vertices
have integer weights. Therefore, we build an undirected graph
G′ = (V, E ′) where we use vertex set V as is, but replace each
directed edge (𝑣𝑖 , 𝑣 𝑗 ) ∈E with an undirected edge {𝑣𝑖 , 𝑣 𝑗 } ∈E

′.
Under a partition 𝛱𝑝 , each undirected cut edge {𝑣𝑖 , 𝑣 𝑗 } repre-

sents the communication ofH𝑘−1 (𝑖, :)- andH𝑘−1 ( 𝑗, :)-matrix rows
between respective processors during feedforward phase, and com-

munication of G𝑘 (𝑖, :)- and G𝑘 ( 𝑗, :)-matrix rows during backprop-
agation phase. Since we have 𝑑-dimensional vertex feature matrix

H
𝑘 ∈R𝑛×𝑑𝑘 , each undirected edge encodes a total communication

volume of
∑︁
𝑘 2(𝑑𝑘−1+𝑑𝑘 ) nonzero entries over all layers 𝑘 . Because

the communication volume encoded by each edge is the same con-
stant value, each undirected edge {𝑣𝑖 , 𝑣 𝑗 } ∈ E

′ can be associated
with a unit cost(𝑣𝑖 , 𝑣 𝑗 )=1. Each vertex 𝑣𝑖 is associated with a com-
putational weight𝑤 (𝑣𝑖 )= |cols(A(𝑖, :)) |. DistDGL [69] also utilizes
this partitioning scheme and partitions the input graph via METIS,
only considering undirected graphs.

What makes the graph model less accurate compared to the
hypergraph model is that the former overestimates the total com-
munication volume between processors. This deficiency of the
graph model can be seen in two ways: (i) When both of the di-
rected edges (𝑣𝑖 , 𝑣 𝑗 ) and (𝑣 𝑗 , 𝑣𝑖 ) are not simultaneously present in
the input graph G, the graph model still considers an undirected
edge {𝑣𝑖 , 𝑣 𝑗 } that sees communication in both ways although the
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communication is actually one-way. (ii) If a vertex 𝑣𝑖 is connected
to vertices 𝑣 𝑗 and 𝑣𝑘 that are stored together but on a different
processor from 𝑣𝑖 , the graph model assumes that the features of 𝑣𝑖
are sent twice. However, these features are sent to that processor
once in a single message. These two cases cause the partitioning
cut size to be higher than the actual communication volume.

4.3.2 Hypergraph Model.

We model one-dimensional (1D) row-wise partitioning of adja-
cency matrix as a hypergraph partitioning problem [5] since the
hypergraph model can encode the exact communication volume of
parallel GCN. The connectivity cut size of the hypergraph model
encodes the total communication volume among processors, while
weights of partitions encode the associated computational load for
processors. Hence, minimization of the connectivity cut size under
weight-balancing constraints achieves minimization of the total
communication volume while achieving computational-load bal-
ance. During the feedforward phase, the hypergraph model encodes

the total communication volume onH
𝑘−1-matrix rows for parallel

SpMMsAH
𝑘−1 among processors in each layer 𝑘 . The model also

encodes the total communication volume onG𝑘 -matrix rows for
parallel SpMMs AG𝑘 during backpropagation phase.

To partition adjacency matrix A, we first build a hypergraph
H = (V,N) where for each matrix row A(𝑖, :) there exists one
vertex 𝑣𝑖 ∈ V and for each column A(:, 𝑗), there exists one net
𝑛 𝑗 ∈N . Similar to the graph model, a partitioning obtained on the
vertex set of the input graphH = (V, E) also induces a 1D row-wise
partitioning on the adjacency matrix. That is, a 𝑝-way partition-
ing 𝛱𝑝 = {V1,V2, . . . ,V𝑝 } over vertex set V induces a row-wise
partitioning on matrix A among 𝑝 processors, since each vertex
𝑣𝑖 corresponds to row A(𝑖, :). Additionally, each vertex 𝑣𝑖 ∈ V

also represents the task of computing rows Z𝑘 (𝑖, :) and S𝑘 (𝑖, :) in
each layer 𝑘 . Therefore, each vertex 𝑣𝑖 is associated with weight
𝑤 (𝑣𝑖 )= |cols(A(𝑖, :)) |, i.e., the number of nonzero column indices
in the 𝑖th row of matrixA, to encode the computational load of the
task represented by vertex 𝑣𝑖 . Note that the number of nonzero arith-

metic operations required to compute rows Z𝑘 (𝑖, :) and S
𝑘 (𝑖, :)

is proportional to the number of nonzero column indices in row
A(𝑖, :). So, satisfying the balancing constraints in hypergraph par-
titioning achieves computational-load balance.

Net setN encodes task dependencies on rows of matricesH𝑘−1

and G
𝑘 during feedforward and backpropagation phases for each

layer 𝑘 . Each net 𝑛 𝑗 ∈ N connects all vertices 𝑣𝑖 ∈V for which the
corresponding rowA(𝑖, :) has a nonzero entry in the 𝑗th column.

For computing rows Z (𝑖, :)𝑘 and S (𝑖, :)𝑘 , the processor that owns

rowA(𝑖, :) needs allH𝑘−1- andG
𝑘 -matrix rows, corresponding

to nonzero column indices cols(A(𝑖, :)), respectively. Therefore,

pins of a net 𝑛 𝑗 denotes the tasks that require rowH𝑘−1 ( 𝑗, :) and

G
𝑘 ( 𝑗, :). Formally, pins of a net 𝑛 𝑗 can be written as

pins(𝑛 𝑗 ) = {𝑣𝑖 ∈ 𝑉 | ∃ 𝑗 ∈ cols(A(𝑖, :))}. (10)

Under a partitioning𝛱𝑝 , a net𝑛 𝑗 ∈N with connectivity set 𝛬(𝑛 𝑗 )

encodes the total communication volume on rows H𝑘−1 ( 𝑗, :) and

G
𝑘 ( 𝑗, :) in each layer𝑘 . Here, at least one part in 𝛬(𝑛 𝑗 ) stores vertex

𝑣 𝑗 since each diagonal entry contains a nonzero entry in adjacency
matrixA. That is, for all net 𝑛 𝑗 ∈ N , vertex 𝑣 𝑗 ∈pins(𝑛 𝑗 ). Therefore,

a part 𝑉𝑚 ∈ 𝛬(𝑛 𝑗 ) stores vertex 𝑣 𝑗 and hence, processor 𝑃𝑚 stores

rows H𝑘−1 ( 𝑗, :) and G
𝑘 ( 𝑗, :) in its local submatrices H𝑘−1

𝑚 and

G
𝑘
𝑚 , respectively. Due to the task dependencies encoded by net 𝑛 𝑗 ,

processor 𝑃𝑚 sends rowH
𝑘−1 ( 𝑗, :) to all processors corresponding

to parts in 𝛬(𝑛 𝑗 ) \V𝑚 during feedforward phase, i.e., 𝜆(𝑛 𝑗 ) − 1

communications. Similarly, processor 𝑃𝑚 sends row G
𝑘 ( 𝑗, :) to all

processors in 𝛬(𝑛 𝑗 )\V𝑚 during backpropagation phase. If a pro-
cessor 𝑃𝑛 ∈ 𝛬(𝑛 𝑗 )\V𝑚 has multiple vertices connecting to net 𝑛 𝑗 ,

processor 𝑃𝑛 receives rowH
𝑘−1 ( 𝑗, :) and rowG

𝑘 ( 𝑗, :) only once.
So, net 𝑛 𝑗 incurs a communication volume of cost(𝑛 𝑗 )×

(︁
𝜆(𝑛 𝑗 )−1

)︁
where the cost of net 𝑛 𝑗 is denoted as cost(𝑛 𝑗 )=

∑︁
𝑘 𝑑𝑘−1+𝑑𝑘 since

all nonzero entries in rowsH𝑘−1 ( 𝑗, :) andG
𝑘 ( 𝑗, :) are communi-

cated in each layer 𝑘 . Since the cost of each net is the same constant
value, we can also associate each net with a unit cost 𝑐𝑜𝑠𝑡 (𝑛 𝑗 )=1.
Therefore, the total communication volume can be written as∑︂

𝑛 𝑗 ∈N

2 × cost(𝑛 𝑗 ) ×
(︁
𝜆(𝑛 𝑗 ) − 1

)︁
(11)

which indicates that minimizing the connectivity cut size corre-
sponds to minimizing the total communication volume.

Figure 2 displays an illustrative example of the proposed hyper-
graph partitioning model on a sample graph G having adjacency
matrixA. The hypergraphH is constructed having partsV1 (blue),
V2 (red), andV3 (green) each containing two vertices, with a net
𝑛 𝑗 for every column A(:, 𝑗). According to the hypergraph parti-
tioning model, rows ofA are assigned to processors based on the
hypergraph vertex partitioning. For example, row A(𝑖, :) will be
stored on processor 𝑃1 as vertex 𝑣1 is assigned to V1. Since 𝑣1
represents a task, the computational load is proportional to the
number of non-zero columns in row 1 and is encoded by its weight
𝑤 (𝑣1)=3. Each net connects non-zero entries in a row. For exam-
ple net 𝑛2 connects 𝑝𝑖𝑛𝑠 (𝑛2) = {𝑣1, 𝑣2, 𝑣4, 𝑣6} with connectivity set
𝛬(𝑛2) = {V1,V2,V3}. Its connectivity is therefore 𝜆(𝑛2) =3. The
net set N thus encodes task dependencies during the feedforward
and backpropagation phases since communication operations on

matrices H𝑘 and G𝑘−1 are identical and determined by the par-

titioning on matrix A. The feature matrix H
𝑘−1 is conformably

partitioned with A for each layer of the GCN, while the weight

matrixW 𝑘 is replicated across the three processors.
Figure 2 also depicts how the graph model overestimates the

communication volume. Features of vertex 𝑣4 must be fetched by
vertices 𝑣2, 𝑣3, 𝑣5, and 𝑣6. For example, according to the graphmodel,
the feature vector of 𝑣4 is encoded as if it were sent from processor
𝑃2 to processor 𝑃3 twice, but should only be sent once. Therefore,
cut edges connecting to vertex 𝑣4 in the graph encodes a communi-
cation volume of 3 instead of the true value of 2. On the other hand,
the hypergraph model shown onH uses net 𝑛4 to encode commu-
nications from vertex 𝑣4. Since the connectivity of 𝑛4 is 𝜆(𝑛4)=3
and hypergraph partitioning minimizes connectivityś1 metric, net
𝑛4 encodes the true communication volume as 𝜆(𝑛4)−1=2.

4.3.3 Stochastic Hypergraph Model.

In mini-batch training, a stochastic sampling is applied to the input
graph to produce subgraphs on which convolutions are performed.
We propose a novel stochastic hypergraph model which encodes
and minimizes the expected communication volume in mini-batch
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Figure 2: Hypergraph partitioning of graph G having adjacency matrix A (including self loops), by constructing the corre-

sponding hypergraph H where every net 𝑛 𝑗 connects nonzero entries of the column 𝑖 in A. The feature matrix H
𝑘 for layer

𝑘 is conformably partitioned along withA, while the weight matrix W
𝑘 is duplicated across all processors.

Algorithm 3: Stochastic Hypergraph Partitioning

1 Generate 𝑏 subgraphs 𝐺𝑖 = (𝑉
′
𝑖 , 𝐸
′
𝑖 ) of 𝐺 for 𝑖 = 1, 2, . . . , 𝑏

2 Build hypergraph 𝐻𝑖 = (𝑉
′
𝑖 , 𝑁

′
𝑖 ) for each 𝐺𝑖 = (𝑉

′
𝑖 , 𝐸
′
𝑖 )

3 Build stochastic hypergraph 𝐻 = (𝑉 =

𝑏⋃︁
𝑖=1

𝑉 ′𝑖 , 𝑁 =

𝑏⋃︁
𝑖=1

𝑁 ′𝑖 )

4 Partition 𝑝-way hypergraph 𝐻 to obtain partitioning
𝛱 = {𝑉1,𝑉2, . . . ,𝑉𝑝 }

5 Return 𝛱

training. Note that the hypergraph/graph models described earlier
encode the communication volume in full-batch training.

We first randomly generate mini-batches (i.e., subgraphs) using a
sampling technique. Next, for each subgraph, we build a hypergraph
that encodes the total communication volume for the mini-batch.
By merging all hypergraphs generated (one per mini-batch), we
build a larger hypergraph that can encode the expected connectivity
of any randomly generated net. Partitioning the resulting merged
stochastic hypergraph minimizes the expected connectivity of a
random net, and thus minimizes the expected total communication
volume for any randomly generated mini-batch.

More formally, given an input graph G= (V, E), each mini-batch
corresponds to a subgraph G′ = (V ′ ⊂ V, E ′ ⊂ E). We generate
𝑏 mini-batches, each corresponding to a subgraph G′𝑖 = (V ′𝑖 , E

′
𝑖 )

for 𝑖 = 1, 2, . . . ,𝑏. For each such subgraph G′ a hypergraph H ′ =
(V ′,N ′) is built in the same way as in full-batch training. The
stochastic hypergraph H = (V =

⋃︁
V ′𝑖 ,N =

⋃︁
N ′𝑖 ) is formed

by merging all vertex and net sets into the corresponding sets
for the merged hypergraph. The proposed stochastic hypergraph
partitioning process is described in Algorithm 3 which returns a
partitioning 𝛱 ofH to determine the row-wise partitioning of the
adjacency matrix.

Under a 𝑝-way vertex partition 𝛱 of the stochastic hypergraph
H , let 𝜆 denote the expected connectivity of a randomly generated
net. By using Hoeffding’s inequality, the value of 𝜆 can be estimated
within its 𝜃 error with a probability of at least 1−𝛿 . That is, let 𝜆𝑖
be a random variable that denotes the connectivity of a randomly
generated net where 1 ≤ 𝜆𝑖 ≤ 𝑝 (since a net connects at least

one part and at most 𝑝 parts). Let 𝜆′ = 1
|𝑁 |

∑︁
𝜆𝑖 be the estimation

for 𝜆 where |𝑁 | denotes the total number of nets obtained in the

stochastic hypergraph. By Hoeffding inequality,

𝑃𝑟 [|𝜆′ − 𝜆 | ≥ 𝜃 ] ≤ 2 exp(
−2|𝑁 |𝜃2

(𝑝 − 1)2
) (12)

To achieve 1 − 𝛿 confidence,

2 exp(
−2|𝑁 |𝜃2

(𝑝 − 1)2
) ≤ 𝛿 (13)

must be achieved. Hence, solving this equation for |𝑁 | gives

|𝑁 | ≥
(𝑝 − 1)2

2𝜃2
ln

2

𝛿
(14)

which denote the smallest number of nets needed to achieve the 𝜃
error with 1−𝛿 confidence.

As shown, if an adequate number of nets are generated, the sto-
chastic hypergraph model encodes the expected communication
volume with low error with high probability. Since the expected
connectivity 𝜆 is determined by the partitioning 𝛱 over the hyper-
graph, the stochastic hypergraph partitioning can minimize this
objective. Additionally, if each vertex is equally likely to be selected
in a mini-batch, then the same vertex weighting and balancing con-
straint in hypergraph model for full-batch training can be applied
here to achieve computational load balance.

4.4 Extension to GNNs

The main difference between general GNN models [26, 55, 58] and
GCNs is in the way messages are created and combined between
vertices. In some GNN models, DMM is performed first and mes-
sages are created, which is followed by a specialized SpMM for
message passing and combining. For example, in a GAT [55], first
each vertex feature is transformed with a local parameter matrix
(i.e., DMM), and the resulting feature is transmitted to neighbor
vertices using the same communication pattern as in SpMM. At the
destination vertex, features are concatenated and then multiplied
with an attention vector. That is, the order of SpMM and DMM
can be changed and additional mathematical operations can be
applied to their outputs, without affect the message directions and
communication patterns between vertices. Therefore, our proposed
partitioning method can be directly used for other GNN models,
and simple modifications to the proposed GCN algorithm can sup-
port the additional computations necessary alongside the same
communication scheme as before.
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Table 1: Dataset properties

Dataset Vertices Edges Type

amazon0601 403,394 3,387,388 Directed

cit-Patents 3,774,768 16,518,948 Directed

coPapersDBLP 540,486 30,491,458 Undirected

com-Amazon 334,863 1,851,744 Undirected

com-Youtube 1,134,890 5,975,248 Undirected

flickr 820,878 9,837,214 Directed

roadNet-CA 1,971,281 5,533,214 Undirected

soc-Slashdot0902 82,168 948,464 Directed

Cora 2708 10556 Undirected

ogbn-Papers100M 111,059,956 1,615,685,872 Directed

Reddit 232,965 114,615,892 Undirected

5 EXPERIMENTAL RESULTS

We evaluate the performance of the proposed parallel GCN train-
ing algorithm on a diverse set of real-world graphs from popular
applications that use GCN models such as citation networks, social
networks, road networks, and product co-purchasing networks.
Properties of these graphs are displayed in Table 1.

We use DGL (with PyTorch v1.6 backend) implementation of
GCN as the baseline, and compute speedup values according to its
single-node CPU performance. We also compare our performance
against CAGNET [54] which is the algorithm most related to our
own, by using both the original GPU implementation and our own
CPU implementation of CAGNET. We omit comparisons against
Neugraph [37] and ROC [22] as they are not compatible with CPU
clusters, and CAGNET already provides much more scalability. To
the best of our knowledge, our algorithm is the first parallel GCN
training algorithm designed for CPU clusters.

We evaluate the improvements in performance of the proposed
parallel GCN training algorithm with both hypergraph partitioning
(HP) and graph partitioning (GP) models used to partition the input
matrices. We also evaluate our novel stochastic hypergraph parti-
tioning (SHP) model for mini-batching. Additionally, we report re-
sults for random partitioning (RP) as a baseline, which evenly splits
the adjacency matrix by assigning rows to processors uniformly at
random, and is a competitive method for balancing computational
load and communications.

We run our CPU experiments on a cluster of 180 compute nodes
with 2x Intel Xeon Platinum 8268 2.9 GHz 24-core processors (48 cores
per node) and 4GB RAM per core. Our GPU experiments use the
Sulis cluster of 30 nodes each with 3x NVIDIA A100 GPUs and 4GB
RAM per core. Both use InfiniBand interconnect (100 Gbit/s) and
Slurm Workload Manager. The single-node DGL implementation
requires a server with a better hardware configuration. We use a
16-core Intel Xeon 3.90GHz processor with 500 GB memory.

Our CPU code is in C++, using SuiteSparse:GraphBLAS library
for local sparse matrix operations and MPI for point-to-point com-
munication operations. The GPU version in Python uses PyTorch
with NCCL backend to perform communication operations [1]. In-
corporating future support for asynchronous communication (as
in our CPU implementation) may help overcome the limitations of
NCCL to overlap communication and computation for better perfor-
mance gains on GPU. We used PaToH [6] hypergraph partitioning

Table 2: Performance comparison with HP, GP, and RP on

𝑃 =512 processors

Volume Messages

R Avg Max Avg Max S

amazon0601
HP 0.63 0.12 0.29 0.22 0.51 10.88
GP 0.65 0.18 0.31 0.30 0.62 10.55

HP/GP 0.97 0.67 0.92 0.74 0.82

cit-Patents
HP 0.77 0.17 0.29 0.70 0.89 8.48
GP 0.80 0.19 0.50 0.77 0.94 8.10

HP/GP 0.95 0.88 0.57 0.91 0.95

coPapersDBLP
HP 0.32 0.07 0.08 0.42 0.71 10.93
GP 0.69 0.07 0.16 0.57 0.77 5.04

HP/GP 0.46 0.97 0.49 0.74 0.92

com-Amazon
HP 0.32 0.09 0.20 0.14 0.32 14.31
GP 0.37 0.14 0.27 0.19 0.42 12.37

HP/GP 0.86 0.60 0.73 0.72 0.75

com-Youtube
HP 0.40 0.36 0.52 0.72 0.97 10.85
GP 1.45 0.37 2.60 0.90 0.99 3.01

HP/GP 0.28 0.98 0.20 0.81 0.98

flickr
HP 0.81 0.45 0.60 0.79 1.00 9.59
GP 11.13 0.38 6.89 0.96 1.00 0.70

HP/GP 0.07 1.19 0.09 0.82 1.00

roadNet-CA
HP 0.19 0.01 0.01 0.01 0.03 30.32
GP 0.20 0.01 0.02 0.01 0.03 29.08

HP/GP 0.96 0.78 0.67 1.03 1.00

soc-Slashdot0902
HP 0.75 0.74 0.69 0.86 0.92 3.50
GP 2.02 0.85 4.38 0.93 1.00 1.30

HP/GP 0.37 0.86 0.16 0.92 0.92

mean HP 0.47 0.13 0.21 0.29 0.48 10.60
mean GP 0.98 0.15 0.56 0.35 0.52 5.04

mean HP/mean GP 0.48 0.87 0.37 0.83 0.92

tool and METIS [24] graph partitioning tool. For ogbn-Papers100M,
we used KaHyPar [46] which can handle massive-scale graphs. We
used both partitioning tools with their default parameters and set
the maximum imbalance ratio as 𝜖 =0.01.

Communication Costs. Table 2 compares HP, GP, and RP in
terms of the communication volume and message counts metrics
they incur on 512 processors (i.e., MPI processes). For each parti-
tioning method, we ran the parallel GCN algorithm with random
vertex features and label data for five epochs and measured the
running time average and total communication cost metrics. These
metrics respectively relate to bandwidth and latency costs induced
by different partitioning strategies on parallelization costs. In the
table, both the average and maximum volume/number of messages
sent by a processor are displayed. Average values are proportional
to the total message volume/count values, and are used to display
how much the maximum values deviate from the mean.

For each input graph, the first and second rows denote the re-
spective values attained by HP and GP, where these values are
normalized with respect to values attained by RP. The third row de-
notes the ratios of values attained by HP and GP (i.e., HP/GP). The
first column (i.e., łRž) in the table indicates the ratio of the parallel
running time of HP and GP to that of RP. The last column (i.e., łSž)
denotes the speedup values attained by HP and GP with respect
to single-node running time performance of DGL. At the end of
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Figure 3: Strong scaling for full-batch training with HP, GP, and RP on 𝑃 = 16 to 𝑃 = 512 CPUs (top row) and with HP, GP, RP,

and CAGNET (CN) on 𝑃 = 3 to 𝑃 = 27 GPUs (bottom row).

the table, the geometric means of the normalized values for HP
and GP are given where the ratios of these values are given in the
last row. For instance, the łRž and łSž columns for amazon0601 are
interpreted as follows: Parallel running times of HP and GP divided
by that of RP is 0.63 and 0.65, respectively. The parallel running
time of HP divided by that of GP is 0.97. Speedups achieved by HP
and GP with respect to DGL are displayed under column łSž as
10.88 and 10.55, respectively.

As seen in Table 2, both HP and GP provide significant improve-
ments over communication volume and message count metrics.
On average, HP and GP incur 87% and 85% less average commu-
nication volume than RP respectively, with HP performing 15%
better than GP. In terms of maximum communication volume, HP
consistently outperforms RP, providing 79% improvement on aver-
age over RP. HP performs 63% better than GP and provides better
communication balance. Even though GP provides 44% improve-
ment on average over RP, its performance significantly degrades
for graphs com-Youtube, flickr and soc-Slashdot0902 where
for instance, GP performs 6.89x worse than RP for flickr. Al-
though both partitioning methods provide significant improvement
in average communication volume, graph partitioning can disrupt
the communication balance between processors. For the message
count metrics, on average, HP and GP reduce the total number of
messages by 71% and 65% as compared to RP while HP performs
17% better than GP. Similarly, maximum message count is respec-
tively reduced by 52% and 48% by HP and GP while HP performs
9% better than GP.

Parallel Running Times. Improvements in communication
costs by HP and GP considerably reduce parallel running of RP.
On all graphs, HP provides an average of 2.12x speedup over RP.

GP runs 20%ś80% faster than RP for most graphs. However, it is
slower than RP on flickr, com-Youtube and soc-Slashdot0902.
The reason for this is the communication volume imbalance, as can
be seen from the maximum and average communication volumes
achieved on these graphs. Note that RP achieves a good communica-
tion and computation balance. The best performance is achieved by
HP and GP for roadNet-CA where both partitioning methods pro-
vide approximately 99% improvement in communication volume
and message count metrics compared to RP and runs 5x faster.

As seen in the speedup column, on average, HP and GP provide
10.60x and 5.04x speedup respectively over the DGL implemen-
tation. The best speedup is achieved for roadNet-CA where HP
and GP approximately provide 30.32x and 29.08x speedup. This is
because road networks are relatively more sparse as compared to
the other social networks and hence the amount of data transferred
between processors reduces in such cases. As the graph sizes in-
crease and graphs become more sparse, partitioning tools usually
perform better optimizations.

Figure 3 displays strong scaling of HP, GP, and RP on CPU (first
row) and GPU (second row) clusters. As seen here, on the CPU clus-
ter, HP achieves almost linear speedup up to 512 cores on all input
graphs. Additionally, HP either matches or outperforms GP, and al-
ways outperforms RP. The reason for the speedup loss of HP on 512
processors for soc-Slashdot0902 is the relatively smaller size of
the graph as compared to the others. In general, GP performs better
than RP except for flickr, com-Youtube and soc-Slashdot0902

graphs due to degradation of communication balance as also shown
in Table 2. Here, we omit plot for our CPU implementation of
CAGNET since HP and GP significantly outperform it.
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Figure 4: Performance comparisons for full-batch training. (a) Communication time and computation time split with HP, GP,

RP, and CAGNET (CN) on coPapersDBLP for 𝑃 = 16 to 𝑃 = 512 CPUs. (b) Speedup with increasing layers (𝐿 = 3, 4, . . . , 8) and
dimensions (𝑑 = 50, 100) on roadnet-CA for 𝑃 = 512 CPUs. (c) GNN model accuracy with HP on Cora for 𝑃 = 1 to 𝑃 = 27 GPUs.

We also demonstrate that algorithms that are focused on opti-
mizing communication operations are better suited to CPU clusters
over GPUs, and where the sparsity of the problem is important to ex-
ploit. As seen in Figure 3, for GPU cluster experiments, the PyTorch
implementations (with NCCL backend) of both CAGNET and our
parallel GCN (i.e. HP, GP and RP) do not scale well (up to 27 GPUs).
The reason for this is the high communication efficiency needed to
attain speedup on GPUs. In comparison to MPI, the NCCL backend
cannot provide the necessary efficiency. On GPUs, the proportion
of total running time that is spent on local computation is small,
therefore the gains obtained via parallelization do not amortize the
time spent for communication on larger GPU counts. In addition,
despite the optimizations obtained in the communication volume
from our algorithm, with the NCCL backend these are not as effec-
tive as with MPI. This results in limited performance improvement
on the overall parallel run time due to the higher latency costs. HP
and GP continue to be faster than CAGNET for most datasets and
settings. In addition, the performance improvement is expected
to be more stark at higher GPU counts, as can be seen from the
CPU cluster results, but no suitable larger GPU clusters were avail-
able for our experiments. Moreover, we find that our parallel CPU
implementation for HP is able to outperform the GPU version in
many cases. For example, on amazon0601, the running time is 0.94
seconds on 512 CPUs, while on 15 GPUs it takes as long as 1.02
seconds. On the larger roadNet-CA dataset, the same setting takes
only 0.67 seconds on CPU and twice as long (1.28 seconds) on GPU.

Communication and Computation Times. Figure 4a analy-
ses the breakdown of communication and local computation times
in the total parallel CPU running time of HP, GP, RP, and CAGNET
(CN) for coPapersDBLP. On all processor counts, HP and GP con-
sistently perform better than CAGNET, with HP being the best
method at high processor counts. On the largest processor count,
HP runs nearly 12x faster than CAGNET. Even though RP performs
worse than CAGNET on 𝑃 = 16 processors, its performance be-
comes better as the number of processors increases. As seen in
the figure, the total communication time decreases with the total
computation time for HP, GP and RP as the number of processors
increases, whereas the communication time of CAGNET increases.
This is because point-to-point communication necessitates each

processor to communicate only with a small subset of processors
and thus incurs lower communication volume and latency costs,
whereas broadcast communication involves all processors and in-
curs higher communication overheads due to the unnecessary data
and message transfer. The redundant computations in CAGNET are
also visible in its higher local computation times. Moreover, better
optimizations are achieved by HP than GP, which is evident from
the communication time of GP being 1.7x higher and CAGNET
being 8.3x higher than that of HP on 512 processors. HP shows
between 2.4x to 3x better communication efficiency over RP from
low processor counts to high, while the communication benefit of
GP over RP drops slightly from 2.7x to 1.8x.

Scalability for Deeper Networks. Figure 4b shows speedup
performance of HP, GP, and RP when varying the number of layers
and the dimensionality of features. The number of dimensions is
chosen as 𝑑 = 50 and 𝑑 = 100, and the number of layers is increased
from 2 to 8. The speedup is computed by dividing the running time
of DGL by the running time of HP, GP, or RP respectively under
the same GCN configuration. When the number of layers increases
and 𝑑 is kept constant, there is no loss of speedup in any algorithm,
and speedup in fact increases for HP. The speedups decrease as 𝑑
increases because of the rise in total communication volume, which
reduces the parallelization efficiency. For example, the speedup of
HP decreases approximately from 40x to 17x when the number
of features is increased from 𝑑 = 50 to 𝑑 = 100, for an 8-layer
GCN. On the other hand, the performance of HP increases from
approximately 28x to 40x when the number of layers is increased
from 3 to 8, for 𝑑 = 100. We observe the same behavior across
different datasets, on both CPU and GPU versions of our algorithm,
and present the plots on roadNet-CA for 512 CPUs.

Predictive Performance. We also examine the effect on pre-
dictive performance of the GCN model when parallelized using our
training algorithm. We use the Cora dataset since our large-scale
networks do not have training labels. We run the parallel training
algorithm for 30 epochs on up to 27 GPUs, and compare their ac-
curacy performance with the serial training algorithm. Figure 4c
shows that the parallel training algorithm does not have any nega-
tive impact on the accuracy performance, with approximately 75%
accuracy achieved in all settings.
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Figure 5: Performance comparisons for mini-batch training.

Running time and communication volume (“Msg Vol”) with

HP and SHP on com-Amazon for 𝑃 = 3 to 𝑃 = 27 GPUs.

Table 3: Performance comparisonwithHP andRP (𝑑 = 1, 2, 5)
on ogbn-Papers100M for 𝑃 = 27 GPUs.

Partitioning

model

Running time (secs) Communication

volume𝑑 = 1 𝑑 = 2 𝑑 = 5

HP 24.46 25.00 29.73 1.2 billion

RP 34.70 42.88 65.14 13 billion

Stochastic Hypergraph Model. Figure 5 shows the relative
performance improvement of stochastic hypergraph model (SHP)
over HP in mini-batch training. 10K random mini-batches of size
20K vertices are generated. The total communication volume they
induce under partitionings obtained by HP and SHP on com-Amazon
graph using GPU are measured. We set 𝜃 = 0.1 and 𝛿 = 0.5 to run
SHP and we set the same maximum imbalance ratio (𝜖 = 0.01) for
both SHP and HP. In the figure (inset), the relative improvement
of SHP over HP (in red along the secondary y-axis) shows that HP
induces 10%more communication volume than SHP on average. The
performance difference in favor of SHP is even more pronounced at
higher processor counts. We see that SHP provides a greater benefit
of shorter running time with more processors.

Scalability to Billion-scale Datasets. We also test our algo-
rithm on a billion-scale ogbn-Papers100M dataset, which is only
feasible when partitioned onto 27 GPUs due to memory limita-
tions. Table 3 shows that our methods is scalable not only to high
processor counts but also to very large graphs. RP slows down sig-
nificantly with increasing dimensionality of features. On the other
hand, the communication benefit of HP, reducing communication
volume approximately by a factor of 10x, allows it to scale better.

Comparison against SOTA. Our optimizations are proposed
for large-scale CPU clusters, since the improvement of point-to-
point communication overheads over broadcast is more pronounced
in such cases.We nonetheless compare the running time of our GPU
implementation (HP) against state-of-the-art distributed GPU sys-
tems. All systems use the same GCN architecture and report results
on the Reddit dataset that is common among them. The reported
algorithms (except CAGNET) use methods that affect training and
predictive performance, such as caching, vertex replication, and
asynchronous parameter updates, whereas HP performs full-batch

Table 4: Comparison of running time (per epoch) on Reddit.

Method Running time (per epoch) Setup Reference

HP 0.67 A100*3 -

CAGNET 0.11 V100*4 Fig 1 (c=1) [54]

ROC 1/5 = 0.20 P100*4 Fig 5 [22]

Sancus 97.4/1000 = 0.09 V100*4 Table 4 (SCS-A) [43]

PaGraph ≈ 1.00 1080Ti*1 Fig 9 [34]

Dorylus 162.9/120 = 1.36 V100*2 Fig 5, Table 4 [52]

DGCL 0.15 V100*4 Fig 8(a) [4]

training. As seen from the results, HP achieves considerable relative

performance even on small GPU counts.

6 CONCLUSION

We proposed a highly parallel algorithm for GCN training on large-

scale distributed-memory systems. For scalability, all matrices ex-

cept parameter matrices are row-wise partitioned between proces-

sors. The algorithm achieves further communication cost reduction

by capturing the sparsity pattern of the adjacency matrix to per-

form point-to-point communications, via the use of a sparse matrix

partitioning scheme based on an intelligent hypergraph model.

Our solution is scalable on a CPU cluster with MPI backend, with

the proposed hypergraph partitioning based approach providing

significant speedups. The latency between hidden layers are consid-

erably amortized, allowing deeper GCN models to be trained, and

with no impact on accuracy. We also performed experiments on

a GPU cluster with NCCL backend which provide useful insights

on large scale GNN training. All tested algorithms demonstrated

less scalability in GPUs compared to the CPU based versions. We

also observed that on some instances CPU implementation runs

faster than the GPU implementation, besides being more scalable.

To further improve the mini-batch training, we proposed a novel

stochastic hypergraph model that successfully captures the random-

ness of communication operations in parallel mini-batch training

and achieves improvements over the hypergraph model.

The proposed algorithm is adaptable to other GNNs by changing

only the local computations without requiring any changes in terms

of the communication operations, which opens up many future

directions of research. Additionally, there is scope for exploring

several optimizations in the mini-batch sampling strategy and in the

GPU communications. The use of 2D and 3D partitioning schemes

is another promising avenue for further research.
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