
Fast Algorithms for Denial Constraint Discovery
Eduardo H. M. Pena

Federal University of Technology

Campo Mourão, Paraná, Brazil

eduardopena@utfpr.edu.br

Fabio Porto

LNCC-DEXL

Petropolis, Rio de Janeiro, Brazil

fporto@lncc.br

Felix Naumann

Hasso Plattner Institute, University of

Potsdam, Germany

felix.naumann@hpi.de

ABSTRACT
Denial constraints (DCs) are an integrity constraint formalism

widely used to detect inconsistencies in data. Several algorithms

have been devised to discover DCs from data, as manually spec-

ifying them is burdensome and, worse yet, error-prone. The ex-

isting algorithms follow two basic steps: building an intermediate

data structure from records, then enumerating the DCs from that

intermediate. However, current algorithms are often inefficient

in computing these intermediates. Also, it is still unclear which

enumeration algorithm performs best since some of the available

algorithms have not yet been compared to each other.

In response, we present a set of new algorithms with improved

design choices. We introduce a parallel pipeline for rapidly com-

puting the intermediate using custom data representations, algo-

rithms, and indexes. For DC enumeration, we propose an inverted

index, pruning, and parallel search strategies. We present hybrid

approaches that integrate our techniques with previous enumera-

tion algorithms, improving their performance in many scenarios.

Our experimental study shows that the proposed DC discovery al-

gorithms are consistently much faster (up to an order of magnitude)

than the current state-of-the-art.

PVLDB Reference Format:
Eduardo H. M. Pena, Fabio Porto, and Felix Naumann. Fast Algorithms for

Denial Constraint Discovery. PVLDB, 16(4): 684-696, 2022.

doi:10.14778/3574245.3574254

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/eduardopena/fdcd.

1 INTRODUCTION
Data cleaning, database design, and query optimization exemplify

data management tasks that can exploit several facets of integrity

constraints. Specifying such constraints is required, but manually

doing so is unlikely to work for large databases and complex con-

straints, for instance because the required expertise might not al-

ways be available. Even if it is, manually designing constraints is

error-prone and time-consuming since the constraints must be kept

up to date for the ever-evolving semantics of data and applications.

Instead, one can discover the constraints from data [1]. Of partic-

ular interest are denial constraints (DCs), as they generalize several

intra-relation constraints (i.e., over single tables) and can capture

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.

doi:10.14778/3574245.3574254

complex data quality rules that the generalized constraints can-

not. Consider the employee relation in Table 1 and observe that

(non-supervisor) employees never earn salaries higher than their

supervisors (referenced by SID). Due to limited expressive power,

constraints such as keys, functional dependencies, and order depen-

dencies cannot model this observation. In turn, a DC can do so with

a set of predicates that specify the inconsistent value combinations

for this observation, as follows:

𝜑1 : ∀t, t′ ∈ employee ¬(t.SID = t′.ID ∧ t.Salary > t′.Salary)
DC 𝜑1 defines that there cannot exist any tuple pair in employee
satisfying all predicates of 𝜑1 simultaneously. We introduce DCs

more formally in Section 2.

Table 1: The employee relation.

ID Name Salary SID

t1 #1 Caruso 10 000 #1

t2 #2 Zhang 5500 #1

t3 #3 Schneider 6000 #1

t4 #4 Smith 11 000 #4

t5 #5 Caruso 6000 #4

t6 #6 Souza 7000 #4

t7 #6 Souza 7000 #4

Recent works have shown how DCs help with data consistency

[10, 11, 18]. For example, it is possible to augment relational tuples

by quantifying their degrees of inconsistency concerning a set of

DCs, then use the augmented tuples during query answering to

compute top-k results [11]. It is also possible to introduce cleaning

operators into the query processing to track and repair DC viola-

tions on demand [10]. Overall, DCs are essential building blocks

in quantifying database inconsistency [18], being at the core of

several state-of-the-art data cleaning systems [6, 9, 24].

The higher the expressive power of a constraint type, the higher

the computational complexity of its discovery. For functional de-

pendencies, this complexity is already quadratic in the number of

tuples and exponential in the number of columns [16]. In the case

of DCs, each column can generate several predicates. Although

the complexity of DC discovery is still quadratic in the number of

tuples, it is exponential in the number of predicates [5].

If the input contains errors, discovering exact DCs, which hold

for the entire dataset, may result in overfitting because the DCs

need to accommodate the errors. A common workaround is to relax

the DC definition. For example, approximate DCs (aka. partial DCs)

must hold for at least a fixed percentage of the data [5]. Observe that

the following DC could conveniently specify a key for employee:

𝜑2 : ∀t, t′ ∈ employee ¬(t.ID = t′.ID)

684

https://doi.org/10.14778/3574245.3574254
https://github.com/eduardopena/fdcd
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574254
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Although the duplicate tuples t6 and t7 prevent DC 𝜑2 from hold-

ing, it is still possible to discover this approximate DC with an

algorithm that accounts for the small number of violations. It turns

out that computing and leveraging the violations of DC candidates

increases the discovery costs, making the discovery of approximate

DCs even more expensive than the discovery of exact DCs [17, 21].

There are a number of algorithms for DC discovery [4, 5, 17, 20,

21]. However, a deeper analysis of these algorithms shows several

design choices that limit their performance and applicability. The

algorithm proposed first, FastDC, requires enumerating every pair

of tuples of the input relation, which incurs a high computational

cost [5]. In response, the algorithms in [17, 20, 21] use column

indexing and logical operations to reduce this cost. Still, their ap-

proach needs to visit a quadratic number of intermediates, suffering

significant performance degradation for larger inputs. Hydra is a
sample-based algorithm that, unlike the other previous algorithms,

can discover only exact DCs [4]. As it leaps across the search space

for performance, it loses track of the additional information re-

quired for discovering approximate DCs. Datasets in production

often contain data errors, so focusing only on exact DCs might

not be appropriate due to DC overfitting. A second shortcoming

of Hydra is that its sample-based approach may induce expensive

computations for datasets containing many DCs, significantly hin-

dering performance. Such datasets are common in practice due to

the large DC search space.

All prior algorithms first build an intermediate called evidence

set from the input and then enumerate the DCs based on this inter-

mediate. Some even share the same algorithm for one of the two

phases: [17, 21] use the same algorithm for evidence set building,

whereas [5, 20, 21] use the same one for DC enumeration. In this

paper, we use this DC discovery framework but present much more

efficient algorithms for both phases.

First, we introduce intermediate representations, column indexes,

and algorithms to build a parallel pipeline for building evidence

sets suitable for discovering exact and approximate DCs. We show

experimentally that our approach is much faster than the ones

provided by previous alternatives. This contribution is essential for

DC discovery since building evidence sets consumes most of the

runtime for many datasets [5, 17].

We present novel techniques also for DC enumeration, in partic-

ular an inverted index, pruning strategies, and a DC search scheme

that can run in parallel. We have applied these techniques to re-

design one of the previous algorithms completely [5], thereby pro-

viding an alternative that is much faster than the original. Also,

we combine our redesign with the other previous DC enumeration

algorithms in hybrid approaches. Our experiments show that these

hybrids often result in the fastest enumeration strategies.

We organize the rest of this paper as follows. We provide the

background on DCs and an overview of the state-of-the-art in DC

discovery in Section 2. We present our solution for evidence set

building in Section 3, followed by our DC enumeration algorithms

in Section 4. Then, we provide an extensive experimental evalu-

ation in Section 5. We compare our algorithms to the previous

ones on various datasets, showing that our algorithms consistently

perform much faster than the previous state-of-the-art (up to an

order of magnitude). Finally, we discuss our conclusions and future

directions in Section 6.

2 BACKGROUND AND RELATEDWORK
2.1 Denial constraints
DCs express predicate conjunctions to determine conflicting com-

binations of column values. They generalize other integrity con-

straints, including unique column combinations, functional depen-

dencies, and order dependencies. Let A and B be two columns of a

relation schema R having a relation instance rwith 𝑛 tuples. Follow-

ing [4, 5, 17, 21], we consider predicates of the form p : t.A 𝜃 t′.B,
where t and t′ are tuples of r, and 𝜃 ∈ {=,≠, <, ≤, >, ≥} is a com-

parison operator of the database. A DC 𝜑 defines a set of predicates

that cannot be true at the same time, as the following:

𝜑 : ∀t, t′ ∈ r,¬(p1 ∧ . . . ∧ p𝑚)

A DC 𝜑 holds in r if no pair of tuples t, t′ satisfy all the predicates

of 𝜑 simultaneously. To put it another way, a DC 𝜑 is valid in r if,
for every pair of tuples in r, there is at least one predicate of 𝜑 that

returns false.

We call a pair of tuples t, t′ that satisfy all predicates of a DC

𝜑 a violation. A DC 𝜑 that holds in r entirely, i.e., there are no

violations, is usually called an exact DC. A DC 𝜑 is called trivial if

it is satisfied by any relation instance. For example, any instance of

the employee relation would satisfy the trivial DC 𝜑3 : ¬(t.Name =

t′.Name ∧ t.Name ≠ t′.Name). A DC 𝜑 is set-minimal if no proper

subset of its predicates form a valid DC in r. For example, observe

that the predicates of a DC 𝜑4 : ¬(t.SID = t′.ID ∧ t.Salary >

t′.Salary ∧ t.Name ≠ t′.Name) form a superset of the minimal DC

𝜑1, therefore, DC 𝜑4 is considered non-minimal.

An approximate DC is a DC partially satisfied in a relation in-

stance. The term “partial” refers to a relaxation in the constraint

definition. Following related work [17], we use approximation func-

tions 𝑓 to relax the DC definition. These functions map a relation

instance r and a DC 𝜑 into a value in the interval [0, 1], repre-
senting the degree to which that instance violates that DC. Given

a threshold 0 ≤ 𝜀 < 1, a DC 𝜑 is a minimal approximate DC if

𝑓 (r, 𝜑) ≤ 𝜀 and there is no DC 𝜑 ′ whose predicates are a proper
subset of the predicates of 𝜑 and such that 𝑓 (r, 𝜑 ′) ≤ 𝜀.

The existing approximation functions may produce complemen-

tary results, so it is unclear which function works best [17]. In this

paper, we use the 𝑔1 function [13], as it has been used to define

approximate DCs in most related work [5, 17, 20, 21]. This function

captures the proportion between the number of violating tuple

pairs and the number of distinct tuple pairs of the instance relation:

𝑔1 (r, 𝜑) =
|{(t, t′) ∈ r | (t, t′) ̸|= 𝜑}|

𝑛 · (𝑛 − 1)

For example, observe that tuples t6 and t7 in employee form

a pair of violations for the DC 𝜑2. By allowing a small number

of violations, say with a threshold 𝜀 = 0.05, we can obtain 𝜑2 as

an approximate DC since 𝑔1 (employee, 𝜑2) = 0.047. This example

illustrates how approximate DCs help in scenarios where the input

datasets contain errors or exceptions.

2.2 DC discovery
In general, existing DC discovery algorithms follow three main

steps [4, 5, 17, 20, 21], as explained next.

685

1. Predicate space building. The first step defines the set of

predicates that the discovery algorithms can use to derive DCs,

that is, building the predicate space P. In principle, any subset

of P is a DC candidate. Including predicates into P increases the

DC search space, and hence computational costs. In particular,

including some predicates into P would only increase the num-

ber of uninteresting DCs in the output. For example, including

the predicate t.Name = t′.Salary into P would result in a DC

𝜑5 : ¬(t.Name = t′.Salary) with low semantic value.

Chu et al. proposed predicate restrictions to reduce computa-

tional costs and uninteresting results [5]. Predicates on categorical

columns use the operator set {=,≠}, whereas predicates on numeric

columns use {=,≠, <, ≤, >, ≥}. Predicates on two different columns

are allowed only if the columns share the type and a percentage

of common values. All DC discovery algorithms use this approach,

and so do ours. Also, our algorithm in Section 3 rearranges the

predicate space into a list of predicate groups. Each predicate group

is the subset of P whose predicates differ from each other solely

by the operator. Figure 1 illustrates the predicate space and group

arrangement for employee relation.

p1 : t.ID = t′.ID p2 : t.ID ≠ t′.ID
p3 : t.Name = t′.Name p4 : t.Name ≠ t′.Name
p5 : t.Salary = t′.Salary p6 : t.Salary ≠ t′.Salary
p7 : t.Salary < t′.Salary p8 : t.Salary ≤ t′.Salary
p9 : t.Salary > t′.Salary p10 : t.Salary ≥ t′.Salary
p11 : t.SID = t′.SID p12 : t.SID ≠ t′.SID
p13 : t.ID = t′.SID p14 : t.ID ≠ t′.SID
p15 : t.ID = t.SID p16 : t.ID ≠ t.SID

Figure 1: Predicate space (and groups) of employee.

2. Evidence set building. The next step is building the evidence

set, a data structure used to validate DC candidates quickly. The

term “piece of evidence” e refers to the predicate subset of P that is

satisfied by a pair of tuples t, t′, that is, et,t′ = {p | p ∈ P, t, t′ |= p}.
The evidence set Er is the set of pieces of evidence from all pairs of

tuples of the instance r, given a predicate space P. In practice, the

size of evidence sets is only a tiny fraction of the total number of

tuple pairs [17, 21]: distinct tuples pairs can produce the very same

piece of evidence, and they often do. As a result, building evidence

sets is a way of compacting the information on predicate satisfaction

of the entire input into a single and smaller data structure.

For approximate DC discovery, algorithms need the number of

tuple pairs that produced each piece of evidence e ∈ Er, i.e., the
multiplicity of each evidence e. We denote the multiplicity value as

𝑐𝑜𝑢𝑛𝑡 (e). This value serves as a proxy for determining the violation

number of each approximate DC candidate. It is also required for

ranking DCs regarding their coverage of the datasets. We refer to

related work for details on DC ranking [5, 21].

Evidence set building can dominate discovery runtime for many

datasets, as it is significantly impacted by the number of tuples in

the input [4, 5, 17, 21]. A few algorithms have been proposed to mit-

igate exhaustive enumerations of tuple pairs, thereby reducing the

performance impact for large datasets. We discuss these previous

algorithms in Section 2.3 and present our own in Section 3.

3. DC enumeration. Discovering DCs is equivalent to discover-

ing predicate sets that cover evidence sets [4, 5]. DC discovery is

connected also to enumerating hitting sets in hypergraphs: the

predicate space regards the vertex set, and each piece of evidence

regards a hyperedge [17]. The problem equivalencies are based on

the following insight. A DC 𝜑 is valid if no tuple pair in r satisfies

all predicates of 𝜑 , so it is possible to verify the evidence set for the

absence of a piece of evidence that contains all predicates of 𝜑 .

The runtime of enumerating DCs grows exponentially in the

number of columns, regardless of the enumeration method [4, 5, 17].

Still, prior algorithms perform well for many practical datasets,

often finishing in a matter of seconds. Unfortunately, it is still an

open question how to efficiently enumerate DCs (or any other

dependency type) for wider datasets (i.e., many columns) [2]. We

review the prior DC enumeration algorithms in Section 2.3, and

present our own in Section 4.

2.3 Related work
FastDCwas the first algorithm for DC discovery [5]. First, it iterates

every pair of tuples of the input to compute the evidence set [5].

Then, it enumerates DCs with a heuristic-driven depth-first traver-

sal of the DC search space, which validates the DC candidates using

evidence set intersections. This enumeration scheme works for

exact and approximate DCs (with adaptations). Our enumeration

algorithm in Section 4 follows a similar framework, but introduces

auxiliary data structures and pruning techniques that significantly

reduce the cost of checking DC candidates.

Evidence set building in FastDC is computationally expensive—it

may take several days to process even medium-size datasets [5].

BFastDC [20] and DCFinder [21] algorithms use faster strategies

for this phase, and then use the DC enumeration strategy of FastDC.
The algorithms operate on small blocks of evidence at a time,

and use custom column indexes to derive predicate satisfaction.

DCFinder additionally uses information on predicate selectivity to

reduce the number of evidence manipulations. The strategies in

BFastDC and DCFinder greatly improve runtimes compared to the

approach of FastDC, but can still be penalized for large instances.

The main shortcoming is that these algorithms need to collect each

piece of evidence in each block to compute the evidence set and

accumulate its multiplicity. This step requires visiting a quadratic

number of elements, which can be cost-prohibitive. Our approach

uses a similar intuition as DCFinder regarding predicate selectivity.
However, it introduces an entirely different framework that avoids

visiting each piece of evidence individually.

The Hydra algorithm focuses on exact DCs [4]. First, it discovers

DCs from an intermediate evidence set built from tuple pair samples.

Then, it detects the violations of these DCs regarding the relation

instance, as each violation points to a missing piece of evidence.

A shortcoming is that the time to detect violations and complete

the evidence drastically increases with the number of intermediate

DCs—high DC numbers are common in many datasets. A similarity

between our approach and Hydra is that both exploit the evidence

redundancy across tuple pairs for performance. However, Hydra
uses sampling to leap across the evidence search space. This strat-

egy loses evidence multiplicity, which is critical for discovering

approximate DCs and ranking DCs based on coverage. In turn,

686

our approach exploits evidence redundancy using efficient data

structures and algorithms that do capture evidence multiplicity.

To enumerate the DCs, Hydra initially assumes single predicate

DCs to be valid. Then, it iterates each piece of evidence in the

evidence set and adds predicates to the DCs violated by that piece

of evidence. Each iteration conforms the current DCs to the current

piece of evidence, so at the end of the process, the set of DCs is valid

and complete regarding the entire evidence set. This enumeration

scheme works only for exact DCs, and it is unclear how to adapt it

for the approximate DC case [4].

Livshits et al. [17] integrate the evidence set building of DCFinder
with a hitting set enumeration algorithm calledMinimal-to-Maximal

Conversion Search with pruning (MMCS) [19]. The MMCS algorithm
uses a set system based on essential properties of hitting sets, which

enables the algorithm to perform a depth-first search with several

pruning strategies. These properties also enable fast operations on

the data structures that check and validate the hitting sets (i.e., DCs).

The authors also adapt the MMCS algorithm for the approximate DC

by changing the base case and including additional routines.

In Section 4, we propose to integrate our enumeration techniques

with the enumeration scheme of Hydra and the MMCS algorithm in

hybrid approaches, which can improve enumeration performance.

3 FAST EVIDENCE SET BUILDING
This section presents the evidence context pipeline (ECP), our so-
lution for efficiently building evidence sets with multiplicity. The

main shortcomings of previous solutions lie in the quadratic num-

ber of evidence they compute (in [5]) or allocate (in [17, 20, 21]).

With ECP, we can process evidence from multiple tuples simultane-

ously, reducing the overall number of computations and memory

allocations required. A key insight implemented in ECP is to operate
on compact data structures that bind each distinct evidence to the

tuples that produce that evidence, the evidence contexts.

Each ECP comprises a series of stages that perform evidence

context corrections. These corrections take as input a predicate group

and a set of evidence contexts whose evidence and tuples are not yet

correct according to that predicate group. They operate the evidence

and tuples in each evidence context and produce a new set of

evidence contexts, corrected according to the underlying predicate

group. The idea is to transform evidence contexts incrementally

until they represent the correct and complete evidence set. For

performance, we have designed correction algorithms that exploit

a strong relationship between the evidence context representation

and logical (bitwise) operations.

3.1 Evidence Context
There is often much redundancy in the evidence space in the sense

that many tuples pairs produce the same evidence [17, 21]. As a

result, the number of elements in the evidence set is much smaller

than the total number of tuple pairs. We capture such redundancy

by processing evidence contexts, thereby avoiding processing or

visiting each piece of evidence individually.

An evidence context is represented as a triple ect = ⟨t, tids, e⟩
comprising a tuple t, a set tids of tuples, and a piece of evidence e.
Each triple is interpreted as follows: “tuple t, when combined with

any tuple t′ ∈ tids, produces the piece of evidence e”. In other

words, each triple ect denotes that the tuple t produces the same

piece of evidence e by |tids| times. Thus, the evidence multiplicity

𝑐𝑜𝑢𝑛𝑡 (e) in r is given by summing the number of tuples |tids| of
every triple ect from r having the piece of evidence e.

Evidence contexts provide an efficient way to store evidence.

Consider tuple t4 from the employee relation and the predicate

space in Figure 1. We obtain among others the following evidence

context: ⟨t4, {t1, t2, t3}, {p2, p4, p6, p9, p10, p12, p14, p15}⟩. This ev-
idence context represents the tuple pairs (t4, t1), (t4, t2), and
(t4, t3) but requires us to store only four integers (tuple ids) plus a

single piece of evidence instance. For comparison, the FastDC algo-

rithmwould enumerate the three pairs, computing the same piece of

evidence each time. The BFastDC and DCFinder algorithms reduce

the computation time but still need to allocate and visit three pieces

of evidence individually. ECP avoids the high overhead from pair-

wise iteration and memory allocations with algorithms exploiting

the highly compressible evidence contexts. Naturally, the evidence

context efficiency becomes much more evident as the number of

rows increases.

3.2 Pipeline
For each tuple t, we run a pipeline that incrementally forms a set

ECTs of all evidence contexts for t. First, we initialize ECTs with

a single evidence context ect = ⟨t, tids, e⟩, where tids is the set
of every tuple of r except t, and e = {p ∈ P | p.op ∈ {≠, >, ≥}}. We

use this initial set tids because we need the evidence of every t ∈ r
combined with every other tuple of r. As for the initial piece of
evidence e, the goal is to improve performance by minimizing the

number and costs of updates in the evidence contexts of each stage.

At a high level, we initialize evidence contexts with predicates

that are more likely to require less data movement from evidence

context corrections (see Sections 3.3 and 3.5).

The set ECTs goes through a pipeline, where each stage imple-

ments the evidence correction for a predicate group. The corrections

update ECTs such that each element conforms to the current predi-

cate group. For example, we may need to remove tuples from tids
that do not satisfy predicates on {≠, >, ≥}; or create new evidence

contexts whose tids satisfy predicates on {≠, <, ≤} or {=, ≤, ≥}.
Due to the updates, new evidence contexts might arise, while others

might disappear. The set ECTs of each tuple t is complete at the end

of the pipeline, since it contains all (corrected) evidence contexts

associated with t. At this stage, we extract the pieces of evidence
with their multiplicities. Since the sets ECTs are independent of

each other for different tuples, we can run multiple ECPs in parallel

by synchronizing the concurrent access to the final evidence set.

As an example, Figure 2 illustrates the ECP execution for tuple t1,
considering the subset of predicates p1–p12 of Figure 1. The final
pieces of evidence for t1 are identified at the last stage. The evidence
e4 also appears in the contexts: ⟨t4, {t1, t2, t3}, e4⟩, ⟨t5, {t2}, e4⟩,
⟨t6, {t2, t3}, e4⟩, and ⟨t7, {t2, t3}, e4⟩. By summing the number of

elements in the sets tids of the contexts having e4 we obtain the

multiplicity of e4 in employee, that is, 𝑐𝑜𝑢𝑛𝑡 (e4) = 10.

3.3 The role of predicate selectivity
Predicates with the operator ≠ tend to be much less selective than

predicates with the operator = (unless for particular distributions,

687

Stage Evidence Contexts

⟨t1, {t2, t3, t4, t5, t6, t7 }, {p2, p4, p6, p9, p10, p12 }⟩

p1 − p2 ⟨t1, {t2, t3, t4, t5, t6, t7 }, {p2, p4, p6, p9, p10, p12 }⟩

p3 − p4 ⟨t1, {t2, t3, t4, t6, t7 }, {p2, p4, p6, p9, p10, p12 }⟩ ,
⟨t1, {t5 }, {p2, p3, p6, p9, p10, p12 }⟩

p5 − p10 ⟨t1, {t2, t3, t6, t7 }, {p2, p4, p6, p9, p10, p12 }⟩ ,
⟨t1, {t4 }, {p2, p4, p6, p7, p8, p12 }⟩ ,
⟨t1, {t5 }, {p2, p3, p6, p9, p10, p12 }⟩

p11 − p12 ⟨t1, {t2, t3 }, e1 : {p2, p4, p6, p9, p10, p11 }⟩ ,
⟨t1, {t4 }, e2 : {p2, p4, p6, p7, p8, p12 }⟩ ,
⟨t1, {t5 }, e3 : {p2, p3, p6, p9, p10, p12 }⟩ ,
⟨t1, {t6, t7 }, e4 : {p2, p4, p6, p9, p10, p12 }⟩

Figure 2: ECP for tuple t1 and predicates p1–p12 of employee.

e.g., single-valued columns). For instance, for tuple t1, we find only
tuple pairs satisfying the predicate p2 : t.ID ≠ t′.ID. By prioritizing
the predicate p2 over p1, there is no need to reconcile any evidence

context for p1. Suppose we had prioritized the other way around (p1
over p2), we would need to move six tuples to correct the evidence

context at the p1 − p2 stage. Of course, some cases do require

moving tuples for equality predicates. However, the selectivity of

such predicates is often much smaller than the selectivity of the

“different than” counterpart. Thus, we significantly increase the

chances of the correction operating on much smaller set of tuples.

When we prioritize the operator ≠ for predicates on numeric

columns, we must choose the inequality direction. Since there is a

selectivity equivalency between directions {<, ≤} and {>, ≥}, we
can expect the correction algorithms to perform equivalent work

either way. Thus, we choose to initiate the initial predicates in

the {>, ≥} direction and provide algorithms to reconcile evidence

contexts for the opposite direction. Notice that by doing so, we

already have a significant portion of the evidence contexts in the

correct state, so the correction algorithms have less data to move.

3.4 Indexes for Evidence context correction
Given a column A and a value 𝑣 , our correction algorithms use

specialized indexes for two operations: equals(A, 𝑣), which returns

the set tids of every tuple t having t[A] = 𝑣 ; and greaters(A, 𝑣),
which returns the set tids of every tuple t having t[A] > 𝑣 . To

implement equals, we build a hash table that maps each unique

column value into the set of tuples having that value. For instance,

the hash table for the Salary column of the employee relation

contains the entries: ⟨5500, {t2}⟩, ⟨6000, {t3, t5}⟩,⟨7000, {t6, t7}⟩,
⟨10000, {t1}⟩, and ⟨11000, {t4}⟩.

We build an additional index for the greaters operation. For

low cardinality columns, we use the sorted set from the keys of

the equals hash table. Let the sorted set of keys for a column A be

𝑣1, . . . , 𝑣𝑘 . The bitmap entry for each column value 𝑣 𝑗 (1 ≤ 𝑗 < 𝑘) is

computed with the union equals(A, 𝑣 𝑗+1) ∪ . . .∪ equals(A, 𝑣𝑘). For
example, from the Salary column, we obtain the following entries:

⟨11000, {}⟩,⟨10000, {t4}⟩ ,⟨7000, {t1, t4}⟩, ⟨6000, {t1, t4, t6, t7}⟩, and
⟨5500, {t1, t3, t4, t5, t6, t7}⟩.

For high cardinality columns (boundaries defined later), we use

a two-layered bitmap index with binning to save memory. We

split the column values into ranges, i.e., bins, and use a bitmap to

represent each range rather than distinct values. Like the procedure

for low cardinality columns, we build a bitmap index using the

bitmaps of (sorted) ranges—the first layer. We then build a bitmap

index for each range, using only the tuples within that range—the

second layer. We opt for equi-depth binning to divide the ranges,

so that each bin contains approximately the same number of tuples.

The goal is to make each check in the second layer index equally

expensive. Each call to greaters requires computing the union

between the bitmap entries of the first and second layers.

Consider we are using the binning approach with the Salary col-
umn and two bins. The first layer of the index is built from entries:

⟨[5500, 7000), {t2, t3, t5}⟩ and ⟨[7000, 11000], {t1, t4, t6, t7}⟩. Sup-
pose we are looking for key 5500, that is, all tuples having a Salary
value higher than 5500. The first layer returns tids1 = {t1, t4, t6, t7}.
The second layer is built only from tuples {t2, t3, t5}, and returns

tids2 = {t3, t5} when it is probed. Observe that with tids1 ∪
tids2 = {t1, t3, t4, t5, t6, t7} we obtain precisely the result for

greaters(Salary, 5500).
In the first layer, the number of bitmaps is limited by the number

of bins. On the other hand, the bitmaps in the second layer are

much more compact than a non-binned counterpart because they

store only the identifiers of tuples in a specific range. We observed

during experiments that enabling binning for columns with more

than 2000 distinct values and setting the number of bins to around

500 works well for all tested datasets. Similar results have also been

obtained in related work using bitmap indexes [22].

3.5 Algorithms for evidence context correction
Each stage of an ECP takes as input a set of evidence contexts and
a predicate group and then processes each context to correct its

evidence and tids according to that group. Predicates of the form

t.A 𝜃 t.B are straightforward to handle, as they involve only one

tuple. For such cases, we evaluate the predicates once per ECP and

then include the result in each evidence context at the end of the

pipeline. Observe, for example, that all evidence contexts for tuple

t4 can include only the predicate p15. In turn, the correction for

other predicate groups requires algorithms that find the parts of the

evidence context currently incorrect and fix these parts according

to the current predicate group.

Correction for categorical predicates. Algorithm 1 shows the

evidence context correction for predicates of the form t.A 𝜃 t′.A
where A is a categorical column. Each evidence context ect ∈ ECTs
already includes the inequality t.A ≠ t′.A, so our first goal is to

identify the parts of tids in each ect that should include the equal-
ity counterpart. Tuples t with a unique A value are different from
every other tuple for A, so there is no need for correction (case in

Line 2). The variable 𝑓 𝑖𝑥𝐸𝑞𝑢𝑎𝑙𝑠 extracts from each ect the tuple

subset with the A value equal to the A value of the current tuple

t. This subset contains the tuples that should include t.A = t′.A.
Whenever such subsets are non-empty, we create a new evidence

context with the new piece of evidence holding the equality con-

figuration (Lines 12 and 13). We include this new context for the

next pipeline stages in Line 14. Also, we must correct the tids of

688

each ect by removing from them the tuples satisfying the equality

(Lines 8–11). This step causes evidence contexts to disappear when

there is no tuple partner to satisfy the inequality (Line 9).

Algorithm 1: CategoricalStage(t, A, ECTs)

1 equals← equals(A, t[A])
2 if equals.size = 1 then
3 return

4 newECTs← ∅
5 foreach ect ∈ ECTs do
6 fixEquals← equals ∩ ect.tids
7 if fixEquals.size > 0 then
8 if ect.tids = fixEquals then
9 remove ect from ECTs

10 else
11 ect.tids← ect.tids \ fixEquals
12 e← CopyReconcile(ect.e, t.A 𝜃 t′.A, {=})
13 newECTs← newECTs ∪ ⟨t, fixEquals, e⟩

14 ECTs← ECTs ∪ newECTs

For predicates of the form t.A 𝜃 t′.B where both A and B are

categorical columns, the algorithm above requires minor changes.

First, the lookup is equals(B, t[A]). Observe that an empty set of

tids means that column B does not contain the value t[A]. In this

case, since t.A ≠ t′.B is true for every tuple pair where t ≠ t′, so
no correction is required. Also, no correction is required whenever

equals(B, t[A]) returns a set containing only tuple t. In this case,

the predicate t.A = t.B is true but t.A = t′.B is not.

Correction for numerical predicates. Algorithm 2 shows the

evidence context correction for predicates of the form t.A 𝜃 t′.A
where A is a numerical column. The intuition is similar to the cate-

gorical case, but now evidence contexts initially cover a predicate

direction with operators {≠, >, ≥}. As a result, we need to correct

pieces of evidence for the portions of tids in each ect that instead
should include either the direction {=, ≤, ≥} or {≠, <, ≤}. The vari-
able fixEquals covers the {=, ≤, ≥} case, whereas fixGreaters covers
{≠, <, ≤}. Mind that fixGreaters contains the tuples with an A-value
greater than t[A]. Whenever all the tuples in ect.tids have an A
value equal to t[A] (case in Line 8), we need to correct ect only

for {=, ≤, ≥} because no tuple in ect.tids can satisfy neither the

{≠, <, ≤} nor the {≠, >, ≥} direction. Otherwise, we remove from

the current ect.tids all tuples satisfying the equality for A (Line 12).
Then, we reconcile this new set ect.tids for the {≠, <, ≤} direction
through Lines 16–22. The case in Line 21 occurs when all the tuples

in the remaining ect.tids have an A-value less than t[A].
For predicates of the form t.A 𝜃 t′.B where both A and B are nu-

merical columns, the search for variable equals is equals(B, t[A])—
the cases with no join partner being like the case for categorical

columns. As for variable greaters the searches are greaters(B, t[A]),
but we need to account for three base cases. First, the value t[A]
is in the domain of B, so the return is straightforward. Otherwise,

we try returning greaters(B, 𝑣) for a value 𝑣 in B that is strictly less

than t[A]. If such value does not exist, than t[A] is less than every

other value in B, and the result is all but tuple t.

Algorithm 2: NumericalStage(t, A, ECTs)

1 equals← equals(A, t[A])
2 greaters← greaters(A, t[A])
3 newECTs← ∅
4 foreach ect ∈ ECTs do
5 skipRange← false
6 fixEquals← equals ∩ ect.tids
7 if fixEquals.size > 0 then
8 if ect.tids = fixEquals then
9 skipRange← true

10 remove ect from ECTs

11 else
12 ect.tids← ect.tids \ fixEquals
13 e← CopyReconcile(ect.e, t.A 𝜃 t′.A, {=, ≤, ≥})
14 newECTs← newECTs ∪ ⟨t, fixEquals, e⟩
15 if not 𝑠𝑘𝑖𝑝𝑅𝑎𝑛𝑔𝑒 then
16 𝑓 𝑖𝑥𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑠 ← 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑠 ∩ ect.tids
17 if fixGreaters.size > 0 then
18 e← CopyReconcile(ect.e, t.A 𝜃 t′.A,

{=, <, ≤})
19 newECTs← newECTs ∪ ⟨t, fixGreaters, e⟩
20 ect.tids← ect.tids \ fixGreaters
21 if ect.tids.size = 0 then
22 remove ect from ECTs

23 ECTs← ECTs ∪ newECTs

3.6 Complexity and Optimizations
The complexity of Algorithms 1 and 2 is dominated by the number

of evidence contexts along each pipeline. This number starts at one

but grows throughout the pipeline stages. The size of the predicate

space influences the growth rate, as each predicate group requires

corrections that may split evidence contexts. In our experiments, we

did not observe a significant influence from the number of records

on the growth rate. In general, we observed that the number of

evidence contexts would usually grow to hundreds or, in the worst

cases, to a few thousand. Such a result reflects the evidence set

redundancy discussed in Section 3.1.

Another computational cost factor is the implementation of the

intersections and differences between integer sets; for instance, in

Lines 6 and 11 of Algorithm 1. We use roaring bitmaps to store and

operate these sets, as they provide one of the best trade-offs between

performance and storage requirements [15]. The data structure

enables us to store the evidence contexts from each pipeline using

a couple of megabytes, as we show in our experiments. Also, we

can apply the following heuristics to improve performance.

We sort the table on the numerical columns, as row-reordering

can improve bitmap compression [12, 14]. Observe that the entries

of greaters indexes are built from one another incrementally. By

sorting the entire table on a column list [A1, A2, . . .], we increase the
potential for each index entry to contain more compressible tids.
This potential is high for column A1, but wears off as we move to the

next columns. Although determining the optimal sorting order is

689

NP-hard [23], sorting based on column cardinality has been shown

to work well [12, 14, 23]. Thus, we sort the table on columns in

decreasing cardinality (estimated using the accurate HyperLogLog

sketches [7]). The higher the cardinality, the higher the number

of index entries. So, this sorting scheme makes more index entries

more likely to benefit from better bitmap compression.

Our other heuristics prioritize index probes that are more likely

to return tids with fewer tuples, as we seek evidence corrections

that move fewer data. We correct evidence for categorical predicate

groups first, as the equality predicates are much more selective

than “less than” inequalities. Among predicate groups, we correct

evidence for predicate groups on high-cardinality columns first,

since their predicates tend to be more selective. Notice that this last

heuristic is directly connected with the sorting one.

4 FAST DC ENUMERATION
Previous works have shown that it is possible to enumerate all non-

trivial andminimal DCs of a relation instance r from its underlying

evidence set Er [4, 5]. The main intuition is that a DC 𝜑 : ¬(p1 ∧
. . . ∧ p𝑚) holds in r if there exists no evidence violating 𝜑 , i.e., no

evidence satisfying all predicates of 𝜑 . Thus, discovering DCs is

equivalent to enumerating all (minimal) predicate sets {p1 ∧ . . . ∧
p𝑚} such that ∄e ∈ Er : {p1 ∧ . . . ∧ p𝑚} ⊆ e. We refer to such

predicate sets as negative covers. In this section, we present DC

enumeration algorithms based on the negative cover property.

In Section 4.1, we present a redesign of the minimal cover search

(MCS) used in [5, 20, 21]. In Section 4.2, we present hybrid algorithms

that combine our redesign with the two other algorithms from the

state-of-the-art [4, 17]. We refer to the original publications for

proofs and complexity analysis of the base algorithms we extend.

4.1 Indexed Negative Cover Search (INCS)
Our INCS algorithm is based on the MCS algorithm, which uses a

depth-first search to enumerate the negative covers of the evidence

set, as shown in Algorithm 3. It takes as input: a predicate set 𝑝𝑎𝑡ℎ

representing a DC candidate; the list preds of predicates used to

create new nodes; and the evidence set E whose evidence violate
the DC candidate relative to 𝑝𝑎𝑡ℎ.

The first call is INCS(∅, P, Er) with an empty path, the predicate

space P as a list, and the evidence set Er of the relation instance.

Predicates are added from preds into 𝑝𝑎𝑡ℎ′, and the recursive calls

in Line 14 form the nodes of the search tree. Suppose we add a

predicate p into 𝑝𝑎𝑡ℎ′. In that case, we must create its respective

evidence set E′ by removing from the current evidence set E the

evidence that no longer violates the DC candidate relative to 𝑝𝑎𝑡ℎ′.
That is, the set E′ is given by the subset of E of all evidences that
do not contain p. The leaf nodes represent the two base cases. The

first may occur in Line 1, where the empty evidence set implies

that, for the current path = {p1, . . . , p𝑚}, ∄e ∈ Er such that {p1 ∧
. . . ∧ p𝑚} ⊆ e. In this case, we found a negative cover, which is a

DC 𝜑 : ¬(p1 ∧ . . . ∧ p𝑚). The second base case may occur in Line 4,

where there are still violating evidences to cover, but no remaining

predicates to add; hence there are no DCs down that branch.

We use two optimizations from [5, 26]. First, we sort the list of

remaining predicates for each new node in Line 6. Predicates that

intersect the least with the current evidence set come first, as we

Algorithm 3: NegativeCoverSearch(𝑝𝑎𝑡ℎ, preds, E)

1 if E = ∅ then
2 Add path as a DC to the output

3 return

4 else if E ≠ ∅ and preds.length = 0 then
5 return
6 sort preds on ascending order of intersection regarding E

7 for k=0 to preds.length −1 do
8 p← preds[𝑘]
9 preds′ ← preds[𝑘 + 1, preds.length −1]

10 remove trivial and implied predicates of preds′ w.r.t. p
11 E′ ← filtered E (w.r.t. p and preds′)
12 if E′ ≠ nil then
13 path

′ ← path ∪ 𝑝
14 NegativeCoverSearch (path′, preds′, E′)

prioritize predicates tied to the least number of violating evidence.

As a result, we form branches where the longest lists preds′ are
tied with the smallest set E′. The longer preds′ is, the higher the
number of branches. As the branches are tied to a smaller E′, we are
more likely to require fewer iterations. Second, we use the modulo

evidence set principle from [5] in Lines 9 and 11 to decompose the

search space into subspaces based on whether paths can include

a specific predicate or not. The subspaces have the advantage of

leveraging fewer predicates and smaller evidence sets.

The routines in Algorithm 3 need to be efficient since they are

called many times due to the high number of DC candidates. In

the following, we describe our strategies for efficiency and how to

adapt the algorithm for approximate DC discovery.

Late minimality check. The two optimizations described earlier

speed up the search, but they may include redundant nodes for

which the negative covers are non-minimal. The MCS algorithm

checks candidate minimality based on the DCs previously discov-

ered. Such an approach is computationally expensive because of the

subset lookups for every candidate, even candidates whose branches

never form DCs. Instead, our INCS algorithm allows redundant

nodes, but once the INCS is finished, it checks the minimality of

the negative covers discovered.

We initiate a search tree with every negative cover discovered.

Then, for each negative cover, we check if there is no proper subset

of that cover in the tree. If not, that negative cover is minimal and

can be retained. After this check, only the minimal DCs remain in

the result. We use the binary tree proposed in [3] to perform fast

subset lookups. In practice, the overhead of minimality checking

is low compared to the entire enumeration runtime, as it regards

only the discovered DCs.

Parallel search. The late minimality check enables processing the

subspaces independently using multiple threads. We use a hash set

supporting concurrent inserts to receive the negative covers from

these subspaces, which are minimized after all threads finish. In

principle, we can start the parallel threads at any level down the

tree. We tested the algorithm by starting the threads at different

levels and found that doing so once after one-level decomposition

690

performs best. The reason is that the number of individual predi-

cates is already high, so concurrent threads already find room to

improve upon a sequential execution. If we start the threads further

down the tree, the number of subspaces becomes large, and the

multi-threading overhead quickly starts hurting performance.

Evidence set filtering. The filtering routine in Line 11 arranges

the evidence sets for the branching paths. Instead of iterating the

evidence set every time, we propose using an inverted index. We

assign an identifier (id) to each piece of evidence. Then, we associate

with each predicate a bitmap with the ids of pieces of evidence in

which it occurs. In this context, evidence sets are represented as id

bitmaps. Thus, in Line 11, we filter the current evidence set using

an intersection (i.e., a logical “AND” operation) between its bitmap

and the bitmap associated with the predicate for the next node.

In principle, we could use the same index for the entire search,

In practice, rebuilding the index after filtering the evidence set may

improve performance, as the number of elements in the evidence

set often reduces. We found that rebuilding the index works well

with the initial evidence set filtering (for one predicate). Rebuilding

the index in deeper levels of the search tree does not pay off, as

there are many more nodes, and rebuilding the index takes time

proportional to the number of elements in the evidence set.

Also, we can remove the predicates preds[0, 𝑘] from each piece

of evidence of the current evidence set since these predicates are

handled in other branches. As we remap these modified pieces of

evidence, we are likely to obtain an even smaller evidence set: the

number of possible distinct pieces of evidence reduces with fewer

predicates. After remapping, we assign new ids to each (reshaped)

piece of evidence, associate these ids to the bitmap of the remaining

predicates, and continue the search from that branch forward using

the new index system.

Pruning. We can prune unnecessary branches as follows. First, in

the filtering phase, we check if the filtered evidence set references

any piece of evidence that contains all predicates of preds′ (the
remaining predicates to be added). If such a piece of evidence is

found, the branches from the current node can never reach a point

where E = ∅. In this case, we return nil to skip those branches.

Second, whenever we choose a predicate p in Line 8, we remove

from preds′ all predicates from the predicate group of p, that is, the
predicates that differ from p only by the operator. Those predicates

can only result in non-minimal or trivial DCs. Third, while sorting

in Line 6, we remove from preds any predicate p whose bitmap

includes all the pieces of evidence of the current evidence set E. In
this case, p can never contribute to removing any piece of evidence

of E, so adding p to the path would only result in non-minimal DCs.

Approximate negative covers. The authors of [5] have shown
that discovering approximate DCs is equivalent to enumerating

approximate covers of the evidence set. Also, they have shown how

to modify the MCS algorithm to enumerate these covers. The idea

is to use the evidence multiplicity to compute the approximation

function 𝑔1 (Section 2). Similarly, we propose AINCS, an adaption of

the INCS algorithm that enumerates approximate DCs, as follows.

First, we modify the base case in Line 1 to support approximate

covers. Instead of empty evidence sets (E = ∅), we now search for

predicate sets path such that 𝑔1 (r, 𝑝𝑎𝑡ℎ) ≤ 𝜀. The 𝑔1 value for each

path is the sum of the multiplicities in the current evidence set, as

each piece of evidence e ∈ E represents a violation of the current

path, and each 𝑐𝑜𝑢𝑛𝑡 (e) represents how many tuple pairs produced

that violation. Second, we modify the pruning strategy in the evi-

dence set filtering. In the exact DC case, a single piece of evidence

subsuming preds′ is enough to prune the current branch. For the

approximate DC case, we iterate each piece of evidence subsuming

preds′, summing their multiplicities. When this sum exceeds 𝜀, no

further path could ever be able to satisfy the approximation criteria,

so we can prune that branch by returning nil.

4.2 Hybrid methods for DC enumeration
We now show how to integrate the INCS algorithm with the two

other DC enumeration algorithms in related work: evidence inver-

sion (EI) from [4] and the MMCS from [19]. We observed that the

performance of these other algorithms is significantly impacted by

the evidence set size, i.e., number of elements. Our insight is first

to call INCS to obtain a set of search paths, each path connected

with a smaller evidence set. Then, we feed these search paths into

the other algorithms, which can perform the search fast due to the

smaller evidence sets. We denote our hybrid version of EI as HEI,
and our hybrid version of MMCS as HMMCS.

Observe in Lines 8–11 of Algorithm 3 that each predicate p
derives a subspace of predicates preds′ that further forms new

branches with its respective evidence set E′. Like for the INCS
algorithm, we can apply the subspace concept from [5] to discover

DCs from the smaller evidence sets E′ and spaces preds′. First, we
perform the first level of INCS, but instead of continuing with the

recursive calls of INCS, we can call either EI or MMCS algorithms.

For each predicate p, we collect the filtered (and reshaped) ev-

idence set E′ and predicate list preds′, giving them as input to

EI/MMCS calls. Each call to EI returns a set NC of negative covers for
E′. From each 𝑛𝑐 ∈ NC, we derive a valid (but not always minimal)

DC 𝜑 : 𝑛𝑐 ∪ p. In that way, we guarantee output minimality. For

MMCS calls, the results are sets of (minimal) positive covers for E′,
that is, predicate sets that intersect with every element of E′. In this

case, the derived DCs are given by the inverse of the covers [5]. The

final DCs are given after we apply the late minimization strategy.

One advantage of the hybrid approach is that the input sizes for

EI/MMCS algorithms are smaller due to the reduced evidence sets E′

and remaining predicate spaces in preds′. Of course, the counter-
point is that we now require many executions of the algorithms. If

we call these algorithms further down the search tree (i.e., higher

than the first level), we significantly increase the number of calls,

worsening performance. Thus, we only perform the calls only once

after the first level. The second advantage is that, as we do with

INCS, we can execute the calls to EI/MMCS in parallel because we

use the late DC minimization.

5 EXPERIMENTAL EVALUATION
The experiments presented in this section investigate four main as-

pects of the proposed algorithms: (i) performance regarding runtime

and memory consumption; (ii) comparison to the fastest algorithms

in the state-of-the-art; (iii) scalability with the number of rows and

columns of the input; and (iv) impact of the design decisions and

optimizations to performance.

691

5.1 Experimental setting
Table 2 shows the datasets used in our experiments (which were

also used in [17, 21]), along with exact DC discovery runtimes (dis-

cussed in Section 5.2) of three different algorithms. The ECP/HEI-P
is our ECP algorithm combined with the parallel version of our HEI
algorithm, denoted as HEI-P. We used HEI-P, as it was often the

fastest DC enumeration (as experimented in Section 5.4). Hydra [4]

and DCFinder [21] algorithms represent the previous state-of-the-

art. ECP/HEI-P and DCFinder run on parallel threads. In turn, the

several phases of Hydra make it non-trivial to parallelize. While

such an extension is an interesting subject for future work, our

experiments use the algorithm the way the authors proposed it.

Table 2: Datasets used for evaluation and (exact) DC discovery
runtimes (in seconds) of state-of-the-art algorithms.

Dataset #Cols #Rows Size

ECP/
HEI-P

Hydra* DCFinder

Adult 15 32k 3.6 MB 53s 1 089s 324s

Airport 18 55k 7.1 MB 19s 789s 71s

Flight 20 500k 53.6 MB 251s 6 346s 3 958s

Food 19 174k 194.9 MB 163s 1 017s 477s

Hospital 15 114k 30.6 MB 5s 19s 69s

NCVoter 22 938k 191.4 MB 1 555s 7 895s 29 703s

Tax 15 1M 73 MB 224s 1 149s 11 816s

*Hydra is limited to exact DC discovery.

We compare our algorithms for evidence set building and DC

enumeration to the equivalent ones in the state-of-the-art. We

use only DCFinder and Hydra for evidence building because they
are consistently much faster than the other options, FastDC and

BFastDC [4, 21]. We use all existing algorithms for DC enumeration

since we aim to investigate how they benefit from the strategies

in Section 4. In most experiments, we used the exact DC discovery,

so that Hydra could be included. However, recall from Section 2

that approximate DC discovery is computationally much harder.

We discuss such computation differences in Sections 5.3 and 5.4.

We used the Java implementation of DCFinder and Hydra pro-
vided by the authors [4, 21]. The MCS implementation of DCFinder
includes two optimizations that have not been described in its orig-

inal proposal [5]: a prefix tree for DC lookup and the first pruning

rule described in Section 4.1. We left this optimization as is when

comparing the entire algorithms, but disabled it when comparing

DC enumeration only (Section 5.4). We used the C++ implementa-

tion of the MMCS from [8]. It includes a parallel version of MMCS that
suits our comparisons. We implemented most of our algorithms

in Java. The exception is the HMMCS algorithm, which requires us

to write the in-memory evidence set as a disk file and call its C++

implementation with this file as input. Other than that (and data

loading), all algorithms run in main memory.

For consistencywith the previouswork [4, 21], we replace the nil

values of column values with default values. We used empty strings

for categorical columns and −∞ for numeric columns. Although

null semantics for integrity constraints is a vibrant line of research

(e.g., [25]), it is not the focus of this study, hence the practical

definition. Also, for consistency, we follow the same predicate space

restrictions used in previous studies [4, 5, 21].

All experiments were run on a Dell PowerEdge R730 server with

two Intel Xeon E5-2690 v3 @2.60GHz CPUs (12 cores, 24 threads),

768GB of RAM, running Linux CentOS 7.7.1908 and OpenJDK 64-

Bit Server VM 1.8.0_232 with the JVM heap space limited to 32GB.

The numbers reported are the average of (at least) three executions.

5.2 Overview of the results
The runtimes in Table 2 show that, in absolute terms, ECP/HEI-P
algorithm is consistently faster than all competitors (by an order

of magnitude in several cases). Switching our DC enumeration

algorithm in this experiment would not have changed the general

result order because (i) for most datasets, the runtime is dominated

by evidence set building, and (ii) the performances of the other

algorithms are often close to each other, as discussed in Section 5.4.

The overall performance of DC discovery algorithms can be

broken down into two pieces, (1) the efficiency in building the

evidence set and (2) the efficiency in enumerating the DCs from

the evidence set. For a clearer perspective, we investigate each of

these pieces individually in the following sections.

5.3 Evidence set building evaluation
Figure 3 depicts the runtime (only evidence set building) of ECP,
Hydra and DCFinder, for an increasing number of rows. It also

depicts the number of DCs discovered. Overall, ECP exhibits the

best row scaling behavior.

DCFinder is significantly affected by a higher number of rows,

for instance, on Tax dataset. In turn, ECP scalesmuchmore smoothly.

The different scaling behavior of these algorithms is expected:

DCFinder visits a quadratic number of intermediates to compute

evidence multiplicity, whereas ECP computes the same information

with evidence contexts—which are much more efficient. We ob-

served that only for a small number of rows (e.g., Adult), DCFinder
might be slightly faster (in evidence building). The turning point

was usually about 50k rows. For small datasets, the evidence con-

text finds not much room for compression, so the initial overhead

from ECP (input sorting and index building) does not pay off.

Hydra is impacted by the number of rows and, in particular, by

the number of DCs the dataset contains. It requires detecting the tu-

ple pairs that violate an initial set of DCs, discovered from a sample.

The higher the number of DCs, the more time is spent detecting

DC violations. In cases where the number of DCs decreases with

the increasing number of rows, this fact counterbalances the higher

row count. It might sometimes even benefit performance (e.g., the

negative slope for Tax with 1M rows). Also, Hydra presents high
runtime variance: some samples produce DCs whose violation de-

tection cost is higher than the cost of DCs of other samples. The

runtime stabilized for NCVoter as a high number of rows do not

produce much new evidence. Unfortunately, such behaviors are

difficult to predict due to the natural behavior of sampling. On the

other hand, ECP follows a more predictable scaling behavior. The

runtimes are much lower and generally increase more gradually,

which enlightens the efficiency of our approach.

The difference between ECP and Hydra also regards the amount

of information they need to produce. We observed that Hydra
“touches” only a fraction of all tuple pairs (e.g., less than 0.1% in

many inspected datasets). Also, it can often visit the same tuple pair

692

200

300
Adult

25

50
Airport

20

40

Flight

225

250
Food

0.150

0.175 Hospital

250

500
Ncvoter

20

25
Tax

10 20 30

0

500

1000

20 40

0

250

500

750

200 400

0

2000

4000

6000

Hydra DCFinder ECP

50 100 150

0

500

1000

50 100

0

20

40

60

250 500 750

0

10000

20000

30000

500 1000

0

5000

10000

Number of rows (× 1000)

R
u

n
ti

m
e

(s
)

#
D

C
s

×1
0
00

Figure 3: Row scaling of the three fastest algorithms for evidence set building.

many times due to sampling. As a result, its evidence set multiplic-

ity distribution becomes distorted compared to that of a specialized

algorithm such as ECP, DCFinder, or FastDC.
For example, we ran the algorithm ECP–AINCS, on all tested

datasets on many violation thresholds, to obtain gold standards

of approximate DCs. Then, we ran Hydra–AINCS to compare its

outputs with the gold standards. For Hydra, the thresholds needed
to be applied for the total amount of tuple pairs visited by the

algorithm, to adjust tuple pair proportions. The fraction of (cor-

rect) approximate DCs was always low, e.g., nearly 30% in the best

scenario, illustrating the unreliability of Hydra for tasks requiring

evidence multiplicity.

Next, we compare the parallel scalability of ECP and DCFinder
for the three datasets with the highest number of rows. Figure 4

shows the parallel speedup obtained by these algorithms relative

to a single-threaded execution. Both algorithms show good parallel

scalability, with better scalability up to the maximum number of

physical cores. These results demonstrate the parallel efficiency of

ECP. For example, we observe self-relative speedups of up to 15.74×
with ECP and up to 14, 27× with DCFinder (both on Flight).

1 8 16 24 32 48

5

10

15 Flight

1 8 16 24 32 48

5

10 Ncvoter

DCFinder ECP

1 8 16 24 32 48

5

10

Physical
cores

Physical
cores

Physical
cores

Tax

Number of cores

S
p

ee
d

u
p

Figure 4: Speedup of parallel evidence building strategies.

5.4 DC enumeration evaluation
We used the following protocol for the experiments in this section.

With the ECP algorithm, we built the evidence set of the first 10 000

records of the datasets and then gave it as input to the DC enu-

meration algorithms. In general, we observed that DC enumeration

is not much affected by the number of rows, but it is very much

affected by the number of columns, hence predicates. Therefore,

we evaluated each algorithm across increasing numbers of columns

and predicates. We varied the number of columns in the datasets by

randomly selecting different column combinations. To accommo-

date the randomness of the samples, we report the average running

time of ten executions for each column number. Mind that, in this

section, we report only DC enumeration runtime and we use a log

scale in the vertical axes of Figures 5, 6, 7, and 8.

10 20 30

100

101

102

103 Hospital

MCS INCS INCS-P

20 40

0
100

101
102
103
104
105
106
107

Ncvoter

20 30 40 50

100

101
102
103
104
105
106
107

Tax

Number of predicates
R

u
n
ti

m
e

(m
s)

Figure 5: Predicate and column scaling of MCS vs. INCS.

20 40

0
100

101

102

103

104

105

Adult

EI HEI HEI-P

20 40 60 80

0
100

101

102

103

104

Flight

20 40 60

0
100

101

102

103

104

Food

Number of predicates

R
u

n
ti

m
e

(m
s)

Figure 6: Predicate and column scaling of EI vs. HEI.

20 40

101

102

103

104

105 Adult

MMCS MMCS-P HMMCS HMMCS-P

20 40 60 80

101

102

103

104 Flight

20 40 60

101

102

103

104

Food

Number of predicates

R
u

n
ti

m
e

(m
s)

Figure 7: Predicate and column scaling of MMCS vs. HMMCS.

Figure 5 shows the runtime of our indexed negative cover search

INCS, its parallel version INCS-P, and the standard minimal cover

search MCS as proposed in [5]. We used the datasets where MCS
yields its lowest runtimes for this comparison. Still, INCS is orders

of magnitude faster: where MCS takes more than one hour to com-

plete, INCS takes under a second. This result shows the significant

performance gains from a lighter candidate checking using evi-

dence indexing, late minimization, and evidence set pruning. Since

INCS was consistently faster than MCS, we compared the other enu-

meration algorithms to only INCS in the remaining experiments.

693

0100101102103104105 Adult

101
102
103
104

Airport

101
102
103
104
105 Flight

101
102
103
104
105 Food

101

102 Hospital

101
102
103
104 Ncvoter

101
102
103 Tax

20 40

0
100

101
102
103
104
105

20 40

0
100

101

102

25 50 75

0
100

101

102

103

104

MMCS-P HMMCS-P EI HEI-P INCS-P

20 40 60

0
100

101

102

103

104

10 20 30

0

100

101

20 40 60

0
100

101

102

103

20 40

0
100

101

102

Number of predicates

R
u

n
ti

m
e

(m
s)

#
D

C
s

Figure 8: Predicate and column scaling of five DC enumeration algorithms—all but EI run in parallel threads.

The next results depict the performance impact of the hybrid

approach on EI (Figure 6) and MMCS (Figure 7). The plots show

the “hardest” datasets, that is, datasets where the algorithms yield

the highest runtimes. As the number of predicates increases, the

hybrid approach starts paying off by improving performance in

many scenarios, even in its non-parallel version. For example, on

Adult dataset with 54 predicates, our hybrid approach improves the

EI algorithm by a factor of 2.12 (HEI) and 7.12 (HEI-P). In the same

scenario, our HMMCS-P version was 2.03 times faster than the (also

parallel) MMCS-P, even with HMMCS-P having the additional time

of writing disk files. For the Flight dataset with 88 predicates, the

improvement is 5.46 from MMCS-P to HMMCS-P, 2.40 from EI to HEI,
and 8.4 for EI to HEI-P. However, the hybrid approach does not

find much room for improvement for low predicate numbers since

all algorithms execute in a few milliseconds. In such scenarios, the

performance of HMMCS/HMMCS-P is even impaired due to the disk

accesses that do not pay off.

Figure 8 compares the scalability of the enumeration algorithms

that performed best in the previous experiments. We include EI
in this comparison since it does not originally offer a parallel ver-

sion. The plot shows the number of DCs (#DCs) as the mean of

the total DCs discovered across the ten executions on random col-

umn subsets. The scaling of the algorithms seems to follow the

number of predicates exponentially, which is expected considering

the exponentially increasing number of DCs discovered. Also, DC

enumeration takes longer on datasets with many DCs. Take Adult

and Tax for example. These datasets have about the same number

of predicates, but the number of DCs for Tax is about 34 times

lower, and the runtimes (of all algorithms) were much faster (e.g.,

75-fold using HEI-P).
In general, the fastest algorithm was HEI-P for larger numbers of

predicates and resulting DCs, and INCS-P for other cases. Nonethe-

less, all algorithms could enumerate the results fast: in just over a

minute in the worst cases. With better design choices, the proposed

INCS-P was able to compete with the previous state-of-the-art enu-

meration algorithms. This fact highlights the importance of our

design choices in Section 4 because, as shown in previous studies,

the original MCS algorithm could not yield such a result.

Next, we evaluate the scalability of the (parallel) DC enumeration

algorithms on an increasing number of threads. Figure 9 shows the

parallel speedup from each algorithm relative to its single-threaded

execution. We observe that parallel scaling in DC enumeration is

poorer than the scaling on evidence set building. Nonetheless, some

algorithms still present good parallel scalability, generally up to the

maximum number of physical cores. In general, the better scaling

appears from INCS-P and HMMCS-P. For example, INCS-P achieves
a self-relative speedup of 10.06× on Adult with 48 threads, and

HMMCS-P achieves a self-relative speedup of 5, 82× on Flight with

24 threads. These results illustrate the improvements by late DC

minimization and the hybrid approach.

1 8 16 24 32 48

5

10 Adult

1 8 16 24 32 48

2

4

6
Flight

INCS-P HEI-P HMMCS-P MMCS-P

1 8 16 24 32 48

1

2

3

Physical cores Physical cores Physical cores

Food

Number of cores

S
p

ee
d

u
p

Figure 9: Parallel speedup of DC enumeration algorithms.

5.5 Additional analysis
Next, we investigate the impact of the heuristic optimizations of

Section 3.6 on evidence set building. Figure 10 shows the rela-

tive speedup from (1) using each input dataset as is; (2) sorting

the input on their numerical columns; (3) prioritizing categorical

stages; (4) prioritizing high-cardinality columns; and combinations

of heuristic 2 with heuristics 3 and 4.

Adult Airport Flight Food Hospital NCVoter Tax

1x

2x

3x

S
p

ee
d

u
p

1- No heuristic

2- Sort input

3- Categorical first

4- High-cardinality first

5- Heuristics 2 and 3

6- Heuristics 2 and 4

7- All (2,3,4) heuristics

Figure 10: Speedup from heuristic optimizations (and their
combinations) on evidence set building.

Sorting the input has a clear beneficial performance impact. On

the other hand, heuristics 3 and 4 do not yield much improvement

on their own. However, when combined with sorting, they yielded

the highest speedups, particularly for datasets with many rows and

many numerical predicates (e.g., Flight). These results align with

previous studies that have shown how predicate evaluation order

and input sorting can impact performance [12, 22, 23]. We kept all

heuristics on in all remaining experiments.

694

Figure 11 shows the relative impact of INCS vs. AINCS on runtime

and the number of DCs. We set AINCS with typical thresholds (in

parentheses) from previous works [5, 21]. All numbers are relative

to the exact DC discovery, i.e., INCS. We observe an increase (up to

1.8×) in runtime in some scenarios, e.g., Adult and NCVoter. That is

because AINCS needs to compute the𝑔1 value for the DC candidates,

so it needs to iterate intermediate evidence sets to collect evidence

multiplicities. Also, pruning based on subsuming predicates is less

effective for AINCS, as more evidence may be required to prune

branches. We observe that the number of approximate DCs is sig-

nificantly lower than that of exact DCs, up to orders of magnitude,

e.g., for NCVoter with larger thresholds. That is because approx-

imate DCs are often less specialized (fewer predicates). A single

approximate DC can be the prefix of many (specialized) exact DCs.

The larger the thresholds, the lower the number of branches, so the

faster the DC enumeration. Notice that AINCS(0.0) and INCS pro-

duce the same results as they are equivalent. However, the former

algorithm incurs the performance overhead described above.

0.0

0.5

1.0

#
D

C
s

Adult Airport Flights Food Hospital Ncvoter Tax
0

1

R
u

n
ti

m
e

AINCS
(0.01)

AINCS
(0.001)

AINCS
(0.0001)

AINCS
(1e-05)

AINCS
(0.0) INCS

Figure 11: Relative impact of approximate DC discovery on
runtime and number of DCs discovered.

Figure 12 shows the runtime breakdown of the ECP/HEI-P algo-

rithm for all tested datasets. Evidence building dominates discovery

runtime for all datasets, whereas DC enumeration makes a con-

siderable part of the runtime for datasets with many DCs, such as

Adult. In general, the time required for input preparation (table

sorting and index building) is just a small fraction of the runtime.

This result shows the importance of fast evidence set building.

Adult
Airport

Flight
Food

Hospital

NCVoter Tax
0%

50%

100% DC enumeration
Evidence set
building
Preparation
Loading data

Figure 12: Runtime breakdown of ECP/HEI-P.

Figure 13 illustrates the memory requirement of our approach

(mind the log-scale axis). It shows the minimum heap size required

to run ECP/HEI-P (right-most bar for each dataset). We obtained

this estimate by doubling the heap-size, starting with 32MB, until

the algorithm could finish processing the entire dataset. We observe

a low memory requirement, as the algorithm can process most of

the datasets with a heap-size of 256MB or less. As a comparison,

ECP/HEI-P uses 256MB to process the 1M rows of Flight, whereas

Hydra and DCFinder uses 1024MB. The higher memory require-

ment for Food (1GB) and NCVoter (4GB) regard specific parts of the

execution, as discussed next.

Adult Airport Flight Food Hospital NCVoter Tax

1MB

16MB

256MB

1024MB

4096MB

M
em

or
y

(M
B

)

Input Indexes ECTs DCs Heap-size

Figure 13: Memory requirement of ECP-HEI-P.

Figure 13 also shows the memory used by the key data struc-

tures in our algorithms. “Input” regards the in-memory dataset,

whereas “Indexes” regards the column indexes for evidence con-

text correction. In general, the index size overhead is larger for

datasets having large column domains and wide column values,

such as Food and NCVoter with many (lengthy) strings. The index

sizes being greater than the in-memory dataset sizes is expected,

because we build indexes on all columns. Index structures consume

relatively large portions of memory when tuples are small, and

tables have many indexes [27]. For “ECTs”, we monitored the ECP
execution to measure the largest set of evidence contexts (the ECTs
in Algorithms 1 and 2). We observe relatively low footprints due

to the pipeline model with compressed evidence contexts. Finally,

the value of “DCs” regards the in-memory representation of the

discovered DCs, and the data structures used to support the EI
algorithm and the late minimality checks. We observed numbers

within the same range as the other DC enumeration methods for

this last parameter. For the Food dataset, memory consumption

is dominated by the number of DCs in the result set. Upon closer

inspection, we noticed that the binary tree used for subset lookup

might increase its footprint when DCs are longer and sparser (not

many shared predicates across DCs). We intend to investigate more

space-efficient structures in future work.

6 CONCLUSION
This paper presented several algorithms to address the algorithmic

challenges of discovering all minimal, non-trivial (approximate and

exact) denial constraints of relational datasets. First, we proposed

the evidence context pipeline with data representations, indexes,

and algorithms designed to compute evidence sets efficiently. Sec-

ond, we introduced inverted indexes, pruning, late minimization,

and parallel execution for DC enumeration. We showed how to

use these techniques to improve the previous DC enumeration al-

gorithms. Our experimental study shows that our algorithms can

consistently outperform the previous state-of-the-art.

In future work, we intend to investigate how to extend or adapt

the solutions proposed in this paper to discover other forms of

partial DCs, such as constant DCs (with constant predicates) or

approximate DCs using other approximation functions.

ACKNOWLEDGMENTS
This study was funded in part by the Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior – Brasil (CAPES) – Finance

Code 001.

695

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling Relational

Data: A Survey. VLDB Journal 24, 4 (2015), 557–581.

[2] Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. 2022. The Complexity

of Dependency Detection and Discovery in Relational Databases. Theor. Comput.

Sci. 900, C (2022), 79–96. https://doi.org/10.1016/j.tcs.2021.11.020

[3] Tobias Bleifuß, Susanne Bülow, Johannes Frohnhofen, Julian Risch, Georg Wiese,

Sebastian Kruse, Thorsten Papenbrock, and Felix Naumann. 2016. Approximate

Discovery of Functional Dependencies for Large Datasets. In Proceedings of the

International Conference on Information and Knowledge Management (CIKM).

Association for Computing Machinery, 1803–1812. https://doi.org/10.1145/

2983323.2983781

[4] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial

Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311–323.

[5] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.

PVLDB 6, 13 (2013), 1498–1509.

[6] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting

violations into context. In Proceedings of the International Conference on Data

Engineering (ICDE). 458–469.

[7] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-

perLogLog: the analysis of a near-optimal cardinality estimation algorithm. In

AofA: Analysis of Algorithms, Vol. DMTCS Proceedings vol. AH, Conference on

Analysis of Algorithms (AofA). Discrete Mathematics and Theoretical Computer

Science, 137–156.

[8] Andrew Gainer-Dewar and Paola Vera-Licona. 2017. The Minimal Hitting Set

Generation Problem: Algorithms and Computation. SIAM Journal on Discrete

Mathematics 31, 1 (2017), 63–100. https://doi.org/10.1137/15M1055024

[9] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2020.

Cleaning data with Llunatic. VLDB Journal 29, 4 (2020), 867–892. https://doi.

org/10.1007/s00778-019-00586-5

[10] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.

Cleaning Denial Constraint Violations through Relaxation. In Proceedings of

the International Conference on Management of Data (SIGMOD). ACM, 805–815.

https://doi.org/10.1145/3318464.3389775

[11] Ousmane Issa, Angela Bonifati, and Farouk Toumani. 2020. Evaluating Top-k

Queries with Inconsistency Degrees. PVLDB 13, 12 (2020), 2146–2158. https:

//doi.org/10.14778/3407790.3407815

[12] Andreas Kipf, Damian Chromejko, Alexander Hall, Peter Boncz, and David G.

Andersen. 2020. Cuckoo Index: A Lightweight Secondary Index Structure. PVLDB

13, 13 (2020), 3559–3572. https://doi.org/10.14778/3424573.3424577

[13] Jyrki Kivinen and Heikki Mannila. 1995. Approximate Inference of Functional

Dependencies from Relations. Theoretical Computer Science 149, 1 (1995), 129–

149.

[14] Daniel Lemire, Owen Kaser, and Kamel Aouiche. 2010. Sorting Improves Word-

Aligned Bitmap Indexes. Data and Knowledge Engineering (DKE) 69, 1 (2010),

3–28. https://doi.org/10.1016/j.datak.2009.08.006

[15] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. 2016. Consistently Faster

and Smaller Compressed Bitmaps with Roaring. Softw. Pract. Exper. 46, 11 (2016),

1547–1569.

[16] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. 2012. Discover De-

pendencies from Data - A Review. IEEE Transactions on Knowledge and Data

Engineering (TKDE) 24, 2 (2012), 251–264.

[17] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-

imate Denial Constraints. PVLDB 13, 10 (2020), 1682–1695. https://doi.org/10.

14778/3401960.3401966

[18] Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld, and

Sudeepa Roy. 2021. Properties of Inconsistency Measures for Databases. In

Proceedings of the International Conference on Management of Data (SIGMOD).

1182–1194. https://doi.org/10.1145/3448016.3457310

[19] Keisuke Murakami and Takeaki Uno. 2014. Efficient algorithms for dualizing

large-scale hypergraphs. Discrete Applied Mathematics 170 (2014), 83–94. https:

//doi.org/10.1016/j.dam.2014.01.012

[20] Eduardo H. M. Pena and Eduardo Cunha de Almeida. 2018. BFASTDC: A Bitwise

Algorithm for Mining Denial Constraints. In Proceedings of the International

Conference on Database and Expert Systems Applications (DEXA). 53–68.

[21] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. 2019. Discovery

of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019), 266–278.

[22] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. 2021. Fast

Detection of Denial Constraint Violations. PVLDB 15, 4 (2021), 859–871. https:

//doi.org/10.14778/3503585.3503595

[23] Elaheh Pourabbas, Arie Shoshani, and Kesheng Wu. 2012. Minimizing Index Size

by Reordering Rows and Columns. In Proceedings of the International Conference

on Scientific and Statistical Database Management (SSDBM). 467–484.

[24] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-

Clean: Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017),

1190–1201.

[25] Ziheng Wei and Sebastian Link. 2019. Embedded Functional Dependencies and

Data-completeness Tailored Database Design. PVLDB 12, 11 (2019), 1458–1470.

https://doi.org/10.14778/3342263.3342626

[26] Catharine Wyss, Chris Giannella, and Edward L. Robertson. 2001. FastFDs: A

Heuristic-Driven, Depth-First Algorithm for Mining Functional Dependencies

from Relation Instances - Extended Abstract. In Proceedings of the International

Conference on Data Warehousing and Knowledge Discovery (DaWaK). 101–110.

[27] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin

Ma, and Rui Shen. 2016. Reducing the Storage Overhead of Main-Memory OLTP

Databases with Hybrid Indexes. In Proceedings of the International Conference

on Management of Data (SIGMOD). 1567–1581. https://doi.org/10.1145/2882903.

2915222

696

https://doi.org/10.1016/j.tcs.2021.11.020
https://doi.org/10.1145/2983323.2983781
https://doi.org/10.1145/2983323.2983781
https://doi.org/10.1137/15M1055024
https://doi.org/10.1007/s00778-019-00586-5
https://doi.org/10.1007/s00778-019-00586-5
https://doi.org/10.1145/3318464.3389775
https://doi.org/10.14778/3407790.3407815
https://doi.org/10.14778/3407790.3407815
https://doi.org/10.14778/3424573.3424577
https://doi.org/10.1016/j.datak.2009.08.006
https://doi.org/10.14778/3401960.3401966
https://doi.org/10.14778/3401960.3401966
https://doi.org/10.1145/3448016.3457310
https://doi.org/10.1016/j.dam.2014.01.012
https://doi.org/10.1016/j.dam.2014.01.012
https://doi.org/10.14778/3503585.3503595
https://doi.org/10.14778/3503585.3503595
https://doi.org/10.14778/3342263.3342626
https://doi.org/10.1145/2882903.2915222
https://doi.org/10.1145/2882903.2915222

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Denial constraints
	2.2 DC discovery
	2.3 Related work

	3 Fast evidence set building
	3.1 Evidence Context
	3.2 Pipeline
	3.3 The role of predicate selectivity
	3.4 Indexes for Evidence context correction
	3.5 Algorithms for evidence context correction
	3.6 Complexity and Optimizations

	4 Fast DC enumeration
	4.1 Indexed Negative Cover Search (INCS)
	4.2 Hybrid methods for DC enumeration

	5 Experimental Evaluation
	5.1 Experimental setting
	5.2 Overview of the results
	5.3 Evidence set building evaluation
	5.4 DC enumeration evaluation
	5.5 Additional analysis

	6 Conclusion
	Acknowledgments
	References

