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ABSTRACT
Community search studies the retrieval of certain community struc-

tures containing query vertices, which has received lots of attention

recently. 𝑘-truss is a fundamental community structure where each

edge is contained in at least 𝑘 − 2 triangles. Triangle-connected 𝑘-
truss community (𝑘-TTC) is a widely-used variant of 𝑘-truss, which

is a maximal 𝑘-truss where edges can reach each other via a series

of edge-adjacent triangles. Although existing works have provided

indexes and query algorithms for 𝑘-TTC search, the cohesiveness

of a 𝑘-TTC (diameter upper bound) has not been theoretically ana-

lyzed and the triangle connectivity has not been efficiently captured.

Thus, we revisit the 𝑘-TTC search problem in dynamic graphs, aim-

ing to achieve a deeper understanding of 𝑘-TTC. First, we prove

that the diameter of a 𝑘-TTC with 𝑛 vertices is bounded by ⌊ 2𝑛
𝑘+1 ⌋.

Then, we encapsulate triangle connectivity with two novel con-

cepts, partial class and truss-precedence, based on which we build

our compact index, EquiTree, to support the efficient 𝑘-TTC search.

We also provide efficient index construction and maintenance al-

gorithms for the dynamic change of graphs. Compared with the

state-of-the-art methods, our extensive experiments show that Eq-

uiTree can boost search efficiency up to two orders of magnitude

at a small cost of index construction and maintenance.
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1 INTRODUCTION
Graphs model relationships among entities in many real-world

applications where communities naturally exist [15, 35]. Existing

studies on communities mainly fall into two categories: commu-
nity detection to find all the communities in the graph, which has

been studied for decades [14, 30, 41]; community search to retrieve

the communities containing query vertices, which has attracted

increasing attention recently [13, 19, 39].
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Figure 1: The example graph.

Many community models have been proposed to meet diverse

search requirements, among which 𝑘-core [27] and 𝑘-truss [40] are

two of the most widely used models. 𝑘-core is a subgraph where

every vertex has at least 𝑘 neighbors inside [37], while 𝑘-truss is a
subgraph where every edge is contained in at least 𝑘 − 2 triangles
inside [8]. Many researches adopted 𝑘-truss model since triangles

indicate strong relationships [17] and are basic building blocks of

complex networks [2], such as geo-social group discovery [5, 6, 29],

network reinforcement [4, 38, 46], and other tasks [45, 51].

However, not every pair of edges in a 𝑘-truss is strongly con-

nected [19]. Cut-vertex may still exist in a 𝑘-truss. For example, 𝑣4
is a cut-vertex in the 4-truss (formed by bold blue edges and bolder

red edges) in Fig. 1. Then, triangle connectivity is used to strengthen

𝑘-truss [19], which defines the triangle-connected 𝑘-truss model

[13]. A 𝑘-truss is triangle-connected if its edges can reach each

other via a chain of edge-adjacent triangles (i.e., two consecutive

triangles share a common edge). For example, let 𝐻 denote the

subgraph consisting of the bold blue edges and bolder red edges

in Fig. 1, which is a 4-truss as every edge is contained in at least

2 triangles. But 𝐻 is not a triangle-connected 4-truss as (𝑣2, 𝑣3)
cannot reach (𝑣4, 𝑣5) via a chain of edge-adjacent triangles in 𝐻 .

Triangle-connected 𝑘-truss can model overlapped communities

[9, 10], explore finer granularity [19], contains fewer free-riders,

and has no cut-vertex [50], making it a community model preferred

by [1, 32, 43, 49, 50]. A Triangle-connected k-Truss Community (𝑘-
TTC) is a maximal triangle-connected 𝑘-truss [1, 13, 19], and the

𝑘-TTC search problem is: given a query vertex 𝑣𝑞 and a trussness

𝑘 , retrieve all 𝑘-TTCs containing 𝑣𝑞 .

TCP-Index [19] and EquiTruss [1] are the state-of-the-art for

searching 𝑘 -TTC, and both take 𝑂 (𝑚) space to support the online

search in dynamic graphs, where𝑚 is the number of edges. TCP-

Index [19] builds a series of maximal spanning trees whose edge

weights represent the pre-computed trussness. However, graph

edges may repeatedly appear in TCP-Index, and finding 𝑘-TTCs

needs to access both TCP-Index and the original graph, which
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Figure 2: The example equivalence classes and EquiTruss.

makes TCP-Index large and inefficient. EquiTruss [1] constructs

a summary graph based on 𝑘-truss equivalence classes to keep

trussness and triangle connectivity. Thus, it can conduct 𝑘-TTC

search without accessing the original graph. Unfortunately, the

summary graph may be even much larger than the original one due

to the small granularity of 𝑘-truss equivalence classes (details are

reported in Section 6), incurring expensive computational costs.

Thus, in this paper, we revisit the 𝑘-TTC Search problem in

dynamic graphs [1, 13, 19], and make the following contributions.

First, we prove the diameter upper bound of a 𝑘-TTC, ⌊ 2𝑛
𝑘+1 ⌋ (𝑛

is the number of vertices in 𝑘-TTC), which is no larger than the

diameter upper bound of 𝑘-truss and theoretically confirms the

intuition that triangle connectivity can strengthen the cohesiveness

of communities. Next, we propose a novel concept 𝑘-partial class P
and discover the truss-precedence relation ≺ on P, which can well

describe the triangle connectivity of 𝑘-TTC. Then, we derive an

efficient index EquiTree inspired by the Hasse diagram of (P, ≺).
Compared with the state-of-the-art indexes, our EquiTree index

needs less space and can support the 𝑘-TTC query more efficiently.

Finally, we propose an efficient index construction algorithm and

the maintenance algorithms for the dynamic change of graphs

based on the truss-precedence properties of 𝑘-partial classes.
We organize the rest of the paper as follows. Section 2 gives the

preliminaries. Section 3 proves the diameter upper bound of the

triangle-connected 𝑘-truss. Section 4 presents the truss-precedence

and the EquiTree index. Section 5 describes the maintenance of

EquiTree. Experimental studies are reported in Section 6. Sections

7 and 8 review the related work and conclude the paper.

2 PRELIMINARY
We denote a simple undirected graph by𝐺 = (𝑉 , 𝐸), where 𝑉 and

𝐸 are the vertex set and edge set, respectively. Given a graph𝐺 , we

use𝑉 (𝐺) and 𝐸 (𝐺) to denote its vertex set and edge set, and use𝑛 =

|𝑉 (𝐺) | and𝑚 = |𝐸 (𝐺) | to denote its vertex number and edge num-

ber. The neighbors of vertex 𝑣 in 𝐺 are defined as 𝑁 (𝑣,𝐺) = {𝑢 ∈
𝑉 (𝐺) | (𝑢, 𝑣) ∈ 𝐸 (𝐺)} and their degrees are denoted as 𝑑𝑒𝑔(𝑣,𝐺) =
|𝑁 (𝑣,𝐺) |. The distance (length of the shortest path) between nodes

𝑢 and 𝑣 in𝐺 is denoted as 𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑣). A triangle △𝐺𝑢𝑣𝑤 is a 3-length

cycle defined as the edge set {(𝑢, 𝑣), (𝑣,𝑤), (𝑤,𝑢)}. The support of
an edge 𝑒𝑢𝑣 = (𝑢, 𝑣) in 𝐺 is the number of triangles containing 𝑒𝑢𝑣 ,

defined as 𝑠𝑢𝑝 (𝑒𝑢𝑣,𝐺) = |{△𝐺𝑢𝑣𝑤 |𝑤 ∈ 𝑉 (𝐺)}|. When the context is

clear, we simplify 𝑁 (𝑣,𝐺), 𝑑𝑒𝑔(𝑣,𝐺), 𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑣), △𝐺𝑢𝑣𝑤 , 𝑠𝑢𝑝 (𝑒,𝐺)
as 𝑁 (𝑣), 𝑑𝑒𝑔(𝑣), 𝑑𝑖𝑠𝑡 (𝑢, 𝑣), △𝑢𝑣𝑤 , 𝑠𝑢𝑝 (𝑒), respectively.

Definition 1. (𝑘-Truss [13]) A 𝑘-truss in 𝐺 is a subgraph 𝐻 ,
such that ∀𝑒 ∈ 𝐸 (𝐻 ), 𝑠𝑢𝑝 (𝑒, 𝐻 ) ≥ 𝑘 − 2.

The above definition indicates that 𝑘-truss is a subgraph 𝐻 edge-

induced by all the edges with support at least 𝑘 − 2 in 𝐻 . The

trussness of a subgraph 𝐻 ⊆ 𝐺 is the minimum support of all the

edges in𝐻 plus 2, defined as 𝜏 (𝐻 ) = min𝑒∈𝐸 (𝐻 ) (𝑠𝑢𝑝 (𝑒, 𝐻 ) +2). The
trussness of edge 𝑒 ∈ 𝐸 (𝐺) is the maximum trussness of subgraphs

containing 𝑒 , i.e., 𝜏 (𝑒) = max𝑒∈𝐸 (𝐻 )∧𝐻 ⊆𝐺 𝜏 (𝐻 ). A 𝑘-truss 𝐻 is

maximal if there is no 𝐻 ′ s.t. 𝜏 (𝐻 ′) ≥ 𝑘 and 𝐻 ⊂ 𝐻 ′ [9].
A triangle △ is a 𝑘-triangle if min𝑒∈△ 𝜏 (𝑒) ≥ 𝑘 . Two triangles

△𝑠 and △𝑡 are edge-adjacent if they share a common edge, i.e.,

|△𝑠∩△𝑡 | = 1. △𝑠 and △𝑡 are 𝑘-triangle-connected, denoted as △𝑠
𝑘←→

△𝑡 , if there exists a sequence of 𝑘-triangles △1 = △𝑠 , . . . , △𝑛 =

△𝑡 (𝑛 ≥ 2) such that for 1 ≤ 𝑖 < 𝑛, (1) |△𝑖 ∩ △𝑖+1 | = 1 and (2)

𝜏 (△𝑖 ∩ △𝑖+1) = 𝑘 . Two edge 𝑒1 and 𝑒2 are 𝑘-triangle connected,

denoted as 𝑒1
𝑘↔ 𝑒2, iff (1) 𝑒1 and 𝑒2 belong to the same 𝑘-triangle,

or (2) 𝑒1 ∈ △𝑠 , 𝑒2 ∈ △𝑡 s.t. △𝑠
𝑘←→ △𝑡 . We can relax △𝑠

𝑘←→ △𝑡 and
𝑒1

𝑘↔ 𝑒2 to △𝑠 ↔ △𝑡 and 𝑒1↔𝑒2 if we remove the constraint of 𝑘

trussness on the triangles and their adjacent edges.

Definition 2. (Triangle-connected 𝑘-Truss Community (𝑘-
TTC) [13]) A subgraph 𝐻 is a triangle-connected 𝑘-truss community
if it satisfies (1) 𝜏 (𝐻 ) ≥ 𝑘 ; (2) ∀𝑒, 𝑒 ′ ∈ 𝐸 (𝐻 ), 𝑒 ↔ 𝑒 ′; (3) no other 𝐻 ′

exists s.t. 𝐻 ⊂ 𝐻 ′ and 𝐻 ′ satisfies (1) and (2).

Example 1. As shown in Fig. 1, the support of (𝑣2, 𝑣3) is 2 as it
is only contained in △𝑣1𝑣2𝑣3 and △𝑣2𝑣3𝑣4 . The subgraph in bold blue
and bolder red edges is a 4-truss but not 4-TTC as (𝑣2, 𝑣3) cannot
reach (𝑣4, 𝑣5) via a series of edge-adjacent 4-triangles. The subgraph
edge-induced by {(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣1, 𝑣4), (𝑣2, 𝑣3), (𝑣2, 𝑣4), (𝑣3, 𝑣4)}
is a 4-TTC. Similarly, the subgraph in bolder red edges is a 5-truss
and also a 5-TTC.

A 𝑘-class Φ𝑘 in graph 𝐺 [40] is the set of edges with trussness

𝑘 s.t. Φ𝑘 = {𝑒 | 𝑒 ∈ 𝐸 (𝐺) ∧ 𝜏 (𝑒) = 𝑘}, and it can be further

divided into 𝑘-truss equivalence classes [1]. A 𝑘-truss equivalence
class consists of all edges that are 𝑘-triangle connected and have the
same trussness 𝑘 . The set of all equivalence classes forms a mutually

exclusive and collectively exhaustive partition of 𝐸 (𝐺). EquiTruss
[1] uses these equivalence classes as super-nodes and links any

two super-nodes that are 𝑘-triangle connected (𝑘 is the minimum

trussness of these two super-nodes) to construct a summary graph.

Thus, a maximal connected component consisting of super-nodes

with trussness at least 𝑘 in the summary graph represents a 𝑘-TTC

in the original graph. Then, for a query vertex 𝑣𝑞 and an integer 𝑘 ,

EquiTruss can retrieve 𝑘-TTCs containing 𝑣𝑞 by first finding super-

nodes containing 𝑣𝑞 and then returning the maximal connected

components containing these super-nodes.

Example 2. Fig. 2 shows the EquiTruss for Fig. 1 where each super-
node represents an equivalence class as shown in the boxes on the right.
Edges in 𝐶3,1 are 3-triangle connected, edges in 𝐶4,1 are 4-triangle
connected, and 𝐶4,3 links to 𝐶3,3 since (𝑣1, 𝑣8) is 3-triangle connected
with edges in𝐶4,3. To retrieve the 4-TTCs containing 𝑣9, we start from
𝐶4,2 to get the maximal connected component induced by super-nodes
{𝐶4,2,𝐶5,𝐶4,1} with trussness at least 4, and then return all the edges
contained in these super-nodes as the query result.
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Figure 3: Example for the proof of diameter upper bound.

3 THE DIAMETER UPPER BOUND
For a 𝑘-truss𝐻 with 𝑛 vertices, its diameter 𝑑 is bounded by ⌊ 2𝑛−2

𝑘
⌋

[19], which can be easily derived from the following Lemma in [8].

Lemma 1. If𝐺𝑑 is a 𝑘-truss with diameter𝑑 , then |𝑉 (𝐺𝑑 ) | ≥ 𝑑+1
2
𝑘

if 𝑑 is odd; otherwise |𝑉 (𝐺𝑑 ) | ≥ 𝑑
2
𝑘 + 1 [8].

To study the diameter upper bound of a triangle-connected 𝑘-

truss, the additional condition, triangle-connectivity, needs to be

exploited. We first introduce some notations. Let 𝑟 be the longest

shortest path in a triangle-connected graph with diameter 𝑑 , 𝐺𝑑 ,

and 𝑉𝑟 = {𝑣0, 𝑣1, . . . , 𝑣𝑑 } be the vertices in 𝑟 . Then we can divide

𝑉 (𝐺𝑑 ) \𝑉𝑟 into two parts:𝑈 , the unique triangle-makers of 𝑟 , i.e.,
𝑈 = {𝑢 | ∃△𝑢𝑣𝑖 𝑣𝑖+1 ∧ (∄△𝑢′𝑣𝑖 𝑣𝑖+1 ∧ 𝑢 ≠ 𝑢 ′), 𝑣𝑖 ∈ 𝑉𝑟 };𝑊 , other

vertices, which is 𝑉 (𝐺𝑑 ) \ 𝑉𝑟 \𝑈 . Specifically, we denote 𝑢 as 𝑢𝑖
if △𝑢𝑣𝑖−1𝑣𝑖 exists and △𝑢𝑣𝑖 𝑣𝑖+1 does not exist. If both △𝑢𝑣𝑖−2𝑣𝑖−1 and
△𝑢𝑣𝑖−1𝑣𝑖 exist, we denote 𝑢 as 𝑢 ′

𝑖
, indicating that 𝑢 ′

𝑖
covers (i.e. forms

triangle with) two consecutive edges in 𝑟 . Note that a vertex 𝑢

cannot cover three edges in 𝑟 as this will contradict the diameter

𝑑 . We denote the set of 𝑢 ′ as𝑈 ′. Then, ∀𝑢 ′
𝑖
∈ 𝑈 ′, 𝑑𝑢′

𝑖
= 𝑖 − 1 since

𝑑𝑢′
𝑖
≤ 𝑑𝑣𝑖−2 + 1 = 𝑖 − 1 and 𝑑𝑣𝑖 ≤ 𝑑𝑢′

𝑖
+ 1 (𝑑𝑥 is a shorthand for

𝑑𝑖𝑠𝑡 (𝑣0, 𝑥)).

Example 3. In Fig. 3(a),𝑉𝑟 = {𝑣0, . . . , 𝑣7} and𝑈 = {𝑢 ′
2
, 𝑢 ′

4
, 𝑢5, 𝑢

′
7
}.

Then 𝑊 = {𝑤1,𝑤2}. Note that 𝑤2 does not belong to 𝑈 because
△𝑢′

7
𝑣5𝑣6 and △𝑤2𝑣5𝑣6 both exist, violating the definition of𝑈 . 𝑢 ′

2
∈ 𝑈 ′

because both △𝑢′
2
𝑣1𝑣2 and △𝑢′

2
𝑣0𝑣1 exist. The same holds for 𝑢 ′

4
and 𝑢 ′

7
.

The 𝑑𝑥 value is labelled beside each 𝑥 , and 𝑑𝑢′
2

= 1, 𝑑𝑢′
4

= 3, 𝑑𝑢′
7

= 6.

Next, we discuss the relation between |𝑊 | and |𝑈 ′ |, which paves

the way for Lemma 3.

Lemma 2. For a triangle-connected graph 𝐺𝑑 with diameter 𝑑 , if
|𝑈 ′ | ≥ 2, then |𝑊 | ≥ 1.

Proof. Assume that |𝑊 | = 0. We denote any two consecutive

vertices in𝑈 ′ as 𝑢 ′
𝑗
, 𝑢 ′

𝑘
( 𝑗 < 𝑘). When 𝑘 − 𝑗 = 1, both △𝑢′

𝑗
𝑣𝑗−1𝑣𝑗 and

△𝑢′
𝑘
𝑣𝑗−1𝑣𝑗 exist, and 𝑢

′
𝑗
or 𝑢 ′

𝑘
must belong to𝑊 , which is contra-

dictory. When 𝑘 − 𝑗 > 1, there must be 𝑢 𝑗+1, . . . , 𝑢𝑘−2 that each
of them only covers one edge in 𝑟 , as shown in Fig. 3(b). For each

𝑗 + 1 ≤ 𝑙 ≤ 𝑘 − 2, since (𝑣𝑙−1, 𝑢𝑙 ) (green dashed line)/(𝑢𝑙 , 𝑣𝑙+1) (red
dashed line) does not exist according to the definitions of 𝑈 /𝑈 ′,
(𝑢𝑙 , 𝑢𝑙+1) (yellow dashed line) must exist to keep triangle connectiv-

ity. As we have derived that 𝑑𝑢′
𝑗
= 𝑗 − 1, 𝑑𝑢 𝑗+1 = 𝑗 , . . . , 𝑑𝑢𝑘−2 = 𝑘 − 3,

we have 𝑑𝑢′
𝑘
≤ 𝑑𝑢𝑘−2 + 1 = 𝑘 − 2, which contradicts 𝑑𝑢′

𝑘
= 𝑘 − 1.

Thus, |𝑊 | ≥ 1. □

Lemma 3. If 𝐺𝑑 is a triangle-connected graph with diameter 𝑑
(𝑑 > 1), then |𝑉 (𝐺𝑑 ) | ≥ 2𝑑 .

Proof. We prove this by contradiction. Assume that |𝑉 (𝐺𝑑 ) | <
2𝑑 . Then from the definitions, we have |𝑈 | = |𝑉 (𝐺𝑑 ) | − |𝑊 | − |𝑉𝑟 |,
|𝑈 ′ | = 𝑑 − |𝑈 |, which implies |𝑈 ′ | > |𝑊 | + 1. First, according
to Lemma 2, there exists at least one 𝑤 for each consecutive pair

𝑢 ′
𝑖 𝑗

and 𝑢 ′
𝑖 𝑗+1

so that edges covered by 𝑢 ′
𝑖 𝑗

and 𝑢 ′
𝑖 𝑗+1

are triangle

connected. Next we prove that there is no𝑤 alone that can make

the edges covered by any three𝑢 ′ (i.e.,𝑢 ′
𝑖𝑝
, 𝑢 ′

𝑖𝑞
, 𝑢 ′

𝑖𝑟
where 𝑝 < 𝑞 < 𝑟 )

triangle connected. Assume that such a𝑤 exists, as shown in Fig.

3(c). Then any subset𝐷 ′ (|𝐷 ′ | ≥ 2) of the red dashed lines connected

to {𝑢 ′
𝑖𝑝
, 𝑣𝑖𝑝 , 𝑣𝑖𝑝−1, 𝑣𝑖𝑝−2} except{(𝑤, 𝑣𝑖𝑝−2), (𝑤, 𝑣𝑖𝑝 )} can be possible

connections, and we always have 𝑑𝑖𝑠𝑡 (𝑤, 𝑣𝑖𝑝−2) ≤ 2. Similarly, we

have 𝑑𝑖𝑠𝑡 (𝑤, 𝑣𝑖𝑟 ) ≤ 2, and thus 𝑑𝑖𝑠𝑡 (𝑣𝑖𝑝−2, 𝑣𝑖𝑟 ) ≤ 4. However, from

the proof of lemma 2, we have 𝑑𝑖𝑠𝑡 (𝑣𝑖𝑝−2, 𝑣𝑖𝑟 ) = 𝑖𝑟 − (𝑖𝑝 − 2) =
𝑖𝑟 − 𝑖𝑞 + 𝑖𝑞 − 𝑖𝑝 + 2 ≥ 2 + 2 + 2 = 6, which leads to a contradiction.

Thus, each consecutive pair 𝑢 ′
𝑖 𝑗
and 𝑢 ′

𝑖 𝑗+1
needs at least a unique

𝑤 , and we have |𝑊 | ≥ |𝑈 ′ | − 1 which contradicts |𝑈 ′ | > |𝑊 | + 1.
Thus, 𝑉 (𝐺𝑑 ) ≥ 2𝑑 . □

Theorem 1. If 𝑑 is the diameter of a triangle-connected 𝑘-truss
𝑇𝑘 with 𝑛 vertices, then 𝑑 ≤ ⌊ 2𝑛

𝑘+1 ⌋.

Proof. We construct a minimum triangle-connected 𝑘-truss 𝑇𝑘
in two steps. First, we build a triangle-connected graph 𝐺𝑑 with

diameter path 𝑟 of length 𝑑 . Second, we add vertices and edges to

𝐺𝑑 to increase the supports of the edges in 𝑟 by 𝑘 − 3 since they
already have at least one support in Step 1. Let𝑚 denote the number

of vertices of a (𝑘 − 1)-truss with diameter 𝑑 . Besides 𝑑 + 1 vertices
in the diameter path 𝑟 , we can add𝑚 − (𝑑 + 1) vertices in Step 2 so

that each edge in 𝑟 has support at least 𝑘 − 2. According to Lemma

1, we have:

𝑚 ≥
{︄
(𝑑 + 1) (𝑘 − 1)/2, 𝑑 𝑖𝑠 𝑜𝑑𝑑

𝑑 (𝑘 − 1)/2 + 1, 𝑑 𝑖𝑠 𝑒𝑣𝑒𝑛
. (1)

When 𝑑 > 1, we sum up the minimum vertices added in Step 1 (2𝑑

according to Lemma 3) and Step 2. Then we get 𝑛 ≥ |𝑉 (𝐺𝑑 ) | ≥
2𝑑 +𝑚− (𝑑 +1). When 𝑑 is odd, 𝑛 ≥ 2𝑑 + (𝑑 +1) (𝑘 −1)/2− (𝑑 +1) ≥
(𝑑+1) (𝑘+1)

2
− 2, which implies 𝑑 ≤ 2𝑛

𝑘+1 −
𝑘−3
𝑘+1 , and since 𝑘 ≥ 3,

we have 𝑑 ≤ ⌊ 2𝑛
𝑘+1 ⌋; when 𝑑 is even, 𝑛 ≥ 𝑑 (𝑘+1)

2
, which implies

𝑑 ≤ 2𝑛
𝑘+1 , and thus 𝑑 ≤ ⌊ 2𝑛

𝑘+1 ⌋. When 𝑑 = 1, Theorem 1 also holds

as 𝑇𝑘 is a clique. □

Theorem 1 shows that a triangle connected 𝑘-truss has a tighter

(or at least equal) diameter upper bound than 𝑘-truss when 𝑘 = 3

with 𝑛 ≥ 4 and 𝑘 ≥ 4, which confirms the stronger cohesiveness of

𝑘-TTC benefited from the triangle connectivity.

4 THE EQUITREE INDEX
In this section, we first introduce the truss-precedence property of

𝑘-TTC, then describe the structure of EquiTree built upon it, and

finally give the index construction and query algorithms.
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4.1 Truss-Precedence
We build our index based on a novel concept, 𝑘-partial class, which

is a partition of a 𝑘-class at a higher level than 𝑘-truss equivalence

classes. Recall that a 𝑘-truss equivalence class 𝐶 consists of all the

edges with trussness 𝑘 s.t. ∀𝑒 , 𝑒 ′ ∈ 𝐶 , 𝑒 𝑘↔ 𝑒 ′. A 𝑘-partial class 𝑃

will be defined based on a relaxed condition, i.e., ∀𝑒, 𝑒 ′ ∈ 𝑃 , 𝑒 ≥𝑘↔ 𝑒 ′.

We say 𝑒
≥𝑘↔ 𝑒 ′ iff there exists a sequence of 𝑘-triangles △1, . . . , △𝑛

such that (1) |△𝑖 ∩ △𝑖+1 | = 1 for 1 ≤ 𝑖 < 𝑛 and (2) 𝜏 (△𝑖 ∩ △𝑖+1) ≥ 𝑘 .

Note that different from 𝑘-truss equivalence class, condition (2) is

relaxed to ≥ 𝑘 instead of 𝑘 . Thus 𝑘-partial class is a coarser-grained

partition of 𝑘-class that can help build a more compact index to

support efficient queries.

Definition 3. (𝑘-Partial Class) A 𝑘-partial class 𝑃 of a 𝑘-TTC

𝐻𝑘 is a subset of 𝐸 (𝐻𝑘 ) s.t. ∀𝑒 ∈ 𝑃, 𝜏 (𝑒) = 𝑘 and ∀𝑒, 𝑒 ′ ∈ 𝑃 , 𝑒 ≥𝑘↔ 𝑒 ′.

Definition 4. (Truss-Precedence ≺) Given two partial classes
𝑃 and 𝑃 ′, we say 𝑃 truss-precedes 𝑃 ′, denoted as 𝑃 ≺ 𝑃 ′, iff ∀𝑒 ∈ 𝑃 ,
𝑒 ′ ∈ 𝑃 ′, 𝜏 (𝑒) < 𝜏 (𝑒 ′) and 𝑒

≥𝜏 (𝑒)
←→ 𝑒 ′.

Each edge 𝑒 ∈ 𝐸 (𝐺) with 𝜏 (𝑒) ≥ 3 is in a unique 𝜏 (𝑒)-partial class
𝑃 since 𝑒 is contained in only one 𝜏 (𝑒)-TTC. A 𝑘-partial class may

contain edges from multiple 𝑘-truss equivalence classes, showing a

higher level of abstraction.

Example 4. In Fig. 2, there are one 3-partial class 𝑃3 = 𝐶3,1 ∪
𝐶3,2 ∪𝐶3,3, two 4-partial classes 𝑃4,1 = 𝐶4,1 ∪𝐶4,2, 𝑃4,2 = 𝐶4,3, and
one 5-partial class 𝑃5 = 𝐶5. 𝑃3 ≺ 𝑃4,1 since (𝑣7, 𝑣11) ↔ (𝑣7, 𝑣10).

Theorem 2. Let P denote the set of nonempty 𝑘-partial classes.
Then truss-precedence is a strict partial order relation upon P.

Proof. Given a 𝑘-partial class 𝑃 , based on Definitions 3 and 4,

since there is no 𝑒1, 𝑒2 ∈ 𝑃 s.t. 𝜏 (𝑒1) < 𝜏 (𝑒2), 𝑃 ⊀ 𝑃 (irreflexivity).

Given two partial classes 𝑃1, 𝑃2 s.t. 𝑃1 ≺ 𝑃2, based on Definition

4, there is no 𝑒1 ∈ 𝑃1, 𝑒2 ∈ 𝑃2 s.t. 𝜏 (𝑒1) > 𝜏 (𝑒2). Thus, 𝑃2 ⊀ 𝑃1
(antisymmetry). Given partial classes 𝑃1, 𝑃2, 𝑃3, s.t. 𝑃1 ≺ 𝑃2, 𝑃2 ≺ 𝑃3,

∀𝑒1 ∈ 𝑃1, 𝑒2 ∈ 𝑃2, 𝑒3 ∈ 𝑃3, we have 𝜏 (𝑒1) < 𝜏 (𝑒2), 𝜏 (𝑒2) < 𝜏 (𝑒3),
𝑒1
≥𝜏 (𝑒1)←→ 𝑒2, and 𝑒2

≥𝜏 (𝑒2)←→ 𝑒3, implying 𝜏 (𝑒1) < 𝜏 (𝑒3) and 𝑒1
≥𝜏 (𝑒1)←→

𝑒3. Thus, 𝑃1 ≺ 𝑃3 (transitivity). □

Lemma 4. The Hasse diagram of poset (P, ≺) is a forest.

Proof. Suppose that there exists a node representing a partial

class 𝑃 whose indegree is more than 2. Then, there exist 𝑃1 ≺ 𝑃

and 𝑃2 ≺ 𝑃 with 𝜏 (𝑃1) = 𝜏 (𝑃2) and ∄𝑃 ′ ≠ 𝑃1 s.t. 𝑃1 ≺ 𝑃 ′ ≺ 𝑃3 or

𝑃2 ≺ 𝑃 ′ ≺ 𝑃3. Thus we have 𝑃1 ∪ 𝑃2 ∪ 𝑃3 ⊆ 𝐸 (𝐻 ) (𝐻 is a 𝜏 (𝑃1)-
TTC), and based on Definition 3, we have 𝑃1 = 𝑃2, which leads to a

contradiction. □

The above definitions of 𝑘-partial class and the truss-precedence

relation give a novel formal hierarchy abstraction of 𝑘-TTC, which

can well capture the triangle connectivity and nesting property

of 𝑘-TTC. Such a high-level concept would help us design a more

compact index to support efficient query/maintenance.

5-node
4-node

3-node
x4 (k = 4)

(v1, v2), (v1, v3), (v1, v4)
(v2, v3), (v2, v4), (v3, v4)

x3 (k = 5)

(v4, v5), (v4, v6), (v4, v7), (v4, v8), (v5, v6)
(v5, v7), (v5, v8), (v6, v7), (v6, v8), (v7, v8)

x2 (k = 4)

(v5, v11), (v6, v11), (v7, v11), (v7, v9), 
(v7, v10), (v8, v9),(v8, v10), (v9, v10)

x1 (k = 3)

(v3, v5), (v10, v11), 
(v1, v8)

3x

2x 4x

1x

Figure 4: The example EquiTree.

4.2 The Structure of EquiTree
We now extend the Hasse diagram of (P, ≺) to a compact index,

EquiTree. According to Lemma 4, we define our index as a tree

T = (V, E) where V is the tree node set and E is the tree edge

set. Each tree node 𝑥 ∈ V has two attributes, 𝑥 .𝑘 and 𝑥 .𝐸, where

𝑥 .𝐸 is a 𝑥 .𝑘-partial class. We add edge (𝑥1, 𝑥2) to E if 𝑥1 .𝐸 ≺ 𝑥2 .𝐸

and there exists no partial class 𝑃 s.t. 𝑥1 .𝐸 ≺ 𝑃 ≺ 𝑥2 .𝐸. In this way,

we construct the EquiTree index that captures the nesting property

of 𝑘-partial classes. Let T𝑥 denote the subtree rooted at 𝑥 . It can

be proved that each T𝑥 represents a 𝑘-TTC, and vice versa. We use

a map from graph edges to tree nodes to enable the index for the

search task.

Example 5. Fig. 4 shows the EquiTree constructed for the graph in
Fig. 1. 𝑥1 .𝐸 = 𝑃3 = 𝐶3,1 ∪𝐶3,2 ∪𝐶3,3 = {(𝑣1, 𝑣8), (𝑣3, 𝑣5), (𝑣10, 𝑣11)}
is a 3-partial class with trussness 3. Meanwhile, T𝑥1 consists of all the
edges in the 3-TTC, and the two 4-TTCs nested in it are represented
by the two subtrees T𝑥2 and T𝑥4 . The 5-TTC nested in T𝑥2 is T𝑥3 .

Lemma 5. If graph𝐺 comprises 𝑙 𝑘-cliques where any two𝑘-cliques
are not triangle-connected, then |𝑉 (𝐺) | ≥ 𝑘𝑙

2
.

Proof. In graph 𝐺 , every 𝑘-clique shares at most 1 vertex with

another 𝑘-clique to avoid triangle connectivity. When 𝑘 ≤ 𝑙 , ev-

ery 𝑘-clique can share at most 𝑘 vertices with other 𝑘 𝑘-cliques.

Thus we can construct a graph 𝐺 ′ where each vertex represents

a 𝑘-clique and each edge denotes a shared vertex between two 𝑘-

cliques. According to Handshaking Lemma, we have |𝐸 (𝐺 ′) | ≤ 𝑘𝑙
2
,

indicating that the maximum number of unique shared vertices is

𝑘𝑙
2
. Then we have |𝑉 (𝐺) | ≥ 𝑘𝑙 − 𝑘𝑙

2
= 𝑘𝑙

2
. When 𝑘 > 𝑙 , similarly we

have |𝑉 (𝐺) | ≥ 𝑘𝑙 − 𝑙 (𝑙−1)
2

> 𝑘𝑙
2
. □

Theorem 3. Given graph 𝐺 and its EquiTree T , we have 𝑁 <

2𝑛(ln𝑘max − 3

2
+ 𝛾), where 𝑁 = |V|, 𝑛 = |𝑉 (𝐺) |, 𝑘max is the maxi-

mum trussness in 𝐺 , and 𝛾 is the Euler–Mascheroni constant.

Proof. Let L𝑘 denote the set of tree nodes with trussness 𝑘 .

Then |V| = ∑︁
3≤𝑘≤𝑘max

|L𝑘 |. Next, we get the upper bound of |L𝑘 |
by forcing the 𝑘-TTC represented by subtree T𝑥 (where 𝑥 ∈ L𝑘 )
to be as small as possible. When every 𝑥 ∈ L𝑘 represents a 𝑘-

clique that is not triangle-connected to another 𝑘-clique 𝑦 ∈ L𝑘 ,
then |L𝑘 | reaches it maximum value. Let 𝑉𝑘 = {𝑣 |𝑣 ∈ 𝑉 (𝐻𝑘 ) ∧
𝜏 (𝐻𝑘 ) = 𝑘 ∧𝐻𝑘 ⊆ 𝐺} denote vertices in 𝑘-TTCs with trussness 𝑘 .

According to Lemma 5, |𝑉𝑘 | ≥
𝑘 |L𝑘 |

2
. Then,

∑︁
3≤𝑘≤𝑘max

|L𝑘 | ≤∑︁
3≤𝑘≤𝑘max

2 |𝑉𝑘 |
𝑘

< 2|𝑉 |∑︁
3≤𝑘≤𝑘max

1

𝑘
≈ 2|𝑉 | (ln𝑘max − 3

2
+ 𝛾),

where 𝛾 is the Euler–Mascheroni constant according to the partial

sums of the harmonic series [3]. □
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Besides, EquiTree has the following favorable properties: (1)

every 𝑒 ∈ 𝐸 with 𝜏 (𝑒) ≥ 3 must be contained in a tree node 𝑥 ∈ V;

(2) no edge 𝑒 ∈ 𝐸 can be contained in two tree nodes; (3) every 𝑥 .𝐸 is

nonempty. Thus, EquiTree needs 𝑂 (𝑚) space to store all the graph

edges, which is the same as EquiTruss and TCP-Index. However,

EquiTree has much fewer nodes (𝑂 (𝑛 ln𝑘max)) than EquiTruss and

TCP-Index, and thus can significantly boost the query efficiency.

4.3 Index Construction Algorithm
A 𝑘-partial class may consist of multiple 𝑘-truss equivalence classes,

and we can compute the 𝑘-partial class with the following lemma.

Lemma 6. Two 𝑘-truss equivalence classes 𝐶 and 𝐶 ′ (𝐶 ′ ≠ 𝐶)
belong to the same partial class 𝑃 iff there exists another 𝑘 ′-truss

equivalence class 𝐶 ′′ (𝑘 ′ > 𝑘) s.t. 𝐶 ′′ 𝑘↔ 𝐶 , 𝐶 ′′
𝑘↔ 𝐶 ′.

Proof. “⇒”. We prove this by contradiction. If𝐶 and𝐶 ′ belong
to the same partial class 𝑃 , they will occur in the same 𝑘-TTC

𝐻𝑘 . Assume that 𝐶 ′′ does not exist, then ∀𝑒 ∈ 𝐸 (𝐻 ), 𝜏 (𝑒) = 𝑘 .

According to Definition 3, 𝑃 = 𝐸 (𝐻𝑘 ). Since all the edges in 𝑃 are

triangle-connected, 𝑃 is also a 𝑘-truss equivalence class, leading

to 𝑃 = 𝐶 = 𝐶 ′, which contradicts 𝐶 ≠ 𝐶 ′. Thus, 𝐶 ′′ exists. “⇐”.

𝐶 , 𝐶 ′, and 𝐶 ′′ must occur in the same 𝑘-TTC since all the edges

have trussness at least 𝑘 and are 𝑘-triangle-connected. According

to Definition 3, 𝐶 and 𝐶 ′ belong to the same 𝑘-partial class 𝑃 . □

EquiTree construction is equivalent to the Hasse diagram con-

struction, which involves (1) finding nonempty partial classes, and

(2) detecting truss-precedence relations.We give an efficientmethod

to perform (1) and (2) simultaneously in Algorithm 1, which builds

EquiTree from leaves to the root. We use AUF [12], a variant of the

union-find forest, to enable the incremental detection of triangle

connectivity. We keep the triangle connectivity in the union-find

forests and record the subtree root 𝑥 ′ as the anchor of 𝑥 if there

exists no node 𝑦 s.t. 𝑦.𝐸 ≺ 𝑥 ′.𝐸 ≺ 𝑥 .𝐸. To prevent AUF from return-

ing premature anchors, we put new connections in a buffer 𝐵 (line

12) and update AUF after 𝑥 is created (line 20).

Algorithm 1 first computes the edge trussness and 𝑘-classes Φ𝑘
by truss decomposition [40], and then initializes a list 𝑒.𝑙𝑖𝑠𝑡 for each

edge 𝑒 to record the triangle-adjacent tree nodes (line 1). Then, we

enumerate 𝑘-truss equivalence classes from 𝑘max (the largest 𝜏 (𝑒))
to 3 by BFS (where𝑄 is the queue) and create a temporary tree node

𝑥 accordingly (lines 2-20). In the beginning, 𝐵 and 𝑄 are initialized

to be empty. Then for each edge 𝑒 ∈ Φ𝑘 , we create a temporary node

𝑥 (line 6), connect 𝑥 to its children and do merging (lines 10–13),

and then process the edges triangle-adjacent to 𝑒 (lines 14–17).

The child 𝑥 ′ of 𝑥 is detected by checking the tree nodes in 𝑒.𝑙𝑖𝑠𝑡

(𝑒 ∈ 𝑥 ′.𝐸) since ProcessEdge (lines 22-27) has recorded the triangle-

adjacent tree nodes 𝑦 into 𝑒.𝑙𝑖𝑠𝑡 . Thus, we have 𝑥 .𝐸 ≺ 𝑦.𝐸 (line 10).

For each such 𝑥 and 𝑦, we find the root of the subtree containing 𝑦,

𝑥 ′ by AUF and connect 𝑥 and 𝑥 ′ (lines 11-12). In addition, if two

nodes 𝑥1 and 𝑥2 have the same child 𝑥 ′, indicating that they belong
to the same 𝑘-partial class, we say a conflict happens and merge

them into one single node by MergeNodes (line 13), details of which

can be found in Algorithm 8 in the Appendix.

Example 6. Fig. 5 illustrates the construction process for the graph
in Fig. 1. After truss decomposition, we examine 𝑘 from 5 to 3. When

Algorithm 1: Leaf-to-Root EquiTree Construction
Input :A graph 𝐺 = (𝑉 , 𝐸)
Output :EquiTree T = (V, E)

1 compute 𝜏 (𝑒) and Φ𝑘 = {𝑒 |𝜏 (𝑒) = 𝑘}; 𝑒.𝑙𝑖𝑠𝑡 ← ∅ ;
2 for 𝑘 ← 𝑘max to 3 do
3 𝐵 ← ∅; 𝑄 ← ∅;
4 while ∃𝑒 ∈ Φ𝑘 do
5 mark 𝑒 as processed and push 𝑒 to 𝑄 ;

6 add a new tree node 𝑥 toV;

7 while 𝑄 ≠ ∅ do
8 𝑒 (𝑢, 𝑣) ← 𝑄 .dequeue();

9 𝑥 .𝐸 ← 𝑥 .𝐸 ∪ {𝑒} ;
10 foreach 𝑦 ∈ 𝑒.𝑙𝑖𝑠𝑡 do
11 𝑥 ′ ← AUF.Find(𝑦);

12 add (𝑥, 𝑥 ′) to E and 𝐵;

13 𝑃 ← parents of 𝑥 ′; MergeNodes(𝑃 );

14 foreach𝑤 ∈ 𝑁 (𝑢) ∪ 𝑁 (𝑣) do
15 𝜏𝑚𝑖𝑛 ← min{𝜏 ((𝑢,𝑤)), 𝜏 ((𝑣,𝑤)), 𝜏 ((𝑢, 𝑣))};
16 ProcessEdge((𝑢,𝑤), 𝑥) if 𝜏 (𝑢,𝑤) = 𝜏𝑚𝑖𝑛 ;

17 ProcessEdge((𝑣,𝑤), 𝑥) if 𝜏 (𝑣,𝑤) = 𝜏𝑚𝑖𝑛 ;

18 remove 𝑒 from Φ𝑘 and 𝐸;

19 foreach (𝑥,𝑦) ∈ 𝐵 do
20 AUF.Union(𝑥,𝑦);
21 return T (V, E);
22 Procedure ProcessEdge (𝑒,𝑦)
23 if 𝑒 is not processed then
24 if 𝜏 (𝑒) = 𝑘 then
25 mark 𝑒 as processed and push 𝑒 to 𝑄 ;

26 else
27 𝑒.𝑙𝑖𝑠𝑡 ← 𝑒.𝑙𝑖𝑠𝑡 ∪ 𝑦 ;

(e)(d)(a) (b) (c)
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Figure 5: The example for construction algorithm.

𝑘 = 5, there is one truss equivalence class labeled 𝐶5, and we create a
node for it (Fig. 5(a)). When 𝑘 = 4, there are three equivalence classes
𝐶4,1, 𝐶4,2, and 𝐶4,3. Since 𝐶4,1 and 𝐶4,2 are triangle-connected with
𝐶5, we connect them to 𝐶5 (Fig. 5(b)), which causes a conflict and
invokes the MergeNodes procedure (Fig. 5(c)). When 𝑘 = 3, there are
three equivalence classes𝐶3,1,𝐶3,2, and𝐶3,3. Clearly,𝐶3,2 is connected
with 𝐶4,2. Since both 𝐶3,1 and 𝐶3,3 are connected to 𝐶5 and 𝐶4,3, we
connect them to 𝐶4,3 and the parent of 𝐶5 based on AUF (Fig. 5(d).
Then we handle the conflicts by MergeNodes (Fig. 5(e)).

The time complexity of Equitree construction is𝑂 (𝑚1.5). The ini-
tialization by truss decomposition takes𝑂 (𝑚1.5) time [40]. The AUF

operations need 𝑂 (𝑚 · 𝛼 (𝑚)) time since there are 𝑂 (𝑚) nodes and
each AUF operation needs 𝑂 (𝛼 (𝑚)) time (𝛼 (𝑚) is the inverse Ack-
ermann function). For each edge 𝑒 ∈ 𝐸, we consider each triangle
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Algorithm 2: EquiTree Query
Input :EquiTree T , query vertex 𝑣𝑞 , trussness 𝑘

Output :𝑘-truss communities A
1 𝑋 ← {𝑥 | 𝑥 ∈ V ∧ 𝑥 .𝐸 contains 𝑣𝑞};
2 foreach 𝑥 ∈ 𝑋 do
3 while the parent of 𝑥 exists with trussness ≥ 𝑘 do
4 𝑥 ← the parent of 𝑥 ;

5 A ← A ∪⋃︁𝑦∈T𝑥 𝑦.𝐸;
6 return A;

Algorithm 3: The Maintenance Framework

Input :EquiTree T , the modified edge 𝑒∗ = (𝑢, 𝑣)
1 𝐺 ′ ← new graph after modifying 𝐺 ;

2 Φ′
𝑘
← {𝑒 | 𝜏 (𝑒,𝐺 ′) = 𝑘 ∧ 𝜏 (𝑒,𝐺) ≠ 𝜏 (𝑒,𝐺 ′)};

3 Ψ𝑘 ← {𝑥 | 𝑥 .𝐸 ∩ Φ′𝑘 ≠ ∅};
4 Φ← {Φ′

𝑘
|Φ′

𝑘
≠ ∅}; Ψ← {Ψ𝑘 |Ψ𝑘 ≠ ∅};

5 𝑌 ← NewNodes(T ,Φ,Ψ) ;
6 Restructure (T , 𝑒∗, 𝑌 ,Ψ) ;

containing 𝑒 , which is examined only once since 𝑒 will be removed

from the graph. Therefore, finding truss equivalence classes and

connecting tree nodes is equivalent to counting all the triangles in

𝑂 (𝑚1.5) time. Thus, the overall complexity is 𝑂 (𝑚1.5).

4.4 Query Algorithm
Algorithm 2 conducts community search on EquiTree. First, we find

all the tree nodes 𝑋 containing 𝑣𝑞 (line 1). Then for each 𝑥 ∈ 𝑋 , we

trace up to find the the last ancestor of 𝑥 , 𝑥 ′ with 𝜏 (𝑥 ′) ≥ 𝑘 (lines

3–4). Finally, we add the edges in T ′𝑥 to the final results A (line 5).

Example 7. Consider the example graph in Figure (1). For query
vertex 𝑣4 and 𝑘 = 4, we first find 𝑥3 and 𝑥4 containing 𝑣4. As 𝑥3 .𝑘 =

5, we trace up to 𝑥2 with trussness 4. Then, we obtain two 4-TTCs
represented by T𝑥2 and T𝑥4 . For query vertex 𝑣9 and 𝑘 = 4, we first find
𝑥2 with trussness 4 and return the 4-TTC represented by T𝑥2 directly,
which is more efficient than EquiTruss as shown in Example 2.

The query algorithm is time-optimal with complexity𝑂 ( |𝐸 (A)|)
(A is 𝑘-truss communities containing 𝑣𝑞), since finding roots of

subtrees containing 𝑣𝑞 is dominated by returning edges in A.

5 INDEX MAINTENANCE
Real-world graphs are constantly changing, and updating the in-

dex accordingly is critical for online search [13]. As vertex inser-

tion/deletion can be reduced to edge insertion/deletion [1, 19], we

focus on the latter. Maintaining EquiTree is quite challenging as

it requires a series of triangle-connectivity checking on the area

affected by edge insertion/deletion. We first give the general main-

tenance framework for both insertion and deletion, then dive into

the details for each operation.

Algorithm 3 gives the maintenance framework. First, we identify

the 𝑘-affected edges Φ′
𝑘
= {𝑒 |𝜏 (𝑒,𝐺 ′) = 𝑘 ∧ 𝜏 (𝑒,𝐺) ≠ 𝜏 (𝑒,𝐺 ′)} in a

way similar to [19, 47] (line 2)
1
, find the 𝑘-affected tree nodes Ψ𝑘

1
For a graph𝐺 , we set 𝜏 (𝑒,𝐺) = 0 if 𝑒 ∉ 𝐸 (𝐺) .

containing edges in Φ′
𝑘
(line 3), and compute the union of nonempty

Φ′
𝑘
and Ψ𝑘 , respectively (line 4). Next, we generate tree nodes 𝑌 to

hold the affected edges by NewNode (Algorithm 9 in Appendix)

(line 5), and restructure EquiTree to absorb 𝑌 by two different

procedures tailored for insertion and deletion (line 6).

We first analyze the time complexity of lines 1–5 in Algorithm

3. Lines 1 and 2 need 𝑂 ( | |𝐸Φ′ | |1 |𝐸Φ′ |) time for edge insertion and

𝑂 (𝑅 log𝑅) time (𝑅 = 𝑂 ( | |AFF| |2
1
|AFF|)) for edge deletion [47], where

𝐸Φ′ =
⋃︁

2≤𝑘≤𝑘max
Φ′
𝑘
is the set of edges with changed trussness, AFF

is the minimum difference between the truss decomposition orders

of the original and updated graphs (AFF is a superset of 𝐸Φ′ , but its

practical size is very close to 𝐸Φ′ ), | |𝐸Φ′ | |1 and | |AFF| |1 are sizes of
the 1-hop neighbors of 𝐸Φ′ and AFF respectively. For convenience,

we denote the above complexity for insertion and deletion as 𝑇+
and 𝑇−, respectively. Since lines 3-5 can be done in 𝑂 ( |𝐸Φ′ |) time

which is dominated by 𝑇+ and 𝑇−, the overall time complexity of

Algorithm 3 except line 6 is 𝑇+ for insertion and 𝑇− for deletion.

5.1 Edge Insertion
We restructure EquiTree for edge insertion (line 6 in Algorithm 3) in

two steps, as shown in Algorithm 4. First, we create new tree nodes

𝑌 for edges with increased trussness and examine the tree nodes

triangle-connected to any 𝑦 ∈ 𝑌 (lines 1-13). Second, we handle the

triangle connections between nodes not in 𝑌 (lines 14-20).

In both steps, SerialMerge (lines 21-29) deals with tree node

merging triggered by triangle connections. For two partial classes

𝑃 , 𝑃 ′ ∈ 𝐸 (𝐻𝜏 (𝑒) ), if 𝜏 (𝑒) ≤ 𝜏 (𝑒 ′), we denote it as 𝑃 ⪯ 𝑃 ′. If a
new node 𝑥 ′ is triangle-connected to tree nodes 𝑥1 and 𝑥2 with

𝜏 (𝑥 ′) ≥ 𝜏 (𝑥1) = 𝜏 (𝑥2), we need to merge 𝑥1 and 𝑥2 since 𝑥1 ⪯ 𝑥 ′

and 𝑥2 ⪯ 𝑥 ′. Besides, we also need to merge the two paths from

𝑥1 and 𝑥2 to their latest common ancestor 𝑥 ′′, i.e., merge any two

nodes on paths 𝑥 ′′ ⇝ 𝑥1 and 𝑥 ′′ ⇝ 𝑥2 if they have the same

trussness. We call the set of nodes that might trigger a series of

merging as a seed node set, denoted by 𝑆 . SerialMerge then collects

the tree nodes on the path from nodes in 𝑆 to their latest common

ancestor and merges any of these nodes with the same 𝑘 value.

In step 1, we first remove the empty nodes in Ψ𝑘 (line 3-5). Next,

for each 𝑦 ∈ 𝑌 , we find the nodes triangle-connected to 𝑦, 𝑋 ′ (line
7), and collect seed nodes 𝑆 that may trigger merging. For each

𝑥 ′ ∈ 𝑋 ′, if 𝜏 (𝑥 ′) ≤ 𝜏 (𝑦), then 𝑥 ′ and its ancestors all precede 𝑦.

Thus, we add (𝑥 ′, 𝑦) to E and add 𝑦 to 𝑆 (line 9–10). Likewise, if

𝜏 (𝑥 ′) > 𝜏 (𝑦), we add (𝑦, 𝑥 ′) to E and add 𝑥 ′ to 𝑆 (line 11-12). Finally,
we perform SerialMerge on 𝑆 according to Lemma 6 (line 13).

In step 2, we denote the triangle containing 𝑒∗ as △′. Then for

the other two edges 𝑒1, 𝑒2 ∈ △′, we find their corresponding tree

nodes 𝑥1 and 𝑥2 (line 18). If 𝑥1, 𝑥2 ∉ 𝑌 , we add (𝑥1, 𝑥2) to E since

they are triangle-connected with △′, and then add 𝑥2 to 𝑆
′
(line 19).

Finally, we perform SerialMerge on 𝑆 ′ (line 20).

Example 8. After inserting (𝑣8, 𝑣11) into Fig. 1, the affected edges
Φ′
5
= {(𝑣5, 𝑣11), (𝑣6, 𝑣11), (𝑣7, 𝑣11), (𝑣8, 𝑣11)} change trussness to 5,

and Φ′
4
= {(𝑣10, 𝑣11)} change trussness to 4. The affected nodes are

Ψ5 = {𝑥2} and Ψ4 = {𝑥1} (Fig. 6(a)). We create new nodes 𝑦1 with
𝑦1 .𝐸 = Φ′

4
and 𝑦2 with 𝑦2 .𝐸 = Φ′

5
(Fig. 6(b)). In step 1, we start from

𝑦2 and connect 𝑦2 to 𝑥2, 𝑥3, and 𝑦1 since they are triangle-connected
(Fig. 6(c)). Next, we perform SerialMerge on 𝑆 = {𝑥2, 𝑥3, 𝑦1, 𝑦2} to
merge 𝑦2, 𝑥3 into 𝑥 ′

3
, and 𝑥2, 𝑦1 into 𝑥 ′

2
(Fig. 6(d)). Then, we check the
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Algorithm 4: Restructure-Insertion
Input :EquiTree T , inserted edge 𝑒∗, new nodes 𝑌

1 foreach 𝑘 ← 𝑘max to 2 do
2 skip if Φ𝑘 = ∅;
3 foreach 𝑥 ∈ Ψ𝑘 do
4 if 𝑥 .𝐸 = ∅ then
5 remove tree node 𝑥 ;

6 𝑦 ← the tree node in 𝑌 with trussness 𝑘 ;

7 𝑋 ′ ← tree nodes triangle-connected with 𝑦;

8 foreach 𝑥 ′ ∈ 𝑋 ′ do
9 if 𝜏 (𝑥 ′) ≤ 𝜏 (𝑦) then
10 E ← E ∪ {(𝑥 ′, 𝑦)}; 𝑆 ← 𝑆 ∪ {𝑦};
11 if 𝜏 (𝑥 ′) > 𝜏 (𝑦) then
12 E ← E ∪ {(𝑦, 𝑥 ′)}; 𝑆 ← 𝑆 ∪ {𝑥 ′};
13 SerialMerge(𝑆);
14 𝑇 ′ ← all triangles with 𝑒∗ as an edge;

15 foreach △′ ∈ 𝑇 ′ do
16 𝑒1, 𝑒2 ← edges of △′ except 𝑒∗ (w.l.o.g. 𝜏 (𝑒1) ≤ 𝜏 (𝑒2));
17 if 𝑒1, 𝑒2 ∉ 𝑌 then
18 𝑥1, 𝑥2 ← tree nodes containing 𝑒1 and 𝑒2

respectively;

19 E ← E ∪ {(𝑥1, 𝑥2)}; 𝑆 ′ ← 𝑆 ′ ∪ {𝑥2};
20 SerialMerge(𝑆 ′);
21 Procedure SerialMerge(𝑆)
22 while 𝑆 ≠ ∅ do
23 𝑆 ′ ← nodes in 𝑆 with the largest trussness;

24 𝑆 .pop(𝑆 ′);
25 add parents of 𝑆 ′ to 𝑆 if they are not added before;

26 𝑥 ←MergeNodes(𝑆 ′);
27 add (𝑥, 𝑥 ′) and remove other children of 𝑥 if 𝑥 ′

exists;

28 𝑥 ′ ← 𝑥 ;
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Figure 6: Example for edge insertion.

triangle connectivity of 𝑦1 (now merged into 𝑥 ′
2
), which is triangle-

connected to 𝑥 ′
3
, and find that (𝑥 ′

2
, 𝑥 ′

3
) is already connected. Next, we

find nodes containing the other two edges in the triangle newly formed
by 𝑒∗, which are 𝑥 ′

2
and 𝑥 ′

3
. Since they are handled in step 1, we do

not need to perform step 2.

The overall time complexity of index maintenance for edge in-

sertion is𝑂 ( |𝐸Φ′ |𝑑𝑒𝑔max + 𝑘max𝑁 log𝑁 +𝑇+), where𝑇+ is the time

complexity of lines 1-5 in Algorithm 3 as discussed before, and

𝑂 ( |𝐸Φ′ |𝑑𝑒𝑔max+𝑘max𝑁 log𝑁 ) (𝑑𝑒𝑔max is themaximumdegree in𝐺)

is the time complexity of Algorithm 4 derived as follows. First of all,

SerialMerge takes𝑂 (𝑁 log𝑁 ) time since lines 23-28 take𝑂 (log |𝑆 |)
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Figure 7: Example for NodeSplit.

time if we maintain 𝑆 by a heap and |𝑆 | ≤ 𝑁 since a tree node will

be added to 𝑆 at most once. In lines 2-7, checking the affected nodes

takes 𝑂 ( |Ψ|) time, and finding nodes triangle-connected to 𝑦 takes

𝑂 (∑︁(𝑢,𝑣) ∈𝑦.𝐸 min{𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣)}) according to [40]. Since lines 8-
12 and lines 14-20 take𝑂 ( |𝑋 ′ |) and𝑂 ( |𝑠𝑢𝑝 (𝑒∗) |) time, respectively

dominated by other parts, |Ψ| ≤ |𝐸Φ′ |, and
∑︁
(𝑢,𝑣) ∈𝐸Φ′ min{𝑑𝑒𝑔(𝑢),

𝑑𝑒𝑔(𝑣)} ≤ |𝐸Φ′ | ·𝑑𝑒𝑔max, the overall time complexity of Algorithm 4

is𝑂 ( |𝐸Φ′ |𝑑𝑒𝑔max + 𝑘max𝑁 log𝑁 ). The practical index maintenance

time is significantly less than construction since both |𝐸Φ′ | and 𝑁

are much smaller than𝑚.

5.2 Edge Deletion
We also restructure EquiTree for edge deletion in two steps: first,

we handle the 𝑘-affected tree nodes for each 𝑘 , and then we deal

with other nodes that may split.

In both steps, SplitNode will split edges in a tree node into𝑘-truss

equivalence classes [1] and reorganize them into 𝑘-partial classes.

Specifically, we first split 𝑥 .𝐸 into 𝑘-truss equivalence classes and

create a temporary node 𝑥 ′ for each class; then we connect 𝑥 ′ to
each child of 𝑥 , 𝑥 ′′, if 𝑥 ′ ≺ 𝑥 ′′. If multiple nodes connect to the

same 𝑥 ′′, they should be merged according to Lemma 6.

Example 9. After deleting (𝑣8, 𝑣11) in Example 8, we split 𝑥1 in
Fig. 7(a). First, we detect its 𝑘-truss equivalence classes and split 𝑥1
into three nodes 𝐶3,1, 𝐶3,2, and 𝐶3,3 (Fig. 7(b)). Since 𝐶3,1 and 𝐶3,3

are triangle-connected to 𝑥3 and 𝑥4, we have 𝐶3,1,𝐶3,3 ≺ 𝑥3 and
𝐶3,1,𝐶3,3 ≺ 𝑥4. Since 𝑥2 is the child of 𝑥1 and the parent of 𝑥3, we
have 𝐶3,1,𝐶3,3 ≺ 𝑥2, and can connect 𝐶3,1,𝐶3,3 to 𝑥2 and 𝑥4. Since
𝐶3,2 ≺ 𝑥2, we connect 𝐶3,2 to 𝑥2. As 𝐶3,1,𝐶3,2,𝐶3,3 all connect to 𝑥2,
we merge them into 𝑥 ′

1
(Fig. 7(c)).

Algorithm 5 shows the maintenance of EquiTree for edge dele-

tion. In the first step, we deal with the affected tree nodes. First, we

delete any tree nodes with trussness 2 (line 1). Next, for each 𝑘 , we

denote the node in 𝑌 with trussness 𝑘 by 𝑦, the node in Ψ𝑘 by 𝑥∗,
and the parent of 𝑥∗ by 𝑥∗𝑝 (lines 4-6). We then insert 𝑦 between 𝑥∗

and 𝑥∗𝑝 , and merge two nodes if there is a conflict (lines 7-9). Then,

if 𝑥∗ .𝐸 = ∅, we delete 𝑥∗ and add its children to 𝑥∗𝑝 (line 11). Finally,

if possible, we perform SplitNode on 𝑥∗ (line 12). In the second step,

we check other nodes that may split. We use 𝑥 ′ to denote the parent
of the last split tree node, and perform SplitNode on 𝑥 ′ and then

on its parents recursively until the node cannot split (lines 13-16).

Example 10. We delete (𝑣8, 𝑣11) after its insertion (Eg. 8). Likewise,
Φ′
4
= {(𝑣5, 𝑣11), (𝑣6, 𝑣11), (𝑣7, 𝑣11), (𝑣8, 𝑣11)} and Φ′

3
= {(𝑣10, 𝑣11)}.

The affected nodes are Ψ4 = {𝑥3} and Ψ3 = {𝑥2} (Fig. 8(a)). We
create 𝑦3 with 𝑦3 .𝐸 = Φ′

4
and 𝑦2 with 𝑦2 .𝐸 = Φ′

3
(Fig. 8(b)). During

Restructure-Deletion, 𝑥2 and 𝑥3 are not deleted since 𝑥2 .𝐸 ≠ ∅ and
𝑥3 .𝐸 ≠ ∅. First, we insert 𝑦3 between 𝑥2 and 𝑥3 (Fig. 8(c)) and merge
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Algorithm 5: Restructure-Deletion
Input :EquiTree T , deleted edge 𝑒∗, new nodes 𝑌

1 delete the tree nodes in 𝑌 with trussness 2;

2 foreach 𝑘 ← 𝑘max to 3 do
3 skip if Φ𝑘 = ∅;
4 𝑦 ← the tree node in 𝑌 with trussness 𝑘 ;

5 𝑥∗ ← the tree node in Ψ𝑘 ;

6 𝑥∗𝑝 ← the parent of 𝑥∗;
7 delete (𝑥∗𝑝 , 𝑥∗) if 𝑥∗𝑝 exists and add (𝑦, 𝑥∗) if 𝑦 exists;

8 if both 𝑥∗𝑝 and 𝑦 exist then
9 add edge (𝑥∗𝑝 , 𝑦); Merge({𝑦, 𝑥∗𝑝 }) if 𝜏 (𝑦) = 𝜏 (𝑥∗𝑝 );

10 if 𝑥∗ .𝐸 = ∅ then
11 delete 𝑥∗ and add its children to 𝑥∗𝑝 if 𝑥∗𝑝 exists;

12 SplitNode(𝑥∗) if 𝑥∗ is not deleted;
13 𝑥 ′ ← the parent node of the last tree node split;

14 while 𝑥 ′ exists and can be split do
15 SplitNode(𝑥 ′);
16 𝑥 ′ ← the parent of 𝑥 ′;
17 Procedure SplitNode(𝑥)
18 𝑋 ← split 𝑥 into multiple nodes according to 𝑘-truss

equivalence classes in 𝑥 .𝐸;

19 foreach 𝑥 ′ ∈ 𝑋 do

20 foreach 𝑥 ′′ that 𝑥 ′′
𝜏 (𝑥 ′)
←−−→ 𝑥 ′ and 𝜏 (𝑥 ′′) > 𝜏 (𝑥 ′) do

21 𝑦 ← a child of 𝑥 that 𝑥 ′′ ∈ T𝑦 ; add edge (𝑥 ′, 𝑥 ′′);
22 if 𝑥 ′′ already has a parent, merge 𝑥 ′ and 𝑥 ′′;
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Figure 8: Example of edge deletion.

𝑥2 and 𝑦3 into 𝑥 ′
2
as 𝜏 (𝑥2) = 𝜏 (𝑦3) = 4 (Fig. 8(d)). We then try

SplitNode on 𝑥3, but 𝑥3 .𝐸 contains only one 5-truss equivalence class,
leading to no changes. Next, we insert 𝑦2 between 𝑥1 and 𝑥 ′

2
(Fig. 8(e))

and merge 𝑦2 and 𝑥1 into 𝑥 ′
1
since 𝜏 (𝑦2) = 𝜏 (𝑥1) = 3 (Fig. 8(f)). As 𝑥 ′

2

only contains one 4-truss equivalence class, no changes occur during
SplitNode. Out of the loop, since 𝑥 ′

2
is the last node split, we start

splitting from 𝑥 ′
1
. Although there are three 3-truss equivalence classes,

they all precede 𝑥 ′
2
. Therefore, they are merged again into 𝑥 ′

1
, and

thus no changes happen (Fig. 8(g)).

The overall time complexity of index maintenance for edge dele-

tion is 𝑂 (𝑚1.5). First, lines 2-11 can be done in 𝑂 (𝑘max). Next,

Algorithm 6: Restructure-Insertion Batched

Input :EquiTree T , inserted edge 𝑒∗, new nodes 𝑌

1 foreach 𝑘 ← 𝑘max to 2 do
2 lines 2-5 in Algorithm 4;

3 𝑌 ′ ← the nodes in 𝑌 with trussness 𝑘 ;

4 foreach 𝑦 ∈ 𝑌 ′ do
5 lines 7-12 in Algorithm 4;

6 lines 14-19 in Algorithm 4; BatchMerge(𝑆);
7 Procedure BatchMerge(𝑆)
8 partition 𝑆 into 𝑆 ′

1
, . . . , 𝑆 ′

𝑙
based on connectivity;

9 foreach 𝑆 ′
𝑖
(1 ≤ 𝑖 ≤ 𝑙) do

10 SerialMerge(𝑆 ′
𝑖
);

we analyze the cost of splitting nodes. First of all, the time com-

plexity of SplitNode is 𝑂 (∑︁(𝑢,𝑣) ∈𝑥.𝐸 min{𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣)} + 𝑘max ·
|𝑥 .𝐸 |) since checking the triangle connectivity in tree node 𝑥 takes

𝑂 (∑︁(𝑢,𝑣) ∈𝑥.𝐸 min{𝑑𝑒𝑔(𝑢), deg(𝑣)}) [40] (line 18) and lines 19-22

take𝑂 ( |𝑋 | ·𝑘max) ≤ 𝑂 ( |𝑥 .𝐸 | ·𝑘max) time. Since each SplitNode deals

with edges with specific trussness, each edge will be split at most

once. Thus lines 12-16 take 𝑂 (∑︁(𝑢,𝑣) ∈𝐸 (𝐺) min{𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣)} +
𝑚𝑘max) = 𝑂 (∑︁𝑣∈𝑉 (𝐺) 𝑑𝑒𝑔(𝑣) · |𝑛𝑏≥ (𝑣) | +𝑚𝑘max) to split nodes

where 𝑛𝑏≥ (𝑣) = {𝑣 |𝑣 ∈ 𝑁 (𝑣), 𝑑𝑒𝑔(𝑣) ≥ 𝑑𝑒𝑔(𝑢)}. Since |𝑛𝑏≥ (𝑣) | ≤
2

√
𝑚 [40], 𝑂 (∑︁𝑣∈𝑉 (𝐺) 𝑑𝑒𝑔(𝑣) · |𝑛𝑏≥ (𝑣) |) = 𝑂 (𝑚1.5). Since 𝑘max <√
𝑚 and 𝑇− is dominated by 𝑂 (𝑚1.5), the overall time complexity

is 𝑂 (𝑚1.5). In practice, the maintenance time is significantly less

as usually only a small portion of tree nodes are split.

5.3 Batch Maintenance
In real-world applications, a series of edge insertions or deletions

may emerge in a short time window. Thus, we propose a batch

maintenance algorithm, which follows the same initial steps (lines

1-5) in Algorithm 3 but with a different restructure process.

5.3.1 Batch Edge Insertion. Algorithm 6 shows the maintenance

for batched edge insertion, which differs from Algorithm 4 in the

following two aspects. First, instead of only one new node𝑦 created

for each 𝑘 , a set of such new tree nodes 𝑌 needs to be processed in

batch maintenance (lines 3-5). Second, SerialMerge in Algorithm 4

cannot directly deal with batch insertion because it requires every

𝑒 ∈ 𝑆 to be in the same connected component of 𝐺 , which is true

for single insertion but not necessarily true for batch insertion.

Therefore, we propose BatchMerge (lines 7-10) to partition 𝑆 into

subsets 𝑆 ′
1
, . . . , 𝑆 ′

𝑘
based on their connectivity (line 8) and then apply

SerialMerge to each subset (lines 9-10).

Following the analysis of Algorithm 4, the maintenance time

complexity for batched edge insertion is𝑂 ( |𝐸Φ′ |𝑑𝑒𝑔max+𝑙 ·𝑁 log𝑁+
𝑇+) since sorting |𝑌 | needs 𝑂 ( |𝑌 | log |𝑌 |) time (|𝑌 | < 𝑁 ) and the

number of connected components in 𝑆 is 𝑙 (line 8).

5.3.2 Batch Edge Deletion. Redundant SplitNode operations will
occur if we apply Algorithm 5 to each edge individually because

deleting multiple edges may cause the same tree node 𝑥 to be split

repeatedly. If we collect all the nodes that need to be split first

and then split them in a batch, we can avoid such redundant splits.

Therefore, we propose a new procedure, BatchSplit, to split a node
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Algorithm 7: Restructure-Deletion Batched

Input :EquiTree T , deleted edge 𝑒∗, new nodes 𝑌

1 foreach 𝑥∗ ∈ Ψ do
2 if 𝑥∗ .𝐸 = ∅ then
3 𝑥∗𝑝 ← the parent of 𝑥∗;
4 delete 𝑥∗ and add its children to 𝑥∗𝑝 ;

5 𝑆 ′ ← 𝑆 ′ ∪ {𝑥∗𝑝 };
6 else
7 𝑆 ′ ← 𝑆 ′ ∪ {𝑥∗};
8 lines 1–5 in Algorithm 6;

9 BatchMerge(𝑆); BatchSplit(𝑆 ′);
10 Procedure BatchSplit(𝑆)
11 while 𝑆 ≠ ∅ do
12 𝑆 ′ ← nodes in 𝑆 with the same largest trussness;

13 𝑆 .pop(𝑆 ′);
14 foreach 𝑥 ∈ 𝑆 ′ do
15 SplitNode(𝑥);
16 add the parent of 𝑥 to 𝑆 if 𝑥 can be split and this

parent has not been added before;

set 𝑆 , as shown in lines 11–16 of Algorithm 7. It begins with nodes

in 𝑆 with the largest 𝑘 value, denoted as 𝑆 ′ (line 3). For each node

𝑥 ∈ 𝑆 ′, if it can be split, we add its parent to 𝑆 (line 16). We repeat

such processes until 𝑆 becomes empty.

Equipped with BatchSplit, we developed a new maintenance

method for batched edge deletion, as shown in Algorithm 7, whose

main difference from Algorithm 6 is that we collect the node to be

split first and delete the empty tree nodes before splitting (lines

1-7). Specifically, for each affected tree node 𝑥∗, if it is empty, we

delete it and add its children to its parent 𝑥∗𝑝 (if exists) (lines 2-4).

Moreover, we also add 𝑥∗𝑝 to 𝑆 ′ as the deletion of 𝑥∗ may break

connections in 𝑥∗𝑝 (line 5). For other nonempty affected nodes 𝑥∗,
since their connection may be broken as well, they are also added

into 𝑆 ′ (line 7). Next, similar to Algorithm 6, for each 𝑦 ∈ 𝑌 ′, we
find the tree nodes triangle-connected to 𝑦, 𝑋 ′, connect 𝑦 to nodes

in 𝑋 ′, and collect seed nodes 𝑆 (line 8). Finally, we run BatchMerge

on 𝑆 and run BatchSplit on 𝑆 ′ (line 9).
The time complexity for batched edge deletion is 𝑂 (𝑚1.5). First,

as SplitNode costs 𝑂 (∑︁(𝑢,𝑣) ∈𝑥.𝐸 min{𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣)} + |𝑥 .𝐸 |𝑘max)
and no node is added twice (line 16), BatchSplit takes𝑂 (∑︁(𝑢,𝑣) ∈𝐸 (𝐺)
min{𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣) +𝑚𝑘max} = 𝑂 (𝑚1.5) as proved in single edge

deletion. Next, we examine the complexity of other parts, which are

also bounded by𝑂 (𝑚1.5) as analyzed in the maintenance algorithm

for single-edge deletion. Thus the overall complexity is 𝑂 (𝑚1.5).

6 EXPERIMENT
We conducted extensive experimental studies to evaluate the effec-

tiveness and efficiency of our algorithms.

6.1 Setting Up
Datasets. We consider six real-world networks publicly available

in SNAP and Network Repository
2
. Table 1 reports their statistics,

2
https://snap.stanford.edu/data and https://www.networkrepository.com

Table 1: Graph statistics, along with the maximum vertex
degree 𝑑max and the maximum edge trussness 𝑘max.

Dataset Vertices Edges 𝑑max 𝑘max

Facebook (FB) [42] 4,039 88,234 77 97

Catster (CS) [36] 149,700 5,449,275 80,636 207

DBLP (DB) [42] 317,080 1,049,866 342 114

LiveJournal (LJ) [42] 3,997,962 34,681,189 14,815 352

Orkut (OK) [42] 3,072,441 117,185,083 33,313 78

Weibo (WB) [36] 58,655,850 261,321,071 278,491 80
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Figure 11: Comparison of average query time.

where 𝑑max denotes the maximum vertex degree and 𝑘max denotes

the maximum edge trussness.

Algorithms.We compare EquiTreewith the state-of-the-art methods,

TCP-Index [19] and EquiTruss [1]. To evaluate the query efficiency,

we compare EquiTree, EquiTruss, TCP-Index, and a naive baseline

Index-Free that starts from the query vertex 𝑣𝑞 and traverses the

triangle-connected edges with pre-computed trussness no less than

𝑘 to get the 𝑘-TTC containing 𝑣𝑞 . To evaluate the maintenance

efficiency, we compare EquiTree with the maintenance algorithms

of EquiTruss [1] and a baseline algorithm EquiTree-Reconstruct that
constructs EquiTree from scratch. We obtained the executable file

of TCP-Index from the authors and implemented other algorithms

in C++. All the experiments were conducted on a Linux server with

two Intel 4.0GHz 8-core CPUs and 96GB memory.

6.2 Index Compactness
First, we evaluate the compactness of TCP-Index C, EquiTruss G and

EquiTree T . Table 2 compares the index size, whereV/E denotes

the nodes/edges number of the index (its ratio to the vertex/edge

number of the original graph is given in parenthesis) and 𝑆 denotes

the index size in megabytes. TCP-Index and EquiTruss have multiple

times more vertices than the original graphs while EquiTree has
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Table 2: Comparison of the sizes of TCP-Index C, EquiTruss G, and EquiTree T (K = 10
3,M = 10

6).

Dataset |V(T )| |V(G)| |V(C)| |E(T )| |E(G)| |E(C)| |𝑆 (T )| |𝑆 (G)| |𝑆 (C)|
Facebook 393 (9.7%) 5K (147.7%) 176K (4367.2%) 377 (0.4%) 33K (37.8%) 172K (195.4%) 0.82 1.16 8.74

Catster 579 (0.4%) 1M (692.5%) 10M (7174.6%) 221 (0.0%) 8M (164.1%) 10M (194.5%) 39.74 181.2 526

DBLP 72K (22.8%) 126K (40.0%) 869K (274.3%) 21K (2.0%) 105K (10.0%) 549K (52.3%) 13.02 14.42 101

LiveJournal 294K (7.4%) 4M (119.2%) 68M (1715.3%) 141K (0.4%) 13M (38.6%) 65M (188.5%) 401 635 3081

Orkut 287K (9.3%) 17M (560.7%) 231M (7526.7%) 105K (0.1%) 76M (65.4%) 228M (194.8%) 1456 2872 10553

Weibo 96K (0.2%) 23M (40.9%) 449M (767.1%) 3K (0.0%) 66M (25.5%) 389M (148.9%) 1061 2382 15507

EquiTree EquiTruss TCP-Index Index-Free
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Figure 12: Comparison of query efficiency with varying parameters.
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Figure 13: Comparison of average maintenance efficiency.

significantly fewer nodes (mostly less than 10%) and edges (less

than 2%). We also report the storage size in megabytes. EquiTree

has the smallest size, but the differences between the other two

indexes are not as large as those of nodes/edge numbers since all

the indexes need to store graph edges with a trussness of at least 3.

6.3 Index Construction Efficiency
Fig. 9 shows the construction time of TCP-Index, EquiTruss, and
EquiTree, which are close. We also test the scalability of EquiTree.

Let 𝑠 denote the graph scaling factor. For each 𝑠 from 0.1 to 1.0, we

randomly select 𝑠 |𝑉 (𝐺) | vertices to obtain the induced subgraphs,

on which we construct EquiTree. The result in Fig. 10 shows that

the construction algorithm is scalable.

6.4 Query Efficiency
First, evaluate the general query efficiency of the compared algo-

rithms. From each graph𝐺 , we randomly select 1000 query vertices,

and set the default truss value 𝑘 as 4 in Facebook and Catster, 5

in DBLP, 6 in LiveJournal, 10 in Orkut and Weibo. The results are

reported in Fig. 11. EquiTree significantly outperforms EquiTruss
and TCP-Index, where the speedup is up to two orders of magnitude

in Weibo. Index-Free performs the worst since it incurs exhaustive

BFS explorations and costly triangle-connectivity evaluations.

Then, we examine the effect of degrees of query vertices. We de-

note the degree rank of a vertex as 10% if its degree is in the top 10%,

and 20% if its degree falls in the top [10%, 20%], and other degree

ranks 30%, . . . , 100% are defined similarly. For each rank, we ran-

domly select 1,000 vertices. The results are reported in Fig. 12 (a)–(f).

Searching 𝑘-TTCs containing high-degree vertices usually takes
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Figure 14: Comparison of maintenance total time costs with different edge numbers.
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Figure 15: Comparison of median, mean diameters and average sizes of 𝑘-TTCs and 𝑘-truss communities with different 𝑘 values.
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Figure 16: Total time of querying and batch maintenance.

more time because they tend to participate in more and larger com-

munities. When the degree percentile is above 70%, the query time

drops drastically because the number of communities decreases. In

Weibo, the query time drops significantly after 20%, showing that

only the 10% most active users form tight communities.

Next, we examine the effect of 𝑘 . We randomly choose 1,000

query vertices and run community searches with varying 𝑘 . Fig. 12

(g)–(l) show that EquiTree performs the best for most 𝑘 , especially

on large graphs. Also, the query time decreases when 𝑘 increases

as the communities become smaller. The average query time for

Weibo is quite small, as a random vertex in such a social network

may not participate in any 𝑘-TTC.

Finally, we test the scalability of the query algorithms. For each

scaling factor 𝑠 from 0.1 to 1.0, we randomly select 𝑠 |𝑉 (𝐺) | vertices
from the datasets and obtain the induced subgraphs. Next, we ran-

domly choose 1,000 query vertices
3
. The results in Fig. 12 (m)–(r)

show that our query algorithm has the best scalability.

3
If the subgraph has less than 1,000 vertices for each subgraph, all of them are selected.

6.5 Maintenance Efficiency
First, we compare the average maintenance time of EquiTree and
EquiTruss in Fig. 13. For each graph, we randomly delete 1,000 edges,

and then add them back
4
. For EquiTruss and EquiTree, we maintain

the index at each edge update. For EquiTree-Batched, we maintain

the index by inserting/deleting all the edges in one batch. We also

plot EquiTree-Reconstruct, the baseline algorithm that constructs

EquiTree from scratch. EquiTree outperforms the baseline EquiTree-
Reconstruct by several orders of magnitude. Moreover, EquiTree-
Batched outperforms EquiTree bymore than one order of magnitude.

For edge insertion, which commonly occurs in real-world applica-

tions, EquiTree and EquiTruss have similar performances. For edge

deletion, which rarely occurs in real-world applications, EquiTree
needs a little more time, which is still acceptable considering its

performance in online community search.

Then, we evaluate how the maintenance time changes with

the number of updated edges on three medium-sized graphs. The

number of edges ranges from 2
0
to 2

16
, and the maintenance is

done in one batch for batched algorithms. As shown in Fig. 14, the

batched algorithms generally outperform the non-batched ones

except for an extremely small number of updated edges (usually

less than 4). Moreover, the time costs of non-batched algorithms

increase more rapidly when the edge number increases, while the

increases of batched algorithms are much slower. Overall, batched

algorithms are more efficient under a certain scale. For large-scale

updates, reconstruction may be a better option.

Although the maintenance of EquiTree-Batch is slightly slower

than EquiTruss-Batch on some datasets in Fig. 14, from the view-

point of the system, maintenance will be done when there are no

or only a few queries in practice. For the rare case that the index is

maintained when the queries come, we further evaluate the total

4
Only edges with trussness larger than 2.

529



Wei Wang 0010
Wenchao Yu

Haifeng Chen

Xiang Zhang 0001

Wei Cheng 0002

Jingchao Ni

Bo ZongDongjin Song

Dongkuan Xu
Dongsheng Luo

Yanchi Liu
Xuchao Zhang

Zhengzhang Chen

Yih-Chun Hu

Zhuotao Liu

Haoyu Wang 0001

Xusheng Xiao

Jian Shi

Bihan Wen

Peng Gao 0008

Yangxi Xiang

Zheng Qin
Xiaoyuan Liu

Prateek Mittal

Fengyuan Xu

Dawn Song

Sanjeev R. Kulkarni

Fei Shao

Zhenyu Wu

Zhichun LiDing Li 0001

Kangkook Jee
Chung Hwan Kim

Xiao Yu 0007Lu-An TangShen Wang 0005

Chuan Zhou 0001
Jian Yang 0001

Wenbin Hu

Jia Wu 0001

Cécile ParisSurya Nepal
Shan Xue

Fanzhen Liu

Francesco Ricci 0001

Liang Hu 0004Quan Z. Sheng

Longbing Cao

Mehmet A. Orgun

Yan Wang 0002

Xiangnan He 0001

Shoujin Wang

Philip S. Yu

(a) 8-TTC result

Fanzhen Liu

Wenbin Hu

Chuan Zhou 0001

Jia Wu 0001 Cécile Paris

Jian Yang 0001

Surya Nepal

Shan Xue

Zhichun Li

Haifeng Chen

Xiao Yu 0007

Lu-An Tang

Jingchao Ni

Zhengzhang Chen

Shen Wang 0005

Ding Li 0001

Xusheng XiaoPrateek Mittal

Zhenyu Wu

Sanjeev R. KulkarniPeng Gao 0008

Kangkook Jee

Chung Hwan Kim

Fengyuan Xu

Zheng Qin
Dawn Song

Xiaoyuan Liu
Fei Shao

Xiangnan He 0001
Liang Hu 0004

Quan Z. Sheng

Longbing Cao

Mehmet A. Orgun

Yan Wang 0002

Francesco Ricci 0001

Shoujin Wang

Philip S. Yu

(b) 9-TTC result

Figure 17: Community search result of Philip S. Yu on DBLP

time cost of querying and batch maintenance. Fig.16 shows the total

time cost of querying and batch maintenance of 1,000 edge inser-

tions/deletions on Catster and LiveJournal as the maintenance of

EquiTree-Batch is slightly slower than that of EquiTruss-Batch on

these two datasets in Fig. 14. The results show that on both datasets,

EquiTree-Batch surpasses EquiTruss-Batch when the query number

is larger than 50. Therefore, we recommend EquiTree-Batch for

most cases where queries are more frequent than maintenance.

6.6 Effectiveness Analysis
6.6.1 Statistics on Diameters. Diameter is an important metric to

evaluate community quality. For each graph, we find all 𝑘-truss and

𝑘-TTCs with varying 𝑘 and then calculate their mean and median

diameters. To show the effectiveness of triangle connectivity, if a 𝑘-

truss is identical to a 𝑘-TTC, we remove it from the evaluation. Fig.

15 shows that 𝑘-TTCs has smaller mean and median diameters on

all the datasets, especially on Facebook and Weibo, which demon-

strates that 𝑘-TTC generates tighter communities and confirms our

analysis on the diameter upper bound of 𝑘-TTC (Section 3).

6.6.2 Community size. For each graph, we find all 𝑘-truss and 𝑘-

TTCs with varying 𝑘 , and then report their vertex number in Fig. 15.

The sizes of 𝑘-TTCs are significantly smaller in most cases, which

is more friendly for users to explore.

6.6.3 A Case Study. Previous studies have statistically shown the

effectiveness of 𝑘-TTC [1, 19]. For self-completeness, we give a case

study that searches 𝑘-TTCs for Philip S. Yu in the DBLP graph
5
. We

connect an edge when two authors have cooperated at least three

times to reduce the free-rider effect, and then perform the search

with truss values 8 and 9, respectively. The results are reported in

Fig. 17. When 𝑘 = 8, the search result contains three communities:

two are from Macquarie University and one is from NEC Labora-

tories America. When 𝑘 = 9, although Philip S. Yu is still in three

communities, the two from Macquarie University are not affected,

while the one from NEC Laboratories becomes significantly smaller.

Therefore, by tuning 𝑘 , with the help of EquiTree, we can achieve

personalized community search in large-scale graph analysis.

7 RELATEDWORKS
Community detection aims to retrieve all communities in the entire

network, which is well-studied in the literature [14] [24]. Some

5
https://dblp.uni-trier.de/xml

decomposition methods were also proposed to detect specified

community structures, such as core [7] [25] and truss [8] [40].

Community search aims to find communities containing a given set

of query vertices, which is attracting increasing interest. [13, 20]

comprehensively review recent studies of community search based

on models such as quasi-clique [28], 𝑘-core [37], 𝑘-truss [22] [1],

𝑘-ECC [18], and (𝑘, 𝑝)-core [33, 44]. Utilizing richer information,

attributed community search [12, 21] and spatial community search

[6, 26] have also been studied. Recently, machine learning also has

been applied to search flexible community structures [16, 23].

Maintenance of community search aims to keep the index up-

dated under graph changing. [47, 48] study the coreness/trussness

maintenance in dynamic graphs, and [34] study such maintenance

under distributed environment. [31] studies the maintenance of

the hierarchy of connected 𝑘-cores against edge insertion/deletion.

CL-Tree [11] maintains an index to efficiently support attributed

community search in dynamic graphs. [1, 19] study the mainte-

nance of indexes that support efficient 𝑘-TTC search.

8 CONCLUSION
In this paper, we study 𝑘-TTC search in dynamic graphs. We first

derive a smaller diameter upper bound for 𝑘-TTC and then develop

two novel concepts to capture the triangle connectivity among

edges at a high level. We design the compact EquiTree index paired

with efficient construction and maintenance algorithms. Compared

with the state-of-the-art, our EquiTree is more compact and can

boost the query performance of 𝑘-TTC query up to two orders of

magnitude on real-world graphs at a small additional construction

and maintenance cost.

9 APPENDIX

Algorithm 8:MergeNodes

Input :Nodes to be merged 𝑆 and EquiTree T(V, E)
1 𝑉+ ← {𝑥 | (𝑎, 𝑥) ∈ E, 𝑎 ∈ 𝑆 }; 𝐸′ ←

⋃︁
𝑎∈𝑆 𝑎.𝐸;

2 delete 𝑆 from tree;

3 create a new tree node 𝑐 with 𝑐.𝐸 ← 𝐸′ and add 𝑐 to tree;

4 add edge (𝑐, 𝑣) foreach 𝑣 ∈ 𝑉+;

Algorithm 9: NewNode
Input :EquiTree T, affected edges Φ, affected nodes Ψ
Output :New nodes 𝑌

1 for 𝑘 ← 𝑘max to 2 do
2 𝑥.𝐸 ← 𝑥.𝐸 \ Φ′

𝑘
foreach 𝑥 ∈ Ψ𝑘 ;

3 create new tree node 𝑦 s.t 𝑦.𝐸 = Φ′
𝑘
; 𝑌 ← 𝑌 ∪ {𝑦 };

4 return 𝑌 ;
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