
Nezha: Deployable and High-Performance Consensus
Using Synchronized Clocks

Jinkun Geng
Stanford University

gjk1994@stanford.edu

Anirudh Sivaraman
New York University
anirudh@cs.nyu.edu

Balaji Prabhakar
Stanford University
balaji@stanford.edu

Mendel Rosenblum
Stanford University

mendel@stanford.edu

ABSTRACT
This paper presents a high-performance consensus protocol, Nezha,
which can be deployed by cloud tenants without support from cloud
providers. Nezha bridges the gap between protocols such as Multi-
Paxos and Raft, which can be readily deployed, and protocols such
as NOPaxos and Speculative Paxos, that provide better performance,
but require access to technologies such as programmable switches
and in-network prioritization, which cloud tenants do not have.

Nezha uses a new multicast primitive called deadline-ordered
multicast (DOM). DOM uses high-accuracy software clock
synchronization to synchronize sender and receiver clocks. Senders
tag messages with deadlines in synchronized time; receivers process
messages in deadline order, on or after their deadline.

We compare Nezha with Multi-Paxos, Fast Paxos, Raft,
(optimized) NOPaxos, and 2 recent protocols, Domino and TOQ-
EPaxos, that use synchronized clocks. In throughput, Nezha
outperforms all baselines by a median of 5.4× (range: 1.9–20.9×).
In latency, Nezha outperforms five baselines by a median of
2.3× (range: 1.3–4.0×), with one exception: it sacrifices 33% of
latency compared with our optimized NOPaxos in one test. We
also prototype two applications, a key-value store and a fair-access
stock exchange, on top of Nezha to show that Nezha only modestly
reduces their performance relative to an unreplicated system.

PVLDB Reference Format:
Jinkun Geng, Anirudh Sivaraman, Balaji Prabhakar, and Mendel
Rosenblum. Nezha: Deployable and High-Performance Consensus
Using Synchronized Clocks . PVLDB, 16(4): 629 - 642, 2022.
doi:10.14778/3574245.3574250

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Steamgjk/Nezha.

1 INTRODUCTION
Our goal in this paper is to build a high-performance consensus
protocol which can be generally deployed by cloud tenants with
no help from their cloud providers. We are motivated by the fact
that the cloud hosts a number of applications that need both
high performance (i.e., low latency and high throughput) and
fault tolerance. We provide both current and futuristic examples
motivating our work below.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574250

First, modern databases (e.g., Cosmos DB, TiKV and
CockroachDB) aim to provide high throughput and strong
consistency (linearizability) over all their data. Yet, they often need
to split their data into multiple instances because a single instance’s
throughput is limited by the consensus protocol [7, 31, 39],
thereby losing consistency guarantees over the whole data.
Second, microsecond-scale applications are pushing the limits
of computing [1, 16, 18]. Such applications often have stateful
components that must be made fault-tolerant (e.g., the matching
engine within a fair-access cloud stock exchange [12], details in
§9). To effectively support such applications in cloud, we need the
consensus protocol to provide low latency and high throughput.

Despite significant improvements in consensus protocols over
the years, the status quo falls short in 2 ways. First, protocols
such as Multi-Paxos [22] and Raft [36] can be (and are) widely
deployed without help from the cloud provider. However, they
only provide modest performance: latency in the millisecond range
and throughput in the 10K requests/second range [8]. Second,
high-performance alternatives such as NOPaxos [24], Speculative
Paxos [40], NetChain [17], NetPaxos [17], and Mu [1], require
technologies such as programmable switches, switch multicast,
RDMA, priority scheduling, and control over routing—most of
which are out of reach for the cloud tenant.1

Here, we develop Nezha to provide high performance for tenants
without access to such technologies. Our starting point in designing
Nezha is to observe that a common approach to improve consensus
protocols is through optimism: in an optimistic protocol, there is
a common-case fast path that provides low latency, and a fallback
slow path that suffers from a higher latency. Examples include Fast
Paxos [21], EPaxos [34], Speculative Paxos [40], NOPaxos [24], etc.

For optimism to succeed, however, the fast path must indeed
be the common case, i.e., the fraction of client requests that take
the fast path should be high. For a sequence of client requests to
take the fast path, these requests must arrive in the same order at
all servers involved in the consensus protocol. In the public cloud,
however, cloud tenants have no control over paths from clients
to these servers. As we empirically demonstrate in §2, this leads
to frequent cases of reordering: client requests arrive at servers
in different orders. Thus, for an optimistic protocol to improve
performance in the public cloud, reordering must be reduced. This
observation influenced the design of Nezha, which has 3 key ideas.
Deadline-ordered multicast. Nezha uses a new network primitive,
called deadline-ordered multicast (DOM), designed to reduce the
packet reordering in public cloud. DOM is a type of multicast
that works as follows. The senders’ and receivers’ clocks are
synchronized to each other to produce a shared global time. The
1Many of these technologies are available to cloud providers, but not exposed to cloud
tenants. RDMA instances [32] are an exception, but such instances are expensive.

629

https://doi.org/10.14778/3574245.3574250
https://github.com/Steamgjk/Nezha
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574250
https://www.acm.org/publications/policies/artifact-review-and-badging-current

sender attaches a deadline in global time to its message and
multicasts 2 the message to all its receivers. Receivers process a
message on or after its deadline, and process multiple messages in
the increasing order of deadline. Because the deadline is a message
property and common across all receivers of a message, ordering
by deadline provides the same order of processing at all receivers
and undoes the reordering effect. DOM is best-effort: messages
arriving after their deadlines or lost messages are no longer DOM’s
responsibility. Thus, for DOM to be effective, the deadline should
be set so that most messages arrive before their deadlines—despite
variable network delays and despite clock synchronization errors.
However, if messages arrive after their deadlines, Nezha still
maintains correct by falling back to the slow path. Here, DOM
follows Liskov’s suggestion of “depending on clock synchronization
for performance but not for correctness” [25].
Speculative execution. DOM combats reordering and increases the
fraction of client requests that take the fast path. Our next idea
reduces client latency of Nezha in the slow path, by decoupling the
execution of a request from committing the request. Protocols like
Multi-Paxos/Raft wait until the request is committed at a quorum
of servers before executing the request at the leader. However, the
leader in Nezha executes the request before it is committed and
sends the execution result to the client. The client then accepts the
leader’s execution result only if it also gets a quorum of replies
from other servers that indicate commitment; otherwise, the client
just retries the request. Thus a leader’s execution is speculative in
that the execution result might not actually be accepted by a client
because (1) the leader was deposed after sending its execution result
and (2) the new leader executed a different request instead.
Proxy for deployability. Performing quorum checks, multicasting,
and clock synchronization at the client creates additional overhead
on a Nezha client relative to a typical client of a protocol like Multi-
Paxos or Raft. To address this, Nezha uses a proxy (or a fleet of
proxies if higher throughput is needed), which multicasts requests,
checks the quorum sizes, and performs clock synchronization—on
the client’s behalf. Because Nezha’s proxy is stateless, it is easy to
scale with the number of clients and it is easier to make proxies
fault tolerant.
Evaluation. We compare Nezha to six baselines in the public cloud:
Multi-Paxos, Fast Paxos, (optimized) NOPaxos, Raft, Domino and
TOQ-EPaxos under closed-loop and open-loop workloads. In closed-
loop workloads, commonly used in literature [24, 30, 34, 40], a client
only sends a new request after receiving the reply for the previous
one. In open-loop workloads, recently suggested as a more realistic
benchmark [46], clients submit new requests according to a Poisson
process, without waiting for replies for previous requests. We find:

(1) In closed-loop tests, Nezha (with proxies) outperforms all the
baselines by 1.9–20.9× in throughput, and by 1.3–4.0× in latency at
close to their saturation throughputs.

(2) In open-loop tests, Nezha (with proxies) outperforms all the
baselines by 2.5–9.0× in throughput, and outperforms five baselines
by 1.3–3.8× in latency at close to their saturation throughputs. The
only exception is that, it sacrifices 33% of latency compared with
our optimized version of NOPaxos.

2Unless otherwise specified, “multicast” in this paper refers to application-based
multicast, because switch-based multicast is not supported in cloud environment.

(3) Nezha can achieve better latency without a proxy, if clients
perform multicasts and quorum checks. In open-loop tests, Nezha
(without proxies) outperforms all the baselines by 1.3–6.5× in
latency at close to their respective saturation throughputs. In closed-
loop tests, Nezha (without proxies) outperforms them by 1.5–6.1×.

(4) We use Nezha to replicate two applications (Redis and
CloudEx [12]) and show that Nezha can provide fault tolerance
with modest degradation: compared with the unreplicated system,
Nezha sacrifices 5.9% throughput for Redis; it saturates the capacity
of CloudEx and prolongs the order processing latency by 4.7%.

2 MOTIVATION OF NEZHA: REORDERING IN
THE PUBLIC CLOUD

Consensus protocols are often used to provide the abstraction of a
replicated statemachine (RSM) [43], wheremultiple servers/replicas
cooperate to present a fault-tolerant service to clients. In the
RSM setting, the goal of consensus protocols is to get multiple
servers/replicas to reach agreement on the contents of an ordered
log, which represents a sequence of operations issued to the RSM.
This amounts to 2 requirements, one for the order of the log and
one for the contents of the log. We state them as below.

For any two replicas 𝑅1 and 𝑅2:
• Consistent ordering. If𝑅1 processes request𝑎 before request

𝑏, then 𝑅2 should also process request 𝑎 before request 𝑏, if 𝑅2 has
received both 𝑎 and 𝑏.
• Set equality. If 𝑅1 processes request 𝑎, then 𝑅2 also processes

request 𝑎.
Many optimistic protocols leverage the fact that the ordering of

messages from client to replicas is usually consistent at different
locations: they employ a fast path during times of consistent
ordering and fall back to a slow path when ordering is not
consistent [21, 24, 40, 53]. However, for an optimistic protocol
to actually improve performance, the fast path should indeed
be the common case. If not, such protocols can potentially hurt
performance [21, 40] relative to a protocol that doesn’t optimize
for the common case like Raft or Multi-Paxos.

Consistent ordering is violated if messages arrive in different
orders at different receivers. This situation is especially common in
the public cloud where there is frequent reordering: messages from
one or more senders to different receivers take different network
paths and arrive in different orders at the receivers.

We measure the reordering with a simple experiment on Google
Cloud. We use two receiver VMs, denoted as 𝑅1 and 𝑅2. We use a
variable number of sender VMs to multicast messages to 𝑅1 and
𝑅2. We vary the rate of a Poisson process used by each sender
to generate multicast messages (Figure 1) or vary the number of
multicasting senders (Figure 2). After the experiment, 𝑅1 receives
a sequence of messages, which serves as the ground truth: each
message is assigned a sequence number based on its arrival order at
𝑅1. Based on these sequence numbers, we calculate a metric called
reordering score to check how reordered 𝑅2 is. We calculate the
length of the longest increasing subsequence (LIS) [19, 42] in 𝑅2’s
sequence, and the reordering score is calculated as:

reordering score = (1 − Length of 𝑅2’s LIS
Total Length of 𝑅2’s Sequence

) × 100%

630

0

10

20

30

40

50

20 40 60 80 100

Re
or
de

rin
g
Sc
or
e
(%
)

Submission Rate (x1K requests/sec)

Figure 1: Reordering vs. submission
rate on Google Cloud

0

10

20

30

40

50

2 4 6 8 10

Re
or
de

rin
g
Sc
or
e
(%
)

Number of Senders

Figure 2: Reordering vs. number of
senders on Google Cloud

DOM Using Different
Percentile Estimation

0

10

20

30

40

50

No-DOM 75p 95p

Re
or
de

rin
g
Sc
or
e
(%

)

50p 90p

Figure 3: Effectiveness of DOM on
reordering on Google Cloud

A higher reordering score indicates more reordering occurring in
the public cloud. Figure 1 shows that when we vary the submission
rate, keeping the number of senders fixed at 2, the reordering
score quickly exceeds 28%. Further in Figure 2, when we vary
the number of senders, keeping the submission rate fixed at 10K
messages/second, the reordering score increases rapidly up to 43%
with the number of senders.

In the public cloud, with such high reordering rates, optimistic
protocols are forced to take the slow path often, which reduces their
performance (§8.2). In order to design a high-performance protocol,
we need to reduce the rate of reordering. This motivates us to design
the deadline-ordered multicast (DOM) primitive (§3). Our consensus
protocol, Nezha, depends on DOM to guarantee consistent ordering
among replicas, but not set equality. This is intentional and is also
why we need further handling (§4–§5) in Nezha to go along with
DOM to eventually achieve both requirements.

3 DEADLINE-ORDERED MULTICAST
Informally, deadline-OrderedMulticast (DOM) is designed to reduce
the rate of reordering by (1) waiting to process a message at a
receiver until the message’s deadline is reached and (2) delivering
messages to the receiver in deadline order. This gives other
messages with a lower deadline the ability to “catch up” and reach
the receiver before a message with a later deadline is processed.

Formally, in DOM, a sender wishes to send a message 𝑀 to
multiple receivers 𝑅1, 𝑅2, ..., 𝑅𝑛 . The sender attaches a deadline
𝐷 (𝑀) to the message, where 𝐷 (𝑀) is specified in a global time
that is shared by senders and receivers because their clocks are
synchronized. Then DOM attempts to deliver𝑀 to receivers within
𝐷 (𝑀). Receivers (1) can only process𝑀 on or after 𝐷 (𝑀) and (2)
must process messages in the order of their deadlines (i.e., 𝐷 (𝑀)s)
regardless of𝑀’s sender.

We stress that DOM is a best-effort primitive: a sequence of
messages is processed in order at a receiver if they all arrive before
their deadlines, but DOM does not guarantee that messages arrive
reliably at all receivers either before the deadline or at all. There
are two situations that cause messages to arrive late or be lost.

The first is network variability: messages may not reach some
receivers or reach them so late that the other messages with larger
deadlines have been processed. The second is a temporary loss
of clock synchronization. If clocks are poorly synchronized, the
deadline on a message might be set much earlier in time than the
actual time at which the receiver receives the message.

While DOM is a general primitive, we comment briefly on its
specific use for consensus as in Nezha. Since DOM makes no
guarantees on late or lost messages, it is up to the slow path of the

consensus protocol to handle such messages. If client requests are
lost because of drops in the network and haven’t been received
by a quorum of replicas, it is up to clients to retry the requests.
These weaker guarantees in DOM are important because providing
both reliable delivery and ordering of multicast messages is just as
hard as solving consensus [4]. The use of clock synchronization
for performance (i.e., increasing the frequency of the fast path)
rather correctness (i.e., linearizability) is also in line with Liskov’s
suggestion on how synchronized clocks should be used [25].
Setting DOM deadlines. Setting deadlines is a trade-off between
avoiding message reordering and adding too much waiting time to
a message before it can be processed. In the public cloud, where VM-
to-VM latencies can be variable and reordering is common, these
deadlines should be set adaptively based on recent measurements
of one-way delays (OWDs), which are also enabled by clock
synchronization. We pick the deadline for a message by taking
the maximum among the estimated OWDs from all receivers and
adding it to the sending time of the message. The estimation of
OWD is formalized as below.

𝑂𝑊𝐷 =


𝑃 + 𝛽 (𝜎𝑆 + 𝜎𝑅), 0 < 𝑂𝑊𝐷 < 𝐷

𝐷

To track the varying OWDs, each receiver maintains a sliding
window for each sender, and records the OWD samples by
subtracting the message’s sending time with its receiving time.
Then the receiver picks a percentile value from the samples in
the window as 𝑃 . We previously tried moving average but found
that just a few outliers (i.e. the tail latency samples) can inflate the
estimated value. Therefore, we use percentiles for robust estimation.
The percentile is a DOM parameter set by the user of DOM.

Besides 𝑃 , DOM also obtains from the clock synchronization
algorithm, Huygens [11], the standard deviation for the sending
time and receiving time, denoted as 𝜎𝑆 and 𝜎𝑅 . 3 𝜎𝑆 and 𝜎𝑅 provide
an approximate error bound for the synchronized clock time, so
we add the error bound with a factor 𝛽 to 𝑃 and obtain the final
estimated OWD. The involvement of 𝛽 (𝜎𝑆 + 𝜎𝑅) enables a graceful
degradation of Nezha as the clock synchronization performs worse.
Moreover, in case that clock synchronization goes wrong and
provides invalid OWD values (i.e. very large or even negative
OWDs), we further adopt a clamping operation: If the estimated
OWD goes out of a predefined scope [0, 𝐷], we will use 𝐷 as the
estimated OWD. The estimated OWDs will be piggybacked/sent to
the sender to decide the deadlines of subsequent requests.

3𝜎 values are calculated based on themethod in [10][Appendix A]. 𝛽 = 3 in our setting,
i.e., a 3𝜎 confidence interval for the sending/receiving time provided by Huygens.

631

⑤

Proxy
Quorum Check
1 + # + #/2

(including leader)

Follower

1 2 3 4 5 6
Log

Leader

1 2 3 4 5 6
Log

Follower
State Machine
④

② ②②

⑤
①

⑤DOM

DOM

1 2 3 4 5 6
Log

Requests from clients Replies to clients

Late
Buffer

Early
Buffer
③DOM

Late
Buffer

Early
Buffer

DOM ③

Early
Buffer
③

Late
Buffer

Figure 4: Fast path of Nezha

Proxy
Quorum Check

1 + #
(including leader)

Follower

1 2 3 4 5 6
Log

Leader

1 2 3 4 5 6
Log

Follower
State Machine

② ②②

⑥
①

DOM

1 2 3 4 5 6
Log

Requests from clients Replies to clients

③DOM ⑨

⑧ ⑧

⑦ ⑤

⑩⑩

Early
Buffer

Late
Buffer

⑨ ④

Early
Buffer

Late
Buffer

Early
Buffer

Late
Buffer

DOM

Figure 5: Slow path of Nezha

To illustrate DOM’s benefits, we redo our experiments from §2
with 10 Poisson senders, each submitting 10K requests/sec to 2
receivers. Figure 3 shows different percentiles (i.e., 50th, 75th, 90th,
and 95th) for DOM to decide its deadlines. We can see that a higher
percentile causes lower reordering. However, a higher percentile
also causes longer holding delay for messages in DOM, which in
turn decreases the latency savings of Nezha (as evaluated in §8.5) .

4 NEZHA OVERVIEW
We use DOM as a building block to develop a consensus protocol,
called Nezha, atop DOM. Recall that DOM maintains consistent
ordering across replicas by ordering messages based on their
deadlines. This allows Nezha to use a fast path that assumes
consistent ordering across replicas. When DOM fails to deliver
a message to enough replicas before the message’s deadline (either
because of delays or drops), Nezha uses a slow path instead.
Model and assumptions. Nezha assumes a fail-stop model and does
not handle Byzantine failures. It uses 2𝑓 + 1 replicas: 1 leader and
2𝑓 followers, where at most 𝑓 can crash simultaneously. Nezha
guarantees safety (linearizability) at all times and liveness under
the same assumptions as Multi-Paxos/Raft (i.e, “the majority of
servers are up and communicating with reasonable timeliness” [37]).
Nezha’s performance is improved by DOM, whose effectiveness
depends on accurate clock synchronization and the variance of
proxy-to-replica OWDs. But Nezha does not assume the existence
of a worst-case clock error bound, because clock synchronization
can also fail [25, 27, 28].
Nezha architecture. Nezha uses a stateless proxy/proxies (Figures 4
and 5) interposed between clients and replicas to relieve clients’
computational burden of quorum checks and multicasts. Using
a stateless proxy also makes Nezha a drop-in replacement for
Raft/Multi-Paxos because the client just communicates with a
Nezha proxy like it would with a Raft leader. Besides, only the
proxies (DOM senders) and replicas (DOM receivers) need clock
synchronization, whereas clients can remain unsynchronized.

Fast path sketch. Figure 4 shows Nezha’s fast path. The request is
multicast from the proxy 1 . If the request’s deadline is larger than
the last request released from the early-buffer, the request enters the
early-buffer 2 . It will be released at the deadline, and appended to
replicas’ logs 3 . The log of requests is ordered by request deadline.
After that, followers send a reply to the proxy without executing
the request 5 , whereas the leader first executes the request 4 and
sends a reply including the execution result. The proxy considers
the request as committed after receiving replies from the leader
and 𝑓 + ⌈𝑓 /2⌉ followers. The proxy obtains the execution result
from the leader’s reply, and then forwards to its client. The fast
path requires a super quorum (𝑓 + ⌈𝑓 /2⌉ + 1) rather than a simple
quorum (𝑓 + 1) for the same reason as Fast Paxos: without leader-
follower communication, a simple quorum cannot persist sufficient
information for a new leader to distinguish committed requests
from uncommitted ones (details in §5.3).
Slow path sketch. Figure 5 shows the more involved slow path:
when a multicasted 1 request goes to the late-buffer because of its
small deadline 2 , followers do not handle it. However, the leader
must pick it out of its late-buffer eventually for liveness. So the
leader modifies the request’s deadline to make it eligible to enter
the early-buffer 3 . After releasing and appending this request to
the log 4 , the leader broadcasts this request’s unique identifier
(a 3-tuple consisting of client-id, request-id, and request deadline)
to followers 7 , to force followers to keep consistent logs with
the leader. On hearing this broadcast 8 , the followers add/modify
entries from their logs to stay consistent with the leader: as an
optimization, followers can retrieve missing requests from their
own late-buffers without having to ask the leader for these entries
9 . After this, followers send replies to the proxy 10 . Meanwhile,
the leader has executed the request 5 and replied to the proxy 6 .
After collecting 𝑓 +1 replies (including the leader’s reply), the proxy
considers the request as committed. Notably, Nezha differs from
the other optimistic protocols (e.g., [21, 24, 40]): it also decouples
the request execution (at the leader) and quorum check in the slow
path. Such a decoupling design enables a faster slow path for the

632

Algorithm 1 Replica Actions
Member Variables: ⊲

eb, ⊲ early-buffer

lb, ⊲ late-buffer

synced-log, ⊲ the replica’s log which has been synced with leader
unsynced-log, ⊲ the replica’s log which hasn’t been synced with leader
replica-id, view-id, status, f ⊲ Other state variables

1: upon Receive 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 do
2: 𝑙𝑎𝑠𝑡𝑅𝑒𝑞 ←− the last released request from 𝑒𝑏.
3: if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 > 𝑙𝑎𝑠𝑡𝑅𝑒𝑞.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒4 then
4: 𝑒𝑏.insert(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ⊲ 𝑒𝑏 is a priority queue
5: else
6: 𝑙𝑏.insert(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ⊲ 𝑙𝑏 is a map
7: if replica-id = view-id % (2𝑓 + 1) then ⊲ It is leader
8: 𝑛𝑒𝑤𝐷𝑑𝑙 = max(clockTime(), 𝑙𝑎𝑠𝑡𝑅𝑒𝑞.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 + 1)
9: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = 𝑛𝑒𝑤𝐷𝑑𝑙 ⊲ Modify its deadline
10: 𝑒𝑏.insert(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ⊲ Can enter 𝑒𝑏 with the new deadline
11: upon 𝑒𝑏.empty()=false and 𝑒𝑏.top().𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ≤ clockTime() do
12: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 =𝑒𝑏.top() ⊲ The request to be released from 𝑒𝑏

13: 𝑒𝑏.erase(request)
14: if replica-id = view-id % (2𝑓 + 1) then ⊲ Replica is leader
15: 𝑟𝑒𝑠𝑢𝑙𝑡 =execute(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ⊲ Only leader executes request

⊲ Leader directly appends 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 and 𝑟𝑒𝑠𝑢𝑙𝑡 to synced-log

16: synced-log.append({𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , 𝑟𝑒𝑠𝑢𝑙𝑡 })
17: hash=calcIncrementHash(synced-log)
18: sendFastReply(result, hash)

⊲ In parallel with sending fast-reply, leader conducts broadcast
19: broadcastLogModification(request)
20: else

⊲ Follower appends 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 to unsynced-log without execution
21: unsynced-log.append({𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , 𝑛𝑢𝑙𝑙 })
22: synced-hash=calcIncrementHash(synced-log)
23: unsynced-hash=calcIncrementHash(unsynced-log)

⊲ Follower’s hash is generated by concatenating the two parts.
24: sendFastReply(null, synced-hash XOR unsynced-hash)

⊲ Only followers will receive 𝑙𝑜𝑔-𝑚𝑜𝑑𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 messages
25: upon receive 𝑙𝑜𝑔-𝑚𝑜𝑑𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 do

⊲ Both synced part and unsynced part will be modified, details at §5.4
26: ModifySynced(synced-log, synced-hash)
27: ModifyUnSynced(unsynced-log, unsynced-hash)
28: sendSlowReply() ⊲ Only followers send slow-reply

proxy to commit requests, which is only one message delay longer
than the commit in the fast path. The proxy, through the quorum
check, can ensure that the speculative execution result from the
leader replica is safe to use.

5 THE NEZHA PROTOCOL
We first describe the state maintained by Nezha, Nezha’s message
formats and Nezha’s fast and slow path. In addition, Algorithms 1
and 2 describe the replica and proxy algorithmswith object-oriented
and event-driven methods.

5.1 Replica State
Below we summarize the state variables maintained by each replica.

replica-id: Each replica is initially assigned with a unique
replica-id, ranging from 0 to 2𝑓 .

4When deadlines are equal, the tie is broken by <client-id,request-id>.

Algorithm 2 Proxy Actions
Member Variables: ⊲

f, ⊲ the number of replicas is 2f+1
replySet, ⊲ the set of replies received from replicas

1: upon receive 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 from client do
2: Tag 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 with the sending time and the deadline
3: for 𝑟 ←0 to 2𝑓 do
4: send 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 to replica 𝑟
5: upon receive 𝑟𝑒𝑝𝑙𝑦 from replica do
6: if 𝑟𝑒𝑝𝑙𝑦 is duplicate or from previous 𝑣𝑖𝑒𝑤 then
7: return
8: if 𝑟𝑒𝑝𝑙𝑦 is from new 𝑣𝑖𝑒𝑤 then

⊲ Replicas experienced view change, all previous replies are stale
9: replySet.clear()
10: replySet.insert(reply)
11: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑅𝑒𝑝𝑙𝑦= checkCommitted(𝑟𝑒𝑝𝑙𝑦)
12: if 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑅𝑒𝑝𝑙𝑦 ≠ 𝑛𝑢𝑙𝑙 then
13: replyToClient(𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑅𝑒𝑝𝑙𝑦)
14: function checkCommitted(reply)

⊲ If the proper quorum is established, return the leader’s reply because
it contains the exeuction result

15: 𝑞𝑢𝑜𝑟𝑢𝑚 = {𝑚𝑠𝑔 ∈ 𝑟𝑒𝑝𝑙𝑦𝑆𝑒𝑡 : 𝑚𝑠𝑔.view-id = 𝑟𝑒𝑝𝑙𝑦.view-id &
msg.client-id = reply.client-id & msg.request-id = reply.request-id}

16: leader-id = reply.view-id % (2f+1)

17: if quorum not contains replica leader-id’s fast-reply then
18: return null ⊲ Leader’s fast-reply must be included
19: fast-reply-num, slow-reply-num = 0, 0
20: for 𝑟 ←0 to 2𝑓 do
21: if quorum contains replica r’s slow-reply then
22: slow-reply-num++

⊲ slow-reply can serve as fast-reply, but not the opposite
23: fast-reply-num++

24: else if quorum contains replica r’s fast-reply and replica r’s
fast-reply.hash= replica leader-id’s fast-reply.hash then

25: fast-reply-num++

26: if fast-reply-num ≥ 1 + 𝑓 + ⌈𝑓 /2⌉ then
27: return replica leader-id’s fast-reply ⊲ Committed in fast path
28: if slow-reply-num ≥ 𝑓 then ⊲ We also have leader’s fast-reply
29: return replica leader-id’s fast-reply ⊲ Committed in slow path

view-id: Replicas leverage a view-based approach [26]: each
view is indicated by a view-id, which is initialized to 0 and
incremented by one after every view change. Given a view-id, this
view’s leader’s replica-id is view-id%(2𝑓 + 1).

status: Replicas switch between three different statuses: normal,
viewchange and recovering. Replicas are initially launched in
normal statuses. They switch to viewchange when the leader
fails, and switch back to normal after the new leader is elected. A
failed replica rejoins the system in recovering status and switch
to normal after recovering its state from the other replicas.

early-buffer: early-buffer is a priority queue sorted by requests’
deadlines. It is responsible for (1) conducting eligibility checks of
incoming requests: the incoming request can enter early-buffer only
if its deadline is larger than the last released one from early-buffer ;
and (2) releasing its accepted requests in the order of their deadlines,
thus maintaining DOM’s consistent ordering across replicas.

late-buffer: late-buffer is a map indexed by <client-id, request-

id>. It holds those requests which are not eligible to enter the
early-buffer, because those requests may later be needed in the slow

633

path (§5.4). In that case, replicas can directly fetch those requests
locally instead of asking remote replicas.

log: Requests released from the early-buffer will be appended to
the log of replicas. These requests then become the entries in the
log. The log is ordered by requests’ deadlines.

sync-point: Followers modify their logs to stay consistent with
the leader (§5.4). sync-point indicates the log position up to which
this replica’s log is consistent (i.e., equal) with the leader. Specially,
the leader always advances its sync-point after appending a request.

commit-point: Requests (log entries) up to commit-point are
considered as committed/stable, so that every replica can execute
requests up to commit-point and checkpoint its state up to this
position. commit-point is used in an optional optimization (§7.3).

5.2 Message Formats
We explain five types of messages closely related to Nezha. Since
Nezha uses a view-based approach for leader change, we omit the
description of messages related to leader changes; these messages
have been defined in Viewstamped Replication [26].

request: request is generated by the client and submitted to the
proxy. The proxy will attach some necessary attributes and then
submit request to replicas. request is represented as a 5-tuple:

request=<client-id, request-id, 𝑐𝑜𝑚𝑚𝑎𝑛𝑑, 𝑠, 𝑑>

client-id represents the client identifier and request-id is assigned by
the client to uniquely identify its own request. client-id and request-
id combine to uniquely identify the request. 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 represents
the content of the request, which will be executed by the leader. 𝑠
and 𝑑 are tagged by proxies. 𝑠 is the sending time of the request and
𝑑 is the estimated deadline that the request is expected to arrive at
all replicas. Meanwhile, the replica can also derive the proxy-replica
OWD by subtracting 𝑠 from its receiving time.

fast-reply: fast-reply is sent by every replica after it has
appended or executed the request, and it is used for quorum checks
in the fast path. fast-reply is represented as a 6-tuple:

fast-reply = <view-id, replica-id, client-id, request-id, 𝑟𝑒𝑠𝑢𝑙𝑡, ℎ𝑎𝑠ℎ>

view-id and replica-id are from the replica state variables (see §5.1).
client-id and request-id are from the appended request that lead to
this reply. result is only valid in the leader’s fast-reply, and is null
in followers’ fast-replies. The proxy can recognize the leader’s reply
by checking whether its replica-id equals view-id%(2𝑓 + 1). hash
captures a hash of the replica’s log (the hash calculation is explained
in §7.1). Proxies can check the hash values to know whether the
replicas involved in a quorum have consistent logs.

log-modification: log-modification message is broadcast by the
leader to convey the log entry’s deadline, client-id and request-id to
followers, making the followers modify their logs to stay consistent
with the leader. Meanwhile, log-modification also doubles as the
leader’s heartbeat. log-modification is represented as a 5-tuple:

log-modification=<view-id, log-id, client-id, request-id, deadline>

view-id is from the replica state. log-id indicates the position of
this log entry (request) in the leader’s log. client-id and request-id

uniquely identify the request. deadline is the request’s deadline
shown in the leader’s log, which is either assigned by proxies on
the fast path (i.e., 1 in Figure 4) or overwritten by the leader on

the slow path (i.e., 3 in Figure 5). log-modification messages can
be batched under high throughput to reduce the leader’s burden of
broadcast.

slow-reply: slow-reply is sent by followers after all the entries
in their logs have become the same as the leader’s log entries up to
this request. It is used by the client to establish the quorum in the
slow path. slow-reply is represented as a 4-tuple:

slow-reply = <view-id, replica-id, client-id, request-id>

The four fields have the same meaning as in the fast-reply.
log-status: log-status is periodically sent from followers to the

leader, reporting the follower’s sync-point, so that the leader can
know which requests have been committed and update its commit-

point. log-status is a 3-tuple derived from followers’ state variables:

log-status=<view-id, replica-id, sync-point>

5.3 Fast Path
Nezha relies on DOM to increase the frequency of its fast path (i.e.
fast commit ratio, or FCR). As shown earlier (§2), the percentile
DOM uses to estimate OWDs is set by the DOM user. A lower
percentile sets smaller deadlines, which reduces fast path latency
(FPL), but also reduces FCR. Higher percentiles have the opposite
problem. We use the 50th percentile in Nezha to strike a balance.
This does reduce FCR compared with using a higher percentile;
hence, Nezha compensates for this by accelerating its slow path
(§5.4) and leveraging commutativity (§7.2).

To commit the request in the fast path (Figure 4), the proxy needs
to get the fast-reply messages from both the leader and 𝑓 + ⌈𝑓 /2⌉
followers. (1) It must include the leader’s fast-reply because only
the leader’s reply contains the execution result. (2) It also requires
the 𝑓 + ⌈𝑓 /2⌉ + 1 replicas have matching view-ids and the same
log (requests). In §7.1 we will show how to efficiently conduct the
quorum check by using the hash field included in fast-reply. If both
(1) and (2) are satisfied, the proxy can commit the request in 1 RTT.

The fast path requires a super quorum (𝑓 + ⌈𝑓 /2⌉ +1) rather than
a simple quorum (𝑓 + 1), because a simple quorum is insufficient
to guarantee the correctness of Nezha’s fast path. Consider what
would happen if we had used a simple majority (𝑓 + 1) in the fast
path. Suppose there are two requests request-1 and request-2, and
request-1 has a larger deadline. request-1 is accepted by the leader
and 𝑓 followers. They send fast-replies to the proxy, and then the
proxy considers request-1 as committed and delivers the execution
result to the client. Meanwhile, request-2 is accepted by the other
𝑓 followers. After that, the leader fails, leaving 𝑓 followers with
request-1 accepted and the other 𝑓 followers with request-2 accepted.
Now, the new leader cannot tell which of request-1 or request-2
is committed at a provided log position. If the new leader adds
request-2 into the recovered log, it will be appended and executed
ahead of request-1 due to request-2’s smaller deadline. This violates
linearizability [14]: the client sees request-1 executed before request-
2 with the old leader but sees the reverse with the new leader.

5.4 Slow Path
The proxy is not always able to establish a super quorum to commit
the request in the fast path. When requests are dropped or are
placed into the late-buffers on some replicas, there will not be

634

sufficient replicas sending fast replies. Thus, we need the slow
path to resolve the inconsistency among replicas and commit the
request. We explain the details of the slow path (Figure 5) below in
temporal order starting with the request arriving at the leader.
Leader processes request. After receiving a request, the leader
ensures it can enter the early-buffer: if it is not eligible due to
its small deadline 2 , the leader will modify its deadline to be
larger than the last released request’s deadline 3 . We choose the
max between (a) the replica’s current clock time and (b) the last
released request’s deadline + 1 µs. The leader then conducts the
same operations as in the fast path (i.e., appending the request 4 ,
applying it to the state machine 5 , and sending fast-reply 6).
Leader broadcasts log-modification. In parallel with 5 - 6 , the
leader also broadcasts a log-modification message to followers 7
after appending each request. Every time a follower receives a log-
modification 8 , it checks its log entry at the position log-id included
in the log-modification. (1) If the entry has the same 3-tuple <client-
id, request-id, deadline> as that included in the log-modification, it
means the follower has the same log entry as the leader at this
position. (2) If only the 2-tuple <client-id, request-id> is matched
with that in the log-modification, it means the leader has modified
the deadline, so the follower also needs to replace the deadline in its
entry with the deadline from the log-modification. (3) Otherwise, the
entry has different <client-id, request-id>, which means the follower
has placed a wrong entry at this position. In this third case, the
follower removes the wrong entry and tries to put the right one.
It first searches its late-buffer for the right entry with matching
<client-id, request-id>. When the entry does not exist on this replica
because the request was dropped or delayed, the follower fetches it
from other replicas and puts it at the position.
Follower sends slow-reply. After the follower has processed the
log-modification message, and has ensured the requests in its log
are the same as the leader’s log entries, the follower updates its
sync-point, indicating it has the same log entries as the leader up to
the log position represented by the sync-point. The leader itself can
directly advance its sync-point after appending the request to log.
Then, the follower sends a slow-reply for every synced request 10 .
The slow-reply will be used to establish the quorum in the slow path.
Specially, a slow-reply can be used in place of the same follower’s
fast-reply in the fast path’s super quorum, because it indicates
the follower’s log is consistent with the leader. By contrast, the
follower’s fast-reply cannot replace its slow-reply for the quorum
check in the slow path.
Proxy conducts quorum check. The proxy considers the request as
committed when it receives the fast-reply from the leader and the
slow-replies from 𝑓 followers. The execution result is obtained from
the leader’s fast-reply. Decoupling (leader’s) execution from commit
enables the proxy to know whether the request is committed even
earlier than the leader replica. Meanwhile, replicas can continue
to process subsequent requests and are not blocked by the quorum

check in the slow path, which proves to be an advantage compared
to other opportunistic protocols like NOPaxos (see §8.2). Unlike the
quorum check of the fast path (§5.3), the slow path does not need a
super quorum (1 + 𝑓 + ⌈𝑓 /2⌉). This is because, before sending slow-
replies, the followers have updated their sync-points and ensured
that all the requests (log entries) are consistent with the leader up

to the sync-points. A simple majority (𝑓 + 1) is sufficient for the
sync-point to survive the crash. All requests before sync-point are
committed requests, whose log positions have all been fixed. During
the recovery (§6), they are directly copied to the new leader’s log.
In the background: followers report sync-statuses. In response to
log-modification messages, followers send back log-status messages
to the leader to report their sync-points. The leader can know which
requests have been committed by collecting the sync-points from
𝑓 + 1 replicas including itself: the requests up to the smallest sync-
point among the 𝑓 + 1 ones are definitely committed. Therefore,
the leader can update is commit-point and checkpoint its state
at the commit-point. It can also broadcast the commit-point to
followers, which enables followers to checkpoint their states for
acceleration of recovery (§7.3). Note that the followers’ reporting
sync-status is not on the critical part of the client’s latency on
the slow path; it happens in the background. Therefore, the slow
path only needs three message delays (1.5 RTTs) for the proxy to
commit the request. Besides, the log-status messages only serve for
an optional optimization to accelerate recovery. The correctness of
Nezha will not be affected even if all log-status messages are lost.

5.5 Other Concerns
Proxy Failure. Proxy failures do not hurt Nezha’s correctness:
proxy failures cause the same effect as packet drops, which
is already handled by consensus protocols because consensus
protocols do not assume reliable communication [5, 20].
Client Timeout and Retry.The client starts a timerwhile waiting for
the proxy’s reply. If the timeout is triggered (due to packet drop or
proxy failure), the client eventually retries the request with the same
or different proxy (if the previous proxy is suspected of failure), and
the proxy resubmits the request with a different sending time and
(possibly) a different latency bound. As in traditional distributed
systems, replicas maintain at-most-once semantics. When receiving
a request with duplicate <client-id, request-id>, the replica resends
the previous reply without re-execution.

6 RECOVERY
Assumptions. We assume replica processes can fail because of
process crashes or a reboot of the replica’s server. When a replica
process fails, it will be relaunched on the same server. We assume
that there is some stable storage (e.g., disk) that survives process
crashes or server reboots. A more general case, which we do not
handle, is to relaunch the replica process from a different server with
a new disk where the stable storage assumption no longer holds.
We also do not handle the case of changing Nezha’s 𝑓 parameter by
adding/removing replicas. Both cases are handled by reconfigurable
consensus [26, 49], which can be adapted to Nezha as well.
Recovery protocol. Nezha’s recovery protocol consists of two
components: replica rejoin and leader change. After a replica fails,
it can only rejoin as a follower. If the failed replica happens to be the
leader, then the remaining followers will stop processing requests
after failing to receive the leader’s heartbeat for a threshold of time.
Then, they will initiate a view change to elect a new leader before
resuming service. We explain the details in [9][Appendix A] and
only sketch the major steps for the new leader to recover its log.

635

After the new leader is elected, it contacts the other 𝑓 survived
replicas, acquiring their logs, sync-points and last-normal-views
(i.e., the last view in which the replica’s status is normal). Then, it
recovers the log by aggregating the logs of those replicas with the
largest last-normal-view. The aggregation involves two key steps.

(1) The new leader chooses the largest sync-point from the
qualified replicas (i.e., the replicas with the largest last-normal-

view). Then the leader directly copies all the log entries up to the
sync-point from that replica.

(2) For the remaining log entries which have not been copied
to the new leader, the new leader checks each of them as follows:
if the entry has larger deadline than the one located at sync-point,
the leader checks whether this entry exists on ⌈𝑓 /2⌉ + 1 out of the
qualified replicas. If so, the entry will also be added to the leader’s
log. All the entries are sorted by their deadlines.

After the leader rebuilds its log, it executes the entries in their
deadline order from scratch, or from the latest checkpoint if the
periodic checkpoint mechanism (§7.3) has been enabled. It then
switches to normal status. After that, the leader distributes its
rebuilt log to followers. Followers replace their original logs with
the new ones, and also switch to normal.

In some cases, the leader change can happen not only because
of a process crash but also because of a network partition, where
followers fail to hear from the leader for a long time and start a view
change to elect the new leader. When the deposed leader notices
the existence of a higher view, it needs to abandon its current state,
because its current state may have diverged from the state of the
new leader. To maintain correctness, the deposed leader obtains
the correct new state from another replica in the fresh view.

We have included the evaluation of failure recovery in [9].
Correctness proof. Our technical report [9][Appendix B] proves
that Nezha maintains 3 correctness properties for consensus:
durability, consistency and linearizability. We modeled the whole
protocol in TLA+ [9] and checked the 3 properties in TLA+ Toolbox.

7 OPTIMIZATIONS IN NEZHA
7.1 Incremental Hash
In Nezha’s fast path, fast-replies from replicas can form a super
quorum only if these replies indicate that the replicas’ ordered logs
are identical. This is because—unlike the slow path—replicas do not
communicate amongst themselves first before replying to the client.
One impractical way to check that the ordered logs are identical is
to ship the logs back with the reply. A better approach is to perform
a hash over the sequence corresponding to the ordered log, and
update the hash every time the log grows. However, if the log is
ever modified in place (like we need to in the slow path), such
an approach will require the hash to be recomputed from scratch,
starting from the first log entry.

Instead, we use a more efficient approach by decomposing the
equality check of two ordered logs into two components: checking
the contents of the 2 logs and checking the order of the 2 logs.
Because logs are always ordered by their deadlines at all our replicas,
it suffices for us to check the contents of the 2 logs. The contents
of the logs can be checked by checking equality of the 2 sets
corresponding to the entries of the 2 logs: this requires only a
hash over a set rather than a hash over a sequence.

To compute this hash over a set, we maintain a running hash
value for the set. Every time an entry is added or removed from
this set, we compute a hash of this entry (using SHA-1) and XOR
this hash with the running hash value. This allows us to rapidly
update the hash every time a log entry is appended (an addition to
the set) or modified (a deletion followed by an addition to the set).
The proxy checks for equality of this set hash across all replicas,
knowing that equality of the set of log entries guarantees equality
of the ordered logs because logs are always ordered by deadlines.

7.2 Commutativity Optimization
To enable a high fast commit ratio without a long holding delay of
DOM, we employ a commutativity optimization in Nezha. As an
example, commutative requests refer to those requests operating
on different keys in a key-value store, so that the execution
order among them does not matter [6, 38]. The commutativity
optimization enables us to choose a modest percentile (50th
percentile) while still achieving a high fast commit ratio, because
it eases the fast path in two aspects. First, it relaxes the eligibility
check condition of the early-buffer. The request can enter the early-
buffer, so long as its deadline is larger than the last released request
which is not commutative with the incoming request. Second, it
refines the hash computation. While sending the fast-reply related
to a request, the replicas only need to XOR the hashes of all
write requests which have been previously appended and are not

commutative with this incoming request.

7.3 Periodic Checkpoints
To (1) accelerate the recovery process after leader failure and (2)
enable a deposed leader to quickly catch up with the fresh state, we
can integrate a periodic checkpoint mechanism into Nezha. Since
Nezha only allows the leader to execute requests during normal
processing, it can lead to inefficiency during leader change, either
caused by leader’s failure or network partitions. This is because
the new leader is elected from followers, and it has to execute all
requests from scratch after it becomes the leader.

To optimize this, we conduct synchronization between the leader
and followers in the background. Periodically, the followers report
their sync-points to the leader, and the leader chooses the smallest
sync-point among the 𝑓 + 1 replicas as the commit-point, and
broadcasts the commit-point to all replicas. Both the leader and
followers checkpoint state to stable storage at their commit-points.
The periodic checkpoints bring acceleration benefit in two aspects:
(1) When the leader fails, the new leader only needs to recover
and execute the requests from its commit-point onwards. (2) When
network partitions happen, the leader is deposed and it later notices
the existence of a higher view. Instead of abandoning its complete
state (as what we described in §6), it can start from its latest
checkpoint state, and only retrieve from another replica (in the
fresh view) requests beyond its commit-point.

8 EVALUATION
We answer the following questions during the evaluation:

(1) How does Nezha compare to the baselines (Multi-Paxos, Fast
Paxos, NOPaxos) in the public cloud? (§8.2)

636

0

500

1000

0 50 100 150 200

La
te

nc
y

(μ
s)

Throughput (×1K requests/sec)

Fast Paxos Multi-Paxos NOPaxos NOPaxos-Optim
Nezha-Non-Proxy Nezha-Proxy Domino-Commit TOQ-EPaxos-Commit

(a) Closed-loop workload

0

500

1000

0 50 100 150 200

La
te
nc
y
(μ
s)

Throughput (×1K requests/sec)

Multi-Paxos NOPaxos NOPaxos-Optim Nezha-Non-Proxy
Nezha-Proxy Domino-Commit TOQ-EPaxos-Commit

(b) Open-loop workload

Figure 6: Latency vs.throughput

(2) How does Nezha compare to the recent protocols which also
use clock synchronization (i.e., Domino and TOQ-EPaxos)? (§8.3)

(3) How effective are the proxies in saving clients’ CPU cost,
especially when there is a large number of replicas? (§8.6)

(4) How does Nezha compare to Raft when both are equipped
with log persistence to stable storage? (§8.8)

(5) Does Nezha provide sufficient performance for replicated
applications? (§9)

8.1 Settings
Testbed. We run experiments in Google Cloud. We employ
n1-standard-4 VMs for clients, n1-standard-16 VMs for replicas
and the NOPaxos sequencer, and n1-standard-32 VMs for Nezha
proxies. All VMs are in a single cloud zone (except §8.7). Huygens
is installed on all VMs and has an average 99th percentile clock
offset of 49.6 ns.
Baselines. We compare with Multi-Paxos, Fast Paxos and NOPaxos.
For the 3 baselines, we use the implementation from the NOPaxos
repository [23] with necessary modification: (1) we change switch
multicast into multiple unicasts because switch multicast is
unavailable in cloud. (2) we use a software sequencer (refer to
§4.2.3 in [24]) with multi-threading for NOPaxos because tenant-
programmable switches are not yet available in cloud. We also add
two recently proposed protocols that leverage synchronized clocks
for comparison, i.e., Domino [53] and TOQ-EPaxos [46].
Metrics. We measure execution latency: the time between when a
client submits a request to the system and receives an execution
result from it along with a confirmation that the request is
committed. We also measure throughput. To measure latency, we
use median latency because it is more robust to heavy tails. We
attempted to measure tail latency at the 99th and 99.9th percentile.
But we find it hard to reliably measure these tails because tail
latencies within a cloud zone can exceed a millisecond [15, 33, 51].
We run each experiment 5 times and average values before plotting.
Evaluation method. We follow the method of NOPaxos [24]
and run a null application with no execution logic. Traditional
evaluation [24, 30, 34, 35, 40, 48] uses closed-loop clients, which
issue a continuous stream of back-to-back requests, with exactly
one outstanding request at all times. However, the recent work [46]
suggests a more realistic open-loop test with a Poisson process
where the client can have multiple outstanding requests (sometimes
in bursts). We use both closed-loop and open-loop tests. While
comparing the latency and throughput in §8.2, we use 3 replicas. For

the closed-loop test, we increase load by adding more clients until
saturation. For the open-loop test, we use 10 clients and increase
load by increasing the Poisson rate until saturation.
Workloads. Since the three baselines (Multi-Paxos, Fast Paxos and
NOPaxos) are oblivious to the read/write type and commutativity
of requests, and the null application does not involve any execution
logic, we simply measure their latency and throughput under one
type of workload, with a read ratio of 50 % and a skew factor [13]
of 0.5. We also evaluate Nezha under various read ratios and skew
factors in [9], which verifies the robustness of its performance.

8.2 Comparison with Multi-Paxos, Fast Paxos
and NOPaxos

We plot two versions of Nezha in Figure 6. Nezha-Proxy
uses standalone proxies whereas Nezha-Non-Proxy lets clients
undertake proxies’ work. Below we discuss three main takeaways.

First, all baselines yield poorer latency and throughput in the
public cloud, in comparison with their published numbers from
highly-engineered networks [24]. Fast Paxos suffers the most and
reaches only 4.0K requests/second at 425 µs in open-loop test (not
shown in Figure 6b).When clients send at a higher rate, the frequent
request reordering forces Fast Paxos into its slow path, which is
even more costly than Multi-Paxos.

Second, NOPaxos performs unexpectedly poorly in the open-
loop test, because it performs gap handling and normal request

processing in one thread. NOPaxos early binds the sequence number
with the request at the sequencer. When request reordering/drop
inevitably happens from the sequencer to replicas, the replicas
trigger much gap handling and consume significant CPU cycles. We
realized this issue and developed an optimized version (NOPaxos-
Optim in Figure 6) by using separate threads for the two tasks.
NOPaxos-Optim outperforms all the other baselines because it
offloads request serialization to the sequencer and quorum check
(fast path) to clients. But it still loses significant throughput in the
open-loop test compared with the closed-loop test. This is because
open-loop tests create more bursts of requests, and cause packet
reordering/drop more easily. When the gap occurs, NOPaxos needs
at least one RTT for the leader to coordinate with followers to fetch
the missing request or mark no-op at the gap position. During the
gap handling process, all the incoming requests have to be pending
and can no longer be processed (i.e., the normal request processing
logic is blocked). Thus, all these follow-up requests will make the
gap handling cost as part of their execution latencies, and they
can also continue to cause more gaps. Meanwhile, the system’s

637

overall throughput is also degraded because no more requests are
processed until the gap handling is completed.

Third, Nezha achieves much higher throughput than all the
baselines, and Nezha-Non-Proxy also achieves the lowest latency
because of co-locating proxies with clients. Even equipped with
standalone proxies, Nezha-Proxy still outperforms all baselines
at their saturation throughputs, except NOPaxos-Optim (open-
loop). Nezha’s improved throughput and latency come from three
design aspects: (1) DOM helps create consistent ordering for the
replication protocol, and makes it easier for replicas to achieve
consistency. (2) Nezha separates request execution and quorum
check, letting clients/proxies undertake quorum check instead of
the leader, which effectively relieves leader’s burden and enables
better pipelining (i.e., avoid the blocking problem in NOPaxos). (3)
The use of commutativity further reduces the latency by allowing
more requests to be committed in fast path. To verify the benefit of
each component, we further conduct an ablation study in §8.4.

8.3 Comparison with TOQ-EPaxos
We should have plotted the execution latencies of Domino and
TOQ-EPaxos in Figure 6. However, their execution latencies are far
larger than Nezha and the other baselines and are not suitable to
be put in the same figure, so we plot their commit latencies and
still find that Nezha performs better. We believe this is partially
related to their different implementations (e.g., Go vs. C++). Below,
we compare Nezha with TOQ-EPaxos from a design perspective.
[9] includes the comparison between Nezha and Domino design.

(1) TOQ-EPaxos only synchronizes replicas to reduce reordering
of messages between replicas, so that replicas are more likely to
process non-commutative requests in the same order (refer to §4
in [46]). Nezha synchronizes replicas and proxies to reduce the
reordering from proxies to replicas. Compared with TOQ-EPaxos,
Nezha controls more paths in the consensus workflow, whichmakes
Nezha’s acceleration more effective: when clients and replicas are
located in different zones, TOQ provides little benefit, whereas
Nezha can still reduce latency (see §8.7).

(2) TOQ does not guarantee consistent ordering but DOM does. In
TOQ, when one replica multicasts the requests with a ProcessAt
time, if some requests arrive at some replicas very late, then different
replicas can still have different message orders. By contrast, DOM
prioritizes consistent ordering over set equality, which means, any
two replicas can never release the same requests in different order.
DOM adopts such design because our Nezha protocol can rapidly
fix set inequality based on its single leader design, unlike EPaxos
which involves multiple leaders in its design.

(3) TOQ does not improve EPaxos performance in a LAN. As
shown in [2], even implemented under the same framework, EPaxos
is less performant than Multi-Paxos in LAN. By contrast, Nezha is a
generally high-performance protocol that yields good performance
in both LAN (Figure 6) and WAN (Figure 10) settings.

8.4 Ablation Study
During the ablation study, we remove one component from the full
protocol of Nezha each time to yield three variants, shown as No-
DOM, No-QC-Offloading, No-Commutativity in Figure 7. No-DOM
removes the DOM primitive from Nezha. No-QC-Offloading relies

on the leader to do the quorum check, and it still relies on DOM
for consistent ordering (the proxies still perform request multicast).
No-Commutativity disables Nezha’s commutativity optimization.
We run all protocols under the same setting as Figure 6b. Figure 7
shows that, removing any of the three components degrades the
performance (i.e., throughput and/or latency).

0

500

1000

0 50 100 150 200

La
te

nc
y(

μs
)

Throughput (×1K requests/sec)

Full Protocol No-DOM No-QC-Offloading No-Commutativity

Figure 7: Ablation study of Nezha

(1) The No-DOM variant makes the fast path meaningless:
requests are no longer ordered by their deadlines without DOM,
so consistent ordering is not guaranteed and set equality (i.e.
reply messages with consistent hash) no longer indicates the state
consistency among replicas. In this case, the No-DOM variant
actually becomes the Multi-Paxos protocol with quorum check
offloading, and the leader replica still takes the responsibility of
ordering and request multicast, which makes No-DOM variant yield
a much lower throughput and higher latency.

(2) The No-QC-Offloading variant still uses DOM for ordering
and request multicast, but it relies on the leader to do quorum
check for every request. Therefore, the leader’s burden becomes
much heavier than the full protocol, and the heavy bottleneck at the
leader replica degrades the throughput and latency performance.

(3) The No-Commutativity variant degrades the fast commit
ratio and causes more requests to commit via the slow path. It does
not cause a distinct impact on the throughput. However, compared
with the full protocol, the lack of commutativity optimization
degrades the latency performance by up to 24.2 %.

8.5 DOM’s Trade-Off at Different Percentiles
At the level of DOM primitive, the percentile used by DOM makes
a trade-off between reordering rate and latency (Figure 3). When it
comes to Nezha, the percentile makes a trade-off between how fast

the request can be committed via the fast path and how frequently the

request can be committed via the fast path. We measure these two
aspects with fast path latency (FPL) and fast commit ratio (FCR),
respectively. FPL is the median latency for requests to commit in
fast path; FCR is the ratio of requests committed in fast path. A
larger percentile leads to higher (better) FCR but longer (worse)

50p 75p 95p 99p

OCL FPL FCR
600

400

200

0

La
te
nc
y
(μ
s)

100

50

0

FC
R
(%

)

(a) Without Commutativity

600

400

200

0

La
te
nc
y
(μ
s)

100

50

0

FC
R
(%

)

50p 75p 95p 99p

OCL FPL FCR

(b) With Commutativity

Figure 8: Trade-off of using different percentiles in DOM

638

0
200
400
600
800

0 50 100 150 200

La
te
nc
y
(μ
s)

Throughput (×1K requests/sec)

Nezha-Proxy Nezha-Non-Proxy

(a) Latency vs. throughput

0

20

40

60

3 5 7 9

M
ax

Cl
ie
nt

Tp
t

(x
1K

re
qu

es
ts
/s
ec
)

Number of Replicas

Nezha-Proxy Nezha-Non-Proxy

(b) Max. client throughput

Figure 9: Proxy Evaluation

FPL, but both FCR and FPL affect the the overall commit latency
(OCL) of all requests.

To measure this, in Figure 8 we run Nezha with/without
commutativity optimization in the open-loop test (20K
requests/second).

(1) Without commutativity optimization (Figure 8a), as we use
larger percentiles (from 50p to 75p), the improvement of FCR
outweighs the increase of FPL, thus leading to lower OCL. However,
as we continue to use larger percentiles (e.g., 95p and 99p), though
FCR keeps growing, FPL also becomes longer due to the increasing
holding delay in early-buffer, which undermines the benefit of fast
path, and no longer helps reduce OCL.

(2) After adding the commutativity optimization (Figure 8b),
Nezha already reaches a high FCR using 50p. Therefore, using
larger percentiles brings little FCR improvement, but only increases
FPL, and in turn OCL. Therefore, we choose 50p in DOM and have
verified its robustness under different workloads (details in [9]).

8.6 Proxy Evaluation
Figure 9a compares the two versions of Nezha with 10 open-loop
clients and 9 replicas. Nezha-Proxy employs 5 proxies. As clients
increases their submission rates. Compared with Nezha-Non-Proxy,
which sends 9 messages and receives 17 messages (i.e., 9 fast-replies
and 8 slow-replies) for each request, Nezha-Proxy incurs 2 extra
message delays, but reduces significant CPU usage at the client side.
It even achieves lower latency than Nezha-Proxy as the throughput
grows, because Nezha-Non-Proxy makes the clients CPU-intensive.

Figure 9b compares the maximum throughput achieved by one
client with/without proxies. Given the same CPU resource, 5 the
throughput of the client without proxies declines distinctly as the
number of replicas increases. Such bottlenecks can also occur in
other protocols with similar offloading design (e.g., [24, 38, 40, 53]).
By contrast, when equipped with proxies, the client retains a high
throughput regardless of the number of replicas.

8.7 Comparison in WAN
We continue to compare Nezha with the baselines in a wide-area
network (WAN). We run the open-loop tests across 5 zones: the
3 replicas are located in europe-north1-a, asia-northeast1-a
and southamerica-east1-a, respectively; the 10 open-loop clients
are divided into two groups, and distributed in us-east1-b and
us-west1-a; correspondingly, the 2 proxies are also distributed in
us-east1-b and us-west1-a to serve the clients in their zones.

Compared to the LAN evaluation (Figure 6), Nezha outperforms
all the baselines even more in WAN. As shown in Figure 10,

5Every client uses one thread for request submission and another for reply handling.

0

500

1000

0 50 100 150 200La
te
nc
y
(m

s)

Throughput (×1K reqs/sec)

Multi-Paxos NOPaxos-Optim Nezha-Proxy
Domino TOQ-EPaxos

Figure 10: Latency vs. throughput in WAN

NOPaxos-Optim is the best among the four baselines, but Nezha
still outperforms NOPaxos-Optim by 1.51× in latency and 2.55× in
throughput. For TOQ-EPaxos, TOQ provides little help to reduce
the latency for EPaxos when clients and replicas are located in
different zones, because TOQ only leverages clock synchronization
to reduce conflicts among replicas, and its fast path still costs 2WAN
RTTs when replicas and clients are separated. By contrast, since
Nezha’s proxies are stateless and generally deployable, they can be
deployed in the same zone as clients, making client-proxy latency
as LAN message delay. Therefore, Nezha can achieve 1 WAN RTT
in the fast path. We include more discussion in Appendix H of [9].

8.8 Disk-Based Comparison: Nezha vs. Raft
Raft establishes its correctness on log persistence and relies on
stable storage for stronger fault tolerance (e.g., power failure). For
a fair comparison to Raft, we convert Nezha from its diskless
operation to a disk-based version, making it achieve the same
targets as Raft. Before Nezha replicas send replies, they first persist
the corresponding log entry (including view-id and crash-vector)
to stable storage. Then, if a replica is relaunched, it can recover
its state and replay the fast-replies/slow-replies. We want to study
whether Nezha is fundamentally more I/O intensive than Raft.

We compare with two versions of Raft in Figure 11: Raft-1 is
the open-sourced implementation from [36]. Raft-2 is our own
implementation by using Multi-Paxos code from [23] as a starting
point. Our evaluation shows that Nezha outperforms Raft in both
closed-loop (Figure 11) and open-loop tests [9]. Besides, there is
little difference in latency with or without a proxy in Nezha because
latencies are now dominated by disk writes, not message delays.

9 APPLICATION PERFORMANCE
In order to measure Nezha in the context of a replicated application,
we port two applications to Nezha and the baseline protocols. Each
replicated application uses 3 replicas.

Redis. Redis [41] is a typical in-memory key-value store. We
choose YCSB-A [52] as the workload, which operates on 1000
keys with HMSET and HGETALL. We use 20 closed-loop clients to
saturate the processing capacity of the unreplicated Redis. Figure 12
illustrates the maximum throughput of each protocol under 10ms
service level objective (SLO). Nezha outperforms all the baselines
on this metric: it outperforms Fast Paxos by 2.9×, Multi-Paxos by
1.9×, and NOPaxos by 1.3×. Its throughput is within 5.9% that of
the unreplicated system.

CloudEx. CloudEx [12] is a fair-access financial exchange
system for the public cloud, which includes three roles: matching
engine, gateways and market participants. We replicate the

639

0

5

10

0 20 40 60 80

La
te
nc
y
(m

s)

Throughput (×1K requests/sec)

Raft-1 Raft-2
Nezha-Non-Proxy Nezha-Proxy

Figure 11: Nezha vs. Raft
(closed-loop)

0
5

10
15
20
25

Fast P
axos

Multi-P
axos

NOPaxos
Nezha

Unreplicated

M
ax

Th
ro

ug
hp

ut
(×

1K
re

qu
es

ts
/s

ec
)

Figure 12: Redis throughput
with a 10 ms latency SLO

0
10
20
30
40
50

Fast P
axos

Multi-P
axos

NOPaxos
Nezha

Unreplicated

M
ax

Th
ro

ug
hp

ut
(×

1K
or

de
rs

/s
ec

)

Figure 13: CloudEx throughput

0

100

200
300

400
500

End-to-End
Latency

Order Processing
Latency

La
te

nc
y

(μ
s)

Nezha Unreplicated

Figure 14: CloudEx latency

matching engine and co-locate one gateway with one proxy. Market
participants are unmodified. Compared with the version in [12], we
have improved the performance of unreplicated CloudExwithmulti-
threading and more efficient communication. On the matching
engine, we configure 1 shard with 100 symbols, and use a fixed
sequencer delay parameter (𝑑𝑠) of 200𝜇𝑠 . Similar to [12], we launch
48 participants and 16 gateways, with 3 participants attached to one
gateway. We vary the order submission rate of market participants,
and find the matching engine is saturated at 43.10K orders/sec,
achieving an inbound unfairness ratio of 1.49%.

We then run CloudEx atop the four protocols with the same
setting. In Figure 13, only Nezha reaches the throughput (42.93K
orders/second) to nearly saturate the matching engine, and also
yields a close inbound unfairness ratio of 1.97%.We further compare
the end-to-end latency (i.e., from order submission to the order
confirmation from the matching engine) and order processing
latency (i.e., from order submission to receiving the execution result
from the matching engine.) between Nezha and the unreplicated
CloudEx. In Figure 14, Nezha prolongs the end-to-end latency by
19.7 % (344 µs vs. 288 µs), but achieves very close order processing
latency to the unreplicated version (426 µs vs. 407 µs).

10 RELATEDWORK
Consensus protocols. Classical consensus protocols, such as Multi-
Paxos, Raft and Viewstamped Replication, make no distinction
between fast and slow paths, whereas Nezha uses an optimistic
approach to improve latency in the common case. Mencius [29]
exploits a multi-leader design to mitigate the single-leader
bottleneck. However, it introduces extra coordination cost among
multiple leaders, and the crash of any leaders temporarily stops
progress. By contrast, Nezha reduces the leader’s bottleneck using
proxies and followers’ crash does not affect progress. EPaxos [34]
can achieve optimal WAN latency by colocating clients and some
replica in the same zone, but its WAN latency benefit is nullified
when replicas are separated from clients. Besides, EPaxos performs
worse than Multi-Paxos in LAN [2]. CURP [38] can complete
commutative requests in 1 RTT, but cost up to 3 RTTs even
if all witnesses process non-commutative requests in the same
order. SPaxos [3], BPaxos [50] and Compartmentalized Paxos [30]
address the scaling of consensus protocols with modularity, trading
more latency for better throughput. The proxy design of Nezha
shares some similarity to compartmentalization [30], but Nezha’s
proxies are stateless whereas [3, 30, 50] use stateful components
that complicates the recovery process. We include a comparison
summary in [9][Table 1].

Network primitives to improve consensus.There are four other
primitives in the literature closely related to DOM, namely,
mostly-ordered multicast (MOM) [40], ordered unreliable multicast
(OUM) [24], timestamp-ordered queuing (TOQ) [46] and sequenced
broadcast (SB) [44]. From the perspective of deployability, DOM and
TOQ are both based on software clock synchronization whereas
MOM and OUM rely on highly-engineered network. This gives
DOM and TOQ an advantage over MOM/OUM in environments
like the cloud. On the other hand, requests output from MOM and
TOQ can still result in inconsistent ordering. By contrast, DOM and
OUM guarantee consistent ordering of released requests. DOM’s
guarantees are weaker than OUM because OUM also provides gap
detection. We include a formal comparison in [9]. SB is a new
primitive for Byzantine fault tolerance. It works in an epoch-based
manner and achieves high throughput through load balancing.
However, its latency is in the order of seconds.
Clock synchronization applied to consensus protocols. CRaft [47]
and CockRoachDB [45] use clock synchronization to improve the
throughput of Raft. However, they base their correctness on the
assumption of a known worst-case clock error bound, which is
not practical for clock synchronization [25, 27, 28]. Domino [53]
and TOQ [46] try using clock synchronization to accelerate Fast
Paxos and EPaxos respectively. We evaluate and compare them
with Nezha in §8.3, and include more details in [9].

11 CONCLUSION AND FUTUREWORK
We present Nezha, a high-performance consensus protocol which
can be easily deployed in the public cloud. Nezha uses a new
multicast primitive called deadline-ordered multicast that leverages
high-accuracy clock synchronization. Our evaluation has shown
Nezha can significantly outperform the typical baselines in public
cloud. Our future works include (1) replacing the Multi-Paxos/Raft
backend used by industrial systems (e.g., Kubernetes) with Nezha
to boost their performance; (2) using DOM to improve the
performance of the existing concurrency control algorithms (e.g.,
Two-Phase Locking) or invent new concurrency control protocols.

ACKNOWLEDGEMENTS
We thank Cisco Systems, Facebook (nowMeta), Google, Nasdaq and
Wells Fargo for sponsoring our research at Stanford’s Platform Lab.
This work was also supported by NSF-2008048. We thank Shiyu
Liu, Feiran Wang, Yilong Geng, Deepak Merugu, Dan Ports, Jialin
Li, Ellis Michael, Jinyang Li, Aurojit Panda, Seo Jin Park, Zhaoguo
Wang, Ken Birman, Weijia Song and Eugene Wu for their feedback
on our work and help with benchmarking.

640

REFERENCES
[1] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,

Athanasios Xygkis, and Igor Zablotchi. 2020. Microsecond Consensus for
Microsecond Applications. In Proceedings of the 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20). USENIX Association,
599–616. https://www.usenix.org/conference/osdi20/presentation/aguilera

[2] Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019. Dissecting the
Performance of Strongly-Consistent Replication Protocols. In Proceedings of the

2019 International Conference on Management of Data (Amsterdam, Netherlands)
(SIGMOD ’19). Association for Computing Machinery, New York, NY, USA,
1696–1710. https://doi.org/10.1145/3299869.3319893

[3] Martin Biely, Zarko Milosevic, Nuno Santos, and André Schiper. 2012. S-
Paxos: Offloading the Leader for High Throughput State Machine Replication.
In Proceedings of the 2012 IEEE 31st Symposium on Reliable Distributed Systems.
111–120. https://doi.org/10.1109/SRDS.2012.66

[4] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. 1996. The Weakest
Failure Detector for Solving Consensus. J. ACM 43, 4 (jul 1996), 685–722. https:
//doi.org/10.1145/234533.234549

[5] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2021. PigPaxos:
Devouring the Communication Bottlenecks in Distributed Consensus. In
Proceedings of the 2021 International Conference on Management of Data.
Association for Computing Machinery, New York, NY, USA, 235–247. https:
//doi.org/10.1145/3448016.3452834

[6] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris,
and Eddie Kohler. 2013. The Scalable Commutativity Rule: Designing Scalable
Software for Multicore Processors. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP
’13). Association for Computing Machinery, New York, NY, USA, 1–17. https:
//doi.org/10.1145/2517349.2522712

[7] Ben Darnell. [n.d.]. Scaling Raft. https://www.cockroachlabs.com/blog/scaling-
raft.

[8] etcd. [n.d.]. Benchmarking etcd v3. https://etcd.io/docs/v3.5/benchmarks/etcd-3-
demo-benchmarks/.

[9] Jinkun Geng, Anirudh Sivaraman, Balaji Prabhakar, and Mendel Rosenblum.
2022. Nezha: Deployable and High-Performance Consensus Using Synchronized
Clocks [Technical Report]. https://arxiv.org/abs/2206.03285

[10] Yilong Geng. 2018. Self-Programming Networks: Architecture and Algorithms. Ph.D.
Dissertation. Stanford University. https://www.proquest.com/dissertations-
theses/self-programming-networks-architecture-algorithms/docview/
2438700930/se-2?accountid=14026

[11] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. 2018. Exploiting a Natural Network Effect for Scalable, Fine-
grained Clock Synchronization. In Proceedings of the 15th USENIX Conference

on Networked Systems Design and Implementation (Renton, WA, USA) (NSDI’18).
USENIX Association, Berkeley, CA, USA, 81–94.

[12] Ahmad Ghalayini, Jinkun Geng, Vighnesh Sachidananda, Vinay Sriram, Yilong
Geng, Balaji Prabhakar, Mendel Rosenblum, and Anirudh Sivaraman. 2021.
CloudEx: A Fair-Access Financial Exchange in the Cloud. In Proceedings of the

Workshop on Hot Topics in Operating Systems (HotOS ’21). 8. https://doi.org/10.
1145/3458336.3465278

[13] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J.
Weinberger. 1994. Quickly Generating Billion-Record Synthetic Databases.
SIGMOD Rec. 23, 2 (may 1994), 243–252. https://doi.org/10.1145/191843.191886

[14] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492. https://doi.org/10.1145/78969.78972

[15] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo:
Predictable Message Latency in the Cloud. SIGCOMM Comput. Commun. Rev. 45,
4 (Aug. 2015), 435–448. https://doi.org/10.1145/2829988.2787479

[16] Theo Jepsen, Stephen Ibanez, Gregory Valiant, and Nick McKeown. 2022. From
Sand to Flour: The Next Leap in Granular Computing with NanoSort. arXiv

preprint arXiv:2204.12615 (2022).
[17] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert

Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT
Coordination. In Proceedings of the 15th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 18).
[18] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David

Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for
microsecond-scale Tail Latency. In Proceedings of the 16th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 345–360. https://www.usenix.org/conference/nsdi19/presentation/
kaffes

[19] Wayne Kevin. [n.d.]. Longest Increasing Subsequence. https://www.cs.princeton.
edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.
pdf.

[20] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(May 1998), 133–169. https://doi.org/10.1145/279227.279229

[21] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19 (October 2006),
79–103. https://www.microsoft.com/en-us/research/publication/fast-paxos/

[22] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001),
18–25.

[23] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.
[n.d.]. NOPaxos Code Repository. https://github.com/UWSysLab/NOPaxos.

[24] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering. In Proceedings of the 12th USENIX Conference on Operating Systems

Design and Implementation (OSDI’16). USENIX Association, USA.
[25] Barbara Liskov. 1991. Practical Uses of Synchronized Clocks in Distributed

Systems. In Proceedings of the Tenth Annual ACM Symposium on Principles of

Distributed Computing (Montreal, Quebec, Canada) (PODC ’91). Association for
Computing Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/112600.
112601

[26] Barbara Liskov and James Cowling. 2012. Viewstamped replication revisited.
(2012).

[27] Jennifer Lundelius and Nancy Lynch. 1984. A New Fault-Tolerant Algorithm
for Clock Synchronization. In Proceedings of the Third Annual ACM Symposium

on Principles of Distributed Computing (Vancouver, British Columbia, Canada)
(PODC ’84). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/800222.806738

[28] Jennifer Lundelius and Nancy Lynch. 1984. An upper and lower bound for
clock synchronization. Information and Control 62, 2 (1984), 190–204. https:
//doi.org/10.1016/S0019-9958(84)80033-9

[29] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated State Machines for WANs. In Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation (San Diego,
California) (OSDI’08). USENIX Association, USA, 369–384.

[30] Whittaker Michael, Ailijiang Ailidani, Charapko Aleksey, Demirbas Murat,
Giridharan Neil, Hellerstein Joseph, Howard Heidi, Stoica Ion, and Szekeres.
Adriana. 2021. Scaling Replicated State Machines with Compartmentalization.
Proc. VLDB Endow. (2021), 12.

[31] Microsoft. [n.d.]. Global data distribution with Azure Cosmos DB-under the
hood. https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-
hood.

[32] Microsoft. [n.d.]. NIC series. https://docs.microsoft.com/en-us/azure/virtual-
machines/nc-series.

[33] Jeffrey C. Mogul and Ramana Rao Kompella. 2015. Inferring the Network Latency
Requirements of Cloud Tenants. In Proceedings of the 15th Workshop on Hot

Topics in Operating Systems (HotOS XV). USENIX Association, Kartause Ittingen,
Switzerland. https://www.usenix.org/conference/hotos15/workshop-program/
presentation/mogul

[34] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More
Consensus in Egalitarian Parliaments. In Proceedings of the 24th ACM Symposium

on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Association
for Computing Machinery, New York, NY, USA, 358–372. https://doi.org/10.
1145/2517349.2517350

[35] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating
Concurrency Control and Consensus for Commits under Conflicts. In Proceedings

of the 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16). USENIX Association, Savannah, GA, 517–532. https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/mu

[36] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Annual Technical

Conference (USENIX ATC 14). USENIX Association, Philadelphia, PA, 305–
319. https://www.usenix.org/conference/atc14/technical-sessions/presentation/
ongaro

[37] John Ousterhout and Diego Ongaro. [n.d.]. Implementing Replicated Logs with
Paxos. https://ongardie.net/static/raft/userstudy/paxos.pdf.

[38] Seo Jin Park and John Ousterhout. 2019. Exploiting Commutativity for Practical
Fast Replication. In Proceedings of the 16th USENIX Conference on Networked

Systems Design and Implementation (NSDI’19) (Boston, MA, USA). USENIX
Association, USA, 47–64.

[39] PingCap. [n.d.]. TiKV-Data Sharding. https://tikv.org/deep-dive/scalability/data-
sharding.

[40] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind
Krishnamurthy. 2015. Designing Distributed Systems Using Approximate
Synchrony in Data Center Networks. In Proceedings of the 12th USENIX Conference

on Networked Systems Design and Implementation (Oakland, CA) (NSDI’15).
USENIX Association, USA, 43–57.

[41] Redis Enterprise. [n.d.]. Redis. https://redis.io.
[42] C. Schensted. 1961. Longest Increasing and Decreasing Subsequences. Canadian

Journal of Mathematics 13 (1961), 179–191. https://doi.org/10.4153/CJM-1961-
015-3

[43] Fred B. Schneider. 1993. Replication Management Using the State-Machine

Approach. ACM Press/Addison-Wesley Publishing Co., USA, 169–197.
[44] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State

Machine Replication Scalability Made Simple. In Proceedings of the Seventeenth

641

https://www.usenix.org/conference/osdi20/presentation/aguilera
https://doi.org/10.1145/3299869.3319893
https://doi.org/10.1109/SRDS.2012.66
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/3448016.3452834
https://doi.org/10.1145/3448016.3452834
https://doi.org/10.1145/2517349.2522712
https://doi.org/10.1145/2517349.2522712
https://www.cockroachlabs.com/blog/scaling-raft
https://www.cockroachlabs.com/blog/scaling-raft
https://etcd.io/docs/v3.5/benchmarks/etcd-3-demo-benchmarks/
https://etcd.io/docs/v3.5/benchmarks/etcd-3-demo-benchmarks/
https://arxiv.org/abs/2206.03285
https://www.proquest.com/dissertations-theses/self-programming-networks-architecture-algorithms/docview/2438700930/se-2?accountid=14026
https://www.proquest.com/dissertations-theses/self-programming-networks-architecture-algorithms/docview/2438700930/se-2?accountid=14026
https://www.proquest.com/dissertations-theses/self-programming-networks-architecture-algorithms/docview/2438700930/se-2?accountid=14026
https://doi.org/10.1145/3458336.3465278
https://doi.org/10.1145/3458336.3465278
https://doi.org/10.1145/191843.191886
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2829988.2787479
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf
https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf
https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/fast-paxos/
https://github.com/UWSysLab/NOPaxos
https://doi.org/10.1145/112600.112601
https://doi.org/10.1145/112600.112601
https://doi.org/10.1145/800222.806738
https://doi.org/10.1145/800222.806738
https://doi.org/10.1016/S0019-9958(84)80033-9
https://doi.org/10.1016/S0019-9958(84)80033-9
https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood
https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood
https://docs.microsoft.com/en-us/azure/virtual-machines/nc-series
https://docs.microsoft.com/en-us/azure/virtual-machines/nc-series
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mogul
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mogul
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/2517349.2517350
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://ongardie.net/static/raft/userstudy/paxos.pdf
https://tikv.org/deep-dive/scalability/data-sharding
https://tikv.org/deep-dive/scalability/data-sharding
https://redis.io
https://doi.org/10.4153/CJM-1961-015-3
https://doi.org/10.4153/CJM-1961-015-3

European Conference on Computer Systems (Rennes, France) (EuroSys ’22).
Association for Computing Machinery, New York, NY, USA, 17–33. https:
//doi.org/10.1145/3492321.3519579

[45] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of

Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.3386134

[46] Sarah Tollman, Seo Jin Park, and John Ousterhout. 2021. EPaxos Revisited. In
Proceedings of the 18th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 21). USENIX Association, 613–632. https://www.usenix.
org/conference/nsdi21/presentation/tollman

[47] Feiran Wang. 2019. Building High-performance Distributed Systems

with Synchronized Clocks. Ph.D. Dissertation. Stanford University.
https://www.proquest.com/dissertations-theses/building-high-performance-
distributed-systems/docview/2467863602/se-2?accountid=14026

[48] Zhaoguo Wang, Changgeng Zhao, Shuai Mu, Haibo Chen, and Jinyang Li. 2019.
On the Parallels between Paxos and Raft, and How to Port Optimizations. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
Association for Computing Machinery, New York, NY, USA, 445–454. https:

//doi.org/10.1145/3293611.3331595
[49] Michael Whittaker, Neil Giridharan, Adriana Szekeres, Joseph M Hellerstein,

Heidi Howard, Faisal Nawab, and Ion Stoica. 2020. Matchmaker paxos:
A reconfigurable consensus protocol [technical report]. arXiv preprint

arXiv:2007.09468 (2020).
[50] Michael Whittaker, Neil Giridharan, Adriana Szekeres, Joseph M Hellerstein, and

Ion Stoica. 2020. Bipartisan paxos: A modular state machine replication protocol.
arXiv preprint arXiv:2003.00331 (2020).

[51] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. 2013. Bobtail:
Avoiding Long Tails in the Cloud. In Proceedings of the 10th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 13). USENIX Association,
Lombard, IL, 329–341. https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/xu_yunjing

[52] Yahoo! [n.d.]. YCSB Workload. https://github.com/brianfrankcooper/YCSB/tree/
master/workloads.

[53] Xinan Yan, Linguan Yang, and Bernard Wong. 2020. Domino: Using Network
Measurements to Reduce State Machine Replication Latency in WANs. In
Proceedings of the 16th International Conference on Emerging Networking

EXperiments and Technologies (Barcelona, Spain) (CoNEXT ’20). Association for
Computing Machinery, New York, NY, USA, 351–363. https://doi.org/10.1145/
3386367.3431291

642

https://doi.org/10.1145/3492321.3519579
https://doi.org/10.1145/3492321.3519579
https://doi.org/10.1145/3318464.3386134
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://www.proquest.com/dissertations-theses/building-high-performance-distributed-systems/docview/2467863602/se-2?accountid=14026
https://www.proquest.com/dissertations-theses/building-high-performance-distributed-systems/docview/2467863602/se-2?accountid=14026
https://doi.org/10.1145/3293611.3331595
https://doi.org/10.1145/3293611.3331595
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xu_yunjing
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xu_yunjing
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://doi.org/10.1145/3386367.3431291
https://doi.org/10.1145/3386367.3431291

	Abstract
	1 Introduction
	2 Motivation of Nezha: Reordering in the Public Cloud
	3 Deadline-Ordered Multicast
	4 Nezha Overview
	5 The Nezha Protocol
	5.1 Replica State
	5.2 Message Formats
	5.3 Fast Path
	5.4 Slow Path
	5.5 Other Concerns

	6 Recovery
	7 Optimizations in Nezha
	7.1 Incremental Hash
	7.2 Commutativity Optimization
	7.3 Periodic Checkpoints

	8 Evaluation
	8.1 Settings
	8.2 Comparison with Multi-Paxos, Fast Paxos and NOPaxos
	8.3 Comparison with TOQ-EPaxos
	8.4 Ablation Study
	8.5 DOM's Trade-Off at Different Percentiles
	8.6 Proxy Evaluation
	8.7 Comparison in WAN
	8.8 Disk-Based Comparison: Nezha vs. Raft

	9 Application Performance
	10 Related Work
	11 Conclusion and Future Work
	References

