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ABSTRACT
As modern applications generate data at an unprecedented speed

and often require the querying/analysis of data spanning a large

duration, it is crucial to develop indexing techniques that cater

to larger-than-memory databases, where data reside on heteroge-

neous storage devices (such as memory and disk), and support

fast data insertion and query processing. In this paper, we propose

FILM, a Fully learned Index for Larger-than-Memory databases.

FILM is a learned tree structure that uses simple approximation

models to index data spanning different storage devices. Compared

with existing techniques for larger-than-memory databases, such

as anti-caching, FILM allows for more efficient query processing at

significantly lower main-memory overhead. FILM is also designed

to effectively address one of the bottlenecks in existing methods

for indexing larger-than-memory databases that is caused by data

swapping between memory and disk. More specifically, updating

the LRU (for Least Recently Used) structure employed by exist-

ing methods for cold data identification (determining the data to

be evicted to disk when the available memory runs out) often in-

curs significant delay to query processing. FILM takes a drastically

different approach by proposing an adaptive LRU structure and pig-

gybacking its update onto query processing with minimal overhead.

We thoroughly study the performance of FILM and its components

on a variety of datasets and workloads, and the experimental re-

sults demonstrate its superiority in improving query processing

performance and reducing index storage overhead (by orders of

magnitudes) compared with applicable baselines.
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1 INTRODUCTION
With the increasing deployment of big science observation infras-

tructures, IoT devices, and Web services, there has emerged a new

category of applications with the following data and workload char-

acteristics. (1) large volume and high velocity: data keep pouring in

from high-frequency data collection equipment such as IoT sensors

and large area space telescopes; (2) append-only: data is produced
and stored in an append-only fashion with no modification allowed,

to ensure the authenticity of the records; and (3) diverse workloads:
query workloads display a high degree of diversity and complexity,

varying from simple point queries to complex analytical queries

involving both newly arrived and historical data.

Data and workloads with the above-mentioned properties can

be observed in a variety of scenarios and are of great research

importance. For example, in a typical astronomy application, 1-

2TB of data are generated in every observation night at the rate

of 85MB/s [40, 43]. Likewise, in an industrial setting [15, 24], vast

amounts of data are collected from assets and machines equipped

with sensors. In these scenarios, the data collected need to be quickly

ingested and analyzed to support the downstream tasks. For ex-

ample, it would be highly desirable for astronomers to detect sky

events from astronomical data with low latency. The detection pro-

cess may involve querying events (such as transient astronomical

events and periodic variable stars) with time spans ranging from

seconds to years [9, 46] and retrieving not only newly generated

data but also data from a distant past regarding a particular event

and/or observation object, which jointly make the detection task

challenging [30]. As another example, when detecting anomalies

from IoT sensor readings, non-periodic failure alerts need to be

carefully validated against historical data, which involves running

queries on recent data as well as relevant data from the past with

similar patterns. Such queries must be processed efficiently to allow

for fast and reliable anomaly detection, which will form the basis of

high-stake decisions on what actions to take in response (e.g., shut-

ting down the assembly line). Similar scenarios also exist elsewhere,

such as the nearline operational analysis task at LinkedIn [11].

Such data and workloads present unique challenges to data man-

agement. To support downstream tasks leveraging such data, it is

essential to build index structures on the data that can not only

handle newly arriving data with high performance, but also sup-

port fast query processing for efficient data retrieval and analysis.

Given the data and workload requirement in our target setting,

such index structures have to be main-memory based. However,

since the data volume usually far exceeds the memory capacity, we
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have to consider more advanced techniques proposed in the liter-

ature that support larger-than-memory databases. Among them,

anti-caching [7] is one of the most scalable and robust techniques.

Compared with alternative methods, it provides more control over

the identification and movement of cold data from memory to disk

as the database grows in size. Moreover, anti-caching facilitates

fine-grained tracking of data evicted to disk, in that cold data are

spilled to disk at the tuple level rather than the page level unlike in

techniques based on the use of virtual memory [38].

Nonetheless, existingmethods for larger-than-memory databases,

exemplified by anti-caching, are insufficient to address challenges

arising from our target settings. First, the indexes occupy a large

portion of memory, as such indexes have to reside in memory to

provide low update and query latency [7, 28, 45]. As indicated

in [45], existing indexes may consume up to 55% of the memory

in a main-memory database, and this percentage is even higher in

our target settings considering the data indexed in a larger-than-

memory database is (perhaps orders of magnitude) larger in size.

Second, when the available memory runs out, the system needs

to free up space for hot (newly arrived or recently accessed) data.

Cold data is identified and evicted to disk, typically using the Least

Recently Used (LRU) strategy, while tracking data access causes

additional CPU overhead at query processing time [7, 28]. Our ex-

periments show that tracking data access accounts for about 35%

of the total query time, even with aggressive optimizations applied

to reduce its cost (see Section 6) .

In this paper, we propose FILM, a Fully learned Index for Larger-
than-Memory DBMSs, which addresses the challenges in larger-

than-memory databases. We take a learned approach, as recent re-

search [8, 14, 22, 27, 42] on learned indexes yields more lightweight

index structures than conventional methods, which significantly

reduce the storage overhead by using machine learning models

to predict the positions of keys. However, different from existing

learned indexes which are designed for data storage and retrieval in

homogeneous storage settings (i.e., only a single type of storage is

involved, either memory [8, 14, 22, 42] or disk [27]), FILM aims to fa-

cilitate both low-cost cold data identification and high-performance

index lookup for larger-than-memory databases across heteroge-

neous storage (i.e., involving different storage devices with varying

hardware characteristics). In particular, we study the case of data

spanning both memory and disk, but the methodology is general

enough to be applied across a broader range of heterogeneous

storage settings involving byte-addressable and block-addressable

devices [28].

FILM utilizes approximate learned models with controllable er-

ror guarantees to serve a dual purpose: (1) to fully index data across

heterogeneous storage and support fine-grained data access, and

(2) to efficiently maintain an integrated LRU data structure and

reduce the cost of cold data identification. At a high level, the de-

sign of FILM has three key elements. First of all, FILM uses simple

machine learning models to capture the cumulative distribution

function of the underlying data, which are lightweight and reduce

the memory consumption by orders of magnitude compared with

conventional indexes. Secondly, FILM features a unified tree struc-

ture that insulates its upper levels from changes in data location

caused by data swapping between memory and disk, and thus en-

joys a very low maintenance cost in the presence of frequent data

swapping. Finally, FILM integrates an adaptive LRU module that

embeds the access information of data into the learned model to

achieve low-cost and fine-grained cold data identification.

In summary, we make the following contributions:

• We propose FILM, a fully learned index for larger-than-memory

databases. To the best of our knowledge, FILM is the first learned

approach specifically proposed for data indexing and cold data

identification on heterogeneous storage.

• We develop index update procedures that is able to dynamically

and efficiently handle data swapping between memory and disk

with reduced I/O overhead.

• We design an adaptive LRU structure based on the learned data

patterns that can reflect the access patterns of query workloads

as claimed in [17], which provide fine-grained cold data identifi-

cation while incurring lower CPU overhead..

• We propose algorithms for point and range queries based on

FILM to process queries involving one or more types of storage.

• We conduct extensive experiments on several real and synthetic

datasets. The results show that FILM can reduce the index size

by at least 50× and accelerate query processing by 10× to 100×.

The rest of this paper is outlined as follows. Related work is

reviewed in Section 2. We then present an overview of FILM in

Section 3. We introduce the details of FILM in Section 4 and the

query algorithms in Section 5. Section 6 presents results from the

empirical studies, and Section 7 concludes the paper.

2 RELATEDWORK
Cold data identification. Cold data identification is a common

task in larger-than-memory databases and cache replacement. Gen-

erally, it has two methods [28]: 1) online and 2) offline. The former

maintains fine-grained access information for all tuples in real-time,

typically uses LRU, and the latter logs and analyzes the accessed

tuples offline.

Larger-than-memory databases. A widely-used method sup-

porting larger-than-memory datasets is to apply main memory

distributed cache [13, 18] atop the disk-based DBMS. However, this

method leads to duplicated data between the distributed cache and

the buffer pool of DBMS [7]. Main-memory DBMSs usually provide

faster query answering than disk-resident databases [28], but their

performance is limited by the memory capacity. More advanced

approaches are proposed to support main-memory DBMSs with

secondary storage such as disks, and use virtual memory (VM)

swapping in the operating system (OS) [38] to manage larger-than-

memory datasets. However, VM is a “black box” for a DBMS since

it does not know whether a page is in memory or disk and has no

way to predict when it will encounter a page fault [28].

Anti-caching [7] is a new architecture for main-memory DBMSs.

It supplements the main-memory database with disks and separates

data into different storage devices. Its key advantage is its ability

to make fine-grained eviction such that the data is evicted at tuple-

level instead of page-level of VM.When the DBMS moves cold

data onto disk, it inserts “tombstone” in memory to keep track of

each tuple on disk to handle queries accessing data that do not

reside in memory [7, 45], and all indexes are updated according

to tombstones. However, the internal structures of anti-caching
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consume a larger portion of the total available memory and the LRU-

based method for cold-data identification can be very costly due to

the maintenance cost of the LRU-chain. Siberia [10] avoids the high

overhead of LRU via an offline process. However, it requires more

storage to log the accessed tuples, and providing access frequency

information may require the analysis of all the log records [28].

In contrast, FILM uses an online LRU-based identification method

with low maintenance cost, providing real-time identification and

avoiding the offline procedure.

HTAP systems. In Hybrid Transactional and Analytical Pro-

cessing (HTAP) systems, data owners simultaneously run trans-

actional and analytical workloads over the same data and hard-

ware [6, 19, 20, 23, 25, 34, 37, 44]. Similar to the task studied herein,

HTAP systems need to manage hot and cold data efficiently within

a single database instance [23]. However, the application scenarios

we target have different technical demands which lead to differ-

ent optimization objectives. While HTAP considers a mixture of

transactional and analytical workloads, FILM targets specifically

the append-only settings, which allows us to design a dedicated ap-

proach that drastically improves system performance and reduces

hardware footprint over general-purpose HTAP systems.

Methods for reducing index storage overhead.While many

compression methods [3, 14] have emerged to reduce index size,

they all involve decompression that causes query latency and the

index size still constantly grows with the number of keys to be

indexed. Eventually, the index itself is too large to fit in memory,

and the index has to be dropped or a partial index built (e.g., only

for data in memory). A state-of-the-art method is a hybrid index

with dual-stage transformation which builds dynamic and static

stages [45]. In experiments, we apply the compaction and structural

reduction guidelines of the hybrid index to build baselines.

Learned indexes. Learned indexes [22] provide opportunities

to reduce the storage consumption of indexes. However, existing

works are designed for homogeneous storage, mostly for in-memory

data [8, 14, 22, 39, 42]. [12] can build learned models for data either

in memory or on disk (but not both). They cannot effectively handle

the larger-than-memory settings where data is stored across hetero-

geneous storage with frequent data swapping. Besides, they do not

support efficient cold data identification. [22] uses Recursive Model

Index (RMI) to fit the cumulative distribution function (CDF) of data.

There are works following the idea of RMI [8, 12, 14, 27, 39], among

which the most related work is PGM-index [12] which incorporates

recursive index structures and 𝑝𝑤𝑙 𝑓 𝑠 (Piece-Wise Linear Functions).

However, it assumes data is stored in a contiguous array, whereas

FILM does not have such restrictions.

3 FILM OVERVIEW
We first discuss the challenges of data indexing in larger-than-

memory settings, motivating the design of FILM, and then present

the high-level design of FILM.

3.1 Basic Idea
FILM utilizes approximation models to capture the distribution of

keys and predict their approximate positions (with a specified error

bound 𝜀). Since the data in our target settings usually have a large

number of keys, it is generally infeasible to train a single model to

capture their distribution unless the model is extremely complex as

indicated by [12, 14, 22]. We therefore take a divide-and-conquer ap-

proach following existing work [22] and partition a range of (sorted)

keys into sub-ranges. We then learn a simple approximation model

for each sub-range with minimal computational cost. We refer to a

sub-range of data together with the approximation model fitted on

the sub-range as a piece. The first key and last key in a sub-range

are referred to as the start key and end key of the 𝑝𝑖𝑒𝑐𝑒 , respectively.

What distinguishes our proposal from existing approaches that

also use learned approximation models for indexing is that (1) we

explicitly address issues arising from indexing data across hetero-

geneous storage, and (2) the proposed index has a built-in structure

that performs efficient cold data identification for data swapping

between memory and disk with minimal overhead.

To see why the heterogeneous storage presents unique chal-

lenges for indexing, let us take a closer look at existing learned

indexes, most of which are designed for main memory data and

provide only a single type of prediction granularity (byte address

in memory). That is, they predict for a given key a range of byte

locations (e.g., array elements) where the given key may appear and

then examine these bytes to find the key. However, such a design is

not directly applicable to our target setting of larger-than-memory

databases as the data is spanned over both main memory and disk.

Since it is generally infeasible to build a model that is capable of

making predictions with different granularities (e.g., byte for main

memory and page for disk), the only seemingly sensible alternative

is to build two models, one for the portion of data in memory and

the other for the portion residing on disk. While the index on the

in-memory portion may work well (as in existing work on indexing

main-memory data), the index for disk-resident data would not, as

predicting a range of disk pages (instead of bytes) to further exami-

nation may result in a large number of I/Os for even a moderate

𝜀 [27] (e.g., with 𝜀 = 16, 32 pages have to be retrieved from disk).

Even worse, with the frequent data swapping across heterogeneous

storage, both learned models would have to be frequently retrained

to guarantee the accuracy of prediction.

Another major challenge lies in cold data identification, which

plays a crucial role in larger-than-memory databases. Anti-caching

maintains a chain of items using a doubly-linked list sorted in LRU or-

der [7]. However, such an approach is not directly applicable to our

setting due to its high maintenance overhead. The complexity of

maintaining the LRU chain on data access is 𝑂 (𝑛) in the worst

case, where 𝑛 denotes the number of items in the LRU chain. While

sampling can be applied to skip some access operations to reduce

the maintenance overhead of LRU chain, as empirically shown in

Section 6.3.5, the cold data identification thus optimized still incurs

significant CPU overhead and may lead to sub-optimal data evic-

tion as the LRU chain no longer accurately reflects the data access

order, both degrading the overall query performance. Moreover, the

LRU chain in anti-caching is a standalone structure that is indepen-

dent from the index, limiting the opportunity to share operations

between index lookup and LRUmaintenance for further cost saving.

To overcome the above challenges, FILM provides a unified

learned model for data stored across heterogeneous storage and

does not require retraining after data swapping. The first key idea in

the design of FILM is that we would like it to be “location-oblivious”,

meaning that the learned model does not have to be aware of
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whether a record resides in memory or on disk. This is achieved

through the introduction of an in-memory “directory” that maps

each key to either a location on disk or a record in memory. For

a given key, the learned model only needs to predict its range of

locations in the directory in a similar fashion to predicting key

locations in existing learned indexes, which can be used to locate

the records, no matter whether they are in memory or on disk.

The second key idea in the design of FILM is to reduce the

overhead of maintaining the LRU chain by piggybacking the main-

tenance of the LRU order on the index lookup. This is achieved

through judicious maintenance of the LRU information within the

learned model. By building the LRU into the learned model itself,

LRU update can be performed at the same time as index lookup for

query processing and thus incurs minimal overhead.

3.2 FILM Design
Assume that 𝐷 is a set of 𝑁 records produced by an incremental

process with an attribute 𝑘 as the key, where the value of 𝑘 is drawn

from a discrete domain and monotonically increasing (e.g., the

timestamp attribute of the record). Following the practice in [7, 11],

we keep the newly generated or recently accessed data (hot data) in

memory, with the underlying assumption that such data are more

likely to be accessed in the immediate future. When the available

memory runs out, cold data is swapped to disk to make room for

hot data.

Fig. 1 depicts the architecture of FILM, which is tree-structured

as follows. (1) Each internal (i.e., non-leaf) node contains a 𝑝𝑖𝑒𝑐𝑒

(except for the root). For a given key, the approximation model

in 𝑝𝑖𝑒𝑐𝑒 is used to predict the set of 𝑝𝑖𝑒𝑐𝑒s to be accessed in the

next level. (2) The leaf nodes, each containing a 𝑝𝑖𝑒𝑐𝑒 , partition the

entire domain of 𝑘 according to its distribution; the leaf level as

a whole also serves as a directory to insulate the non-leaf nodes

from changes in the locations of data records due to swapping. To

support cold data identification, we design a structure that we call

the adaptive LRU that consists of a linked list called the global chain,
which references all leaf nodes to maintain a global access order of

leaf 𝑝𝑖𝑒𝑐𝑒s, as well as a linked list called the local chain in each leaf

𝑝𝑖𝑒𝑐𝑒 , which stores the data within the 𝑝𝑖𝑒𝑐𝑒 in the LRU order.

For newly arriving records, we either update existing leaf nodes

according to the mapping from the keys to their positions, or create

new leaf nodes. Each time a new leaf is created, its parent nodes

and ancestor nodes are recursively updated.

To see how FILM supports query processing, let us take the

point query (finding the locations of records with a specific 𝑘) as

an example, but the same idea applies to the range query (finding

the records with 𝑘 values in a specific range) as well. We may

process a point query by starting from the root and successively

predicting the 𝑝𝑖𝑒𝑐𝑒 in the lower level until the leaf 𝑝𝑖𝑒𝑐𝑒 containing

𝑘 is reached. We then access the identified leaf 𝑝𝑖𝑒𝑐𝑒 and use the

directory at the leaf level to obtain the location of the requested

record (be it in memory or on disk). Finally, we retrieve the record

and update the adaptive LRU accordingly.

If the amount of available memory runs out, FILM will make

evictions to free up the memory space. It first leverages the global

chain to locate the least recently used leaf 𝑝𝑖𝑒𝑐𝑒 and then uses the

local chain to identify the least recently accessed data record. FILM
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Fig. 1: The architecture of FILM

buffers in memory the evicted records and uses a fixed-size block as

the unit of data swapping from memory to disk. A fixed-size block

consists of a set of contiguous pages of disk which can be read from

or written to disk with a single sweep of the disk arm [32, 35]. As the

last step, FILM updates the leaf nodes with the current information

on the evicted keys, which keeps track of each record that has been

swapped out to disk.

To summarize, FILM is an integrative structure that provides a

unified learned model for data stored across heterogeneous storage

that avoids retraining after data swapping and maintains a built-in

adaptive LRU to reduce the cost of cold data identification.

4 THE FILM INDEX
This section details the major aspects of FILM, including the design

of 𝑝𝑖𝑒𝑐𝑒 , the learned model, and the adaptive LRU.

4.1 The Design of Piece
As mentioned in Section 3.1, a 𝑝𝑖𝑒𝑐𝑒 contains a sub-range of data

and an approximation model fitted on the sub-range. The model

predicts for a given key its position in the corresponding sub-range,

and the true position 𝑡𝑟𝑢𝑒_𝑝𝑜𝑠 of the key is guaranteed to be within

a specified distance bound (𝜀) to the predicted position 𝑝𝑟𝑒𝑑_𝑝𝑜𝑠 , i.e.,

|𝑝𝑟𝑒𝑑_𝑝𝑜𝑠 − 𝑡𝑟𝑢𝑒_𝑝𝑜𝑠 | ≤ 𝜀,
which facilitates the efficient locating of a key by focusing the search

on a particular portion of the sub-range. A newly inserted key that

breaks the constraint will be inserted into a new 𝑝𝑖𝑒𝑐𝑒 , and the new

key is called 𝑏𝑟𝑒𝑎𝑘_𝑘 . Intuitively, the value of 𝜖 is inversely related

to the number of sub-ranges for a fixed range of keys. By choosing

a proper number of sub-ranges and using a separate approximation

model for each sub-range, we can expect the value of 𝜀 to be small

and thus only a limited number of positions need to be accessed

to locate the key. As indicated by previous studies [12, 14, 22], the

linear model can effectively approximate the positions of keys while

incurring low training and inference cost. Therefore we also build

FILM utilizing linear models.

A design choice we have to make when creating sub-ranges

from the keys where the range of the keys is constantly expanding

due to newly arrived data, is whether consecutive 𝑝𝑖𝑒𝑐𝑒s should be

connected or not. Here, “connected” means that the end key of a
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𝑝𝑖𝑒𝑐𝑒 doubles as the start key of the next 𝑝𝑖𝑒𝑐𝑒 (i.e., overlapping). On

one hand, having connected 𝑝𝑖𝑒𝑐𝑒s brings extra work in deciding

which 𝑝𝑖𝑒𝑐𝑒 to access. For example, assume that 5 is the end key

of a 𝑝𝑖𝑒𝑐𝑒 and the start key of the succeeding 𝑝𝑖𝑒𝑐𝑒 . To search

for key 5 we may have to access both 𝑝𝑖𝑒𝑐𝑒s. On the other hand,

having disconnected 𝑝𝑖𝑒𝑐𝑒s results in the “cold start” problem since

at least two keys are required to create a new 𝑝𝑖𝑒𝑐𝑒 (to calculate

the slope of the linear model). This can be handled by temporarily

saving a single key in a buffer until the next key arrives. Since the

requested data may be saved in the buffer, the buffer needs to be

checked for each search key, causing extra space and search time

overhead. In FILM we use connected 𝑝𝑖𝑒𝑐𝑒s for the internal levels

and disconnected 𝑝𝑖𝑒𝑐𝑒s for the leaf level, denoted by 𝑖_𝑝𝑖𝑒𝑐𝑒 and

𝑙_𝑝𝑖𝑒𝑐𝑒 respectively. The 𝑖_𝑝𝑖𝑒𝑐𝑒 in internal level is to alleviate the

complexity of repetitively checking buffer, and the 𝑙_𝑝𝑖𝑒𝑐𝑒 in leaf

level can achieve non-overlapping key partitioning at runtime.

The 𝑖_𝑝𝑖𝑒𝑐𝑒 in internal level can be denoted by a triple {𝑠𝑡𝑎𝑟𝑡𝐾, 𝑠𝑙,
𝑖𝑝𝑡}, where 𝑠𝑡𝑎𝑟𝑡𝐾 is the start key that represents the beginning of

the sub-range (which is also the end key of the preceding 𝑝𝑖𝑒𝑐𝑒),

and 𝑠𝑙 and 𝑖𝑝𝑡 are the slope and intercept of the corresponding

linear model fitted on this sub-range respectively. The 𝑙_𝑝𝑖𝑒𝑐𝑒 in

leaf level can be represented by a quadruple {𝑠𝑡𝑎𝑟𝑡𝐾, 𝑒𝑛𝑑𝐾, 𝑠𝑙, 𝑖𝑝𝑡},
where 𝑠𝑡𝑎𝑟𝑡𝐾 is a 𝑏𝑟𝑒𝑎𝑘_𝑘 rather than the end key of the previous

𝑝𝑖𝑒𝑐𝑒 , and 𝑒𝑛𝑑𝐾 denotes the last point in the sub-range. We further

discuss the detailed design of 𝑙_𝑝𝑖𝑒𝑐𝑒 in Section 4.2.2

Methods from computational geometry [33] can help determine

the optimal number of 𝑝𝑖𝑒𝑐𝑒s used to partition the key range, which

are used in PGM-index [12] for index construction. In this work

we adopt the same idea and use a list of 𝑝𝑤𝑙 𝑓 s (piece-wise linear

functions) to partition the range of keys at each level.

Considering the unique requirements of data indexing in larger-

than-memory databases, FILM has the following differences from

those works using 𝑝𝑤𝑙 𝑓 s [12, 14, 31]. First, different from the 𝑝𝑤𝑙 𝑓 s

designed for homogeneous storage that are only used to map keys

to (𝜀-approximate) positions, the 𝑝𝑖𝑒𝑐𝑒s partitioned by 𝑝𝑤𝑙 𝑓 𝑠 in

FILM can also actively assist the cold data identification which is an

important and expensive task for larger-than-memory databases.

Secondly, previous works [12, 14] adopt a single type of 𝑝𝑤𝑙 𝑓 𝑠

designed for identical data layouts. FILM, on the other hand, con-

tains two types of 𝑝𝑤𝑙 𝑓 𝑠 , 𝑙_𝑝𝑤𝑙 𝑓 𝑠 and 𝑖_𝑝𝑤𝑙 𝑓 𝑠 , catering to the

requirements of 𝑙_𝑝𝑖𝑒𝑐𝑒s (disconnected sub-ranges) at leaf level

and 𝑖_𝑝𝑖𝑒𝑐𝑒s (connected sub-ranges) at internal levels respectively.

4.2 Dynamic Learned Model
At a high level, the 𝑖_𝑝𝑖𝑒𝑐𝑒s and 𝑙_𝑝𝑖𝑒𝑐𝑒s together capture the distri-

bution of the whole data and constitute the learned model of FILM.

Below we detail the construction process of the learned model and

discuss how FILM handles out-of-order insertions.

4.2.1 The Incremental Construction of FILM. When a new key ar-

rives, FILM attempts to index it using the last 𝑝𝑖𝑒𝑐𝑒 if the 𝜀 error

constraint can be satisfied, otherwise a new 𝑙_𝑝𝑖𝑒𝑐𝑒 will be created

for the newly arriving key (i.e., 𝑏𝑟𝑒𝑎𝑘_𝑘). A direct problem incurred

by the above process is that at least 2 points are required to create

a 𝑙_𝑝𝑖𝑒𝑐𝑒 while only one key exists during the initialization of the

new 𝑙_𝑝𝑖𝑒𝑐𝑒 . Thus, we design queuebuf for the leaf level to decouple

the update of index from data insertion. The queuebuf is used to

Algorithm 1 Construction of the learned model

Input: [𝑘𝑒𝑦𝑠, 𝑃𝑜𝑠𝑠 ], 𝜀 , initial =𝑇𝑟𝑢𝑒
Output: learned model

1: while initial do queuebuf.put(𝑘 ,𝑝𝑜𝑠)

2: while queuebuf.full() do
3: 𝑘1, 𝑝1 = queuebuf.get(), 𝑘2, 𝑝2 = queue-buf.get()

4: piece = {𝑘1, (𝑘2), 𝑠𝑙, 𝑖𝑝𝑡 } = initialPiece(𝑘1, 𝑝1 ,𝑘2, 𝑝2 ,𝜀)

5: initial = 𝐹𝑎𝑙𝑠𝑒

6: update parent level

7: if updatePiece(𝑘, 𝑝𝑜𝑠) = false then
8: initial =𝑇𝑟𝑢𝑒 , queuebuf.put (𝑘, 𝑝)

9: updatePiece of parent level
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Fig. 2: The learned model with two types of 𝑝𝑖𝑒𝑐𝑒s

temporarily store the 𝑏𝑟𝑒𝑎𝑘_𝑘 until the next key arrives when the

two keys can be utilized to create a new 𝑝𝑖𝑒𝑐𝑒 .

As depicted in Fig. 2, the 𝑙_𝑝𝑖𝑒𝑐𝑒s of the leaf level are fit on the

keys and their positions, while a 𝑖_𝑝𝑖𝑒𝑐𝑒 at an internal level is fit

on the 𝑠𝑡𝑎𝑟𝑡𝐾𝑠 of its child 𝑝𝑖𝑒𝑐𝑒s at the lower level. Thus higher

levels have less 𝑝𝑖𝑒𝑐𝑒s than lower levels, and the root 𝑅 contains

only one 𝑝𝑖𝑒𝑐𝑒 .

Algorithm 1 shows how the learned model is constructed recur-

sively. We first put newly arrived keys into queuebuf with 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

𝑡𝑟𝑢𝑒 (Line 1). Once the queuebuf is full, two keys are removed from

queuebuf to initialize a leaf 𝑝𝑖𝑒𝑐𝑒 , and we set 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑓 𝑎𝑙𝑠𝑒 (Lines

2-4). Then we recursively check whether the parent level needs

to be built or updated (Line 5). If the number of 𝑝𝑖𝑒𝑐𝑒s at the root

level becomes 2, FILM will create a new 𝑝𝑖𝑒𝑐𝑒 based on the current

level’s two 𝑠𝑡𝑎𝑟𝑡𝐾𝑠 and use the new 𝑝𝑖𝑒𝑐𝑒 as the new root. The pro-

cedure of initializing a 𝑝𝑖𝑒𝑐𝑒 by two points (line 4) is a well-studied

computational geometry algorithm [33]. The function of updating

a piece (line 7) takes an inserted key, its position and 𝜀 as inputs

to validate whether the inserted key satisfy the 𝜀 constraint, and

sets initial = true if the constraint is violated and input this new

key into queuebuf until the next key arrives to create a new 𝑝𝑖𝑒𝑐𝑒 .

4.2.2 Leaf Piece of FILM. We detail the design of leaf 𝑝𝑖𝑒𝑐𝑒 and

present how it efficiently maps keys to their positions in memory

or on disk and helps to achieve low-cost updating of LRU order.

As illustrated in Fig.3, a leaf 𝑝𝑖𝑒𝑐𝑒 in FILM contains five compo-

nents. 1) A linear function predicting the position of a key (in the

corresponding 𝑝𝑖𝑒𝑐𝑒) (𝑝𝑟𝑒𝑑_𝑝𝑜𝑠). 2) The key array recording the

keys belonging to this leaf node, which is utilized to get all keys

within 2𝜀 of 𝑝𝑟𝑒𝑑_𝑝𝑜𝑠 , from which we identify the key’s actual

position. While the key array of each leaf 𝑝𝑖𝑒𝑐𝑒 needs to be stored

in a contiguous chunk of memory, the key arrays of different leaf

nodes do not have to be contiguous in memory. 3) A directory that
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Fig. 3: Leaf 𝑝𝑖𝑒𝑐𝑒 and adaptive LRU of FILM

dynamically tracks the actual storage positions of all keys, which

directs a key to either a memory address or a location on disk. 4)

The local chain that maintains the LRU order of keys and stores

the payloads of keys in memory. 5) A lightweight location bitmap

with the same length as the key array that tracks whether the cor-

responding data record is in memory or not. A bit “1” indicates that

the entry in the directory is pointing to an item in the local chain; a

bit “0” indicates that the entry is pointing to an element in an array

that stores the addresses of all evicted records, where each element

takes the form of a pair ⟨blockID, offset⟩.
These five interrelated components are adaptive to data swap-

ping, making the learned model location-oblivious. Also, the local

chain within leaf 𝑝𝑖𝑒𝑐𝑒 enables the high-performance learnedmodel

to actively participate in the cold data identification process (de-

noted by adaptive LRU), greatly reducing its overhead.We introduce

the details of this adaptive LRU process in the Section 4.3.

4.2.3 Handling Out-of-Order Insertions. While FILM is designed

for the settings when data arrives in an append-only fashion, it also

naturally supports out-of-order insertions (i.e., the key of the newly

inserted record is less than at least one key currently indexed), as

discussed below. The update of a record (in attributes other than

the key) for a given key can be easily conducted by first locating

the record and then modifying its payload.

A seemingly straightforward solution to out-of-order insertions

is to create a sort_list for each leaf 𝑝𝑖𝑒𝑐𝑒𝑠 to absorb all the out-

of-order keys inserted to the 𝑝𝑖𝑒𝑐𝑒 , and periodically merge the

sort_lists into the learned index, as in [14, 39]. However, as will be

introduced in Section 4.3, keys in the sort_lists cannot participate

in the adaptive cold data identification process with FILM and thus

will never be swapped to disk.

Based on the requirement of larger-than-memory databases and

FILM, we design sort_piece, which can be viewed as a special type

of 𝑙_𝑝𝑖𝑒𝑐𝑒 that directly locates keys using binary search instead

of relying on the model prediction. When out-of-order insertion

occurs, FILM inserts the keys into sort_piece and ensures that

elements in sort_piece remain sorted. In addition, to actively fit in

the larger-than-memory settings, the payloads of these keys are

also stored in the local chain to track their LRU orders, and the

sort_piece is an item in global chain and can participate in cold

data identification.

The overall runtime of inserting a new key into sort_piece is

the complexity of binary search 𝑂 (log𝑛𝑠 ), where 𝑛𝑠 is the number

of keys in sort_piece. In practice, FILM allows the users to set

a threshold on the size of sort_piece to prevent it from growing

too large (for performance consideration), and once the size of a

sort_piece reaches the threshold, we rebuild a new learned model

for all the keys in sort_piece as in [22, 36].

4.3 Adaptive LRU
Instead of treating the update of LRU as a separate task from in-

dex lookup, FILM consists of local chains and the global chain

which supports adaptive LRU, i.e., updating the access order of the

requested data when performing index lookups, incurring no ex-

tra cost. Next we present the design of local chain and global chain,

and discuss how the low-cost cold data identification is conducted.

4.3.1 Local chain. As depicted in Section 4.2.2, a local chain is one

of the components in a leaf 𝑝𝑖𝑒𝑐𝑒 , which stores the payloads of the

keys belonging to this 𝑝𝑖𝑒𝑐𝑒 in the LRU order. The local chain is

implemented as a doubly-linked list supporting fast item removal

and insertion. We integrate the local chain into the index by making

each entry in the directory reference an item in the chain.

When making evictions using the local chain, the cold records

are identified from tail to head
1
. More specifically, the tail contains

the payload corresponding to the key that will be spilled to disk.

When evicting a key to disk, FILM will locate the position of the key

within the corresponding 𝑝𝑖𝑒𝑐𝑒 to update the location bitmap and

the tracking information in the directory for fine-grained tracking

of the evicted record. With FILM we store a 4-byte offset within the

item that points to the corresponding key’s position in the location

bitmap and the position in the directory.

The key benefit of local chain is that locating the corresponding

item in LRU is done simultaneously as the index lookup with FILM.

More specifically, when a query arrives, FILM uses the learned

model built by Algorithm 1 to locate the key. If the key appears in

FILM, the learned model will locate its exact position in the key

array of the leaf 𝑝𝑖𝑒𝑐𝑒 containing the key. The located key points to

a local chain item that stores the payloads of the key. The payload

will be returned as the query result; meanwhile, the corresponding

item will be moved to the head of the local chain, and the global

chain will also be updated as introduced in the next section.

4.3.2 Global chain. While local chain is efficient to identify the

cold records and maintain the LRU order within each leaf 𝑝𝑖𝑒𝑐𝑒 in

real-time, it only tracks the local access order of keys in a particular

𝑝𝑖𝑒𝑐𝑒 . Thus, we further design global chain to track the global data

access order across 𝑝𝑖𝑒𝑐𝑒s.

Each item in the global chain points to a leaf piece, and the tail

of the global chain denotes the least recently accessed leaf 𝑝𝑖𝑒𝑐𝑒 .

Every time an eviction is to be performed, we locate the tail of the

global chain, and use the corresponding local chain to identify the

least recently accessed key from the 𝑝𝑖𝑒𝑐𝑒 . When a query comes,

the global chain is updated by first locating the corresponding item

of the access leaf within the chain and then moving the located

item to the head of the global chain.

To further improve the LRU efficiency, FILM builds a hash ta-

ble for the fast location of nodes in the global chain, achieving

complexity 𝑂 (1) on average. Note that the extra space overhead

resulting from the hash table is negligible, as the hash table size

1
The tail in chain is the least recently used item; the head is the most recently used.
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(𝑁𝑙 , i.e. the number of leaf 𝑝𝑖𝑒𝑐𝑒s in leaf level) is expected to be

much smaller than the number of records in memory (𝑁𝑖𝑛). We

empirically evaluate the performance and the storage overhead of

adaptive LRU in Section 6.3.5.

4.3.3 Cold data identification. Algorithm 2 provides the detailed

procedure of cold data identification. For a given query, if the re-

quested data can be located in memory (Lines 2-5), FILM updates

the local chain and then the global chain, which are completed by

moving the corresponding item of local chain or global chain to the

head of the chain. If the requested data is not in memory and the

available memory runs out, the global chain will identify the leaf

𝑝𝑖𝑒𝑐𝑒 to evict data from, then evict the data associated with the tail

of the local chain (Lines 7-11). The process of updating global chain

with hash table is presented in Lines 12-18. To reduce the cost of

frequent random writes to disk, FILM evicts batches of pages in a

single sequential write when the database size (including the mem-

ory footprint used for storing data, learned model, LRU, and the

tracking information for evicted records) reaches a user-specified

threshold, as introduced in Section 3.2.

Ideally, the above-introduced cold data identification could evict

the coldest (the least frequently accessed) record of all the leaf

𝑝𝑖𝑒𝑐𝑒 by traversing the global chain from tail to head and moving

the coldest record of each local chain to disk until the database

size is below the threshold. However, traversing the global chain

may break the cache locality. In addition, this strategy makes the

records of a certain leaf be scattered across multiple evicted blocks,

which results in prohibitively expensive I/O costs when executing

a range query containing a series of continuous keys and a large

number of blocks need to be retrieved from disk. To overcome these

problems, FILM conducts evictions by moving a number of cold

records (rather than a single cold record) from the coldest leaf to

a block until the block is full, and then a new block will be cre-

ated to continue the process of eviction. During the above process,

we continue traversing the global chain to evict records from the

coldest leaf until the database size reaches below the user-defined

threshold. Thus the data from a certain leaf will be placed in the

same block or adjacent blocks, which greatly reduces the number of

blocks retrieved during range queries and ideally lead to sequential

reads. We expect such a strategy to be effective in practice, espe-

cially when the access to 𝑝𝑖𝑒𝑐𝑒s is skewed, and the exploration of

other strategies would be interesting future work.

There are two major differences between FILM’s adaptive LRU

and anti-caching’s LRU, as illustrated in Fig. 4. First, anti-caching uses

node traversal on the doubly-linked list from head to tail to locate

an LRU item. However, FILM avoids the time-consuming node

traversal by piggybacking the locating of the LRU item onto the

high-performance index lookup. Secondly, an LRU item in FILM’s

adaptive LRU stores the payload of the corresponding record (𝑝𝑖
represents the payload of the record) instead of just indicating the

LRU order as done in anti-caching.

5 QUERY PROCESSING AND COST ANALYSIS
In this section, we present algorithms for processing point and

range queries based on FILM, and analyze their cost.
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difference when locating LRU items more intuitive, we separate them in this toy example.

Fig. 4: LRU in anti-caching vs. adaptive LRU in FILM

Algorithm 2 Cold data identification

Input: queried key 𝑘 , Adaptive LRU

Output: the cold record, updated adaptive LRU

𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑒𝑎𝑓 = lookup 𝑘 with learned model

2: if the 𝑘 is stored in memory then
access the LRU item of 𝑘 in local chain

4: move the LRU item to the head

updateInterChain (𝑙𝑒𝑎𝑓 )

6: else
𝑒𝑣𝑖𝑐𝑡_𝑙𝑒𝑎𝑓 = read the tail of global chain

8: 𝑒𝑣𝑖𝑐𝑡_𝑟𝑒𝑐𝑜𝑟𝑑 = 𝑒𝑣𝑖𝑐𝑡_𝑙𝑒𝑎𝑓 .tail

make eviction

10: if 𝑒𝑣𝑖𝑐𝑡_𝑙𝑒𝑎𝑓 .tail = None then
remove 𝑒𝑣𝑖𝑐𝑡_𝑙𝑒𝑎𝑓 from global chain

12: function updateGlobalChain(𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑒𝑎𝑓 ))

if 𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑒𝑎𝑓 is in hash table then
14: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑡𝑒𝑚 = hash table (𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑒𝑎𝑓 )

move the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑡𝑒𝑚 to the head

16: else
append 𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑒𝑎𝑓 to the global chain

18: add 𝑎𝑐𝑐𝑒𝑠𝑠_𝑙𝑒𝑎𝑓 to hash table

5.1 Point Query
We first consider the processing of point queries with FILM, where

the query involves searching for the data record with a given key 𝑘 .

Note that for cases when 𝑘 exists in queuebuf (i.e., it is not indexed

by the learned model yet), the data record can be directly retrieved

from it with negligible overhead considering that queuebuf only

contains at most two keys and always resides in L1 cache. Thus our

focus is locating the requested data record using the learned model.

Specifically, the procedure consists of three steps.

Step 1: Find the leaf 𝑝𝑖𝑒𝑐𝑒 that 𝑘 belongs to. As described in

Section 4, FILM is a learned tree structure, and each level contains

multiple 𝑝𝑖𝑒𝑐𝑒s [33] fitted on the 𝑠𝑡𝑎𝑟𝑡𝐾s of the next level (or keys

for leaf 𝑝𝑖𝑒𝑐𝑒s). Starting from the root of FILM, we recursively

predict the candidate 𝑝𝑖𝑒𝑐𝑒s in the next level containing 𝑘 until

the leaf 𝑝𝑖𝑒𝑐𝑒 containing 𝑘 has been identified. The query result is

empty if no such 𝑝𝑖𝑒𝑐𝑒 can be found.

Step 2: Locate 𝑘 in the 𝑝𝑖𝑒𝑐𝑒. Let 𝐿𝑖 be the leaf 𝑝𝑖𝑒𝑐𝑒 that con-
tains 𝑘 . We use the linear function in 𝐿𝑖 to predict the position of 𝑘 :

𝑝𝑟𝑒𝑑_𝑝𝑜𝑠 = 𝑘 ×𝐿𝑖 .𝑠𝑙 +𝐿𝑖 .𝑖𝑝𝑡 . The actual position of 𝑘 is guaranteed

to be within 𝑝𝑟𝑒𝑑_𝑝𝑜𝑠 ± 𝜀. We then exhaustively search this range

to locate 𝑘 . Note that FILM is able to determine whether the payload

associated with 𝑘 resides in memory or on disk using the location

bitmap introduced in Section 4.2.2. We return an empty result if 𝑘

cannot be found in this 𝑝𝑖𝑒𝑐𝑒 .

Step 3: Retrieve the data record and update the adaptive
LRU. If the requested data record resides in memory, then 𝑘 points

to an item in the local chain, and the record can be directly accessed

using the item. At the same time, the accessed item is moved to the
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head of the local chain. Otherwise, 𝑘 must be pointing to a ⟨blockID,
offset⟩ pair, which is used to retrieve the requested data record from
disk at the given offset in the block indicated by blockID.

For each query, the accessed leaf will be moved to the head of

the global chain. Once the available memory runs out, FILM makes

eviction using the adaptive LRU.

There are two strategies for determining howmuch data from the

retrieved block to be merged into memory (i.e. put the records back

into their corresponding leaf nodes) [7], namely block-merge, which
merges all records of the retrieved block back into memory, and

request-merge which only saves the requested records in memory.

Considering the larger merge costs of the block-merge strategy to

merge all the records from a block, FILM adopts the request-merge

strategy. The chosen strategy can also avoid thrashing where some

key is fetched into memory and then re-evicted immediately. Once

the desired records are merged, the fetched block will be discarded,

which means a record may have an in-memory version and a stale

version on disk causing “holes” in the block. The “holes” are handled

with a lazy merge strategy as done in anti-caching [7]. It tracks the

number of “holes” in each block, and checks the number of “holes”

when the block is retrieved from disk. If the number of “holes”

exceeds a user-defined threshold, we will execute a block-merge

operation instead of request-merge.

5.2 Range Query
We next consider range queries of the form 𝑄𝑅 = (𝑙𝑝, 𝑟𝑝) request-
ing a set of data records, with 𝑙𝑝 and 𝑟𝑝 being the start and end

points of the queried range.

The cases when all the requested data records reside in a single

type of storage or across different types of storage can be handled

similarly by FILM. To answer a range query 𝑄𝑅 , FILM first deter-

mines all the leaf 𝑝𝑖𝑒𝑐𝑒s overlapping with 𝑄𝑅 . More specifically, it

first finds the leaf containing 𝑙𝑝 (denoted by 𝑙_𝑙𝑒𝑎𝑓 ) and the posi-

tion of 𝑙𝑝 within 𝑙_𝑙𝑒𝑎𝑓 , then continuously checks the succeeding

leaf 𝑝𝑖𝑒𝑐𝑒 until 𝑟𝑝 is located (since keys in FILM are sorted).

For each leaf 𝑝𝑖𝑒𝑐𝑒 overlapping with 𝑄𝑅 , FILM reads the re-

quested data records contained therein. When retrieving records

from disk, the algorithm involves a pre-processing phase during

which we determine all the blocks on disk containing the records

that𝑄𝑅 requests, so that the blocks can then be retrieved from disk

together to reduce the I/O cost. The adaptive LRU will be updated

during the process as is done for point queries.

5.3 Cost Analysis
Assume that the number of leaf 𝑝𝑖𝑒𝑐𝑒s is 𝑁𝑙 , and the “height” (the

number of levels) of FILM is 𝐻 . The cost of finding a leaf 𝑝𝑖𝑒𝑐𝑒 for

a given 𝑘 is thus 𝑂 (log𝐻 ). Note that 𝐻 = log𝑁𝑙 in the worst case,

and its value is usually much smaller than log𝑁𝑙 , depending on the

choice of 𝜀. In the current implementation of FILM, we use linear

scan
2
to identify the exact position of the query key in candidates

(defined by the predicted position and 𝜀) which is of cost 𝑂 (2𝜀).
For a point query that accesses data in memory, the total time

complexity is 𝑂 (log𝐻 + 2𝜀). When the queried data resides on

disk, FILM requests data records from disk, and at the same time

2
While other search methods such as binary search work as well, we choose to use

linear scan since in some cases it is more efficient than binary search [16].

identifies cold data and makes eviction. The adaptive LRU can

locate the cold item in 𝑂 (1) time, and the total cost of accessing

data residing on disk also includes the cost of disk I/O. As the

performance breakdown in Section 6.3.1 shows, this total cost is

dominated by the I/O of disk accesses. Besides, the I/O cost of

eviction is amortized over sequential writes and the maximum

number of records contained in an evicted block which consists of

a set of contiguous disk pages.

We can perform a similar cost analysis on range queries accessing

only data in memory. For range queries requiring disk access, the

eviction strategy of FILM as shown in Section 4.3.3 can greatly

reduce the number of blocks retrieved from disk and may often

lead to sequential reads of multiple blocks. Likewise, the total cost

of range query accessing data on disk is also dominated by disk

I/O. Note that the actual cost of a range query accessing 𝑝 blocks

in practice may be close to the cost of accessing a single block due

to sequential disk page access.

6 EXPERIMENTS
In this section we empirically evaluate the performance of FILM

as well as its components using real and synthetic datasets with

various workloads. The results demonstrate that FILM is able to

significantly accelerate query processing while incurring much

lower storage overhead for indexing larger-than-memory databases.

6.1 Baselines
This section introduces the baseline methods for indexing and cold

data identification that can be applied or adapted to our target set-

ting. Detailed discussions can be located in Section 2.

Indexmethods.We compare FILM against B+trees (OriB+tree, C-

ptB+tree, HybridB+tree) and learned indexes (ALEX, FITING-Tree).

We adapt these baseline methods to the larger-than-memory set-

ting using the architecture of anti-caching [7], which maintains

tombstones in memory for fine-grained tracking of each record on

disk; all the indexes are updated according to tombstones. Previous

learned indexes designed for homogeneous storage [8, 12, 14] usu-

ally take the standard B+tree (OriB+tree) as the primary baseline.

We further optimize OriB+tree by applying hybrid index guide-

lines [45] to build HybridB+tree as introduced in Section 2. The

CptB+tree is a compact B+tree where the node utilization is set

to 100%. We adopt the implementation of B+tree from the stan-

dard STX B+Tree [4] library, and set the parameters based on the

optimal setting of STX’s implementation. For learned indexes, we

choose ALEX [8] and FITING-Tree [14]. We use the open-source

implementation of ALEX [1], and implement FITING-Tree in C++

on our own since its artifacts are not available.

Cold data identification. To better study the LRU performance

of FILM, we compare the adaptive LRU of FILM (adaLRU) against
1) traditional LRU chain that a doubly-linked list with sampling rate

𝑎 = 0.01 is used to maintain the LRU chain (i.e., only one out of every

one hundred queries updates the LRU chain) as per [7], denoted

by aLRU, and 2) traditional LRU chain that performs real-time

updates of the LRU order for every query (LRU) [7]. Comparison

of LRU methods is provided in Section 6.3.5, and for other sections

we adopt aLRU for OriB+tree, CptB+tree, HybridB+tree, ALEX and

FITING-Tree since it incurs less overhead than traditional LRU.

568



zipf randomran+zipfhotspot0
2
4
6
8
10

op
era

tio
ns

 pe
r h

ou
r

(m
op

s)

workload type

 OriB+  CptB+
 HybridB+  ALEX
 FIT  FILM

(a) wiki_ts

zipf randomran+zipfhotspot0
2
4
6
8
10

op
era

tio
ns

 pe
r h

ou
r

(m
op

s)
workload type

(c) books
 OriB+       CptB+
 HybridB+  ALEX
 FIT           FILM

zipf randomran+zipfhotspot0
2
4
6
8
10

op
era

tio
ns

 pe
r h

ou
r

(m
op

s)

workload type

(b) astro_ra
 OriB+       CptB+
 HybridB+  ALEX
 FIT           FILM

Fig. 5: FILM vs. Baselines: insertion and query performance

6.2 Experiment Setup
FILM is implemented in C++. All experiments are conducted on

an Ubuntu machine with 3.6GHz Intel CPU with 256KB L1 cache,

128GB memory (4 × 32GB) and 557GB disk. All experiments are

run on a single thread and disk accesses are carried out with direct

I/O to avoid OS-level caching.

Besides, we choose synchronous retrieval (SR) [7] of anti-caching

as the cold data retrieval policy to avoid the overhead of aborting

queries and restarting the long-running execution. SR stalls the

execution of a query that requests evicted records until the data is

brought into memory.

6.2.1 Datasets. We introduce the 3 real-world datasets and 2 syn-

thetic datasets used in the experiments below:

• 𝑤𝑖𝑘𝑖_𝑡𝑠 . The keys are the timestamps of a subset of English

wikipedia [29, 41].

•𝑏𝑜𝑜𝑘𝑠 . The key is the sale popularity of each book on Amazon[21].

•𝑎𝑠𝑡𝑟𝑜_𝑟𝑎. The keys are the right ascensions of observation stars [40].
• 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 . The keys are randomly generated long int numbers

following the Zipfian distribution with a factor of 0.5.

• 𝑌𝐶𝑆𝐵. The keys are generated based on YCSB [5] using the tool

proposed in [45].

Since the datasets consist of keys only, we attach to each key

a fixed-size payload to form a record, with the default record size

being 128B; we study the influence of record size on FILM in Section

6.5.1. All keys are in 64-bit format. The sizes of the three real datasets

are 4GB each, and the sizes of datasets 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 and 𝑌𝐶𝑆𝐵 are up

to 128GB. The CDF of each dataset is provided in Fig. 4 in [2].

6.2.2 Workloads. Theworkloads consist of query keys selected from
the existing keys in each dataset according to four types of access

patterns, including Zipfian [5, 7], random [12, 42], Zipfian+random

[8, 10], and hotspot [26, 39]. Specifically, the Zipfian distribution

is controlled by a factor 𝑧 in the range [0.25,1.5], which simulates

skewed workloads where older data are accessed much less fre-

quently than newer data [7], and higher 𝑧 leads to higher skewness.

To produce a range query, as in [8], we first generate a query key

that serves as the left bound, and then choose a random uniform

number (upper bound is 100) which indicates the number of keys

contained in the range and thus also defines the right bound.

In the following, we first compare the performance and storage

overhead of FILM against baselines. Then, we evaluate the sensitiv-

ity of FILM to changes in parameters including hardware-related

parameters (available memory, block size), and data-and-model-

related parameters (record size, different datasets, 𝜀, update ratio).

We run three trials per workload and report the average.

6.3 Comparison with Baselines

Table 1: Breakdown of performance
time (s) oriB+ CptB+ HyB+ FIT ALEX FILM

LRU update 1070.85 1155.99 724.67 1357.42 1230.16 6.13

read disk 338.97 338.67 462.3 317.34 500.48 248.7

write disk 6.05 5.27 4.59 4.7 6.86 1.84

index lookup 3.21 3.17 4.41 2.31 1.04 0.02

In the experiments, we configure the amount of memory avail-

able to indexing and query processing,𝛩 (a administrator-tunable

parameter), according to the data size such that the ratio of data

size to𝛩 is 2:1 unless otherwise noted. We study its effect on the

performance in Section 6.4.1.

6.3.1 Insertion and query performance. We first evaluate the in-

sertion and query performance of all methods. This experiment

uses the three real datasets. We first initialize the index with the

first 1.5 × 𝛩 records from the dataset, and then during the mea-

surement phase, the workload interleaves insertions and queries

(generated according to different types of workloads as described

in Section 6.2.2) with a 1:1 ratio. We run the measurement phase for

3600 seconds and report the total number of operations (a mixture

of inserts, point and range queries) completed in this phase in Fig. 5.

As can be observed from Fig. 5, FILM can execute 2× to 5×
number of operations compared with baselines, across various

datasets and workloads. One of the main reasons is that FILM

reduces the query latency by piggybacking the (expensive) LRU

update to the high-performance index lookup. For baselines, even

though using sampling to update LRU helps to reduce the overhead

(for range queries, a sampling rate of 0.001 is used as having more

keys within the queried range would result in prohibitive cost for

LRU update), it still incurs a high latency to locate the accessed

item in the LRU chain each time the chain is updated and may

lead to inaccurate cold data identification. Another reason is that

FILM improves memory efficiency using the lightweight learned

model and the adaptive LRU chain, so that more data could reside

in memory, incurring less data transfer between memory and disk.

Another observation from Fig. 5 is that, as the skewness increases

(with random being the lowest and Zipf the highest), the superiority

of FILM becomes more significant across all datasets. The reason

is that skewed queries tend to access data in memory, which leads

to fewer data retrieval from disk. Other baselines also benefit from

the increase in skewness, but less significantly.

For more detailed analysis of the performance gains, we provide

a breakdown of the insertion and query execution times of different

methods under Zipf workload in Table. 1, with the same number of

operations executed. The total execution time of a workload can

be broken down into four parts: retrieving data from disk, evicting

records to disk, LRU maintenance, and index lookup. Table. 1 shows

that the main factors affecting the performance are disk accesses

and LRU maintenance. Clearly, FILM reduces the cost of both disk

access and LRU updates on various workload types. Disk accesses

becomes the dominant overhead in FILM, since the expensive LRU

maintenance is piggybacked to index lookup.

Fig. 7 presents the 95% confidence interval (CI) of latency for

wiki_ts with Zipf workload. FILM has the lowest average latency

in both insertion and query, with a much narrower CI than other
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Fig. 8: FILM vs. Baselines: storage overhead

baselines, indicating that FILM is more stable and consistent in ex-

ecution time. Further discussion can be found in the full report [2].

6.3.2 Index construction. The initialization of index described in

Section 6.3.1 also serves as an evaluation of the index construc-

tion and eviction process. Fig 6 shows the elapsed time of index

construction and eviction for three datasets.

The results show that index construction takes longer with

learned indexes than with traditional indexes (with HybridB+tree

being an exception due to the transformation between the dynamic

and static stages). More specifically, the construction time for FILM

is on average 2.2-2.5 times that of OriB+tree and CptB+tree, which is

a fair trade-off for the great saving in memory usage and reduction

in search time. Another observation is that FILM takes 9%-17% less

time to evict records than other baselines due to memory savings.

6.3.3 Storage overhead. We next compare the storage overhead of

each method based on fixed data size and available memory and the

results are shown in Fig. 8. The model size refers to the size of the

learned model (which includes the pre-allocated gaps in the leaves)

or the the size of the tree for traditional tree indexes. LRU usage

refers to the size of the LRU chain (and the hash table in FILM),

and tracking usage denotes the amount of memory consumed by

saving the information used to access the evicted records on disk

including the directory, the location bitmap and the disk addresses.

Fig. 8 shows the storage overheadwith data size equals to 4096𝑀𝐵

under𝛩 = 2048𝑀𝐵 on three real datasets; other datasets and set-

tings show similar trends. FILM incurs 28%, 25% 20%, 29% and 14%

less overhead than OriB+tree, CptB+tree, HybridB+tree, ALEX,

and FITING-TREE, respectively, demonstrating that FILM is more

storage-efficient and can keep more data in memory for larger-than-

memory databases under the same storage capacity.

The reduction of storage overhead of FILM mainly comes from

two aspects. First, the index size of FILM is 212×, 157×, 82×, 227×,
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and 1.9× smaller than that of oriB+tree, CptB+tree, HybridB+tree,

ALEX, and FITING-Tree respectively (note: ALEX has a large in-

dex size because the leaf node in ALEX is set with a max node

size and pre-allocates empty space with gapped arrays.) Second,

FILM achieves up to 37% less LRU memory footprint as FILM uses

4-byte pointers in the local chain of adaptive LRU, and it has lower

tracking usage since less data needs to be evicted to disk.

6.3.4 Scalability w.r.t data size. We set the available memory to

64GB and increase the data size to up to 128GB to evaluate the

scalability of FILM to large datasets. Fig. 9 shows the query time

when executing 10
5
random point queries on large datasets 𝑌𝐶𝑆𝐵

and 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 . FILM outperforms baselines across all data sizes, and

as the data size increases from 96GB to 128GB, FILM’s query time

increases at a much slower rate than those for the baselines. This

is because, as the data size increases, the length of the LRU chain

increases, leading to notable performance reduction in the baselines

with aLRU due to the increasing number of item visits on the chain.

However, with the adaptive LRU, its maintenance is piggybacked

to query processing with minimal overhead.

As the data size increases from 3GB to 128GB, the height of

traditional indexes increases by 2-3 on average, while the height of

learned indexes does not increase significantly since they can better

adapt to the data distribution (with FITING-Tree as an exception,

since its internal levels are a B+tree).

6.3.5 LRU overhead. In this experiment, we compare the query

processing time with different LRU methods used. We integrate

aLRU and LRU into the learned index (the same as FILM) for a fair

comparison. The processing time and LRU usage on 𝑏𝑜𝑜𝑘𝑠 with

a data size of 4096𝑀𝐵 and 𝛩=2048𝑀𝐵 when executing 10
5
point

queries are provided in Table 2. Range queries contain more keys

in the queried span that require LRU update and are thus orders of

magnitude slower than running range queries over FILM, so we do

not include it in this experiment. Fig. 10(a) shows the performance

of aLRU and adaLRU when more queries are executed.

As observed fromTable 2 and Fig. 10, FILMwith adaLRU achieves

lower query latency and smaller storage overhead. LRU and aLRU

are slower than adaLRU due to the high cost of locating an item

in the LRU chain, which is an 𝑂 (𝑁𝑖𝑛) operation in the worst case

(𝑁𝑖𝑛 is the number of records residing in memory).
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Table 2: LRU comparison

methods

query time (s)

LRU usage (M)

𝑧 = 0.25 𝑧 = 0.75 𝑧 = 1.25

LRU 3979.35 4841.99 4306.14 228.218

aLRU 194.50 146.02 89.36 228.218

adaLRU 149.60 97.52 41.06 174.655
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Fig. 11: Varying available memory

As shown in Fig. 10(a), the query time of all methods increases

when more queries are executed, in this case, however, the superi-

ority of adaLRU over aLRU becomes more pronounced. The reason

is that, with more queries, aLRU needs more times to update LRU,

and it is not a real-time update and thus may lead to suboptimal

eviction. On the contrary, FILM binds the real-time LRU update on

the high-performance index lookup, making it efficient in tracking

the access information at runtime.

In summary, straightforward adaptation of learned indexes into

larger-than-memory databases is problematic. Because simply im-

proving memory efficiency would lead to more data residing in

memory, it will result in an increased length of the LRU chain,

driving up the traversal cost on the chain when updating the LRU.

To further evaluate the integration of the adaptive LRU and the

learned index, Fig. 10(b) shows the comparison of FILM against

the integration of adaptive LRU and B+tree (adaB+tree), in terms

of the number of operations executed in an hour. As indicated

by Fig. 10(b), FILM is still out-performed by adaB+tree across all

workloads, indicating that the superiority of FILM comes from both

the learned index and the adaptive LRU.

6.4 Study of Environment Parameters
6.4.1 Available memory. This experiment evaluates the perfor-

mance of FILM and other baselines in terms of the total number of

operations executed and the number of disk accesses, varying the

amount of available memory𝛩 . The results of Zipfian point query

on 𝑤𝑖𝑘𝑖_𝑡𝑠 with data size = 4096𝑀𝐵 are shown in Fig. 11. Other

datasets and workloads show similar trends.

As depicted in Fig. 11(a), increasing𝛩 results in a higher number

of operations executed in an hour for all methods (since more

records could reside in memory), and the superiority of FILM over

baselines becomes more pronounced. This can be attributed to the

judicious integration of the learned model and adaptive LRU, which

saves memory and reduces the overhead of LRU maintenance.

As observed from Fig. 11(b), when executing 10
5
queries, FILM

reduces the number of disk accesses by 3% to 38% under various

𝛩 . The results indicate that both memory saving and reduced LRU

overhead contribute to the performance gains in the larger-than-

memory setting. Note that OriB+tree with 1024MB of available
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Fig. 13: The size of the learned model on different numbers
of keys and different datasets

memory cannot support the data of size 4096MB and the corre-

sponding result is not shown.

6.4.2 Block size. We investigate the performance of FILM with

different block sizes ranging from 4KB (the standard and minimal

page size of disk) to 1024KB. A larger block size means more records

in each evicted block. The point query performance of 𝑏𝑜𝑜𝑘𝑠 is

reported in Fig. 12(a) with data size 4096MB under 𝛩=2048MB.

Similar trends are observed in range query and other datasets.

As observed from Fig. 12(a), when the block size is between 4KB

and 128KB, the performance is not sensitive to the change in block

size, since the sequential reads and writes of disk do not require the

arm to be re-positioned, and the block can be read from or written

to disk with a single sweep of disk arm [28]. However, the query

time increases rapidly after the block size reaches approximately

128KB, mainly because of the added costs of reading larger blocks,

which as indicated by [7], leads to higher overhead in retrieving

data from disk. We thus recommend a block size in the range of

4KB-128KB when deploying FILM, and in other experiments we

use a block size of 64KB.

6.5 Sensitivity to Data and Model Parameters
6.5.1 Record size. This experiment studies the influence of record

size. For the same data size and key distribution, the record size

directly affects the number of keys to be indexed, and thus results

in different sizes of internal structures. We set data size=2048MB,

𝛩=1024MB, and vary record sizes from 64B to 320B. The details of

FILM’s memory usage and the query performance on𝑤𝑖𝑘𝑖_𝑡𝑠 are

reported in Fig. 12(b) and (c).

As shown in Fig. 12(b), smaller records lead to higher memory

consumption than larger records. The overhead mainly comes from

the tracking of evicted records, since each evicted key leaves a

“tombstone” in memory and a larger number of keys, thus increas-

ing the cost of fine-grained control of eviction data. The model size

overhead is observed to be less than 0.1% of the available memory

at any record size, and the tracking information consumes a larger

portion of available memory, especially with smaller record sizes.

Fig. 12(c) presents the point query performance, and range query

has a similar trend. The query time is longer with smaller record
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Fig. 14: Performance with 𝜀 in larger-than-memory settings

sizes since more evicted data needs to be retrieved from disk. How-

ever, for record sizes in a wide range (128B to 320B), the query time

is stable, proving that FILM is robust with different record sizes.

6.5.2 Different datasets and number of keys. In this experiment, we

report the size of the dynamic learned model on different datasets

in Fig. 13. We vary the number of keys indexed by FILM and set𝛩

=2048𝑀𝐵, 𝜀 =8. Regardless of the datasets, the size of the learned

model grows as the number of keys increases, but at a fairly slow

rate. This is because, with a larger number of keys, FILM needs

more 𝑝𝑖𝑒𝑐𝑒s to partition the keys domain.

Another observation is that the growth in model size is at a

different pace for various datasets when the number of keys changes.

As depicted in Fig. 13, under the same number of keys, the model

sizes of different datasets differ from each other, because the size

of the learned model depends on the inherent data distribution

(shown in Fig. 4 in [2]). We observe smaller model sizes on datasets

with more skewed (i.e., non-uniform) patterns.

6.5.3 Error bound 𝜀. Next, we present the empirical investigations

on the influence of 𝜀. The model size, insertion time and query

performance with respect to 𝜀 are provided in Fig. 14, with 𝜀 ranging

from 4 to 2
18
. The data size is set to 4096𝑀𝐵 with𝛩 = 2048𝑀𝐵.

The line chart in Fig. 14(a) displays that the number of 𝑝𝑖𝑒𝑐𝑒s

fitted by FILM has a sharp fall in the range of 4 ≤ 𝜀 ≤ 16 and then

becomes stable with a minor decrease. The bar chart coincides with

the line chart since the model size mainly depends on the number

of pieces created. Obviously, the model size of FILM consumes only

1% or even 0.1% of the available memory.

As is clear from Fig. 14(b), the insertion time of all datasets first

drops rapidly as 𝜀 increases, and then becomes stable at approxi-

mately 𝜀 = 16. The decrease is because that smaller 𝜀 leads to more

𝑝𝑖𝑒𝑐𝑒s to be created by FILM which increases the insertion time.

Particularly, there is a diminishing return as 𝜀 further increases,

since a large number of records are inserted to a single leaf 𝑝𝑖𝑒𝑐𝑒

due to the loose 𝜀.

Fig. 14(c) shows the point query performance on𝑤𝑖𝑘𝑖_𝑡𝑠 . Similar

trends are observed in other datasets and query types. As can be

observed, the query time is stable when the error bound is within

the range from 4 to 2
12
. However, after 𝜀 becomes larger than 2

12

the query time increases rapidly. The reason is that, for a small 𝜀

the query processing overhead is dominated by the I/O operations

of retrieving data from disk. For an overly large 𝜀, a huge candidate

set needs to be checked, and thus the dominant cost comes from

scanning the candidate set, which grows linearly with 𝜀. The results

attest that FILM is robust for 𝜀 in the range of 16 to 2
12
. In our

experiments, we set 𝜀 to 16 by default.

6.5.4 Handling Out-of-Order Insertions. We evaluate the perfor-

mance of FILM in handling out-of-order insertions, in which the

Table 3: the overhead of searching the sort_piece
out_of_order_frac 0.1 0.2 0.3 0.4 0.5

index lookup (s) 18.68 16.24 15.08 13.89 14.60

sort_piece overhead (s) 0.19 0.18 0.15 0.14 0.13

ratio 1.0% 1.1% 0.99% 0.97% 0.89%
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Fig. 15: The performance of out-of-order insertions

insertion keys are randomly selected from the original domain with

different sampling ratios (i.e., out_of_order_frac). Fig. 15 presents

the results on𝑤𝑖𝑘𝑖_𝑡𝑠 ; we observe similar trends on other datasets.

FILM allows users to set a threshold for the sort_piece to prevent

it from growing too large. As indicated by Fig. 15(a), as the threshold

increases, the total number of operations executed in an hour for

different out_of_order_fracs first increases, and then becomes sta-

ble, followed by a decline. This is because smaller thresholds result

in more frequent index reconstructions, whereas larger thresholds

lead to large sizes of sort_piece, both of which degrade the perfor-

mance. We empirically observe that sort_piece thresholds between

30,000 to 70,000 lead to better performance of FILM.

Fig. 15(b) further presents the performance with the threshold set

to 40,000. The curves indicate that the performance decreases due to

out-of-order insertions, and then bounces back when FILM rebuilds

the learned model when reaching the threshold. The downward

trend in curves comes from the increasing number of disk accesses

as more data is inserted into the system when more operations

are executed. Another observation is that the higher the value of

out_of_order_frac, the earlier the curve ends, which means fewer

operations are executed in an hour, i.e., lower throughput.

Table 3 shows the overhead of searching the sort_piece during

the one-hour execution, which is only a tiny fraction (about 1%) of

the total index lookup time.

7 CONCLUSIONS AND FUTUREWORK
We have proposed FILM, the first fully learned structure for data in-

dexing and retrieving problems across heterogeneous storage. The

experiments demonstrate the ability of FILM in improving the query

performance while reducing the storage overhead and achieving

fast cold data identification in larger-than-memory databases.

Many interesting problems are worth future investigation fol-

lowing the work studied herein. One possible direction is to ex-

tend FILM to multi-core systems and design more sophisticated

concurrency control strategies to improve the performance when

processing concurrent updates/queries.
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