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ABSTRACT
Consider a cloud server that owns a key-value store and provides a

private query service to its clients. Preserving client privacy in this

setting is difficult because the key-value store is public, and a client
cannot encrypt or modify it. Therefore, privacy in this context im-

plies hiding the access pattern of a client. Pantheon is a system that

cryptographically allows a client to retrieve the value corresponding

to a key from a public key-value store without allowing the server

or any adversary to know any information about the key or value

accessed. Pantheon devises a single-round retrieval protocol which

reduces server-side latency by refining its cryptographic machinery

and massively parallelizing the query execution workload. Using

these novel techniques, Pantheon achieves a 93× improvement for

server-side latency over a state-of-the-art solution.
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1 INTRODUCTION
Due to the widespread use of cloud applications, searching for data

from a cloud server has become ubiquitous. However, accessing

data stored in a cloud server comes with severe privacy concerns

owing to numerous attacks and data breaches [8, 15, 37, 67]. A

long line of work [11–14, 19, 28, 36, 41, 48, 54–56, 58, 63, 66, 68,

70] (§6) addresses this privacy concern for private data where a

client owns the data and outsources it in encrypted form to a cloud

server. The server then executes client queries on the encrypted

data to ensure privacy. However, none of these approaches provide

privacy for querying over public data, where the data is owned and

managed by a cloud server, and the server provides query services to

many clients. A practical use case is a breached password database

service, where a client may query whether her password has been

breached and other relevant information. However, the client may
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be unwilling to disclose which password she is querying about to

the service provider or any network eavesdropper. Similarly, when

customers query information about a particular ticker symbol from

a stockbroker, or information about a certain disease from a medical

repository, they may want to hide the query keywords to preserve

their financial and medical privacy. A common feature in all these

use-cases is that the server holds a key-value store and clients

query about keys. Evidently, a client cannot encrypt the data, i.e.,

the key-value store in this setting. Therefore, information on which

key a client performs queries can compromise privacy [47, 69].

Unfortunately, preserving client privacy in this application domain

of public data has received very little attention in the literature.

This paper addresses this general research problem where a cloud

server owns and manages a key-value store, and the clients want

to perform queries without sacrificing privacy.

The problem of private retrieval from public data is closely as-

sociated with Private Information Retrieval (PIR) [22, 23, 42]. At a

high level, PIR allows a client to retrieve an element from an un-

trusted server without letting the server know which element the

client retrieved. However, PIR requires the server to consider the

data as an array of elements and the client to know the array-index

of the desired element (for example, the client wants to retrieve the

element at index 13 from an array of 100 elements). This require-

ment is a limiting factor in many practical use cases, especially

for key-value stores, where the client may be interested in a par-

ticular key, but does not know the exact arrangement of the data

at the server. An extension of PIR, known as keyword-PIR [21],

bypasses this restriction by using multiple rounds of PIR. It allows

a client to retrieve the value corresponding to a key from an un-

trusted server obliviously. Nevertheless, keyword-PIR requires the

client to know the total number of keys (n) in the key-value store

and perform ⌈log
2
(n + 1)⌉ + 1 sequential PIR interactions with the

server. As a result, it suffers from three significant limitations. First,

the number of round-trips increases with the number of keys and

thus creates performance and scalability bottlenecks. For exam-

ple, the keyword-PIR protocol requires 21 round-trips to retrieve

a value from a key-value store containing 1M tuples. Second, the

client must know the number of tuples n in the key-value store

before constructing a query, creating performance overhead for

a dynamic key-value store. Finally, the keyword-PIR protocol in-

volves O(log n) round-trips between the server and client, where

each round requires processing the key-value store. Therefore, the

server must preserve its state across the rounds of a query to guar-

antee consistency. Naturally, one would prefer to retrieve the value

corresponding to a key in a single-round to guarantee consistency
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and atomicity. In this paper, we focus on single-round solutions to

the private key-value retrieval problem.

A general approach for constructing a single round solution

is to use Fully Homomorphic Encryption (FHE) [17, 31]. In this

approach, a client constructs a query q that cryptographically hides
the desired key k using FHE and the client sends q to the server.

The server obliviously checks equality between k (hidden inside q)
and each key in the key-value store using a homomorphic equality

operator to determine an encrypted representation of the index of

k in the key-value store. Then, the server uses this hidden index

information and Private Information Retrieval (PIR) [22, 23, 42]

to obtain an encrypted form of the desired value as the response.

The client receives the server’s response and converts it into the

plaintext form of the value.

A number of prior works [5, 6, 27, 32, 46] adopted this approach

with different techniques for equality check and PIR. A recent work

named Constant-weight Keyword PIR (CKP) [46] is so far the best

known instantiation of this FHE-based single-round approach. It

proposes a new homomorphic equality operator to check equality

between the query key and the keys in the key-value store. Then,

it uses the SealPIR [9] technique to retrieve the value using Private

Information Retrieval. Even though this work offers a single-round

solution to the private key-value retrieval problem, it has major

limitations in terms of performance and scalability. First, their pro-

posed equality operator, though better than prior works, involves

expensive homomorphic operations. At a high level, the constant-

weight equality operator obliviously evaluates a boolean circuit,

and therefore requires each bit of the operand to be encrypted sep-

arately into a different FHE ciphertext. The computation for the

equality operator comprises expensive homomorphic multiplica-

tion operations, and the number of homomorphic multiplications

required is a multiple of the number of tuples in the key-value

store. Second, the output of the equality operator also involves

one ciphertext for each result, and therefore leads to a costly PIR

technique. For example, using an AWS instance containing 48 vcpu

as the server, the latency for retrieving a value privately from a

key-value store containing 64K tuples is 107.8 seconds (§5.2), out

of which the equality checking takes 80.5 seconds and the PIR step

takes 24.9 seconds.

This paper addresses the performance and scalability issues of

privately querying over public data. We present Pantheon, a sys-

tem that provides a single-round solution to the private key-value

retrieval problem and scales to millions of tuples while keeping

the server-side latency reasonably low. Pantheon achieves this per-

formance and scalability with contributions in two directions - it

refines the cryptographic machinery of the single-round protocol,

and applies system level optimizations to support scalability. The

primary cryptographic contribution of Pantheon is to present a new

homomorphic equality operator using Fermat’s little theorem [57].

The key advantage of Pantheon’s equality operator is that it is a

number theoretic technique, thus the computation is performed in

an integer space rather than requiring the evaluation of a bitwise

boolean circuit. In addition, Pantheon takes advantage of the SIMD

batching property of FHE to pack multiple operands in the same ci-

phertext and thus amortizing the cost. Due to these two techniques,

Pantheon’s equality operator reduces the number of ciphertext mul-

tiplications compared to CKP by three orders of magnitude (§5.1),

resulting in significantly lower computation. However, scaling Pan-

theon to support practical large key-value stores still remains a

monumental challenge. This challenge is due to a fundamental

lower bound on the server-side computation. More specifically,

while serving a client’s query, the Pantheon server must process

the entire key-value store; otherwise, it will learn information about

the client’s query. Therefore, scaling the system leads to high com-

putational overhead on the Pantheon server. Pantheon addresses

this systems level challenge by carefully distributing its workload

over a cluster of machines and massively parallelizing the com-

putation in each machine. Note that, Fermat’s little theorem has

been known for centuries, but Pantheon makes the first use of it to

provide an end to end solution in a practically scalable manner.

We have implemented (§4) and evaluated (§5) a prototype of Pan-

theon. Our implementation includes parallelizing part of the state-

of-the-art homomorphic encryption library Microsoft SEAL [60],

thus enabling the Pantheon server to distribute its computation

over a cluster of machines and multiple cores in a single machine.

When the Pantheon server is deployed on a single AWS instance

containing 48 vcpu, the latency for performing a Get query from a

key-value store containing 64K tuples is 1.15 seconds (§5.2), 93×
better than the to-date best system built on Constant-weight Key-

word PIR [46]. We also deploy the Pantheon server over a cluster

of AWS instances, and the latency for a private Get query from a

key-value store containing 2M tuples is 0.99 seconds (§5.3). Indeed,

the latency is substantially higher than a non-private system. We

deem this increase in latency as the cost of privacy. However, to

our knowledge, Pantheon is the first system to support private re-

trieval from a million-scale public key-value store with sub-second

latency. Moreover, Pantheon is vertically (§4.1) and horizontally

(§4.2) scalable. One can reduce the latency by adding computational

resources and leveraging Pantheon’s parallelization capability.

2 PROBLEM OVERVIEW
Pantheon addresses a setting where an untrusted server owns a

key-value store and provides a query service to its clients. The

server performs the write operations– Put, Update, and Delete.

The clients issueGet queries for any key. Since write operations are

performed by the server, client-side privacy only concerns read op-

erations, i.e., Get queries. The goal is to hide the access pattern, i.e.,

which key or value a client is interested in, from the server or any

adversary. In this section, we formalize the problem, state solution

goals, and provide an overview of possible solution approaches.

2.1 Problem formulation
A server has a set S of key-value pairs {(k1, v1), (k2, v2), ….., (kn, vn)}
where each key in {k1, k2, ….., kn} is unique, i.e., the keys are pri-
mary keys. The server stores the content of S in plaintext and can in-
sert, update, or delete key-value tuples from S. A client holds a key k
and wants to know the corresponding value v if k ∈ {k1, k2, …., kn}
such that (k, v) ∈ S, or an empty value otherwise. During this re-

trieval, the server or any other network eavesdropper must not be

able to know anything about k and also not distinguish between re-

turning an empty value and some other value in {v1, v2, …., vn}. The
server should be able to serve queries from multiple independent

clients who may not trust each other.
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2.2 Threat Model
Pantheon assumes a passive-adversary threat model to guarantee

query privacy and result integrity. The adversary may see the con-

tent of the key-value store, monitor and store all the queries and

responses associated with the clients, and perform any analysis on

them. It may monitor and analyze any operation performed by the

server and perform side-channel attacks on the server. The adver-

sary may also monitor, log, and analyze any network traffic. We

assume the adversary is not actively malicious, i.e., it does not cor-

rupt the key-value store, tamper with any server-side computation,

or modify network traffic. Any such adversary may generate incor-

rect response and thus violate integrity. However, Pantheon must

guarantee that no information about the client’s query is leaked

even in the presence of an active-adversary that can arbitrarily

modify any data or computation.

We assume the adversary cannot compromise or perform side-

channel attacks on the client, because in that case knowing the

client query key becomes trivial. We also consider the adversary

cannot break standard cryptographic assumptions, such as the

semantic security of an encryption scheme.

2.3 Goals
2.3.1 Query privacy. Pantheon must guarantee query privacy to

its clients. An adversary must not be able to learn any information

about a client’s query key k. It also implies the adversary must not

learn any information about the value retrieved.

2.3.2 Consistency. Any response received by a client should be

from a stable version of the key-value store that incorporates a

write in its entirety or not at all, i.e., it should not involve dirty
data. We materialize this goal by making Pantheon a single-round

protocol.

2.3.3 Performance and scalability. The primary performance

metric for a system like Pantheon is its server-side latency for serv-

ing a Get query. In addition, the system should be scalable with

three parameters related to the size of the key-value store, namely,

the size of each key, the size of each value, and the number of

tuples in the key-value store (n). For instance, Pantheon should sup-

port at least 256-bit keys, so that any arbitrary size key-object can

be mapped to a collision-resistant hash digest of the object using

commonly known hash functions such as SHA-256 [52]. Further,

Pantheon should support arbitrarily large values, because hashing

a value does not serve the purpose in most cases. The Pantheon

server should also be able to serve a Get query with a reasonable la-

tency, say a few seconds, when the key-value store contains several

millions of tuples.

Pantheon’s client-side protocol for performing a Get query

should be independent of the total number of tuples (n) in the

key-value store. Otherwise, it creates a substantial overhead for

dynamic key-value stores where the value of n changes frequently.

2.4 Possible solution approaches
Before going into the details of Pantheon’s architecture, we discuss

some possible solution approaches to develop the intuition. We also

discuss the limitations of these approaches to rationalize the need

for a system like Pantheon.

2.4.1 Strawman 1: Download the entire key-value store. The
client may download the entire key-value store S and search for

(k, v) locally. This approach may be suitable if the size of S is small,

but not otherwise.

2.4.2 Strawman 2: Client downloads the key-set, then per-
forms Private Information Retrieval. Usually, the size of a key
is smaller than the value. In that case, the client can first download

the entire set of keys, and find the index of k in the key-set locally.

Then, the client may privately retrieve the value at that index from

the server using Private Information Retrieval (PIR) [22, 23, 42].

There are two major problems with this approach. First, it is a

multi-round protocol and therefore does not guarantee consistency

(§2.3.2). Second, the client-side download increases with the size of

the key-set, making the approach difficult to scale. For example, for

a key-value store containing 2M tuples where each key is 256-bits,

a client has to download 64MiB of data just for the first round of

the protocol.

2.4.3 Keyword-PIR. Chor et al. [21] propose a protocol to re-

trieve the value corresponding to a key from an untrusted server

using multiple sequential rounds of PIR. Their protocol, known as

keyword-PIR, proceeds in two phases. In the first phase, the client

performs ⌈log
2
(n + 1)⌉ round-trip PIR interactions with the server

to find out the index of the desired key, where n is the total number

of keys. Then, in the second phase, the client uses this index to

retrieve the value using another round of PIR. This protocol may be

preferable to the previous strawman approach if the number of keys

is too large to download in its entirety. However, the number of

rounds in this protocol increases with the number of keys, making

it a scalability bottleneck. In addition, the protocol cannot guaran-

tee the desirable consistency property (§2.3.2). Furthermore, the

keyword-PIR protocol requires the client to know the total number

of tuples (n) in the key-value store to initiate a query, which either

adds one more round to the protocol for fetching the latest value

of n or makes the server broadcast n after every write operation.

2.4.4 Homomorphic encryption. The primary challenge to build-

ing a single-round solution to the private key-value retrieval prob-

lem is obliviously checking equality between the client query key

and the keys in the key-value store. After that, the result of the

equality check can be utilized to retrieve the value using Private

Information Retrieval (PIR) [22, 23, 42]. Conceptually, it is possible

to check the equality obliviously using Fully Homomorphic En-

cryption (FHE) [17, 31]. We discuss the multiple approaches in the

literature using homomorphic encryption as follows.

Evaluating fully homomorphic boolean function. In theory,

FHE can evaluate any boolean function over an encrypted data and

generate an encrypted output of the function. There are a number

of approaches [5, 6, 27, 32, 46] that express the equality operator as

a boolean function and evaluates that function homomorphically.

However, these techniques are limited in terms of performance and

scalability mainly because the boolean function operates over each

bit of the operands individually and therefore involve prohibitively

large number of homomorphic operations.

The state-of-the-art single-round solution to the private key-

value retrieval problem is a protocol named Constant-weight Key-

word PIR (CKP) [46]. This protocol proposes a new boolean oper-

ator named constant-weight equality operator for homomorphic
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equality check. This equality operator requires all the keys to have

the same number of 1’s in their binary representations, i.e., the

hamming weight of the keys need to be the same (hence, constant-

weight). Accordingly, CKP applies a transformation to map each key

to a constant-weight binary string of larger size. For instance, when

the key-size is 32-bit, CKP converts each key to a 2955-bit string

having hamming-weight (h) as 3. As a result, the protocol requires
an expensive initial step where the client’s query is expanded to a

large number of ciphertexts (2955 ciphertexts for 32-bit key-size),

each encrypting one bit (§5.1). Afterwards, the equality check re-

quires n(h − 1) homomorphic multiplication operations, where n is

the number of tuples in the key-value store. This huge number of

operations make the performance impractical, since homomorphic

operations are generally computationally expensive. For example,

using an AWS EC2 instance of type c5.12xlarge (48 vcpu, 96 GiB

of RAM) as the server and populating the key-value store with 64K

tuples where each key is 32 bits and each value is 256 bytes long,

the latency for privately retrieving a value is 107.8 seconds (§5.2).

Another major limitation with CKP is, it does not scale with the

size of the key or the number of tuples in the key-value store. For

instance, the current implementation of the work [24] does not

support keys larger than 60 bits and is not horizontally scalable.

Lastly, the Constant-weight Keyword protocol requires the client to

know the total number of tuples (n) in the key-value store for con-

structing a query. As a result, it introduces performance overhead

for dynamic key-value stores.

Using number theoretic technique. Another way of performing

a homomorphic equality check is to use technique from number

theory such as Fermat’s little theorem [57]. This approach con-

siders keys as integers and does not require bitwise encryption

of the key. However, this technique involves homomorphic expo-

nentiation, which is also computationally expensive. Therefore, a

straightforward implementation using this approach yields imprac-

tical performance as well. An example developed by HElib [40]

is the best available solution that uses Fermat’s little theorem for

equality check. Nevertheless, this example implementation takes

more than 10 seconds in a single machine to perform a query over

a key-value store containing (country name, capital) tuples for 47

European countries, which is worse than the strawman solution of

downloading the entire key-value store (§2.4.1). Overcoming the

performance bottlenecks and scaling this technique to support mil-

lions of key-value tuples remains an open problem. Pantheon takes

inspiration from this approach and uses Fermat’s little theorem for

oblivious equality check (§3.4.2). However, Pantheon drastically im-

proves the performance to support queries over a key-value store

containing millions of tuples with two key contributions. First,

it carefully refines the cryptographic components to reduce the

number of expensive homomorphic multiplications by three orders

of magnitudes (§5.1). Then, Pantheon parallelizes its workload to

make the system both vertically and horizontally scalable (§5.3).

3 PANTHEON DESIGN
In this section, we discuss Pantheon’s design in detail. First, we

discuss the architecture of Pantheon’s protocol (§3.1) and the cryp-

tographic constructs Pantheon relies on (§3.2). Next, we explain

how a new client registers itself with the Pantheon server (§3.3).

 q ← Enc(k2)1

k1

k2

k3

k4

.

.

.
kn

v1

v2

v3

v4

.

.

.
vn

GET(q)

Check_Equality(K, q)2

Enc(0)

Enc(1)

Enc(0)
Enc(0)

.

.

.
Enc(0)

Private 
Information 
Retrieval

3

Key-set (K)

Value-list (V)

r ← Enc(v2)

 v2 ← Dec(r)4

Client

Server
Figure 1: High-level architecture of Pantheon.

After that, we elaborate on the steps for privately querying with a

key (§3.4). Then, we devise a query compression technique (§3.5)

that optimizes Pantheon’s network overhead. Finally, we provide a

security analysis of Pantheon’s protocol (§3.6).

3.1 Basic Architecture
Figure 1 shows Pantheon’s high-level architecture. Pantheon con-

sists of an untrusted server and its clients. The server holds a key-

value store {(k1, v1), (k2, v2), (k3, v3), …, (kn, vn)} denoted by S. For
operational flexibility, the server stores the keys {k1, k2, k3, …, kn}
into an array K and the values {v1, v2, v3, …, vn} into an array V
such that for any (ki , vi) ∈ S, K [i] = ki and V [i] = vi . Pantheon’s
server-side operations to serve a query require all the keys in K to

be of the same size and all the values in V to be of the same size.

The server applies appropriate padding to the keys and the values,

if required, to satisfy this condition.

A Pantheon client can retrieve the value corresponding to a

key of interest k from the server in a single round-trip between

the client and the server. It takes place in four steps (as shown in

Figure 1). In step 1, client encodes the query key k into q using

Pantheon’s encoding procedure that ensures q does not reveal any

information about k to an adversary. Then, the client calls the

Pantheon server’s Get API with q. Steps 2 and 3 take place at the

server end. In step 2, the Pantheon server runs an oblivious equality

check with each key in K and the client’s encoded query q. For each
key in K , the equality check outputs an encryption of 1 if it equals

the client’s query key k or an encryption of 0 otherwise. Step 3

uses the output of step 2 to perform Private Information Retrieval

(PIR) on the value-list V . PIR outputs an encryption of the desired

value if k ∈ K , or the encryption of an empty value otherwise. This

encrypted value is then sent back to the client. In step 4, the client

uses Pantheon’s decode procedure to convert the encrypted value

to its plaintext form.

Pantheon relies on homomorphic encryption to provide its pri-

vacy guarantees. More specifically, we use the BFV scheme [16, 29]

of homomorphic encryption because it is standardized [7], resilient

to quantum attacks, and has an actively maintained open-source im-

plementation [60]. In this section, we first give a brief introduction

to the BFV homomorphic encryption scheme, and then a detailed

discussion of Pantheon’s functionalities.
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3.2 Basics of BFV homomorphic encryption
Pantheon uses the more efficient vectorized variant of BFV that

allows operating over a vector of data simultaneously and takes

advantage of the Single Instruction Multiple Data (SIMD) program-

ming model. In this variant of BFV, a plaintext is a vector of dimen-

sion N , where N can be any value in {210, 211, …, 215} [7]. Each
element in the plaintext vector is from a set of integers modulo a

prime p, i.e., from the set {0, 1, …, p − 1}. This vector of dimension

N is the smallest granularity with which a BFV plaintext can exist.

BFV supports an Encrypt procedure that converts the plaintext

vector into a ciphertext with the help of the encryptor’s secret key.

The ciphertext consists of 2 polynomials, each havingN coefficients.

The ciphertext coefficients are from a set of integers modulo a com-

posite number p′ such that p′ ≫ p. A ciphertext can be decrypted

to get the hidden plaintext vector by using BFV’s Decrypt method

and the secret key that was used for encrypting it in the first place.

BFV encryption supports a number of operations on its cipher-

text that eventually modify its underlying plaintext vector. One im-

portant point is that all such operations keep the plaintext elements

modulo p. Pantheon uses the following homomorphic operations

supported by the BFV scheme:

• Add(c0, c1) takes two ciphertexts c0 and c1 as input which are en-
cryptions of plaintext vectors v0 and v1respectively, and outputs
an encryption of (v0 + v1) (component-wise addition).

• Subtract(c0, c1) takes two ciphertexts c0 and c1 as input which
are encryptions of plaintext vectors v0 and v1 respectively, and
outputs an encryption of (v0−v1) (component-wise subtraction).

• SubtractPlain(c0, v1) takes a ciphertext c0 (encryption of plain-
text vector v0) and a plaintext vector v1 as input, and outputs an

encryption of (v0 − v1) (component-wise subtraction).

• Rotate(c, i) takes as input a ciphertext c (encryption of plaintext
vector v), an integer 0 < i < N , and produces a ciphertext cout
such that cout is an encryption of v rotated left cyclically by i
positions. For example, if N = 4 and c encrypts the plaintext
(w, x, y, z), then a rotation by i = 3 produces a ciphertext that is

an encryption of (z,w, x, y).
• Multiply(c0, c1) takes two ciphertexts c0, c1 as input which are

encryptions of plaintext vectors v0 and v1 respectively, and out-

puts an encryption of (v0 ∗ v1) (component-wise multiplication).

• MultiplyPlain(c0, v1) takes a ciphertext c0 (encryption of plain-
text vector v0) and a plaintext vector v1 as input, and outputs an

encryption of (v0 ∗ v1) (component-wise multiplication).

• Exponentiate(c0, i) takes a ciphertext c0 (encryption of plain-

text vector v0), an integer i as input, and outputs an encryption

of vout such that, for 0 ≤ j < N , vout [j] = (v0 [j])i . Exponentiate
may use Multiply as a subroutine.

3.3 One-time Registration phase
A new client joining Pantheon needs to go through an initial regis-

tration phase. During the registration phase, the client and server

exchange some one-time information required for serving future

queries. First, the server shares three cryptographic parameters:

N , p, p′ (§3.2) and two system parameters: the size of a key and

the size of a value with the client. Then, the client constructs its

secret key according to the cryptographic parameters. The system

parameters are useful for encoding queries (§3.4.1) and decoding

responses (§3.4.4). In addition, the client constructs a number of

public keys required for performing homomorphic rotation and

multiplication operations. Note that, the secret and public keys are

cryptographic keys, not to be confused with the ones in the key-

value store. The client also encrypts a vector of length N containing

all 1’s using its secret key. We will refer to this encryption of all 1’s

as the one-ciphertext of the client. The client then shares its public

keys and the one-ciphertext with the server. The server stores this

information corresponding to the client and confirms registration.

3.4 Value Retrieval
The value retrieval protocol in Pantheon takes place in four steps

(as shown in Figure 1). We now discuss these steps in detail.

3.4.1 Step 1: Encode client query key. This section discusses

an unoptimized version of Pantheon’s query encoding method that

takes the client query key k as input and, depending on the size of k,
outputs one or more BFV ciphertexts as q. Later, we will present an
optimization technique (§3.5) to compress the output query q into a
single ciphertext independent of the size of k. Pantheon’s query en-

coding method uses the Encrypt procedure of the BFV encryption

scheme(§3.2) to hide k. First, let us consider the simple case where

each key is of size t bits, where t = ⌈log
2
p⌉ −1. Therefore, a key can

be represented as an integer in the set {0, 1, 2, …, p − 1}. To encode

the query key k, the client will first construct a plaintext vector
of size N with all elements as k and then encrypt this plaintext

using the client’s secret key. As a toy example, suppose N = 4,

p = 17. Then the length of a key may be at most t = 4 bits and so

the integer representation of a key will always be smaller than 17.

Let us assume that client’s query key k is the 4-bit binary string

1100, equivalent to integer value 12. Then the client constructs a

plaintext vector (12, 12, 12, 12) and encrypts it using BFV’s Encrypt
method. The output of the encode method q then consists of this

single ciphertext.

Now we extend the query encoding procedure to the case where

the size of each key is larger than t bits. Let each key be 𝛼t bits,
where 𝛼 is a positive integer. The keys can be padded accordingly

if the size is not an integer multiple of t bits. Then, the client can
split the query key k into 𝛼 chunks, each of size t bits. The client
then constructs 𝛼 different ciphertexts with each of these chunks

and outputs q as an array of these 𝛼 ciphertexts. Continuing with

the previous example, let 𝛼 = 2 and client’s query key is the 8-bit

binary string 11001110. The client will then split k into 2 chunks

{1100, 1110}, also represented as {12, 14} in integer forms. The

client will then encrypt two plaintext vectors (12, 12, 12, 12) and
(14, 14, 14, 14), and output the two ciphertexts as q. Note that, this
construction is independent of the number of tuples in the key-

value store.

3.4.2 Step 2: Oblivious equality check. After receiving the

client’s encoded query q, the Pantheon server performs an equality

check between q (which is an encryption of client’s desired key

k) and all the keys in key-set K . Pantheon takes advantage of Fer-

mat’s little theorem [57] to perform this equality check obliviously.

Fermat’s little theorem implies that if p is a prime number and

a is a number not divisible by p, then a(p−1) ≡ 1 (mod p). For
example, if p = 17, then for any 0 < a < p, according to Fermat’s
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Figure 2: Three stages of Pantheon’s oblivious equality check (as-
suming N = 4 and p = 17). In stage 1, the server homomorphically
subtracts the key-array K form client’s query q to obtain cdiff . In
stage 2, cdiff is exponentiated by (p − 1) to obtain cexp according
to Fermat’s little theorem. In stage 3, cexp is subtracted from one-
ciphertext to obtain the output ceq.

little theorem, (a16)%p = 1. In contrast, if a = 0, a16 still equals 0; a
property to distinguish between a zero and a non-zero value.

For the equality check, let us first consider the simplest case

where the key-set K contains N keys, each of size t = (⌈log
2
p⌉ − 1)

bits. So, each key can be represented as an integer smaller than p,
and the client query q consists of a single ciphertext. We will later

extend the formulation to support a larger key size and more keys.

The goal of the equality operator is to obtain a ciphertext ceq that
is an encryption of a plaintext vector veq of size N such that,

veq [i] =

1, if K [i] == k
0, otherwise

The oblivious equality check proceeds in three stages as demon-

strated in Figure 2.

In stage 1, the server performs cdiff ← SubtractPlain(q,K). As
a result, cdiff becomes the encryption of a plaintext vdiff which

contains a zero at index i if K [i] == k and a non-zero value oth-

erwise. In stage 2, Fermat’s little theorem is used to distinguish

between the encrypted zero and non-zero values. Server computes

cexp ← Exponentiate(cdiff , p − 1). The resultant cexp will be the

encryption of a plaintext vector vexp such that,

vexp [i] =

0, if K [i] == k
1, otherwise

In stage 3, the one’s complement of the values in vexp is calculated

by homomorphically subtracting cexp from the one-ciphertext of the
client (§3.3), which is an encryption of a vector containing N 1’s.

The resultant of the subtraction operation is the desired equality

ciphertext ceq as shown in Figure 2.

Now, let us consider the case where each key is larger than

t = (⌈log
2
p⌉ − 1) bits. Suppose, each key is 𝛼t bits long, where

𝛼 is a positive integer. We can pad each key with the required

number of zeros for making the key length an integer multiple

of t bits. In this case, the server will first split K into 𝛼 columns

K1,K2, …,K𝛼 such that each Ki contains t bits of each of the keys

in K . The client query q also contains 𝛼 ciphertexts {q1, q2, …, q𝛼 }
(§3.4.1), each of which encrypts t bits of the client’s query key

k. Then the server will check equality between each qi and Ki
following the procedure discussed above (3 stages of Figure 2) to

get a corresponding resultant ciphertext ceqi . In order to realize

the overall equality between k and the keys in K , a logical AND
operation among these chunk-wise equality results is required. So,

the server computes ceq such that, ceq =
𝛼
i=1

ceqi , where,


denotes

homomorphic multiplication using Multiply (§3.2).

Now, let us consider the case where the number of keys in K is

𝛽N , where 𝛽 is a positive integer and N is the length of each BFV

plaintext (§3.2). If necessary, we can pad K with dummy keys to

make the size an integer multiple of N . The resultant of equality op-

eration ceq should now consist of 𝛽 ciphertexts {c1eq , c2eq , c3eq , …, c
𝛽
eq}.

The server horizontally partitionsK into 𝛽 parts {K1
,K2

,K3
, …,K𝛽 },

each partition containing N keys. Then, for each partition K j
, cjeq

is calculated to contain the equality between q and the partition K j
.

Thus, the oblivious equality operator can be extended to support

an arbitrary number of keys in K .

3.4.3 Step 3: Private Information Retrieval. Step 3 uses Pri-

vate Information Retrieval (PIR) [22, 23, 42] to retrieve the desired

value from V . A PIR protocol runs between a PIR server and a PIR

client where the PIR server holds an array of n elements and the

PIR client is interested in the element at index i. PIR allows the

PIR client to retrieve the element at index i from the PIR server

without revealing any information about i. A PIR protocol has three

procedures: PIR.GenQuery, PIR.Answer, and PIR.Decode. The PIR

client first constructs a PIR query using the PIR.GenQuery method

and sends it to the PIR server. This query is typically the encryption

of a one-hot vector of length n, with a 1 at index i and 0 at all other

places. It can also be the encryption of n 0’s if no element is desired.

The PIR server then runs PIR.Answer to generate a PIR response

and send it back to the PIR client. The PIR client runs PIR.Decode

to decode the response and retrieve the element at index i, or an
empty value if no element was desired.

Pantheon uses a slightly modified version of the usual PIR proto-

col. The PIR query does not directly come from the Pantheon client.

Recall that, if k ∈ K , the output of Pantheon’s step 2 (equality check
§3.4.2) is the encryption of a one-hot vector, with a 1 at index i such
that K [i] == k, and 0 at all other places. In the case where k ∉ K ,
step 2 outputs an encryption of all 0’s. As a result, the output of

step 2 can be readily used as the PIR query for step 3. Then, the

Pantheon server runs the PIR.Answer method on the value-array

V and generates a PIR response. The PIR response is then sent back

to the Pantheon client. The specific PIR library and other details

are discussed in the implementation section (§4).

3.4.4 Step 4: Decode server response. After receiving a re-

sponse from the Pantheon server, the client decodes it to retrieve

the value corresponding to k. Since the server’s response is the

output of a PIR.Answer method, the client can use PIR.Decode to

retrieve the corresponding value. Obtaining an empty value from

PIR.Decode implies that k is not present in the key-value store.

3.5 Query Compression Optimization
The output q of the query encoding procedure discussed in step 1

(§3.4.1) grows linearly in size with client’s query key k. More specif-

ically, if k is 𝛼t bits long, then q will consist of 𝛼 ciphertexts. This

linear growth increases the network bandwidth cost linearly, cre-

ating a scalability bottleneck. Therefore, we propose a query com-

pression method that always reduces the size of q to one ciphertext.
The Pantheon server upon receiving this compressed query, needs
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Figure 3: Query expansion procedure at Pantheon server (assuming
N = 4 and p = 17).

to perform an expansion, so that it can obtain the 𝛼 ciphertexts

required to perform subsequent operations.

3.5.1 Compression. Suppose the size of each key is 𝛼t bits, where
𝛼 is a factor ofN and t = (⌈log

2
p⌉−1). The client first splits k into 𝛼

equal chunks, each of length t bits. The client also splits a plaintext
vector into 𝛼 equal parts, each consisting of N/𝛼 elements. Each

part of this plaintext vector is then filled with the corresponding

chunk of k. For instance, let N = 4, p = 17, 𝛼 = 2. The client query

key is an 8-bit binary string 11001110. So, the client can split it

into 2 chunks {1100, 1110}, also represented as integers {12, 14}.
Now, instead of constructing two different ciphertexts for 12 and

14, the client can split the plaintext into two parts and fill them as

(12, 12, 14, 14) and encrypt it. This principle can be extended for

any 𝛼 that is not a factor of N by splitting the plaintext vector into

𝛼′ equal parts, where 𝛼′ is the smallest factor of N such that 𝛼′ > 𝛼 .

The client then uses the first 𝛼 parts of the plaintext to fill with 𝛼

chunks of k and the remaining parts with 0. As a result, the client

query q will always consist of a single ciphertext.

3.5.2 Expansion. The Pantheon server needs to expand the sin-

gle query ciphertext into 𝛼 different ciphertexts to proceed with

the oblivious equality check. From the previous example, the server

receives a ciphertext encrypting (12, 12, 14, 14) and wants to expand
it to two ciphertexts encrypting (12, 12, 12, 12) and (14, 14, 14, 14).
The expansion procedure is demonstrated in Figure 3. First, the

server constructs 𝛼 plaintext vectors to mask out each of the unique

values from the query ciphertext obliviously. If 𝛼 is a factor of N ,

each mask is split into 𝛼 equal parts each containing N/𝛼 slots

of the plaintext vector. Otherwise, each mask is split into 𝛼′ parts
as used for compression. For the ith mask plaintext, the ith part

is filled with 1 and the remaining slots with 0. Considering the

previous example, the server constructs 𝛼 = 2 masks (1, 1, 0, 0) and
(0, 0, 1, 1). The server then performs MultiplyPlain with the com-

pressed query q and the mask plaintext (1, 1, 0, 0) as input to obtain
a ciphertext u that is the encryption of (12, 12, 0, 0). As a result, this
mask plaintext helps to filter out the value 12 from the query. The

server then computes u′ ← Rotate(u, 2). So, u′will be the encryp-
tion of (0, 0, 12, 12). The server then computes cadd ← Add(u, u′).
This rotation and addition can be repeated for log

2
𝛼 times to obtain

the desired expanded query ciphertext encrypting (12, 12, 12, 12).
A similar process can be repeated with mask (0, 0, 1, 1) to get the
other expanded query encrypting (14, 14, 14, 14).

3.6 Security analysis.
Pantheon provides query privacy (§2.3.1) to its clients. In this sec-

tion, we sketch a formal proof of Pantheon’s privacy guarantee. Let

us define a security game G0 between a challenger and an adver-

sary as defined in (§2.2). The adversary supplies two keys k0 and k1

of the same size and the challenger randomly selects one of them

as kb, where b ∈ {0, 1}. The challenger performs a query with kb

using Pantheon’s protocol. Then, the adversary outputs its guess

b′ ∈ {0, 1}. The adversary wins the game if its guess is correct, i.e.,

b′ = b. Let S0 be the event that b′ = b in G0. Let us also consider an-
other game G1 where the challenger simulates Pantheon’s protocol

with a key selected uniformly randomly from the key space, and let

S1 be the event that b′ = b in G1. Evidently, Pr[S1] = 1/2, since the
challenger’s query key is independent of those provided by the ad-

versary, and the adversary can only perform random guesses. Now,

in G0, according to Pantheon’s protocol, the challenger encrypts kb
using Fully Homomorphic Encryption. Therefore, the advantage of

the adversary being able to distinguish it from a random string is,

|Pr[S0] − Pr[S1] | ≤ 𝜖FHE . Substituting the value of Pr[S1] we get,
|Pr[S0] − 1/2| ≤ 𝜖FHE . So, the adversary cannot win the game G0
with non-negligible advantage.

4 IMPLEMENTATION DETAILS
Our prototype of Pantheon consists of ≈3,000 lines of C++ code.

It uses the homomorphic encryption functionalities provided by

the state-of-the-art Microsoft SEAL [60] library. We modify the

open-source implementation of Microsoft SEAL, which is a single-

threaded library, to provide parallel execution over multiple cores

of a machine. For the Private Information Retrieval step (§3.4.3)

of Pantheon, we parallelize the open-source implementation of

the FastPIR [30] library. We use FastPIR because it requires lower

processing time to generate a PIR response [4] and it also uses the

vectorized variant of BFV scheme, resulting in a smoother interface

with the other components of Pantheon. The details of our parallel

implementation of these two libraries are discussed later in this

section (§4.1).

Parameter selection. Recall that the BFV scheme has three pa-

rameters: the size of the plaintext vector N , the upper bound of

each plaintext element p, and the upper bound of each ciphertext

element p′. N must be of the form 2
j
, where j is an integer such that

10 ≤ j ≤ 15 [7]. We choose N to be 2
15
. p must be a prime number

such that p ≡ 1 (mod 2N ). Selection of the particular value for p
needs two considerations. Since the size of each plaintext element

is t = ⌈log
2
p⌉ − 1 bits, larger size of p in number of bits allows a

larger plaintext element, thus accommodating a bigger chunk of

client’s query key in a single BFV ciphertext. On the other hand,

larger p increases the computational cost of raising a ciphertext to

the power (p − 1), required in the equality checking step (§3.4.2).

Our implementation of Exponentiate uses the repeated squaring

method and the number of calls to Multiply increases with the

number of 1 bits in the binary representation of (p − 1). For the
same bit-length of p, the cost of Exponentiate is minimized if p is of
the form 2

j +1. Therefore, we choose p = (216 +1), which is a prime

number congruent to 1 (mod 2N ). Another noteworthy point is,

SEAL considers a pair of adjacent slots in a ciphertext together for

its rotation operations. Therefore, it is convenient to consider two
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BFV plaintext slots together to represent a chunk of the client’s

query key. So, each chunk of client’s query key in Pantheon is 2t
(32-bits). As a result, number of such chunks in a ciphertext be-

comes N/2 or 2
14
. We choose p′ as a 780-bit composite number,

which is generated by the Microsoft SEAL library as a product of

13 default prime numbers, each of length 60 bits. These parameters

guarantee 128 bit security [7], and ensure p′ ≫ p which is essential

for the correct execution of Pantheon’s server-side operations.

4.1 Parallelization
We parallelize the server-side operations of Pantheon to make it

vertically scalable by utilizing all the cores in a multi-core ma-

chine. We divide the parallelization into two levels: 1) coarse-grain

parallelization, and 2) fine-grain parallelization. In coarse-grain

parallelization, we implement data parallelization by operating on

different parts of the key-value store in parallel. In fine-grain paral-

lelization, we write a wrapper on the Microsoft SEAL [60] library

to parallelize the homomorphic operations it provides. We discuss

both of these parallelization levels in detail.

4.1.1 Coarse-grain parallelization. The Pantheon server per-

forms three procedures while serving a client: query expansion,

equality check, and private information retrieval (PIR). In coarse-

grain parallelization, we parallelize each of these three procedures.

Brief details of the parallelization techniques are discussed below:

Query expansion. The server receives a compressed query cipher-

text and expands it to 𝛼 ciphertexts using 𝛼 different masks (§3.5).

The operations involving different masks are independent and can

be executed in parallel. We thus parallelize the query expansion

procedure by a factor of 𝛼 by operating on the different masks in

parallel, as shown in Figure 3.

Equality check. The server checks equality between the array of

keys K and the expanded query ciphertexts. Suppose, the size of

each key is 𝛼t bits, where t is the size of each element in a BFV

plaintext. Then, the expanded query will consist of 𝛼 ciphertexts.

Also, let there be 𝛽N tuples in the key-value store, where N is the

size of each BFV plaintext vector. Following the equality check

step (§3.4.2), we first horizontally partition the array of keys K into

𝛽 parts, each containing N keys. Then, the output of the equal-

ity check will consist of 𝛽 ciphertexts, each denoting the equality

between the expanded query and one of the 𝛽 partitions. The Pan-

theon server can process each of these 𝛽 partitions of K in parallel

for equality check.

Now, let us focus on one such horizontal partition consisting ofN
keys. Each key can be split into 𝛼 equal slices, each slice consisting

of t bits. So, each horizontal partition is further vertically partitioned
into 𝛼 blocks. The ith block needs to be checked for equality as

shown in Figure 2 with the ith query ciphertext obtained after query
expansion. The Pantheon server can execute these𝛼 equality checks

in parallel. However, after obtaining the results of these equality

checks, they need to be multiplied together to obtain a logical AND
of the intermediate results. So, this multiplication needs to wait for

all the 𝛼 intermediate equality checks to be completed.

Private Information Retrieval. The Private Information retrieval

(PIR) step uses the output of the equality check and the value-array

V to output an encryption of the client’s desired value (§3.4.3). We

parallelize the state-of-the-art FastPIR [30] library to implement

this step of the Pantheon server. We vertically partition the value

array into multiple parts and perform PIR on each part in parallel.

Then, we conduct the "rotate and add" merging policy discussed in

FastPIR [30] to merge them and obtain a consolidated PIR response.

4.1.2 Fine-grain parallelization. The coarse-grain paralleliza-

tion discussed above reduces the server-side latency by processing

different parts of the key-value store in parallel. However, this ad-

vantage becomes insignificant when the size of the key-value store

is small and there are not enough partitions to process simulta-

neously. Moreover, the latency is dictated by the single threaded

execution of the Exponentiate method, which in turn makes mul-

tiple sequential calls to the computationally expensive Multiply

method. So, the Pantheon server may run into a situation where it

has idle CPU’s but the latency cannot be reduced just by applying

coarse parallelization. To address this issue, we modify the BFV

homomorphic operations provided by the Microsoft SEAL library

to make them use multiple CPU cores in parallel. However, we

cannot obtain perfect parallelization as the operations consist of

parts that depend on the outcome of prior computations and must

be executed in sequential order. We carefully examine the compu-

tation graphs of the relevant homomorphic operations and identify

the tasks that can be executed in parallel. We primarily adopted two

principles in fine grain parallelization. First, a BFV ciphertext con-

sists of two polynomials and we execute the same operation on the

two polynomials in parallel. Second, each element of a BFV cipher-

text can be decomposed into a number of factors using the Chinese

Reminder Theorem, and each factor can be processed in parallel for

the same homomorphic operation. We use the OpenMP [53] library

to implement the fine grain parallelization of Microsoft SEAL [60].

4.2 Coordinator-worker architecture
Parallelizing the server-side operations in Pantheon improves per-

formance over a single machine. However, to retain low latency

for a large key-value store containing millions of tuples, we hori-

zontally scale Pantheon by distributing the server-side workload

over a cluster of machines. The cluster deployment of the Pantheon

server follows a coordinator-worker architecture. A coordinator

node receives the query from the client and then distributes the

value retrieval workload among a number of worker nodes. Each

worker node performs its part of the computation and sends the re-

sult to the coordinator. The coordinator then aggregates the partial

results produced by the workers to generate the final response and

sends that back to the client.

A high-level description of the coordinator-worker arrangement

is as follows. Initially, there is a cluster setup phase where the key-

value store is partitioned, and each worker stores a partition in

its memory. Suppose there are w workers and a total of n tuples

in the key-value store. Let n = 𝛽N , where N is the size of a BFV

plaintext vector (§3.2), and 𝛽 is a positive integer. Then, the key-

value store can be partitioned into 𝛽 parts, each consisting of N
tuples. A partition size cannot be smaller than N because that is

the smallest granularity upon which a BFV plaintext and ciphertext

can operate. Then, the 𝛽 partitions can be distributed among the

w workers, each worker containing at most ⌈𝛽/w⌉ such partitions,

i.e., a disjoint subset of ⌈(𝛽N/w)⌉ tuples from the key-value store.
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After the cluster setup is complete, the Pantheon server can

serve queries from its clients. A client sends its compressed query

q to the coordinator. The coordinator broadcasts q to all w workers.

Each worker performs the query expansion operation (§3.5) to

obtain the expanded query. Then each worker executes the equality

check (§3.4.2) and Private Information Retrieval (PIR) (§3.4.3) steps

on its partition of the key and value arrays, respectively. Since at

most one of the workers can have the desired key in its key array,

that worker will generate the client’s desired PIR response. Each of

the other workers will generate a PIR response of an empty value.

All workers send their partial responses back to the coordinator.

PIR responses have an additive homomorphic property such that

adding empty responses to a response encrypting the desired value

yields a new response that also encrypts the same desired value.

Similarly, if all the w workers generate PIR responses of empty

value, adding them together yields a new PIR response of empty

value. The coordinator performs this aggregation by adding the PIR

responses from all w workers and sends the aggregated response

back to the client.

5 EVALUATION
Our evaluation focuses on Pantheon’s server-side latency for serv-

ing private Get queries. We compare Pantheon’s performance with

Constant-weight Keyword PIR (CKP) [46], the state-of-the-art sys-

tem for private key-value retrieval. First, we provide a microbench-

mark of Pantheon’s and CKP’s different components and analyti-

cally explain the reasons for Pantheon’s performance superiority

over CKP. Then, we compare the performance of the parallelized

implementation of Pantheon (§4.1) with the open-source multi-

threaded implementation [24] of CKP over all the cores of a single

AWS instance. After that, we demonstrate the effect of Pantheon’s

parallelization techniques (§4.1) by comparing the final versionwith

two other intermediate versions: Pantheon (S) - a single-threaded

implementation with no parallelization, and Pantheon (C) - a ver-

sion containing only the coarse-grain parallelization. We configure

all the variants of Pantheon and the Constant-weight Keyword PIR

system to provide 128-bits of security [7].

Experiment setup.We run all our experiments in AWS EC2 US

East region (Ohio). The single-machine experiments use one in-

stance of type c5.12xlarge (48 vcpu, 96 GiB of RAM, and 12 Gbps

of network bandwidth) as the server. For Pantheon’s cluster deploy-

ment, we use one instance of type c5.24xlarge (96 vcpu, 192 GiB

of RAM, and 25 Gbps of network bandwidth) as the coordinator

and 128 instances of type c5.12xlarge as workers. For each ex-

perimental configuration, we generate the keys by taking the hash

digest of integers in {1, 2, …, n} to ensure unique keys. The values

are filled in with random bit-strings. We repeat each experiment 10

times, discard the minimum and maximum values to avoid outliers,

and then take the average of the remaining values.

5.1 Microbenchmarks
We benchmark both Pantheon and Constant-weight Keyword PIR

(CKP) [46] on a single core of an AWS c5.12xlarge instance with

two different key sizes. We run Pantheon with 32-bit and 64-bit

keys. Since CKP does not support key size larger than 60 bits, we

run it with 32-bit and 60-bit keys. CKP has a configurable parameter

Table 1: Microbenchmarks for different operations to serve a Get
query by both Pantheon and Constant-weight Keyword PIR (CKP).
All the configurations use 16,384 tuples in the key-value store with
each value being 256 bytes.

32-bit key 64-bit key

CKP Pantheon CKP Pantheon

Total server time (sec) 463.38 3.64 921.2 6.90
Query expansion (sec) 12.92 0 39.98 0.15

Equality check (sec) 438.36 3.08 869.12 6.19

PIR (sec) 12.10 0.56 12.10 0.56

Number of operations
Substitution/ Rotation 4095 0 12286 2

Multiply 32768 16 65536 33

named hamming-weight of the keys (denoted as h). We consider h =

3 for 32-bit key configuration and h = 5 for 60-bit key configuration.

These values of h yield the minimum latency for the respective key

sizes. For all the configurations, we take the number of tuples in

the key-value store (n) as 16,384 and the size of each value as 256

bytes. Table 1 shows the server-side cost for each of the three steps

in the execution of a Get query: 1) Query expansion, 2) Equality

check, and 3) Private Information Retrieval (PIR). We present an

analytical discussion of the component-wise cost as follows.

Query expansion. CKP has substantially higher query expan-

sion time compared to Pantheon. This is because, in CKP, a single

query ciphertext needs to be expanded to m ciphertexts such that,m
h

≥ 2

keysize
. The expansion procedure makes repeated calls to an

expensive homomorphic substitution operation. On the other hand,

in Pantheon, one query ciphertext is expanded to 𝛼 ciphertexts

where 𝛼 = ⌈ keysize
2 log

2
p ⌉. This involves 𝛼 ⌈log2 𝛼⌉ calls to expensive ro-

tation operations which is analogous to the substitution operation

used in CKP. For example, with 60-bit keys, a query ciphertext in

CKP is expanded to 10,673 ciphertexts with a total size of ≈5.21
GiB, involving 12,286 substitution operations. The total time for

this expansion step is 39.98 seconds. On the other hand, a query

in Pantheon for 64-bit keys expands to 2 ciphertexts with a total

size of 6 MiB, requiring 2 rotation operations and a total time of

0.15 seconds. A single rotation operation in Pantheon takes more

time than a substitution in CKP due to its larger parameters, but

the total time for all the operations is significantly lower.

Equality check. The Equality check is the most expensive step for

both Pantheon and CKP. The cost of the equality check is dominated

by the BFVMultiply operation to multiply two ciphertexts together.

CKP requires n(h − 1) total number of calls to Multiply, where

n is the total number of tuples in the key-value store and h is

the hamming-weight of each key, a tunable parameter for CKP.

On the other hand, Pantheon requires (𝛼 · n
N/2 · log2 p + (𝛼 − 1))

multiplications, where 𝛼 = ⌈ keysize
2 log

2
p ⌉. Even though the asymptotic

relation with number of elements n is the same, the
1

N factor in

Pantheon’s cost significantly reduces the number of ciphertext

multiplications. For instance, as shown in Table 1, for 32-bit keys

the number of multiplications in CKP is 32, 768, whereas that in

Pantheon is only 16. The corresponding times required for equality

check are 438.36 and 3.08 seconds respectively. Note that, due to

the larger parameter size, a single Multiply operation in Pantheon

takes ≈14× more time than that in CKP. Even then, due to the

significantly smaller number of multiplications, the overall time for

equality check is smaller in Pantheon.

651



Private information retrieval. Pantheon also takes less time than

CKP for the PIR step. The performance gain is mainly due to the

performance difference between FastPIR [4] (used by Pantheon) and

SealPIR [9] (used by CKP). It is worth mentioning that the design

of the equality operator in Pantheon allows it to take advantage of

FastPIR, which performs significantly faster for smaller objects. On

the other hand, the output of CKP’s equality operator does not allow

it to utilize the plaintext packing optimization provided by SealPIR,

thus requiring more computation in the PIR step. However, as

objects grow bigger, the difference between the PIR cost of Pantheon

and CKP gets smaller (§5.2). A more comprehensive comparison

between FastPIR and SealPIR is available in [4].

5.2 Single-machine latency
Factors affecting Pantheon’s latency. We conduct experiments

varying three size-related parameters: the number of tuples in

the key-value store (n), the size of each key, and the size of each

value. Pantheon’s server-side latency for aGet query comprises the

processing time for three operations: i) query expansion (§3.5), ii)

equality check (§3.4.2), and iii) private information retrieval (§3.4.3).

We briefly discuss how the three parameters affect the processing

time for each operation. The processing time for query expansion

depends on the number of ciphertexts obtained after expansion.

Therefore, this time increases linearly with the size of each key but

is independent of the number of tuples (n) and the size of each value.
The processing time for the equality check depends on the total

size of the array of keys K . Therefore, this time increases linearly

both with the size of each key and the number of keys in K , but is
independent of the size of each value. Finally, the processing time

for PIR depends on the size of the value-array V and is independent

of the size of each key. As explained in FastPIR [4], Pantheon’s PIR

time increases linearly with the size of each value, and linearly with

a slope smaller than 1with the number of tuples. These relationships

will be reflected in our experimental results discussed later.

Varying the number of tuples. Figure 4a shows how the server-

side latency of both Pantheon and Constant-weight Keyword PIR

(CKP) depend on the number of tuples (n) in the key-value store.

We vary the number of tuples from 16, 384 to 65, 536 while keeping

the size of each key 32 bits and each value 256 bytes. In general,

Pantheon’s latency is much lower than that of CKP. For instance,

when n = 65, 536, CKP’s server-side latency for serving one Get

query is 107.8 seconds, whereas the latency for Pantheon is 1.15

seconds, a 93× improvement. Also, the baseline latency increases

almost linearly from 28.4 seconds for n = 16, 384 to 107.8 seconds

for n = 65, 536. On the other hand, Pantheon’s latency grows from

0.62 seconds for n = 16, 384 to 1.15 seconds for n = 65, 536, an

increase of only 1.85×, whereas the number of tuples (n) increases
4×. This slower growth of latency is because the time for query

expansion remains constant as the number of tuples increases, and

the time for FastPIR increases with a slope smaller than 1.

Varying the key size. Figure 4b shows how the latency for Pan-

theon and the baseline change with the size of each key. For Pan-

theon, we vary the size of each key from 32-bit to 256-bit. However,

the Constant-weight Keyword PIR implementation does not sup-

port key-size larger than 60-bit. So, we run CKP for 32-bit and 60-bit

keys. We take 32, 768 tuples in the key-value store for both systems,

with each value being 256 bytes. For 32-bit keys, the latency for

Pantheon is 0.94 seconds, 59× better than that of the baseline la-

tency of 55.48 seconds. Pantheon’s latency increases to 3.69 seconds

for 256-bit keys.

Varying the value size. We populate the key-value store with

n = 32, 768 tuples while keeping the size of each key 32-bits. We

vary the size of each value from 256 bytes to 65, 536 bytes. Fig-

ure 4c shows how the latency of Pantheon and CKP vary with

the size of each value. Pantheon’s latency for 256-byte values is

0.94 seconds and increases to 1.74 seconds for 4, 096-byte values,

and then to 13.28 seconds for 65, 536-byte values. Only the private

information retrieval (PIR) step at the Pantheon server is affected

by the size of values. The PIR processing time increases linearly

while the processing times for query expansion and equality check

remain unchanged with the size of values. Therefore, for Pantheon,

variation in the size of value primarily reflects the performance of

FastPIR. The baseline latency with the variation of the value-size

remains constant at 55.4 seconds for values up to 16, 384 bytes and

then increases to 87.47 seconds when the values are 65, 536 bytes.

This is because CKP’s PIR computation increases following a step

function with every 20KB increase in value-size.

Effect of parallelization. We apply two levels of paralleliza-

tion on the single-threaded implementation Pantheon-(S). First,

we apply coarse-grain parallelization on Pantheon-(S) to obtain

Pantheon-(C). Then, we apply fine-grain parallelization on top of

Pantheon-(C) to get the final version of Pantheon. Figure 5 shows

the impact of these two levels of parallelization on a key-value

store containing 32, 768 tuples with 64-bit keys and 256-byte val-

ues. Evidently, the equality check takes the bulk of the server-side

processing time. For coarse-grain parallelization, we horizontally

partition the key array into two parts, each containing 16, 384 tu-

ples. We further split each key into two slices, each of 32-bits. This

is the smallest partition size (16, 384-tuples by 32-bits) allowed by

Pantheon’s BFV parameters (§4). Coarse-grain parallelization re-

duces the equality check time from 11.85 seconds to 3.19 seconds,

an improvement of 3.7×. Our fine-grain parallelization of the Mi-

crosoft SEAL library further reduces the equality check time by

a factor of 1.9× to 1.71 seconds. Recall that only a subset of the

computations in Microsoft SEAL [60] can be executed in parallel

for fine-grain parallelization. Hence, the sequential parts are the

bottleneck for reducing the latency further.

Figure 6a shows the performance gains due to parallelization

when the number of tuples in the key-value store equals the mini-

mum horizontal partition size of 16, 384. We vary the size of each

key from 32 bits to 256 bits. The performance gain of Pantheon-(C)

over Pantheon-(S) depends on the number of partitions that the key-

value store can be divided into. For 32-bit keys, Pantheon-(C) cannot

partition the key-array, so the latency is 3.15 seconds, which is very

close to the Pantheon-(S) latency of 3.5 seconds. The parallelization

of the PIR operation reduces the latency by 0.35 seconds. The total

latency, in this case, is dominated by the 2.98 seconds required for

the equality check operation, which cannot be reduced further by

coarse-grain parallelization. We use fine-grain parallelization of the

Microsoft SEAL library to reduce the processing time of the equality

check operation to 0.55 seconds. The total latency obtained by fine-

grain parallelization for 32-bit keys is 0.62 seconds, an improvement
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Figure 4: Latency incurred by a single-machine server to perform a Get query with the variation of three size related parameters.
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Figure 6: Impact of parallelization on single machine server-side la-
tency. Pantheon-(S) is the single-threaded implementation with no
parallelization, Pantheon-(C) includes only coarse-grain paralleliza-
tion, and Pantheon is the final version containing both coarse-grain
and fine-grain parallelization. In all cases, the value-size is 256 bytes.

of 5× over Pantheon-(C). As the key-size increases, Pantheon-(C)
can partition the key-array into multiple parts and use multiple

cores in parallel for the equality check operation. So, the latency of

Pantheon-(C) grows slowly to 3.83 seconds for 256-bit keys, and its

difference with the final version of Pantheon reduces gradually.

Figure 6b shows the impact of parallelization on a heavier work-

load. We keep the key-size at 128-bit, value-size at 256-byte, and

vary the number of tuples from 16, 384 to 131, 072. Pantheon-(C)’s

latency for 16, 384 tuples is 3.53 seconds and increases slowly to

4.08 seconds for 65, 536 tuples. After that, the latency increases to

7.91 seconds for 131, 072 tuples. We speculate that the machine gets

saturated at this point. On the other hand, Pantheon’s implementa-

tion with both the coarse-grain and fine-grain parallelization has a

latency of 1.18 seconds for 16, 384 tuples and 3.63 seconds for 65, 536

tuples, lower than the corresponding latencies for Pantheon-(C).

However, Pantheon’s latency for 131, 072 tuples is 8.29 seconds,

marginally higher than Pantheon-(C). So, once the machine gets
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Figure 7: Server-side latency with variations in the number of tuples
when the Pantheon server is deployed over a cluster of 128 worker
machines. Each curve shows the latency trend for a different key-
size, while the value-size is fixed at 256 bytes.

saturated for Pantheon-(C), the overhead of fine-grain paralleliza-

tion makes the performance of Pantheon worse. This result imposes

an interesting design decision. If low latency is the primary goal,

then the final version of Pantheon is preferable by distributing Pan-

theon’s workload over a large number of machines while keeping

the partition size at each machine smaller. On the other hand, if

reducing CPU cost is of primary interest, Pantheon-(C) may yield a

better result with larger partitions over fewer machines.

5.3 Cluster latency
Figure 7 shows Pantheon’s latency trend when its server is dis-

tributed over a cluster of 128worker instances. We vary the number

of tuples from 1M to 8M , the size of each key from 32-bit to 256-

bit, and keep the size of each value at 256 bytes. Pantheon’s final

version containing both coarse-grain and fine-grain parallelization

gives the lowest latency for all these experimental configurations.

For the cluster deployment, the server-side latency consists of two

components: i) processing time at the worker and ii) coordination

overhead. The processing time depends on the size of the partition

processed by each worker. The coordination overhead comprises

the time required to broadcast the compressed query ciphertext to

all the workers and the time to aggregate the PIR responses from

each worker. The coordination overhead is fixed for a particular

cluster configuration because the query size and the PIR response

size from each worker remain the same irrespective of the size of

the key-value store. Pantheon’s server-side latency increases with

both the number of tuples and the size of each key. For example, for

2M tuples, the latency for 32-bit keys is 0.99 seconds and increases

to 2.42 seconds for 256-bit keys. The corresponding processing

times are 0.69 seconds and 2.12 seconds, respectively, while the co-

ordination overhead for both is 0.3 seconds. If the number of tuples
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is increased to 8M while keeping the key-size at 256-bit, the latency

rises to 7.6 seconds. Out of this, 7.3 seconds are for processing, and

the coordination overhead is 0.3 seconds. The processing time in-

creases by 3.4×, slightly slower than the 4× increase in the number

of tuples, mainly because of a slower growth of PIR time (§5.2).

5.4 Resource overheads of Pantheon
This section discusses the overheads Pantheon imposes on its clients

and estimates the dollar cost of a private Get query.

Client-side overhead. The client-side overhead of Pantheon stays

fixed irrespective of the size of the key-value store. A Pantheon

client incurs a cpu time of 0.07 seconds for retrieving a value pri-

vately from the Pantheon server. This cpu time comprises the time

for encrypting a compressed query and decoding the PIR response

from the server. A Pantheon client uploads 3MiB for each query

and downloads 1.5MiB for each response.

Dollar cost. We convert the server-side cpu time and network

usage for performing a private Get query to a dollar amount.

Amazon EC2 charges $0.744 per hour for each worker instance

(c5.12xlarge) and $1.488 per hour for the coordinator instance

(c5.24xlarge) [62]. We use these unit costs to calculate the total

cost for 128 workers and a coordinator for the duration of serving

a query. For network usage, we use Amazon’s pricing model of

$0.05 per GiB download (Amazon does not charge for uploads) [61].

For Pantheon, the cost for performing a private Get query over a

key-value store containing 1M tuples, where each key is 256-bit,

and each value is 256-byte, sums up to 4 cents. This cost rises to 20

cents when there are 8M tuples in the key-value store.

6 RELATEDWORK
Querying over private data. There is a large body of work in the

literature that allows a client to outsource its private data and per-

form queries on it. These works require the client to encrypt their

data using their secret keys and store the encrypted data in the cloud

server. The server then uses different techniques to serve the client’s

query while preserving privacy. CryptDB [55] allows a client to en-

crypt its data using multiple layers of encryption (onion encryption)

and supports a subset of SQL queries over the encrypted data. Other

works use techniques such as order preserving encryption [1], ho-

momorphic encryption [58, 68], and searchable encryption [19]

to hide clients’ data. Several research works [14, 41, 56, 66, 70]

and industry deployments [11–13, 63] provide encrypted database

service using Trusted Execution Environment (TEE), such as Intel

SGX [25]. In this setup, the client stores the encrypted data in the

server and shares the secret key with trusted hardware located at

the server. The trusted hardware decrypts the data while executing

a client query. However, these works do not hide the access pattern

of the client’s query and are vulnerable to inference attacks that can

retrieve the data in its plaintext form [15, 37, 38, 43, 51]. Arx [54]

uses a combination of homomorphic encryption and garbled circuit

to hide query access pattern over encrypted data. Oblidb [28] and

Oblix [48] hide query access pattern over private data using TEE

and ORAM [33]. PANCAKE [36] uses frequency smoothing to hide

query access pattern on a private key-value store. Pantheon’s prob-

lem domain is different from these works since Pantheon deals with

public data, and the client cannot encrypt the data as required in

these solutions. Conceptually, one may develop a solution to hide

access pattern over a public key-value store using TEE [47], where a

client encrypts the query and the server decrypts it inside a trusted

enclave. However, this approach guarantees a weaker privacy since

TEEs are susceptible to side-channel attacks [44, 59, 64, 65], cache

attacks [18, 26, 34], and fault injection attacks [20, 50] that can

reveal the client’s secret key and thus break the privacy.

Querying over public data The problem of searching privately

over public data falls in the domain of Private Information Retrieval

(PIR) [22, 23, 42]. In its basic form, PIR allows a client to obliv-

iously retrieve the element at a particular index of a data array

located at an untrusted server. Existing applications of PIR [2–

4, 10, 35, 39, 45, 49] work in a setting where the client knows the

index of the desired element in advance. Pantheon works in a differ-

ent setting. A Pantheon client does not know whether the desired

key exists in the key-value store, let alone its index. An exten-

sion of PIR, known as keyword PIR [21], allows a client to retrieve

an element corresponding to a keyword using ⌈log
2
(n + 1)⌉ + 1

round-trip interactions between the client and the server [10]. How-

ever, this technique deviates from Pantheon’s goal of single round

value retrieval (§2.3.2). The primary challenge for retrieving value

in a single round is checking the equality between two keys. A

body of work [5, 6, 27, 32] uses Fully Homomorphic Encryption

(FHE) [16, 31] to implement an oblivious equality check operator

between keys and can perform value retrieval in a single round.

However, they involve prohibitively expensive operations and thus

incur very high latency. A recent work by Mahdavi et al. [46] im-

proves over the existing FHE-based equality checking by devising

a new equality operator named constant-weight equality operator.

This equality operator requires mapping each key to a constant-

weight codeword, i.e., binary strings containing the same number

of 1’s. They use this equality operator and the SealPIR [9] library to

develop a single-round solution for the private key-value retrieval

problem. Pantheon’s approach aligns with this work. Pantheon

uses a faster equality check operator that relies on Fermat’s little

theorem [57] and FastPIR [30] for better performance.

7 CONCLUSION
Providing privacy for clients querying a public key-value store is
challenging because clients have no control over the data. Therefore,

the access pattern of a client’s query must be hidden from the

server to guarantee privacy. Prior work that provides query privacy

to a client either requires multiple rounds for each retrieval or

has performance and scalability bottlenecks. This paper presents

Pantheon, a round-optimal solution for private retrieval from a

public key-value store, that scales to millions of tuples. When the

Pantheon server is deployed over a cluster of 128 machines with a

key-value store containing 2M tuples, where each key is 32 bits and

each value is 256 bytes, the server-side latency for serving a client’s

query privately is under one second. Pantheon, for the first time,

shows that it is possible to provide strong privacy for querying over

a practically large public key-value store with reasonable latency.
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