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ABSTRACT

Given large data streams of items, each attributable to a certain key
and possessing a certain volume, the aggregate volume associated
with a key is difficult to estimate in a way that is both efficient
and accurate. On the one hand, exact counting with dedicated
counters incurs unacceptable overhead during stream processing.
On the other hand, sketch algorithms, i.e., approximate-counting
techniques that share counters among keys, have suffered from
a trade-off between accuracy and query efficiency: Classic sketch
algorithms allow to compute rough estimates in an efficient way,
whereas more recent proposals yield highly accurate estimates at
the cost of greatly increased computation time.

In this work, we propose three sketch algorithms that overcome
this trade-off, computing highly accurate estimates with lightweight
procedures. To reconcile these desiderata, we employ novel esti-
mation methods that rely on Bayesian probability theory, counter-
cardinality information, and basic machine-learning techniques.
The combination of these techniques enables highly accurate es-
timates, which we demonstrate by both a theoretical worst-case
analysis and an experimental evaluation. Concretely, our sketches
allow to efficiently produce volume estimates with an average rela-
tive error of < 4%, which previous methods could only achieve with
computations that are several orders of magnitude more expensive.
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1 INTRODUCTION

The analysis of data streams is a key component in numerous ap-
plications, enabling functionality as diverse as topic mining from
text streams [13, 23], traffic monitoring and policing in the In-
ternet [3, 14, 19, 29, 33], data aggregation in sensor networks [24],
buffer dimensioning in VoIP networks [32, 35], and forecasting from
time-series data in financial markets [1, 4]. Such stream processing
includes a single iteration over a data stream, which corresponds to
a sequence of items, each assignable to a certain key and possessing
a certain volume. Estimating the total volume associated to certain
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Table 1: Comparison of sketches regarding accuracy, compu-

tation time and memory needed for queries (for a synthetic

trace with 10𝑘 keys and Poisson-distributed key volumes,

6400 counters). CCB-Sketch is our algorithm. Seq-Sketch

[20] is omitted as it performs worse than the PR-Sketch.

Algorithm Rel. Error Time [ms] Memory [MB]

CM-Sketch [10] 99.092 10.1 27.5
C-Sketch [12] 1.264 20.1 27.5
CCB-Sketch 0.031 9.9 27.5
PR-Sketch [30] 0.024 ∼ 1.2 · 106 7260.1

keys (also: per-key aggregation) is an essential task, which, however,
is often time-critical and therefore challenging.

Because of such high-speed requirements, a stream-processing
algorithm must operate exclusively in low-latency memory (e.g.,
SRAM) to generate its analysis result. The limited availability of
such low-latency memory prohibits the naive approach of keeping
a counter per key and adjusting the counter whenever encountering
the corresponding key, as data streams may contain billions of dis-
tinct keys. This requirement of processing efficiency has led to the
development and usage of sketching techniques, which share coun-
ters among multiple keys and reconstruct key volumes from this
compressed data structure [10, 12, 14, 20, 25, 26, 29, 30, 34]. Alas, this
compression naturally causes inaccuracy in the volume estimate. In
fact, classic sketch algorithms like the Count-Min Sketch [12] have
been shown to deliver high accuracy (e.g., relative errors below
10%) only with impractical memory consumption [20, 29]. Hence,
classic sketch algorithms are subject to an undesirable trade-off
between estimation accuracy and memory efficiency.

Recent research has made significant progress in mitigating this
trade-off by designing advanced querymethods of sketch algorithms,
i.e., the methods for computing a volume estimate from a synop-
sis. In particular, Seq-Sketch [20] employs a compressed-sensing
approach, and PR-Sketch [30] relies on solving a system of linear
equations, enabling both algorithms to achieve nearly zero relative
error given a compact data-stream synopsis.

However, the accuracy improvements of these recent proposals
come at the cost of query efficiency, i.e., the time and space com-
plexity of the query methods: Both Seq-Sketch and PR-Sketch
solve regularized optimization problems with potentially millions
of variables, which introduces considerable complexity even with
state-of-the-art numerical solvers (cf. Table 1). However, for exam-
ple, high-frequency trading must be highly responsive to changes
in transaction streams [2], DDoS defense systems must identify
and block large flows as fast as possible to avert damage from other
flows [29], and data mining from sensor-network streams relies
on tight feedback loops for efficient operation of machinery or
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vehicles [11]. For these usecases, the complex query operations of
contemporary high-accuracy sketches are a significant impediment.

In this paper, we tackle this problem of high-accuracy sketches by
proposing three sketching techniques that significantly reduce the
computational cost of query execution and exhibit high accuracy
both in theory and practice. Each of these sketches embodies a
distinct query technique, each replacing the complex optimization-
based queries of previous high-accuracy sketches with a handful of
closed-form evaluations. These closed-form evaluations result from
an in-depth theoretical analysis of the volume-estimation problem.
To be specific, our query techniques rely on Bayesian probability
theory and on counter-cardinality information, respectively.

In our first approach, we leverage Bayesian probabilistic reason-
ing to derive the Count-Bayesian Sketch (CB-Sketch). More pre-
cisely, the CB-Sketch relies on the computation of an approximate
maximum a-posteriori (MAP) estimate for the volume of desired
keys given the collected stream data. This estimate is captured by a
closed-form solution and can be computed very efficiently while
being highly accurate in general. Moreover, the Bayesian concept
of priors enables a sketch operator to encode previous knowledge
about the stream, and helps to achieve even higher accuracy.

In our second approach, we design theCardinality-Count-Average
Sketch (CCA-Sketch), where queries take into account counter-
cardinality information, i.e., the number of distinct keys that were
mapped to any single counter. While counter-cardinality informa-
tion has been heuristically employed in previous sketch proposals,
we present the first rigorous theoretical quantification of the ac-
curacy improvements achievable by such information. These in-
sights allow to optimally combine our two approaches into the
Cardinality-Count-Bayesian Sketch (CCB-Sketch), enabling queries
that leverage both Bayesian techniques and cardinality information.

The theoretical guarantees presented in this paper are competi-
tive with other query-efficient sketches. In addition to this theoret-
ical analysis, we also undertake an empirical evaluation, showing
that our proposed sketches outperform their competitor algorithms
in relevant settings. In particular, our experiments indicate that im-
provements in estimation accuracy can be considerably enhanced
by the use of informed priors in the Bayesian sketches (CB- and
CCB-Sketch). Moreover, both a theoretical complexity analysis and
empirical evaluation confirm that our sketches enable queries that
are efficient regarding computation time and memory consumption.

Our paper presents the following contributions:
• Bayesian sketching:We discuss how to leverage Bayesian
probability theory for sketching, enabling the derivation of
both the CB-Sketch and the CCB-Sketch (§4). Both these
sketches arise from closed-form approximations to MAP esti-
mates. To the best of our knowledge, the application of MAP
estimates to streaming algorithms is novel.

• Cardinality-based sketching:We provide an in-depth the-
oretical analysis of the interaction between cardinality and
volume information in counters. The resulting insights allow to
employ counter-cardinality information in the CCA-Sketch.

• Reconciling accuracy and query efficiency: We present
three novel streaming algorithms (CB-Sketch, CCA-Sketch
and CCB-Sketch), which differ from earlier sketches by com-
bining high estimation accuracy with high query efficiency.

Table 2: Notation

Symbol Description

I Set of distinct keys in the data stream
𝑒𝑖 ∈ I × R 𝑖-th item in the data stream
𝑓𝑖 ∈ I Key associated with item 𝑒𝑖

𝑞𝑖 ∈ R Volume associated with item 𝑒𝑖

𝑎 ∈ Rℓ0 Vector of total volumes of all keys in I
𝑎𝑓 ∈ R Total volume, or size, associated with key 𝑓 ∈ I
𝑎𝑋
𝑓
∈ R Estimate of 𝑎𝑓 by algorithm 𝑋

ℓ0 ∈ N Number of distinct keys in the data stream
ℓ1 ∈ N Total stream volume (sum over 𝑎)
ℓ2 ∈ N Squared 𝑙2 norm of key-volume vector 𝑎 (|𝑎 |22)
𝑑 ∈ N Number of counter arrays
𝑤 ∈ N Size of each counter array

𝑉 ∈ R𝑑×𝑤 Counter arrays storing volume information
𝐶 ∈ R𝑑×𝑤 Counter arrays storing cardinality information
(𝐻1, . . . , 𝐻𝑑 ) Indep. hash functions, 𝐻𝑔 : I → {1, . . . ,𝑤}

We demonstrate the properties of our algorithms with a theo-
retical analysis (§5) and an experimental evaluation (§6).

2 BACKGROUND

2.1 Problem Definition

In per-key volume aggregation, a data stream corresponds to a
sequence of items (𝑒1, 𝑒2, . . . , 𝑒𝑀 ), where each item 𝑒𝑖 is associated
to a key 𝑓𝑖 and has a certain volume 𝑞𝑖 . 𝑓𝑖 is a key in I, |I | = ℓ0,
which is the set of all distinct keys present in the data stream,
whereas 𝑞𝑖 may be any real number, positive or negative (i.e., the
turnstile model). The goal of per-key volume aggregation is to
estimate the aggregate volume 𝑎𝑓 of a key 𝑓 , which is defined as

𝑎𝑓 =
∑︁

{𝑞𝑖 | ∀𝑖 ∈ [1, . . . , 𝑀] . 𝑓𝑖 = 𝑓 } .

For convenience, we define 𝑎 ∈ Rℓ0 as the vector containing the
values 𝑎𝑓 for all 𝑓 ∈ I as separate dimensions. Moreover, 𝑎𝑋

𝑓

denotes the estimate of 𝑎𝑓 calculated by algorithm 𝑋 .
To enable volume estimation, some sketch algorithms such as

SeqSketch [20] and PR-Sketch [30] involve mechanisms to collect
the set I of distinct keys in the stream (key tracking). We do not
concern ourselves with this problem, and assume that I is known.
However, we empirically show in Sections 6.6 and 6.7 that our
algorithms remain highly accurate under incomplete key tracking.

2.2 Trade-Offs in Previous Approaches

Traditionally, per-key volume estimation in the context of sketching
techniques, i.e., the computation of 𝑎𝑋

𝑓
, has been performed by

extracting information related to key 𝑓 from a data-stream synopsis,
followed by some simple aggregation operation yielding 𝑎𝑋

𝑓
. Since

the estimate of each per-key volume is thus computed individually,
we henceforth refer to these classic techniques as local sketches.
The Count Sketch (henceforth: C-Sketch) and the Count-Min Sketch

(henceforth: CM-Sketch) both fall into this category.
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Figure 1: Illustration of data structure and update algorithm.

Note that the cardinality table𝐶 may also be populated from

the key set I at query time (retroactively).

Recently, however, sketching techniques have begun to compute
estimates for all keys (i.e., the total key-volume vector 𝑎) simulta-
neously rather than one estimate at a time. We henceforth refer to
these approaches as global sketches. Among these global sketches,
the PR-Sketch [30] and Seq-Sketch [20] represent the most re-
cent examples. Such global sketches have been shown to trade off
unprecedented accuracy for greatly increased time and memory
cost, as is illustrated by Table 1, which contains results from an
experimental comparison regarding accuracy (i.e., average relative
error) as well as computation time and peak memory consumption
at query time. In this paper, we propose three algorithms that fill the
gap between these two types of sketches, i.e., providing accuracy
close to global sketches, while keeping the efficient query execution
time of local sketches. We are able to reconcile these desiderata
by deriving compact closed-form solutions for estimates based on
Bayesian probability theory, which also allow for the injection of
an accuracy-boosting prior into the estimation process.

3 DATA STRUCTURE AND ALGORITHMS

In this section, we provide a first description of the CB-Sketch, the
CCA-Sketch and the CCB-Sketch. This description involves both
the data structure used in the sketches (§3.1) and the algorithmic
procedures that operate on the data structure (§3.2).

3.1 Data Structure

In sketching algorithms, the data structure stores all information
necessary to answer key-volume queries. All three of our sketches
are based on the same data structure, which consists of multiple
counter arrays and is similar to the data structures used by C-
Sketch [12] and CM-Sketch [10] (depicted in Figure 1). To be
specific, the data structure contains a volume table 𝑉 ∈ R𝑑×𝑤 ,
where the rows correspond to 𝑑 counter arrays, each containing𝑤
counters. The 𝑑 counter arrays are associated with 𝑑 independent
hash functions (𝐻1, . . . , 𝐻𝑑 ). In addition, the data structure also con-
tains a cardinality table𝐶 , which has the same size and is associated
with the same hash functions, but stores cardinality information, i.e.,
𝐶 [𝑖, 𝑗] contains the number of distinct keys mapped to counter 𝑗 in
counter array 𝑖: 𝐶 [𝑖, 𝑗] = |{𝑓 ∈ I | 𝐻𝑖 (𝑓 ) = 𝑗}|. Furthermore, the
data structure also keeps track of the total stream volume ℓ1.

3.2 Algorithms

We separate the basic functionality of a sketch algorithm into two
parts: The update, which modifies the data structure based on the

incoming stream items 𝑒𝑖 , and the query which returns a volume
estimate 𝑎𝑓 of 𝑎𝑓 for a key 𝑓 ∈ I based on the data structure.

The update algorithm in our sketches closely follows the up-
date procedures in previous sketches [10, 12, 29, 30] and is briefly
presented in Section 3.2.1.

In contrast, the query procedures of our sketches employ novel
techniques. In particular, the CB-Sketch (Section 3.2.2) is inspired
by Bayesian probabilistic reasoning: Its query technique arises from
a stochastic optimization problem which approximates the argmax
of the posterior distribution of the key-associated volume, given
the data structure. In other words, the CB-Sketch performs an
approximate maximum a-posteriori (MAP) estimate of any queried
key, given the information collected about the observed stream.

The CCA-Sketch, which is presented in Section 3.2.3, relies on
cardinality information instead of Bayesian techniques. The insights
from the CCA-Sketch allow to optimally enrich the CB-Sketch
with cardinality information, which produces the CCB-Sketch
that relies on both Bayesian reasoning and cardinality information
(presented in Section 3.2.4).

3.2.1 Data Structure Update. With streaming algorithms targeting
applications such as traffic supervision on network links, the update
procedure must be extremely lightweight and time-efficient in order
to reduce forwarding overhead and keep up with the item arrival
rate. To that end, we employ an update procedure which is an
extension of a commonly used counter-update scheme [12, 30]: For
each incoming item 𝑒𝑖 , 𝑑 counter arrays are updated by adding item
volume 𝑞𝑖 to each counter to which 𝑓𝑖 is hashed.

Regarding the total number ℓ0 of distinct keys and the cardinality
table 𝐶 , this paper does not propose novel methods for estimating
these quantities. This omission is conscious, as the best method of
deriving ℓ0 and 𝐶 depends on the context of the stream processing.
Several methods [15, 20, 29–31] have been proposed to obtain exact
or approximate values of ℓ0 and 𝐶 .

3.2.2 CB-Sketch. In the CB-Sketch, processing a query amounts
to the computation of an approximate MAP estimate of the key
volume given the information data structure. As we will justify in
Section 4.1, this estimate is given as follows:

𝑎𝐶𝐵
𝑓

=
𝜇𝐶𝐵𝑝 · (𝜒𝐶𝐵𝑝 )−1 +𝑤 · ∑𝑑

𝑖=1𝑉 [𝑖, 𝐻𝑖 (𝑓 )] − 𝑑 · ℓ1
(𝜒𝐶𝐵𝑝 )−1 + 𝑑 · (𝑤 − 1)

(1)

where 𝜇𝐶𝐵𝑝 indicates the prior mean on 𝑎𝑓 and 𝜒𝑝 is linearly pro-
portional to the prior variance on 𝑎𝑓 . Note that ℓ0 and 𝐶 are not
used by the CB-Sketch and can thus be omitted.

A rigorous derivation of the approximate MAP estimate together
with an intuitive interpretation is provided in Section 4.1, whereas
Section 5.1 analyzes the error bounds offered by the CB-Sketch.

3.2.3 CCA-Sketch. The CCA-Sketch is inspired by considerations
to combine volume and cardinality counter information in a simple
algorithm to improve aggregate volume sketch accuracy. Intuitively,
the volume of a key can be more accurately derived from the vol-
ume in an associated counter if the number of keys mapped to that
counter is considered, given that such cardinality may vary substan-
tially across counters. To incorporate cardinality information, the
volume estimate can be based on the ratio between the volume and
the cardinality of counters associated with a key. Such a ratio-based
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approach has been employed by LOFT [29], although in the context
of top-𝑘 detection. To be viable for the more general problem of
key-volume estimation, the CCA-Sketch departs from the LOFT
algorithm in several respects. Most importantly, the CCA-Sketch
applies an affine transformation to the volume-cardinality ratios.
This affine transformation has been chosen based on a theoretical
analysis of the statistical behavior of the volume-cardinality ratios,
which is presented in Section 5.2. Concretely, the CCA-Sketch
computes a volume estimate for key 𝑓 as follows:

𝑎𝐶𝐶𝐴
𝑓

=
(ℓ0 +𝑤 − 1) · ∑𝑑

𝑖=1
𝑉 [𝑖,𝐻𝑖 (𝑓 ) ]
𝐶 [𝑖,𝐻𝑖 (𝑓 ) ] − 𝑑 · ℓ1

𝑑 · (𝑤 − 1) (2)

Despite the CCA-Sketch not stemming from a stochastic opti-
mization problem, it is related to the CB-Sketch for subtle reasons,
which will be discussed in Section 5.2.

3.2.4 CCB-Sketch. So far, we have demonstrated how volume
sketching can be extended with Bayesian reasoning (in the CB-
Sketch) and with cardinality information (in the CCA-Sketch).
Interestingly, these techniques can be combined, yielding the CCB-
Sketch with the following volume estimate for 𝑎𝑓 (cf. Section 4.2):

𝑎𝐶𝐶𝐵
𝑓

=

𝜇𝐶𝐶𝐵
𝑝

𝜒𝐶𝐶𝐵
𝑝

+ (ℓ0 − 1) · ∑𝑑
𝑖=1

𝑉 [𝑖,𝐻𝑖 (𝑓 ) ]
𝐶 [𝑖,𝐻𝑖 (𝑓 ) ]−1 − 𝑑 · ℓ1

(𝜒𝐶𝐶𝐵𝑝 )−1 + ∑𝑑
𝑖=1

ℓ0−𝐶 [𝑖,𝐻𝑖 (𝑓 ) ]
𝐶 [𝑖,𝐻𝑖 (𝑓 ) ]−1

(3)

where 𝜇𝐶𝐶𝐵𝑝 and 𝜒𝐶𝐶𝐵𝑝 are the prior parameters relating to mean
and variance, respectively. Same as in CB-Sketch, 𝜇𝐶𝐶𝐵𝑝 and 𝜒𝐶𝐶𝐵𝑝

can be used to add an independently selected bias to the final
estimate. Said briefly, theCCB-Sketch is a direct upgrade compared
to the CB-Sketch, in which the actual counter cardinality 𝐶 is
approximated with an expected value.

4 BAYESIAN SKETCHING

As the main contribution, this paper presents a new perspective on
designing streaming algorithms, which builds on Bayesian statistics
andmachine learning. More concretely, wemodel the data structure,
denoted as𝐷 , and the volume 𝑎𝑓 of key 𝑓 as random variables. Both
RVs are clearly not independent and are linked by a non-trivial
probability distribution. A query for an estimate of 𝑎𝑓 can hence
be refactored into the following optimization problem:

𝑎𝑓 = argmax𝛼P[𝑎𝑓 = 𝛼 | 𝐷] = argmax𝛼
P[𝐷 | 𝑎𝑓 = 𝛼]P[𝑎𝑓 = 𝛼]

P[𝐷]
= argmax𝛼 log(P[𝐷 | 𝑎𝑓 = 𝛼]) + log(P[𝑎𝑓 = 𝛼]) (4)

In other words, we model a point query of key 𝑓 on a sketch data
structure as a maximum-a-posteriori (MAP) estimate of 𝑎𝑓 .

The advantages of this model are twofold. First, optimization
and inference is a well understood problem for which many algo-
rithms exist. Secondly, MAP estimates allow to insert some prior
information into the estimate, i.e., P[𝑎𝑓 = 𝛼]. In general, priors
serve to nudge estimates towards more likely values and to make
predictions of extreme values unlikely.

In most scenarios, sketch operators have knowledge of some
moments of the key sizes in the data stream, while their exact
distribution may be unknown. A limited amount of such prior
information is usually available for three reasons. First, sketch

operators plausibly have domain-specific knowledge about the
analyzed data streams, e.g., mean flow sizes in network settings,
or typical measurements in sensor data streams. Second, even if
such domain knowledge is initially unavailable, it can be practically
gathered over time because streaming algorithms typically process
large streams in segments, e.g., sketches in network settings handle
1-2 seconds of traffic before they are reset [29]. Hence, information
collected from a previous stream segment can be used as surrogate
prior information for the current stream segment. The viability
of this prior information is then determined by the volatility of
the data-stream statistics. Third, previous research has proposed
specialized sketches that can estimate important moments [21] of
a data stream and can hence yield information that can be used as
a priors.

The MAP estimation problem in Equation 4 can be tackled in
numerous ways, which vary in design decisions regarding the data
structure, the prior distribution and the optimization method. In
this paper, we present how the MAP estimate can be approximately
solved for the case where the data structure is the classic data struc-
ture from Section 3, the prior distribution is a normal distribution,
and the optimization method is a closed-form solution.

4.1 Constructing the CB-Sketch

The model for the CB-Sketch assumes the prior

P[𝑎𝑓 = 𝛼] = N
(
𝛼 ; 𝜇𝐶𝐵𝑝 , (𝜎𝐶𝐵𝑝 )2

)
(5)

Furthermore, P[𝐷 | 𝑎𝑓 = 𝛼] is concretized as the probability that
the volume counters in 𝐷 associated to 𝑓 attain their respectively
stored value. Formally, this concretization results in:

𝑎𝐶𝐵
𝑓

= argmax𝛼
𝑑∑︁
𝑖=1

log(P[𝑉𝑖 = 𝑣𝑖 | 𝑎𝑓 = 𝛼]) + log(P[𝑎𝑓 = 𝛼]) (6)

where 𝑣𝑖 := 𝑉 [𝑖, 𝐻𝑖 (𝑓 )] and 𝑉𝑖 is the RV associated to the 𝑖-th
volume counter of 𝑓 in the data structure.

Next, the RV𝑉𝑖 can be expressed as the sum over all item volumes
that hash to a counter (I being the indicator function):

𝑉𝑖 = 𝑎𝑓 +
∑︁

𝑔∈I. 𝑔≠𝑓
I{𝐻𝑖 (𝑓 )=𝐻𝑖 (𝑔) }𝑎𝑔 (7)

Assuming that ℓ0𝑤−1 is sufficiently large and that the total key
volumes are i.i.d. samples of some distribution, the CLT yields the
approximation:

𝑉𝑖 ¤∼ N
(
𝑎𝑓 +

ℓ1 − 𝑎𝑓

𝑤
,
𝑤 − 1
𝑤2

(
ℓ2 − 𝑎2

𝑓

))
(8)

By inserting Equation 8 into Equation 6, we obtain:

𝑎𝐶𝐵
𝑓

≈ argmax𝛼
𝑑∑︁
𝑖=1

−
log

(
ℓ2 − 𝛼2

)
2 +

𝑑∑︁
𝑖=1

−

(
𝑣𝑖 − 𝛼 − ℓ1−𝛼

𝑤

)2
·𝑤2

2(𝑤 − 1)
(
ℓ2 − 𝛼2

) −

(
𝛼 − 𝜇𝐶𝐵𝑝

)2
2(𝜎𝐶𝐵𝑝 )2

(9)

In this form, the problem does not have a closed-form solution.
Hence, we require a simplified surrogate problem that still yields a
reasonable solution. To that end, we note that the logarithmic term
in Equation 9 is dominated almost everywhere by the other terms
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of Equation 9, i.e., it can influence the solution to the optimization
problem by at most a factor proportional to O(𝑤−1). It is hence
reasonable to drop the logarithmic term from Equation 9 to get a
tractable surrogate optimization problem, and we write:

𝑎𝐶𝐵
𝑓

≈ argmin𝛼
(
ℓ2 − 𝛼2

)−1 (
𝑑∑︁
𝑖=1

(
𝑣𝑖 − 𝛼 − ℓ1 − 𝛼

𝑤

)2
+

(𝑤 − 1)
(
ℓ2 − 𝛼2

) (
𝛼 − 𝜇𝐶𝐵𝑝

)2
𝑤2 · (𝜎𝐶𝐵𝑝 )2

ª®®¬
(10)

In typical cases, we can assume (ℓ2 − 𝛼2) to be approximately
relatively constant for reasonable instances of 𝛼 due to the assump-
tion of ℓ0 being very large. With that knowledge, we discard the
leading factor (ℓ2 − 𝛼2)−1 in the RHS of Equation 10 and perform a
translation that simplifies the optimization problem:

(𝜎𝐶𝐵𝑝 )2 = 𝜒𝐶𝐵𝑝

(
ℓ2 − 𝛼2

)
=⇒ lim

ℓ0→∞
𝑎𝐶𝐵
𝑓

≈

argmin𝛼
(𝑤 − 1)

(
𝛼 − 𝜇𝐶𝐵𝑝

)2
𝑤2 · 𝜒𝐶𝐵𝑝

+
𝑑∑︁
𝑖=1

(
𝑣𝑖 − 𝛼 − ℓ1 − 𝛼

𝑤

)2 (11)

Solving the optimization problem amounts to taking the derivative
with respect to 𝛼 and setting it to zero, which produces the CB-
Sketch query:

lim
ℓ0→∞

𝑎𝐶𝐵
𝑓

≈
𝜇𝐶𝐵𝑝 (𝜒𝐶𝐵𝑝 )−1 +𝑤

(∑𝑑
𝑖=1 𝑣𝑖

)
− 𝑑 · ℓ1

(𝜒𝐶𝐵𝑝 )−1 + 𝑑 (𝑤 − 1)
(12)

Regarding this derivation, two issuesmust be noted. Firstly, Equa-
tion 12 does not compute the exact MAP estimate, but instead an
asymptotic approximation. Such an approximation is sub-optimal
but necessary due to intractability of the exact problem. Secondly,
𝜒𝐶𝐵𝑝 builds on (ℓ2 − 𝛼2), which is unknown. In practice, however,
it is still possible to estimate (ℓ2 − 𝛼2) and to subsequently choose
a matching 𝜒𝐶𝐵𝑝 . Alternatively, an approach inspired from machine
learning could consist of learning 𝜒𝐶𝐵𝑝 by grid search or more so-
phisticated search schemes on 𝜒𝐶𝐵𝑝 . While the CB-Sketch is thus
based on a number of approximations, our empirical evaluation in
Section 6 shows that the CB-Sketch yields highly accurate esti-
mates, confirming the validity of the approximations..

Since the CB-Sketch arises from a solution to an optimization
problem, interpreting the algorithm is non-trivial. Assuming an
uninformed prior 𝜒𝐶𝐵𝑝 = ∞, Equation 12 is best understood the
following way: It (i) uses ℓ1 and𝑤 to formulate a “null hypothesis”
regarding how big 𝑣𝑖 would be in expectation if𝑎𝑓 = 0 (namely ℓ1/𝑤
because the expected value of the counter is (ℓ1 − 𝑎𝑓 )/𝑤 + 𝑎𝑓 ), (ii)
computes the difference of the hypothesis to the actual counter
value 𝑣𝑖 , and (iii) averages these differences across the 𝑑 counter
arrays in order to estimate 𝑎𝑓 . The denominator accounts for cor-
relation between the volume counters and ℓ1, and normalizes the
numerator such that it yields an asymptotically bias-free estimate
of 𝑎𝑓 , as is shown in Section 5.1. The prior parameters 𝜇𝐶𝐵𝑝 and
𝜒𝐶𝐵𝑝 can add an arbitrarily strong bias to the prediction.

By relying on the difference between the hypothetical and the
actual stream volume, the CB-Sketch possesses an interesting

parallel to the C-Sketch [10]. The C-Sketch makes use of a key-
specific signed multiplication step which causes counter values,
multiplied by the sign of some key 𝑓 , in expectation, to be linearly
correlated to 𝑎𝑓 and equal to 0 under the null hypothesis. Hence
both C- and CB-Sketch base their estimates of 𝑎𝑓 on the difference
between an expected null hypothesis (0 and ℓ1/𝑤 respectively)
and observed data. These observations help to explain why the
performance guarantees of the C-Sketch and the CB-Sketch are
similar (cf. §5.1) as both sketches do conceptually the same thing
and only differ in how the “null hypothesis” is found (hash-based
signed multiplication and measurement of ℓ1 respectively).

4.2 Constructing the CCB-Sketch

Same as with the CB-Sketch, we model a prior distribution over
the key volumes as:

P[𝑎𝑓 = 𝛼] = N
(
𝛼 ; 𝜇𝐶𝐶𝐵𝑝 , (𝜎𝐶𝐶𝐵𝑝 )2

)
(13)

However, in contrast to the preceding subsection, P[𝐷 | 𝑎𝑓 = 𝛼]
indicates the joint probability of volume counters and cardinality
counters attaining their respective value, assuming key 𝑓 has vol-
ume 𝛼 . Since counter cardinality and key volumes are independent
from each other, we can move the probability of the cardinality
counters attaining their respective values into the conditional:

𝑎𝐶𝐶𝐵
𝑓

= argmax𝛼
𝑑∑︁
𝑖=1

log(P[𝑉𝑖 = 𝑣𝑖 | 𝑎𝑓 = 𝛼, 𝐶𝑖 = 𝑐𝑖 ]) +

log(P[𝑎𝑓 = 𝛼])
(14)

where we abbreviate 𝑐𝑖 := 𝐶 [𝑖, 𝐻𝑖 (𝑓 )] and define 𝐶𝑖 as the RV
associated with 𝑐𝑖 .

The derivation of the approximate solution of Equation 14 is very
similar to the derivation of Equation 12 and is omitted from this sec-
tion to avoid repetition. The derivation of the closed-form estimate
in the CCB-Sketch differs from the CB-Sketch in two high-level
respects. First, the distribution of 𝑉𝑖 conditioned on 𝑎𝑓 = 𝛼 and
𝐶𝑖 = 𝑐𝑖 is modeled as an RV, which is defined as a weighted sum
of entries from a multidimensional hypergeometric distribution,
which is then approximated by a normal distribution. This hyperge-
ometric distribution differs from the sum of weighted Bernoulli RVs
that were used for the CB-Sketch, and stems from the conditioning
on 𝐶𝑖 = 𝑐𝑖 . Correctly modeling the influence of this conditional
𝐶𝑖 = 𝑐𝑖 is key to obtaining a superior final estimate. The second
difference between derivations of the CB-Sketch and CCB-Sketch
estimates concerns the prior variance, i.e., 𝜒𝐶𝐵𝑝 and 𝜒𝐶𝐶𝐵𝑝 . For the
CCB-Sketch, this prior variance is:

(𝜎𝐶𝐶𝐵𝑝 )2 = 𝜒𝐶𝐶𝐵𝑝

(ℓ0 − 1)
(
ℓ2 − 𝛼2

)
− (ℓ1 − 𝛼)2

ℓ0 − 2 (15)

which is a less trivial expression compared to 𝜒CB𝑝 in Equation 11.
Same as with the CB-Sketch, we require 𝜒𝐶𝐶𝐵𝑝 in order to remove
the unknown term ℓ2−𝛼2 from the optimization. The prior variance
is different for the two sketches because their probabilistic models
yield different terms to be optimized, requiring different mathemat-
ical simplifications in order to result in a useful final estimate. For
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the CCB-Sketch, the approximate solution to Equation 14 is:

lim
ℓ0→∞

𝑎𝐶𝐶𝐵
𝑓

≈
𝜇𝐶𝐶𝐵𝑝 (𝜒𝐶𝐶𝐵𝑝 )−1 + (ℓ0 − 1)∑𝑑

𝑖=1
𝑣𝑖

𝑐𝑖−1 − 𝑑 · ℓ1
(𝜒𝐶𝐶𝐵𝑝 )−1 + ∑𝑑

𝑖=1
ℓ0−𝑐𝑖
𝑐𝑖−1

(16)

As with the CB-Sketch, the prior parameters may be learned or
estimated. Moreover, the CCB-Sketch only approximately solves
Equation 14, but the empirical performance of the sketch confirms
the validity of these approximations.

Intuitively, the term (ℓ0 − 1)∑𝑑
𝑖=1

𝑣𝑖
𝑐𝑖−1 has an elegant interpreta-

tion analogous to a term in Equation 12. In fact, this term estimates
what 𝑑 · ℓ1 should have been if key 𝑓 did not exist: The sub-term
𝑣𝑖 (𝑐𝑖 − 1)−1 computes the average key volume in counter 𝑖 , assum-
ing the volume of that counter is attributed to only 𝑐𝑖 − 1 keys, one
fewer than the true number of keys 𝑐𝑖 , which can be interpreted as
non-existence of 𝑓 . Those estimates are then multiplied by (ℓ0 − 1),
i.e., again one fewer than the number of distinct keys, in order to
predict what ℓ1 should have been. Hence, the numerator of Equa-
tion 16 represents 𝑑 times the difference of what ℓ1 is and what
it should have been if key 𝑓 did not exist, assuming the prior is
uninformed. The denominator can be interpreted as extracting the
most likely estimate of 𝑎𝑓 from the numerator.

Both the CB-Sketch and the CCB-Sketch use the crucial infor-
mation that key 𝑓 can be assigned to counters with certainty; hence,
the value of these counters should be deflected by 𝑎𝑓 compared to
their expected value if 𝑓 did not exist. In fact, the similarities can
also be shown quantitatively, as we observe that the counter-array
width 𝑤 in the numerator of the CB-Sketch estimate is close to
the term (ℓ0 − 1)𝑐−1

𝑖
in the numerator of the CCB-Sketch estimate.

The same kind of relation can be observed in the denominator be-
tween 𝑑 (𝑤 − 1) and ∑𝑑

𝑖=1
ℓ0−𝑐𝑖
𝑐𝑖−1 . Informally, the CCB-Sketch can

thus be seen as a direct upgrade of the CB-Sketch, as it uses the
same general recipe for estimating 𝑎𝑓 , while substituting some
information-deficient terms involving𝑤 with more precise terms
based on measurements of counter cardinality 𝑐𝑖 .

5 THEORETICAL ANALYSIS

In this section, we present and prove theorems about the theoretical
performance of the CB-Sketch and CCA-Sketch, both in terms of
worst-case error bounds and execution complexity.

5.1 CB-Sketch Analysis

This section presents the result of a theoretical analysis of the
accuracy of the CB-Sketch, followed by comparisons to the C-
Sketch and CM-Sketch. We also present a runtime analysis.

Theorem 1. Let𝑎𝑓 the aggregate volume of key 𝑓 ∈ I, and𝑎𝐶𝐵
𝑓

be

the estimate according to Equation 12 with a uniform prior 𝜒𝐶𝐵𝑝 = ∞.

In the limit ℓ0𝑤−1 → ∞, assuming that max𝑔≠𝑓 |𝑎𝑔 |𝜅𝑓 → 0,
where

𝜅𝑓 =

√︂(
ℓ2 − 𝑎2

𝑓

)−1
(𝑤 − 1)

the accuracy of this estimate is bounded by:

P
[
|𝑎𝐶𝐵
𝑓

− 𝑎𝑓 | ≥ 𝜖 · ℓ1
]
≤ 2 exp

©«−
𝜖2 · ℓ21 · 𝑑 (𝑤 − 1)

2 ·
(
ℓ2 − 𝑎2

𝑓

) ª®®¬ (17)

Proof. Let 𝑓 be any key in the set I and the prior on 𝑎𝑓 be
uninformed, i.e., 𝜒𝐶𝐵𝑝 = ∞. We abbreviate 𝑣𝑖 = 𝑉 [𝑖, 𝐻𝑖 (𝑓 )]. Since 𝑣𝑖
is the only source of uncertainty in 𝑎𝐶𝐵

𝑓
, it is the only part required

to be modeled stochastically. By definition of 𝑣𝑖 , we know that

𝑣𝑖 = 𝑎𝑓 +
∑︁

𝑔∈I. 𝑔≠𝑓
I{𝐻𝑖 (𝑓 )=𝐻𝑖 (𝑔) }𝑎𝑔

where I is an indicator variable and the only source of uncertainty
in the model. By assumption of universal hashing, I{𝐻𝑖 (𝑓 )=𝐻𝑖 (𝑔) }
are i.i.d. RVs that follow a Bernoulli distribution Ber (𝑤−1). The
sum over 𝑔 ∈ I, 𝑔 ≠ 𝑓 is a sum over ℓ0 − 1 random variables. Thus,
by assumption, in the limit ℓ0𝑤−1 → ∞ the CLT applies and:

lim
ℓ0𝑤−1→∞

𝑣𝑖 ∼ N
(
𝑎𝑓 +

ℓ1 − 𝑎𝑓

𝑤
,
𝑤 − 1
𝑤2

(
ℓ2 − 𝑎2

𝑓

))
(18)

Therefore, in the limit, the estimate 𝑎𝐶𝐵
𝑓

is distributed as:

𝑎𝐶𝐵
𝑓

∼ N ©«𝑎𝑓 ,
ℓ2 − 𝑎2

𝑓

𝑑 (𝑤 − 1)
ª®¬ (19)

For Equation 19, we used the fact that all hash functions are pairwise
independent and hence ∀𝑖 . 𝑣𝑖 are i.i.d.. This shows in primis that for
a uniform prior, in the limit, theCB-Sketch implements an unbiased
estimator. To bound the estimation error |𝑎𝐶𝐵

𝑓
− 𝑎𝑓 |, we use the

sub-gaussian concentration bound on the normal distribution:

lim
ℓ0𝑤−1→∞

P
[
|𝑎𝐶𝐵
𝑓

− 𝑎𝑓 | ≥ 𝜖 · ℓ1
]
≤ 2 exp

©«−
𝜖2 · ℓ21 · 𝑑 (𝑤 − 1)

2 ·
(
ℓ2 − 𝑎2

𝑓

) ª®®¬
(20)

which concludes the proof. □

5.1.1 Comparison to CM-Sketch. The CM-Sketch [12] has the
following characteristics:

P
[
|𝑎𝐶𝑀
𝑓

− 𝑎𝑓 | ≥ 𝜖 · ℓ1
]
≤ exp

(
−𝜖 · 𝑑 ·𝑤

𝑒

)
(21)

At first sight, the CM-Sketch might seem to dominate the CB-
Sketch because the linear 𝜖 reduces the exponential function in
Equation 21 more quickly than the squared 𝜖 in Equation 17. How-
ever, the ratio of ℓ21 to (ℓ2 − 𝑎2

𝑓
) in Equation 17 compensates this

effect, as for practical scenarios, this term behaves linearly in the
number of keys ℓ0. Since ℓ0 ≫ 𝜖−1, the additional 𝜖 in the expo-
nent of the CB-Sketch bound is counteracted. In practice, the CB-
Sketch effectively dominates the CM-Sketch as 𝜖−1 is sub-linear
in ℓ0.

5.1.2 Comparison to C-Sketch. The performance guarantees of
the C-Sketch [10] are given by:

P
[
|𝑎𝐶
𝑓
− 𝑎𝑓 | ≥ 𝜖 · ℓ1

]
≤ exp

©«−
𝜖2 · ℓ21 · 𝑑 ·𝑤

3 ·
(
ℓ2 − 𝑎2

𝑓

) ª®®¬ (22)

From this, we observe that the C-Sketch has strikingly similar
performance guarantees compared to the CB-Sketch, which may
also be superior depending on sketch dimensioning and stream
characteristics. This partially superior accuracy may stem from
(1) approximations made in the computation of the CB-Sketch
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estimate, and (2) a more sophisticated update procedure of the
C-Sketch. Nevertheless, in our experimental evaluation (§6), we
demonstrate that the CB-Sketch outperforms the C-Sketch in
terms of accuracy in most scenarios.

5.1.3 Time Complexity. Equation 12 indicates that the time re-
quired to compute the estimate 𝑎𝐶𝐵

𝑓
is in O(𝑑). Hence, the CB-

Sketch has the same asymptotic query complexity as the CM-
Sketch. Importantly, however, the C-Sketch query requires the
computation of a median of a vector of length 𝑑 . While this median
can be computed in asymptotically linear time by the Quickselect
algorithm [18], in practice this algorithm is more expensive than a
single list iteration, and has poor worst-case performance. More-
over, we emphasize that the update procedure of the C-Sketch
applies double the number of hash functions than the CB-Sketch,
which constitutes a significant performance impediment [25].

5.2 CCA-Sketch Analysis

The error analysis of the CCA-Sketch is considerably more in-
volved compared to the CB-Sketch, mainly due to the introduction
of cardinality information. However, although the CCA-Sketch
is quite different from the CB-Sketch, the CCA-Sketch analysis
uncovers an equivalence regarding accuracy between the sketches.

Theorem 2. Let 𝑎𝑓 be the aggregate volume of key 𝑓 ∈ I, and
𝑎𝐶𝐶𝐴
𝑓

be the estimate according to Equation 2. Then, in the limit

ℓ0𝑤−1 → ∞, assuming that max𝑔≠𝑓 |𝑎𝑔 |𝜅𝑓 → 0, where

𝜅𝑓 =

√︂(
ℓ2 − 𝑎2

𝑓

)−1
(𝑤 − 1),

the accuracy of this estimate is bounded by:

lim
ℓ0𝑤−1→∞

P
[
|𝑎𝐶𝐶𝐴
𝑓

− 𝑎𝑓 | ≥ 𝜖ℓ1
]
≤ 2 exp

©«−
𝜖2 · ℓ21 · 𝑑 (𝑤 − 1)

2
(
ℓ2 − 𝑎2

𝑓

) ª®®¬
(23)

which equals the bound on 𝑎𝐶𝐵
𝑓

from Theorem 1.

Proof. In the following, 𝑓 is any key in the set I, and we ab-
breviate 𝑣𝑖 = 𝑉 [𝑖, 𝐻𝑖 (𝑓 )] and 𝑐𝑖 = 𝐶 [𝑖, 𝐻𝑖 (𝑓 )]. To analyze the
CCA-Sketch, we require the distribution of 𝑣𝑖/𝑐𝑖 . To that end, we
first observe that

𝑣𝑖 | (𝑐𝑖 = 𝑐) ∼ [𝑎1, . . . , 𝑎ℓ0 ] ·MDHGD

(
𝑐 − 1, 1ℓ0 − ®𝑒𝑓

)
+ 𝑎𝑓 (24)

where MDHGD(𝑥, 𝑦) is a multidimensional hypergeometric dis-
tribution with 𝑥 draws from the “bins” defined by the vector 𝑦,
®𝑒𝑓 is the 𝑓 ’th unit vector and 1ℓ0 is a vector of 1s of length ℓ0. By
making use of the known moments of the MDHG distribution in
Equation 24, we can derive

E

[
𝑣𝑖

𝑐𝑖
| (𝑐𝑖 = 𝑐)

]
=

1
𝑐
E[𝑣𝑖 | (𝑐𝑖 = 𝑐)] =

(𝑐 − 1)
(
ℓ1 − 𝑎𝑓

)
𝑐 (ℓ0 − 1) +

𝑎𝑓

𝑐

V

[
𝑣𝑖

𝑐𝑖
| (𝑐𝑖 = 𝑐)

]
=

1
𝑐2
V[𝑣𝑖 | (𝑐𝑖 = 𝑐)] = (𝑐 − 1) (ℓ0 − 𝑐)𝑚

𝑐2 (ℓ0 − 1)2 (ℓ0 − 2)
(25)

with𝑚 = (ℓ0 − 1)
(
ℓ2 − 𝑎2

𝑓

)
−

(
ℓ1 − 𝑎𝑓

)2

which results from collapsing the matrix-vector multiplications of
mean and variance in terms of ℓ2 and ℓ1. These moments enable
expressing the distribution of 𝑣𝑖 · 𝑐−1𝑖

as a mixture distribution of
𝑣𝑖 · 𝑐−1, where 𝑐 itself is distributed according to 𝑐𝑖 which is an
affine binomial distribution:

𝑐𝑖 ∼ 1 + Bin

(
ℓ0 − 1,𝑤−1

)
(26)

Thanks to the law of total variance and the law of total expectation,
the moments of 𝑣𝑖 · 𝑐−1𝑖

are given by

E

[
𝑣𝑖

𝑐𝑖

]
= E𝑐∼𝑐𝑖


(𝑐 − 1)

(
ℓ1 − 𝑎𝑓

)
𝑐 (ℓ0 − 1) +

𝑎𝑓

𝑐


V

[
𝑣𝑖

𝑐𝑖

]
= E𝑐∼𝑐𝑖

[
(𝑐 − 1) (ℓ0 − 𝑐)𝑚

𝑐2 (ℓ0 − 1)2 (ℓ0 − 2)

]
+

V𝑐∼𝑐𝑖

[ (𝑐 − 1) (ℓ1 − 𝑎𝑓 )
𝑐 (ℓ0 − 1) +

𝑎𝑓

𝑐

]
(27)

The expressions in Equations 27 have no exact closed-form solu-
tions. Hence, we use an approximation which is inspired by a work
on confidence intervals for ratios of binomial distributions [22].
This work was expanded upon to be applicable to powers of RVs
that approximately follow a normal distribution. More precisely,
our approximation scheme involves (1) a log-transformation on
the ratio of RVs, which yield a difference of logarithms of RVs, and
(2) a number of linear approximations to remove the logarithm op-
eration. The result of applying this approximation scheme, whose
error converges to 0 for ℓ0𝑤−1 → ∞, to Equations 27 leads to the
following result in the limit ℓ0𝑤−1 → ∞:

E

[
𝑣𝑖

𝑐𝑖

]
= 𝜇𝑈 =

(ℓ1 − 𝑎𝑓 ) +𝑤 · 𝑎𝑓
ℓ0 +𝑤 − 1 =

ℓ1 + (𝑤 − 1) · 𝑎𝑓
ℓ0 +𝑤 − 1 (28)

V

[
𝑣𝑖

𝑐𝑖

]
= 𝜎2𝑈 = −

©«
(𝑤 − 1)

(
−

(
2(ℓ0 − 1)2𝑤 + (ℓ0 − 1)3 −𝑤2

)
𝑚

−
(
(ℓ0 − 2)𝑤2 (ℓ1 − (ℓ0 − 1)𝑎𝑓 )2

) ) ª®®¬
(ℓ0 − 2) (ℓ0 − 1) (ℓ0 +𝑤 − 1)4

(29)

The bias-free CCA-Sketch estimate, as presented in Equation 2,
follows from the solution of Equation 28.

In similar fashion, it is possible to show that 𝑣𝑖 · 𝑐−1𝑖
is approx-

imately normally distributed: After applying a log-transform on
𝑣𝑖 ·𝑐−1𝑖

and a linear approximation to the random logarithmic terms,
we observe that both 𝑣𝑖 and 𝑐𝑖 can be described as a sum of nu-
merous independent RVs, where 𝑣𝑖 and 𝑐𝑖 share some co-variance.
Hence, log(𝑣𝑖 · 𝑐−1𝑖

) is approximately normally distributed. Finally,
since the the log-normal distribution of 𝑣𝑖 · 𝑐−1𝑖

can be shown to
converge to a normal distribution in the limit ℓ0𝑤−1 → ∞, in the
sense that the difference of the CDFs converges to zero, we conclude
the analysis by stating that in the limit ℓ0𝑤−1 → ∞:

𝑣𝑖

𝑐𝑖
∼ N

(
𝜇𝑈 , 𝜎

2
𝑈

)
=⇒ 𝑎𝐶𝐶𝐴

𝑓
∼ 1
𝑑
N

(
𝑑 · 𝑎𝑓 ,

𝑑 · 𝜎2
𝑈
(ℓ0 +𝑤 − 1)2

(𝑤 − 1)2

)
= N

(
𝑎𝑓 ,

𝜎2
𝑈
(ℓ0 +𝑤 − 1)2

𝑑 (𝑤 − 1)2

)
(30)
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Figure 2: Accuracy characterization of sketch algorithms

discussed in this paper. Note that the characterizations of

the CB- and the CCB-Sketch relate to the untrained versions;

the trained versions achieve higher average accuracy.

With the most important characteristics of 𝑣𝑖𝑐−1𝑖
, we again apply

a concentration bound on 𝑎𝐶𝐶𝐴
𝑓

:

lim
ℓ0𝑤−1→∞

P
[
|𝑎𝐶𝐶𝐴
𝑓

− 𝑎𝑓 | ≥ 𝜖ℓ1
]
≤ 2 exp

(
−
𝜖2 · ℓ21 · 𝑑 (𝑤 − 1)2

2𝜎2
𝑈
(ℓ0 +𝑤 − 1)2

)
(31)

By inserting Equation 29 into Equation 31 and taking the limit
ℓ0𝑤−1 → ∞ of the RHS, the bound behaves asymptotically like:

lim
ℓ0𝑤−1→∞

P
[
|𝑎𝐶𝐶𝐴
𝑓

− 𝑎𝑓 | ≥ 𝜖ℓ1
]
≤ 2 exp

©«−
𝜖2 · ℓ21 · 𝑑 (𝑤 − 1)

2
(
ℓ2 − 𝑎2

𝑓

) ª®®¬
(32)

which concludes the proof. □

Theorem 2 has two goals. First, the theorem shows that the
CCA-Sketch shares worst-case accuracy guarantees with the CB-
Sketch, and is hence superior to the CM-Sketch (cf. Section 5.1.1).
Secondly, the results of the CCA-Sketch analysis may also apply
to the CCB-Sketch, which itself has proven difficult to treat ana-
lytically. This similarity is plausible from both an algorithmic and
an empirical perspective. From an algorithmic perspective, the esti-
mate 𝑎𝐶𝐶𝐵

𝑓
revolves around

∑𝑑
𝑖=1 𝑣𝑖 (𝑐𝑖 − 1)−1, while the estimate

of the CCA-Sketch is based on
∑𝑑
𝑖=1 𝑣𝑖𝑐

−1
𝑖

, which are very similar
quantities, especially if ℓ0 is large. From an empirical perspective,
the CCA-Sketch and the CCB-Sketch share similar performance
characteristics, as is evidenced by empirical results in Section 6.
Hence, we conjecture that the two sketches also share similar theo-
retical worst-case performance bounds.

Conjecture 3. CCA-Sketch and CCB-Sketch share the same

worst-case performance bounds.

Importantly, while our proposed sketches may thus provide the
same theoretical asymptotic worst-case guarantees, their effective
accuracy in experiments differs considerably, with the cardinality-
based sketches generally outperforming the CB-Sketch. Hence,
cardinality information can improve accuracy in most scenarios,
although these improvements are not visible in the bounds (cf.
Figure 2).

Since the CCA-Sketch is equivalent to the CB-Sketch regarding
its lower accuracy bounds, the comparison to the C-Sketch and
CM-Sketch follows from Sections 5.1.1 and 5.1.2.

5.2.1 Time Complexity. Like the CB-Sketch, the query procedure
of the CCA-Sketch requires time O(𝑑), which is also the asymp-
totic complexity of the C-Sketch and the CM-Sketch. However,
the CCA-Sketch introduces a constant-factor runtime cost to ob-
tain the cardinality information which its query relies on. More

precisely, if such cardinality information is not yet collected in
the update procedure (with cardinality estimators such as Hyper-
LogLog [15]), the query procedure must reconstruct the cardinality
counters by mapping all keys to their respective counters in all
counter arrays, effectively requiring ℓ0 · 𝑑 hash-function evalua-
tions. However, this reconstruction work is independent of the
number of performed volume estimates and is thus amortised if
a large number of estimates is conducted. If the volume of every
key is estimated, the query procedure requires exactly only one
additional iteration over the data structure per estimate. Note that
the CCB-Sketch shares the same complexity as the CCA-Sketch.

6 EXPERIMENTAL ANALYSIS

In this section, we complement the theoretical analysis from Sec-
tion 5 with an experimental evaluation, which is valuable for sev-
eral reasons. First, the preceding theoretical analysis focuses on
guarantees at certain probability levels, which are not necessarily
informative about the average accuracy of sketches in realistic set-
tings. Second, the theoretical analysis provides little insight into
the performance of the CCB-Sketch, although Section 5.2 alluded
that the CCB-Sketch is a direct upgrade to the CB-Sketch. Third,
this section demonstrates how to improve the performance of the
CB-Sketch and CCB-Sketch by injecting informative priors into
the estimation process. Fourth, none of the sketches presented in
this paper have yet been compared to global sketches such as the
PR-Sketch [30] and Seq-Sketch [20]. Both of these sketches are
expected to provide higher accuracy compared to the other sketches
mentioned in this paper, because these sketches reconstruct not
single key sizes 𝑎𝑓 at a time, but the entire vector 𝑎 at once. Hence,
these global sketches can capture the inter-dependency of key sizes
in the reconstruction. However, global-sketching techniques can
also be expected to come at the cost of considerably increased time
and space requirements for key-query operations.

6.1 Evaluation Set-Up

All experiments presented in this section have been performed in a
common C++ testbed which fed the data stream to the data struc-
tures and computed error and performance statistics based on the
various estimates 𝑎𝑋 returned by the different sketches. All algo-
rithms were implemented in C++, where the local sketches were all
implemented manually, while Seq-Sketch made use of Armadillo
[27, 28] and the compressive-sensing library Kl1p [16]. PR-Sketch
was implemented with the help of Armadillo by computing the
pseudo-inverse of the systemmatrix bymeans of sparse matrix SVD.
Manual implementations were parallelized with std::thread and
the other algorithms made use of Armadillo’s LAPACK powered
parallelized linear algebra operations.

All algorithms compared in this section were given the same
amount of information and memory. In the case of Seq-Sketch,
this equalization implies that Seq-Sketch does not need to detect
which keys are present in the data stream, which is the goal of
a dedicated component in Seq-Sketch. Instead, Seq-Sketch can
focus on reconstructing the known keys as well as possible.

In terms of evaluation metrics, we present performance and error
statistics evaluated on both synthetic and real data-stream traces.
We mainly use four statistics to compare the fitness of a sketch:

664



10−110−1100100 101101 102102 103103

Avg. Rel. Err.

1600

25600

102400

N
r.

of
C
ou

n
te
rs

101101 102102 103103 104104 105105

Avg. Abs. Err.

101101 103103 105105 107107 109109

Neg. r2
100100 101101 102102

Inv. Pear. Corr.

C Sketch

CM Sketch

CB Sketch

Trained CB Sketch

CCA Sketch

CCB Sketch

Trained CCB Sketch

(a) Comparison to local sketches (Trace of 100𝑘 keys).

10−110−1 100100 101101 102102

Avg. Rel. Err.

400

1600

6400

N
r.

of
C

ou
n
te

rs

101101 102102 103103 104104

Avg. Abs. Err.

101101 103103 105105 107107

Neg. r2

100100 101101 102102

Inv. Pear. Corr.

CB Sketch

Trained CB Sketch

CCA Sketch

CCB Sketch

Trained CCB Sketch

Seq Sketch

PR Sketch

(b) Comparison to global sketches (Trace of 10𝑘 keys).

Figure 3: Comparison based on Poisson trace.
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Figure 4: Comparison based on geometric trace.

• Average relative error: ℓ−10
∑

𝑓 ∈I |𝑎𝑋
𝑓
− 𝑎𝑓 |𝑎−1𝑓

• Average absolute error: ℓ−10
∑

𝑓 ∈I |𝑎𝑋
𝑓
− 𝑎𝑓 |

• Negative 𝒓2: 1−𝑟2, where 𝑟2 is the coefficient of determination
• Inverted Pearson correlation: Inverted sample Pearson cor-
relation between 𝑎𝑋 and 𝑎

Furthermore, we show data for experiments under differentmemory
constraints. To that end, theNr. of Counters denotes the total number
of counters used for the data structure, i.e.,𝑤 · 𝑑 .

Relevant for experiments relating to runtime and memory con-
sumption of the various algorithms in Section 6.8, the machine on
which the experiments were run is a 2 + 8 core Apple Silicon M1
Pro with 16 GB of memory.

6.2 Poisson Trace

In the first set of experiments, we compare the accuracy of our
sketches to previous proposals on the basis of synthetic Poisson
traces, i.e., traces in which the key sizes in the data stream were
sampled i.i.d. from a distribution 100 + Poi(100).

For the untrained versions of the CB-Sketch and the CCB-
Sketch, the priors are uninformed, i.e., 𝜒𝐶𝐶𝐵𝑝 = 𝜒𝐶𝐵𝑝 = ∞. For

the trained versions of CB-Sketch and the CCB-Sketch, we rely
on a training trace which is synthesized identically to the test trace,
both regarding length and statistics. Given this training trace, we
use a simple log-scale grid search in order to find the best prior
parameters 𝜒𝐶𝐶𝐵𝑝 and 𝜒𝐶𝐵𝑝 , where the optimization goal was the
average absolute error. We set the prior means 𝜇𝐶𝐶𝐵𝑝 and 𝜇𝐶𝐵𝑝 to
be the empirical mean on the training trace. Details on the cost of
training are elaborated in Section 6.5.

6.2.1 Observations. Figure 3a shows that the CB-Sketch is con-
siderably superior to the CM-Sketch, which can be expected from
the theoretical analysis in Section 5.1.1. More surprisingly, the
CB-Sketch also narrowly outperforms C-Sketch, although the
theoretical guarantees of the CB-Sketch are slightly less strong
than those of the C-Sketch (cf. Section 5.1.2). Furthermore, the
trained and untrained sketches clearly differ in the estimation errors
for both the CB-Sketch and the CCB-Sketch, where the trained
versions clearly outperform the untrained versions. This error-
reducing effect of training aligns with the expectations based on
the favorable distribution of the trace. We note that training the
priors with respect to the average relative error also improves the
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average absolute error and the 𝑟2 score while leaving the correlation
unaffected. In fact, the correlation and ordering of 𝑎𝑋

𝑓
is guaranteed

to be invariant to the prior in all cases.
With regards to the global sketches, we observe from Figure 3b

that the PR-Sketch dominates both trained and untrained versions
of the proposed sketches, although only by a minuscule margin for
certain memory constraints. This high accuracy of the PR-Sketch
is partially to be expected, especially for lax memory constraints
since the PR-Sketch approaches the interpolation regime, where
estimates inevitably lie within machine precision. Surprisingly, the
Seq-Sketch is inferior to our proposed sketches in terms of errors
and correlation. Finally, we observe that the CCB-Sketch and the
CCA-Sketch are qualitatively indistinguishable regarding their
accuracy, which supports Conjecture 3.

6.3 Geometric Trace

To explore the case in which the priors of our Bayesian sketches (i.e.,
normal distributions) poorly match the distribution of aggregated
key-volumes, we perform the experiments in the same way as in the
preceding section, except that the Poisson distribution is substituted
by a Geometric distribution and the prior training is conducted with
the negative 𝑟2 score as optimization goal.

6.3.1 Observations. Figure 4a suggests that the proposed sketches
dominate both the C-Sketch and CM-Sketch even though the
prior distribution significantly differs from the actual distribution
of key sizes. The likely reason for such high accuracy is that the
geometric distribution has a short tail and hence normal approxima-
tions still work out sufficiently well. As is displayed in Figure 4b, the
PR-Sketch dominates all proposed algorithms in this experiment,
whereas the Seq-Sketch is again consistently inferior. Also, we
once again observe qualitatively identical performance statistics for
the CCB- and CCA-Sketch, yielding additional empirical evidence
for Conjecture 3.

6.4 CAIDA Trace

To complement the synthetic-trace experiments in the preceding
sections, we repeat the experiments with a CAIDA trace [9], which
involves network-packet data from a commercial backbone link
and contains roughly 1 million unique flows (i.e., keys). For the sake
of keeping the scale of experiments manageable, we use a random
subset of 100k and 10k keys to compare the proposed algorithms to
local and global sketches, respectively. The priors are determined
with a training trace which was sampled randomly from the whole
CAIDA trace, and with average relative error as optimization goal.

6.4.1 Observations. Figure 5a shows that the proposed methods
dominate the CM-Sketch for all choices of data-structure size,
which is in line with the results of the theoretical analysis and
the synthetic-trace experiments. In turn, our proposed sketches are
dominated by theC-Sketch if uninformed priors are used. However,
the trained methods dominate all local sketches in terms of average
relative and average absolute error by a considerable margin.

Regarding global sketches, shown in Figure 5b, we again observe
that the PR-Sketch outperforms the untrained sketches, whereas
the Seq-Sketch is inferior to them. In contrast to previous ex-
periments, however, the trained methods still manage to beat the

PR-Sketch in terms of average relative and absolute error. This sur-
prising result shows that the injection of a prior can vastly improve
the accuracy of the sketch, in some cases even outperforming global
sketches.

Comparing the proposed sketches among each other, we find that
the CB-Sketch, CCA-Sketch and CCB-Sketch have very similar
performances in this experiment, where the latter has marginally
better performance compared to the former two, again supporting
Conjecture 3

6.5 Training and Prior Tuning

From the previous sections, the value of learning suitable priors for
the Bayesian sketches becomes apparent. To illustrate the trade-
offs in tuning the prior parameters for the trainable sketches, we
present Figure 6, which shows data collected on a Poisson trace.
In terms of all error statistics, we observe the following behaviors:
The CCB-Sketch yields strictly better performance compared to
the CB-Sketch, no matter which common prior is chosen. Sec-
ondly, we note that the CCB-Sketch attains its optimum at higher
values of 𝜒𝑋𝑝 compared to the CB-Sketch. This higher reliance of
the CB-Sketch on narrow localization of the prior (i.e., low prior
variance 𝜒𝑋𝑝 ) is expected as the CCB-Sketch incorporates more
information into its estimates compared to the CB-Sketch. There-
fore, the CCB-Sketch is in general less reliant on prior knowledge.
Thirdly, in all settings, the error function has a unique minimum,
which is neither 𝜒𝑋𝑝 = 0 nor 𝜒𝑋𝑝 = ∞. Hence, 𝜒𝑋𝑝 can always be
chosen such that the resulting estimates are better than both pre-
dicting the mean and predicting with uniform priors. The highest
accuracy is thus achieved through an appropriate combination of
prior knowledge and data stream information. In particular, when
the prior mean is close to the average key size in the data stream,
both the CCB-Sketch and the CB-Sketch allow a selection of 𝜒𝑋𝑝
such that the 𝑟2 score is higher than 0, i.e., the estimation is better
than simply taking the average key size as estimate. Lastly, we also
see that 𝜇𝑋𝑝 = 0 can be used effectively for error reduction, although
Figure 6 suggests only slim gains for the CCB-Sketch.

In all experiments presented in this paper, the training method
was a simple exponential grid search with 200 steps that minimized
a given error statistic averaged over all training keys in the stream.
Hence, the time required for training was roughly 200 times the
time required for evaluating the sketch on all training keys in the
data stream. This training cost thus depends on how dense the
grid search is, and how costly the error-statistic computation is.
Moreover, we note that the training of our sketches is only rarely
performed (potentially only once for certain use-cases), and the cost
of training can therefore be amortized overmany sketch evaluations.
Additionally, training is temporally and spatially detached from
testing and can thus be scheduled at advantageous times on less
critical hardware.

6.6 Noisy Cardinality Information

In practice, the full set of keys I (and thus the cardinality counters)
cannot always be collected without error. Therefore, the effect of
faulty information on the accuracy of the CCB-Sketch deserves
further attention. To quantify this effect, we evaluate the accuracy
of the CCB-Sketch on a Poisson trace for different noise levels,
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i.e., random fractions of keys that are unknown during query exe-
cution. Figure 7 shows how the performance of the CCB-Sketch
degrades with increasing noise level. However, we also observe
that the trained version suffers a lot less from increasing noise
levels because it can compensate for the poor data stream infor-
mation by choosing an adequate prior (Note that the training was
also conducted on a training trace equally noisy as the test trace).
Given high noise levels, the prior becomes dominant in the trained
CCB sketch, always making the sketch predict more or less the
mean 𝜇𝐶𝐶𝐵𝑝 . However, modern key-tracking mechanisms achieve
noise levels of lower than 5% [30], for which the CCB-Sketch still
achieves high accuracy.

6.7 Stress-Testing Simulations

To further evaluate the CB- and CCB-Sketches in realistic set-
tings, Figure 8 displays results of simulations performed in an
environment with three challenging properties. First, we use the
UNIV1 [5, 7], KOSARAK [6], and RETAIL [8] datasets, which in
parts heavily conflict with the normal assumptions of the Bayesian

0.0 0.2 0.4

Noise Level

0.036

0.037

0.038

0.039

A
v
g.

R
el

.
E

rr
.

of
T

ra
in

ed
C

C
B

S
ke

tc
h

0.0 0.2 0.4

Noise Level

0.0

0.5

1.0

1.5

2.0

2.5

A
v
g.

R
el

.
E

rr
.

of
U

n
-T

ra
in

ed
C

C
B

S
ke

tc
h

Figure 7: The curves plotted are the minimum, 25th, 50th

and 75th percentile and maximum of average relative errors

recorded across 50 simulations for different noise levels, i.e.,
the fraction of keys missing during the computation of the

cardinality information. The y-axis in the left plot is trun-

cated.

101101 102102 103103 104104

Avg. Rel. Err.

UNIV1 Pt2

UNIV1 Pt5

UNIV1 Pt20

KOSARAK

RETAIL

D
at

as
et

101101102102103103104104105105106106107107

Avg. Abs. Err.

10−110−1 101101 103103

Neg. r2

100100 101101

Inv. Pear. Corr.

C Sketch

CM Sketch

Trained CB Sketch

Trained CCB Sketch

Seq Sketch

PR Sketch

Figure 8: System simulations on various real datasets

sketches. Second, to account for concept drift, we introduce tem-
poral distance between training and testing: For KOSARAK and
RETAIL, training and testing is done on the first and last 10% of
the datasets, respectively; and for UNIV1, the first part of the trace

667



is used for training, while testing is performed on 3 increasingly
distant parts (2, 5 and 20). Third, realistic noise in cardinality in-
formation is induced by using a Bloom filter as key tracker (as in
Seq-Sketch).

For UNIV1, RETAIL, and KOSARAK, the sample kurtosis of the
total key volumes well exceeds 10k in all cases and visual tests
suggest that the variances are not necessarily well defined, which
makes learning priors difficult. While the largest single key volume
in parts 1 and 2 of UNIV1 makes up about 5% of the total volume,
in parts 5 and 20 the ratio of maximal key volume to total trace
volume increases to 20% and 85% percent, respectively, which breaks
asymptotic approximations in the proposed sketches.

6.7.1 Observations. Despite unfavorable trace characteristics, es-
pecially in KOSARAK, RETAIL, and UNIV Pt2, the learned priors
give the CB- and CCB-Sketch a clear advantage over other local
sketches, despite considerable temporal distance between training
and testing. We also observe that the proposed sketches struggle
with parts 5 and 20 of UNIV1. This is due to two factors: an in-
creasing discrepancy between the training and testing statistics,
and an increasingly extreme heaviness of the tail. It is worth noting
that PR-Sketch also appears to suffer considerably from increasing
heaviness of the tail, which would suggest the relevance of that
distribution property. The performance difference between CB- and
CCB-Sketch is minuscule and slightly favors the former over the
latter. Noisy cardinality information plays a role, but the bigger
factor, considering simulations from previous sections, seems to
be the heavy tail of the key-volume distribution, which leads to
misinterpretation of measurements under the normal assumption
of the sketches. This effect is stronger for the CCB-Sketch, which
is more receptive, and hence more exposed, to measurement data.

6.8 Time and Space Complexity

The goal of this work is to devise sketches that combine the accu-
racy of global sketches with the query efficiency of local sketches.
While the preceding sections demonstrate that the trained Bayesian
sketches are competitive with local sketches, we focus on the query
efficiency of our sketches in this section.

To demonstrate the differences in space and time complexity
of the various algorithms, Figure 9 shows data collected from an
experiment with 5𝑘 keys in the data stream and compares the time
and peak memory necessary to query every 𝑎𝑋

𝑓
for 𝑓 ∈ I. All

local sketches have approximately the same peak memory usage
since they all only require information about one flow 𝑓 in order
to estimate 𝑎𝑓 . The computation of 𝑎𝑋

𝑓
does not incur substantial

additional memory allocation in the case of local sketches since
the computation only amounts to a form of weighted aggregation.
Among the local sketches, only the C-Sketch stands out, as the
computation of a median is more expensive than a simple cumula-
tive aggregation over the array. Also note that the data structure
itself consumes negligible memory compared to memory required
for query evaluation; hence, the CCA-Sketch and the CCB-Sketch
are not noticeably more expensive than other local sketches, despite
additionally keeping a cardinality table.

More importantly, we see that the global sketches are much
more expensive regarding memory and runtime costs to all local
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Figure 9: Query time [ns] and peak memory usage [MB] of a

query operation on all keys in the data stream.

sketches. The PR-Sketch is the most expensive evaluated sketch, as
its peak memory consumption and execution time increases rapidly
due to the SVD computation, despite being optimized for sparse
matrices. Similarly, the Seq-Sketch suffers from rapidly increasing
peak memory consumption and time complexity, although memory
consumption is asymptotically lower than that of the PR-Sketch.

For real-world applications involving a large number of keys,
querying the PR-Sketch would likely require several hundreds of
GB and up to an hour of computation time on a high-end main-
frame, whereas the CCB-Sketch can be queried in near-real time
on relatively modest hardware.

7 CONCLUSION

In this paper, we present the derivation, analysis and evaluation
of three novel stream-processing algorithms. Both our theoretical
analysis (§5) and experimental results (§6) show that these sketches
combine the strengths of lightweight but not very accurate sketches
(e.g., C-Sketch) and more accurate but significantly costlier meth-
ods (e.g., PR-Sketch). Hence, our sketches enable high accuracy
at low query cost: Typically, the proposed CCB-Sketch is orders
of magnitude more accurate compared to the C-Sketch while sig-
nificantly cheaper than the PR-Sketch. This is also the case when
modeled prior and actual data stream statistics belong to different
parametric families.

This reconciliation of estimation accuracy and query efficiency
decisively propels real-world applications that rely on stream pro-
cessing. For example, emerging QoS systems based on bandwidth
reservation [17] must quickly identify flows that overuse their reser-
vation, and require the highly efficient and highly accurate flow-size
estimation which only the sketches in this paper can guarantee.

Moreover, we emphasize that our paper is only an initial explo-
ration of the research opportunities that are opened up by com-
bining Bayesian techniques with sketching algorithms. In future
work, it will be of interest to investigate the value of different priors
(e.g., exponential distributions), other variational-inference tech-
niques (e.g., MCMC), and hybrid approaches based on constrained
optimization (as in PR-Sketch) and Bayesian techniques.
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