
FirmTruss Community Search in Multilayer Networks

Ali Behrouz†
University of British Columbia

alibez@cs.ubc.ca

Farnoosh Hashemi†
University of British Columbia

farsh@cs.ubc.ca

Laks V.S. Lakshmanan
University of British Columbia

laks@cs.ubc.ca

ABSTRACT
In applications such as biological, social, and transportation net-
works, interactions between objects span multiple aspects. For
accurately modeling such applications, multilayer networks have
been proposed. Community search allows for personalized com-
munity discovery and has a wide range of applications in large
real-world networks. While community search has been widely
explored for single-layer graphs, the problem for multilayer graphs
has just recently attracted attention. Existing community models in
multilayer graphs have several limitations, including disconnectiv-
ity, free-rider effect, resolution limits, and inefficiency. To address
these limitations, we study the problem of community search over
large multilayer graphs. We first introduce FirmTruss, a novel dense
structure in multilayer networks, which extends the notion of truss
to multilayer graphs. We show that FirmTrusses possess nice struc-
tural and computational properties and bring many advantages
compared to the existing models. Building on this, we present a new
community model based on FirmTruss, called FTCS, and show that
finding an FTCS community is NP-hard. We propose two efficient
2-approximation algorithms, and show that no polynomial-time
algorithm can have a better approximation guarantee unless P = NP.
We propose an index-basedmethod to further improve the efficiency
of the algorithms. We then consider attributed multilayer networks
and propose a new community model based on network homophily.
We show that community search in attributed multilayer graphs
is NP-hard and present an effective and efficient approximation
algorithm. Experimental studies on real-world graphs with ground-
truth communities validate the quality of the solutions we obtain
and the efficiency of the proposed algorithms.

PVLDB Reference Format:
Ali Behrouz, Farnoosh Hashemi, and Laks V.S. Lakshmanan. FirmTruss
Community Search in Multilayer Networks. PVLDB, 16(3): 505 - 518, 2022.
doi:10.14778/3570690.3570700

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/joint-em/ftcs.

1 INTRODUCTION
Community detection is a fundamental problem in network science
and has been traditionally addressed with the aim of determining

†These authors contributed equally.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 3 ISSN 2150-8097.
doi:10.14778/3570690.3570700

an organization of a given network into subgraphs that express
dense groups of nodes well connected to each other [26]. Recently, a
query-dependent community discovery problem, called community
search (CS) [67], has attracted much attention due to its ability to
discover personalized communities. It has several applications like
social contagion modeling [71], content recommendation [13], and
team formation [28]. The CS problem seeks a cohesive subgraph
containing the query nodes given a graph and a set of query nodes.

Significant research effort has been devoted to the study of CS
over single-layer graphs, which have a single type of connection.
However, in applications featuring complex networks such as social,
biological, and transportation networks, the interactions between
objects tend to span multiple aspects.Multilayer (ML) networks [51],
where nodes can have interactions in multiple layers, have been
proposed for accurately modeling such applications. Recently, ML
networks have gained popularity in an array of applications in social
and biological networks and in opinion dynamics [8, 59, 62, 66], due
to their more informative representation than single-layer graphs.

Example 1. Figure 1(a) is an ML network showing a group of re-
searchers collaborating in various topics, where each layer represents
collaborations in an individual topic.

To find cohesive communities in single-layer graphs, many mod-
els have been proposed, e.g.,𝑘-core [67, 68],𝑘-truss [44],𝑘-plex [73],
and 𝑘-clique [16]. Existing methods for finding cohesive structures
in ML networks are inefficient. As a result, there is a lack of practi-
cal density-based community models in ML graphs. Indeed, there
have been a number of studies on cohesive structures in ML net-
works [29, 39, 57, 82]. However, they suffer from two main limita-
tions. (1) The decomposition algorithms [29, 39, 57] based on these
models have an exponential running time complexity in the number
of layers, making them prohibitive for CS. (2) These models have
a hard constraint that nodes/edges need to satisfy in all layers. It
has been noted that ML networks may contain noisy/insignificant
layers [29, 36]. These noisy/insignificant layers may be different for
each node/edge. Therefore, this hard constraint could result in miss-
ing some dense structures [36]. Recently, FirmCore structure [36]
in ML graphs has been proposed to address these limitations. How-
ever, a connected FirmCore can be disconnected by just removing
one edge, and it might have an arbitrarily large diameter. Both of
these properties are undesirable for community models.

In addition to the above drawbacks of cohesive structures in
ML networks, existing CS methods in ML graphs (e.g., [30, 45, 60])
suffer from some important limitations. (1) Free-rider effect [75]:
some cohesive structure, irrelevant to the query vertices, could be
included in the answer community. (2) Lack of connectivity: a com-
munity, at a minimum, needs to be a connected subgraph [44, 76],
but existing community models in ML graphs are not guaranteed
to be connected. Natural attempts to enforce connectivity in these

505

https://doi.org/10.14778/3570690.3570700
https://github.com/joint-em/ftcs
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3570690.3570700
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(a) Multilayer network𝐺 (b) Diameter (its path schema) of𝐺

Figure 1: An example of a multilayer collaboration network.

models lead to additional complications (see § 5.3 for a detailed com-
parison with previous community models). (3) Resolution Limit [27]:
in a large network, communities smaller than a certain size may not
be detected. (4) Failure to scale: to be applicable to large networks,
a community model must admit scalable algorithms. To the best of
our knowledge, all existing models suffer from these limitations.

To address the above limitations of existing studies, we study the
problem of CS over multilayer networks. First of all, we propose the
notion of (𝑘, 𝜆)-FirmTruss, based on the truss structure in simple
graphs, as a subgraph (not necessarily induced) in which every two
adjacent nodes in at least 𝜆 individual layers are in at least 𝑘 − 2
common triangles within the subgraph. We show that it inherits
the nice properties of trusses in simple graphs, viz., uniqueness,
hierarchical structure, bounded diameter, edge-connectivity, and
high density. Based on FirmTruss, we formally define our problem
of FirmTruss Community Search (FTCS). Specifically, given a set
of query nodes, FTCS aims to find a connected subgraph which
(1) contains the query nodes; (2) is a FirmTruss; and (3) has the
minimum diameter. We formally show that the diameter constraint
in FTCS definition avoids the so-called "free-rider effect".

In real-world networks, nodes are often associatedwith attributes.
For example, they could represent a summary of a user’s profile in
social networks, or the molecular functions, or cellular components
of a protein in protein-protein interaction networks. This rich in-
formation can help us find communities of superior quality. While
there are several studies on single-layer attributed graphs, to the
best of our knowledge, the problem of CS in multilayer attributed
networks has not been studied. Unfortunately, even existing CS
methods in single-layer attributed graphs suffer from significant
limitations. They require users to input query attributes; however,
users not familiar with the attribute distribution in the entire net-
work, are limited in their ability to specify proper query attributes.
Moreover, these studies only focus on one particular type of at-
tribute (e.g., keyword), while most real-world graphs involve more
complex attributes. E.g., attributes of proteins can be multidimen-
sional vectors [37]. The recently proposed VAC model [58] for
single-layer graphs does not require users to input query attributes,
but is limited to metric similarity measures. To mitigate these limi-
tations, we extend our FTCS model to attributed ML graphs, call
it AFTCS, and present a novel community model leveraging the
well-known phenomenon of network homophily. This approach is
based on maximizing the 𝑝-mean of similarities between users in

a community and does not require users to input query attributes.
However, should a user wish to specify query attributes (say for
exploration), AFTCS can easily support them. Moreover, it naturally
handles a vector of attributes, handling complex features.

Since ML graphs provide more complex and richer information
than single-layer graphs, they can benefit typical applications of
single-layer CS [23] (e.g., event organization, friend recommen-
dation, advertisement, etc.), delivering better solutions. Below we
illustrate an exclusive application for multilayer CS.

Brain Networks. Detecting and monitoring functional systems
in the human brain is an important and fundamental task in neu-
roscience [9, 63]. A brain network (BN) is a graph in which nodes
represent the brain regions and edges represent co-activation be-
tween regions. A BN generated from an individual subject can
be noisy and incomplete, however using BNs from many subjects
helps us identify important structures more accurately [53, 60]. A
multilayer BN is a multilayer graph in which each layer represents
the BN of a different person. A community search method in multi-
layer graphs can be used to (1) identify functional systems of each
brain region; (2) identify common patterns between people’s brains
affected by diseases or under the influence of drugs.

We make the following contributions: (1)We introduce a novel
dense subgraph model for ML graphs, FirmTruss, and show that it
retains the nice structural properties of Trusses (§ 4). (2) We for-
mulate the problem of FirmTruss-based Community Search (FTCS)
in ML graphs, and show the FTCS problem is NP-hard and cannot
be approximated in PTIME within a factor better than 2 of the
optimal diameter, unless P = NP (§ 5). (3) We develop two efficient
2-approximation algorithms (§ 6), and propose an indexing method
to further improve efficiency (§ 7). (4) We extend FTCS to attrib-
uted networks and propose a novel homophily-based community
model. We propose an exact algorithm for a special case of the prob-
lem and an approximation algorithm for the general case (§ 8). (5)
Our extensive experiments on real-world ML graphs with ground-
truth communities show that our algorithms can efficiently and
effectively discover communities, significantly outperforming base-
lines (§ 9). For lack of space, some proofs are sketched. Complete
details of all proofs and additional details can be found in [7].

2 RELATEDWORK

Community Search.Community search, which aims to find query-
dependent communities in a graph, was introduced by Sozio and
Gionis [68]. Since then, various community models have been pro-
posed, based on different dense subgraphs [23], including𝑘-core [67,
68], 𝑘-truss [2, 42, 44], quasi-clique [16], 𝑘-plex [73], and densest
subgraph [77]. Wu et al. [75] identified an undesirable phenomenon,
called free-rider effect, and propose query-biased density to reduce
the free-rider effect for the returned community. More recently, CS
has also been investigated for directed [24, 25], weighted [80], geo-
social [35, 81], temporal [56], multi-valued [55], and labeled [20]
graphs. Recently, learning-based CS is studied [6, 31, 47], which
needs a time-consuming step for training. These models are differ-
ent from our work as they focus on a single type of interaction.

Attributed Community Search. Given a set of query nodes, at-
tributed CS finds the query-dependent communities in which nodes

506

share attributes [21, 43]. Most existing works on attributed single-
layer graphs can be classified into two categories. The first category
takes both nodes and attributes as query input [15, 22]. The second
category takes only attributes as input, and returns the community
related to the query attributes [14, 83]. All these studies (1) require
users to specify attributes as input, and (2) consider only simple at-
tributes (e.g., keywords), limiting their applications. Most recently,
Liu et al. [58] introduced VAC in single-layer graphs, which does
not require input query attributes. However, they are restricted to
metric similarity between users, which can limit applications. All
these models are limited to single-layer graphs.

Community Search and Detection in ML Networks. Several
methods have been proposed for community detection in ML net-
works [40, 41, 70]. However, they focus on detecting all commu-
nities, which is time-consuming and independent of query nodes.
Surprisingly, the problem of CS in ML networks is relatively less
explored. Interdonato et al. [45] design a greedy search strategy
by maximizing the ratio of similarity between nodes inside and
outside of the local community, over all layers. Galimberti et al.
[30] adopt a community search model based on the ML k-core [5].
Finally, Luo et al. [60] design a random walk strategy to search
local communities in multi-domain networks.

Dense Structures in ML Graphs. Jethava et al. [46] formulate
the densest common subgraph problem. Azimi et al. [5] propose
a new definition of core, k-core, over ML graphs. Galimberti et al.
[29] propose algorithms to find all possible k-cores, and define the
densest subgraph problem in ML graphs. Zhu et al. [82] introduce
the problem of diversified coherent 𝑑-core search. Liu et al. [57]
propose the CoreCube problem for computing ML 𝑑-core decom-
position on all subsets of layers. Hashemi et al. [36] propose a new
dense structure, FirmCore, and develop a FirmCore-based approxi-
mation algorithm for the problem of ML densest subgraph. Huang
et al. [39] define TrussCube in ML graphs, which aims to find a
subgraph in which each edge has support ≥ 𝑘 − 2 in all selected
layers, which is different from the concept of FirmTruss.

3 PRELIMINARIES
We let 𝐺 = (𝑉 , 𝐸, 𝐿) denote an ML graph, where 𝑉 is the set of
nodes, 𝐿 the set of layers, and 𝐸 ⊆ 𝑉 × 𝑉 × 𝐿 the set of intra-
layer edges. We follow the common definition of ML networks [51],
and consider inter-layer edges between two instances of identical
vertices in different layers. The set of neighbors of node 𝑣 ∈ 𝑉

in layer ℓ ∈ 𝐿 is denoted 𝑁ℓ (𝑣) and the degree of 𝑣 in layer ℓ is
degℓ (𝑣) = |𝑁ℓ (𝑣) |. For a set of nodes 𝐻 ⊆ 𝑉 , 𝐺 [𝐻] = (𝐻, 𝐸 [𝐻], 𝐿)
denotes the subgraph of 𝐺 induced by 𝐻 , 𝐺ℓ [𝐻] = (𝐻, 𝐸ℓ [𝐻])
denotes this subgraph in layer ℓ , and deg𝐻ℓ (𝑣) denotes the degree of
𝑣 in this subgraph. Abusing notation, we write𝐺ℓ [𝑉] and 𝐸ℓ [𝑉] as
𝐺ℓ and 𝐸ℓ , respectively. We use the following notions in this paper.

Edge Schema. Connections (i.e., relationships) between objects
in ML networks can have multiple types; by the edge schema of a
connection, we mean the connection ignoring its type.

Definition 1 (Edge Schema). Given anML network𝐺 = (𝑉 , 𝐸, 𝐿)
and an intra-layer edge 𝑒 = (𝑣,𝑢, ℓ) ∈ 𝐸, the edge schema of 𝑒 is the
pair 𝜑 = (𝑣,𝑢), which represents the relationship between two nodes,

𝑣 and 𝑢, ignoring its type. We denote by E the set of all edge schemas
in 𝐺 , E = {(𝑣,𝑢) |∃ℓ ∈ 𝐿 : (𝑣,𝑢, ℓ) ∈ 𝐸}.

Given an edge schema 𝜑 = (𝑣,𝑢), we abuse the notation and
use 𝜑ℓ to refer to the relationship between 𝑣 and 𝑢 in layer ℓ , i.e.,
𝜑ℓ = (𝑣,𝑢, ℓ), whenever (𝑣,𝑢, ℓ) ∈ 𝐸.
Distance in ML Networks. For consistency, we use the common
definition of ML distance [3] in the literature. However, our algo-
rithms are valid for any definition of distance that is a metric.

Definition 2 (Path inMultilayerNetworks). Let𝐺 = (𝑉 , 𝐸, 𝐿)
be an ML graph and 𝑣ℓ represent a node 𝑣 in layer ℓ ∈ 𝐿. A path in
𝐺 is a sequence of nodes P : 𝑣1

ℓ1
→ 𝑣2

ℓ2
→ · · · → 𝑣𝑘

ℓ𝑘
such that every

consecutive pair of nodes is connected by an inter-layer or intra-layer
edge, i.e., 𝑣𝑖 = 𝑣𝑖+1 or [ℓ𝑖 = ℓ𝑖+1 & (𝑣𝑖 , 𝑣𝑖+1, ℓ𝑖) ∈ 𝐸]. The path schema
𝔓 of P is obtained by removing inter-layer edges from path P.

Note that inter-layer edges between identical nodes are used as
a penalty for changing edge types in a path. We define the distance
of two nodes 𝑣 and 𝑢, 𝑑𝑖𝑠𝑡 (𝑣,𝑢), as the length of the shortest path
between them. The diameter of a subgraph 𝐺 [𝐻], 𝑑𝑖𝑎𝑚(𝐺 [𝐻]), is
the maximum distance between any pair of nodes in 𝐺 [𝐻].1

Example 2. In Figure 1(a), the diameter of ML graph 𝐺 is 7, corre-
sponding to the path (path schema) in Figure 1(b).

Density in ML Networks. In this study, we use a common defini-
tion of density in multilayer graphs proposed in [30].

Definition 3 (Density). [30] Given an ML graph 𝐺 = (𝑉 , 𝐸, 𝐿),
a non-negative real number 𝛽 , the density function is a real-valued
function 𝜌𝛽 : 2𝑉 → R+, defined as:

𝜌𝛽 (𝑆) = max
𝐿̂⊆𝐿

min
ℓ∈𝐿̂

|𝐸ℓ [𝑆] |
|𝑆 | |𝐿̂ |

𝛽 .

Free-Rider Effect. Prior work has identified an undesirable phe-
nomenon known as the "free-rider effect" [75]. Intuitively, if a com-
munity definition admits irrelevant subgraphs in the discovered
community, we refer to the irrelevant subgraphs as free riders. Typ-
ically, a community definition is based on a goodness metric 𝑓 (𝑆)
for a subgraph 𝑆 : subgraphs with the highest (lowest) 𝑓 (.) value
are identified as communities.

Definition 4 (Free-Rider Effect). Given an ML graph 𝐺 =

(𝑉 , 𝐸, 𝐿), a non-empty set of query vertices 𝑄 , let 𝐻 be a solution to
a community definition that maximizes (resp. minimizes) goodness
metric 𝑓 (.), and 𝐻∗ be a (global or local) optimum solution when our
query set is empty. If 𝑓 (𝐻∗ ∪𝐻) ≥ 𝑓 (𝐻) (resp. 𝑓 (𝐻∗ ∪𝐻) ≤ 𝑓 (𝐻)),
we say that the community definition suffers from free rider effect.

GeneralizedMeans.Given a finite set of positive real numbers 𝑆 =

{𝑎1, 𝑎2, . . . , 𝑎𝑛}, and a parameter 𝑝 ∈ R∪{−∞, +∞}, the generalized
mean (𝑝-mean) of 𝑆 is defined as

𝑀𝑝 (𝑆) = ⎛⎜⎝ 1
|𝑆 |

|𝑆 |∑︂
𝑖=1
(𝑎𝑖)𝑝⎞⎟⎠

1/𝑝

.

1For convenience, we refer to both the longest shortest path distance as well as any
path with that length as diameter.

507

For 𝑝 ∈ {−∞, 0, +∞}, the mean can be defined by taking limits, so
that𝑀+∞ (𝑆) = max𝑎𝑖 ,𝑀0 (𝑆)= (

∏︁ |𝑆 |
𝑖=1 𝑎𝑖)

1/|𝑆 | , and𝑀−∞ (𝑆)=min𝑎𝑖 .

4 FIRMTRUSS STRUCTURE
In this section, we first recall the notion of 𝑘-truss in single-layer
networks and then present FirmTruss structure in ML networks.

Definition 5 (Support). Given a single-layer graph 𝐺 = (𝑉 , 𝐸),
the support of an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, denoted 𝑠𝑢𝑝 (𝑒,𝐺), is defined
as |{△𝑢,𝑣,𝑤 : 𝑢, 𝑣,𝑤 ∈ 𝑉 }|, where △𝑢,𝑣,𝑤 , called triangle of 𝑢, 𝑣, and
𝑤 , is a cycle of length three containing nodes 𝑢, 𝑣, and𝑤 .

The 𝑘-truss of a single-layer graph 𝐺 is the maximal subgraph
𝐻 ⊆ 𝐺 , such that∀𝑒 ∈ 𝐻 , 𝑠𝑢𝑝 (𝑒, 𝐻) ≥ (𝑘−2). Since each layer of an
ML network can be counted as a single-layer network, one possible
extension of truss structure is to consider different truss numbers
for each layer, separately. However, this approach forces all edges
to satisfy a constraint in all layers, including noisy/insignificant
layers. This hard constraint would result in missing some dense
structures [36]. Next, we suggest FirmTruss, a new family of cohe-
sive structures based on the 𝑘-truss of single-layer networks.

Definition 6 (FirmTruss). Given an ML graph 𝐺 = (𝑉 , 𝐸, 𝐿),
its edge schema set E, an integer threshold 1 ≤ 𝜆 ≤ |𝐿 |, and an
integer 𝑘 ≥ 2, the (𝑘, 𝜆)-FirmTruss of 𝐺 ((𝑘, 𝜆)-FT for short) is a
maximal subgraph 𝐺 [𝐽𝜆

𝑘
] = (𝐽𝜆

𝑘
, 𝐸 [𝐽𝜆

𝑘
], 𝐿) such that for each edge

schema 𝜑 ∈ E[𝐽𝜆
𝑘
] there are at least 𝜆 layers {ℓ1, ..., ℓ𝜆} ⊆ 𝐿 such

that 𝜑ℓ𝑖 ∈ 𝐸ℓ𝑖 [𝐽𝜆𝑘] and sup(𝜑ℓ𝑖 ,𝐺ℓ𝑖 [𝐽𝜆𝑘]) ≥ (𝑘 − 2).

Example 3. In Figure 1(a), let 𝑘 = 4, 𝜆 = 2. The union of blue and
purple nodes is a (4, 2)-FirmTruss, as every pair of adjacent nodes in at
least 2 layers are in at least 2 common triangles within the subgraph.

For each edge schema 𝜑 = (𝑢, 𝑣) ∈ E, we consider an |𝐿 |-
dimensional support vector, denoted S𝜑 , in which 𝑖-th element,
S𝑖𝜑 , denotes the support of the corresponding edge of 𝜑 in 𝑖-th
layer. We define the Top-𝜆 support of 𝜑 as the 𝜆-th largest value
in 𝜑 ’s support vector. Next, we show that not only is the maximal
(𝑘, 𝜆)-FirmTruss unique, it also has the nested property.

Property 1 (Uniqeness). The (𝑘, 𝜆)-FirmTruss of 𝐺 is unique.

Property 2 (Hierarchical Structure). Given a positive integer
threshold 𝜆 ∈ N+, and an integer 𝑘 ≥ 0, the (𝑘 + 1, 𝜆)-FT and
(𝑘, 𝜆 + 1)-FT of 𝐺 are subgraphs of its (𝑘, 𝜆)-FT.

Property 3 (Minimum Degree). Let 𝐺 = (𝑉 , 𝐸, 𝐿) be an ML
graph, and 𝐻 = 𝐺 [𝐽𝜆

𝑘
] be its (𝑘, 𝜆)-FT. Then ∀ node 𝑢 ∈ 𝐽𝜆

𝑘
, there are

at least 𝜆 layers {ℓ1, ..., ℓ𝜆} ⊆ 𝐿 such that deg𝐻ℓ𝑖 (𝑢) ≥ 𝑘 −1, 1 ≤ 𝑖 ≤ 𝜆.

In ML networks, the degree of a node 𝑣 is an |𝐿 |-dimensional
vector whose 𝑖-th element is the degree of node 𝑣 in 𝑖-th layer. Let
Top-𝜆 degree of 𝑣 be the 𝜆-th largest value in the degree vector of 𝑣 .
By Property 3, each node in a (𝑘, 𝜆)-FirmTruss has a Top-𝜆 degree
of at least 𝑘 − 1. That means, each (𝑘, 𝜆)-FirmTruss is a (𝑘 − 1, 𝜆)-
FirmCore [36]. Like trusses, a FirmTruss may be disconnected, and
we refer to its connected components as connected FirmTrusses.

Trusses are known to be dense, cohesive, and stable structures.
These important characteristics of trusses make them popular for

modeling communities [44]. Next, we discuss the density, closeness,
and edge connectivity of FirmTrusses. Detailed proofs of the results
and tightness examples can be found in [7], Appendix A.2.

Theorem 1 (Density Lower Bound). Given an ML graph 𝐺 =

(𝑉 , 𝐸, 𝐿), the density of a (𝑘, 𝜆)-FirmTruss, 𝐺 [𝐽𝜆
𝑘
] ⊆ 𝐺 , satisfies:

𝜌𝛽 (𝐽𝜆𝑘) ≥
(𝑘 − 1)
2|𝐿 | max

𝜉∈Z,0≤𝜉<𝜆
(𝜆 − 𝜉) (𝜉 + 1)𝛽 .

Theorem 2 (Diameter Upper Bound). Given an ML graph 𝐺 =

(𝑉 , 𝐸, 𝐿), the diameter of a connected (𝑘, 𝜆)-FirmTruss, 𝐺 [𝐽𝜆
𝑘
] ⊆ 𝐺 ,

is no more than 𝑇 × ⌊ 2 | 𝐽
𝜆
𝑘
|−2

𝑘
⌋, where 𝑇 = 1 + 1

⌊ |𝐿 ||𝐿 |−𝜆 ⌋
.

Proof Sketch. We show that if P is the diameter of the (𝑘, 𝜆)-
FT, and 𝑡

𝑡+1 |𝐿 | > 𝜆 ≥ 𝑡−1
𝑡 |𝐿 |, then its path schema,𝔓, has a length

at least 𝑡
𝑡+1 ×|P|. Then we consider every 𝑡 consecutive edges in the

diameter as a block and construct a path, with the same path schema
as P such that edges in each block are in the same layer. Next, we
use edge schema supports to bound its length in each block. □

Example 4. In Figure 1(a), the union of blue and purple nodes is a
connected (4, 2)-FirmTruss with diameter 2. Theorem 2 provides the
upper bound of ⌊ 43 × ⌊

2×6−2
4 ⌋⌋ = ⌊ 83 ⌋ = 2 on its diameter.

Theorem 3 (Edge Connectivity). For anML graph𝐺 = (𝑉 , 𝐸, 𝐿),
any connected (𝑘, 𝜆)-FirmTruss𝐺 [𝐽𝜆

𝑘
] ⊆ 𝐺 remains connected when-

ever fewer than 𝜆 × (𝑘 − 1) intra-layer edges are removed.

5 FIRMTRUSS-BASED COMMUNITY SEARCH
5.1 Problem Definition
In this section, we propose a community model based on FirmTruss
in ML networks. Generally, a community in a network is identified
as a set of nodes that are densely connected. Thus, we use the notion
of FirmTruss for modeling a densely connected community in ML
graphs, which inherits several desirable structural properties, such
as high density (Theorem 1), bounded diameter (Theorem 2), edge
connectivity (Theorem 3), and hierarchical structure (Property 2).

Problem 1 (FirmTruss Community Search). Given an ML net-
work 𝐺 = (𝑉 , 𝐸, 𝐿), two integers 𝑘 ≥ 2 and 𝜆 ≥ 1, and a set of query
vertices 𝑄 ⊆ 𝑉 , the FirmTruss community search (FTCS) is to find a
connected subgraph 𝐺 [𝐻] ⊆ 𝐺 satisfying:

(1) 𝑄 ⊆ 𝐻 ,
(2) 𝐺 [𝐻] is a connected (𝑘, 𝜆)-FirmTruss,
(3) diameter of 𝐺 [𝐻] is the minimum among all subgraphs sat-

isfying conditions (1) and (2).

Here, Condition (1) requires that the community contains the
query vertex set 𝑄 , Condition (2) makes sure that the community
is densely connected through a sufficient number of layers, and
Condition (3) requires that each vertex in the community be as close
to other vertices as possible, which excludes irrelevant vertices
from the community. Together, all three conditions ensure that the
returned community is a cohesive subgraph with good quality.

Example 5. In the graph shown in Figure 1, let 𝑣1 be the query node,
𝑘 = 4, and 𝜆 = 2. The union of purple and blue nodes is a (4, 2)-
FirmTruss, with diameter 2. The FTCS community removes purple

508

nodes to reduce the diameter. Let 𝑣6 be the query node, 𝑘 = 4, and
𝜆 = 1, the entire graph is a (4, 1)-FirmTruss, with diameter 7. The
FTCS community removes blue and green nodes to reduce the diameter.

Why FirmTruss Structure? Triangles are fundamental building
blocks of networks, which show a strong and stable relationship
among nodes [74]. In ML graphs, every two nodes can have differ-
ent types of relations, and a connection can be counted as strong
and stable if it is a part of a triangle in each type of interaction.
However, forcing all edges to be a part of a triangle in every interac-
tion type is too strong a constraint. Indeed, TrussCube [39], which
is a subgraph in which each edge has support 𝑘 − 2 in all selected
layers, is based on this strong constraint. In Figure 1, the green
nodes are densely connected. However, while this subgraph is a
(4, 1)-FirmTruss, due to the hard constraint of TrussCube, green
nodes are a 2-TrussCube, meaning that this model misses it. That is,
even if the green subgraph were to be far less dense and have no tri-
angles in it, it would still be regarded as 2-TrussCube. Furthermore,
in some large networks, there is no non-trivial TrussCube when
the number of selected layers is more than 3 [39]. In addition to
these limitations, the exponential-time complexity of its algorithms
makes it impractical for large ML graphs. By contrast, FirmTrusses
have a polynomial-time algorithm, with guaranteed high density,
bounded diameter, and edge connectivity. While FirmCore [36] also
has a polynomial-time algorithm, a connected FirmCore can be
disconnected by just removing one edge, and it might have an arbi-
trarily large diameter, which are both undesirable for communities.

5.2 Problem Analysis
Next we analyze the hardness of the FTCS problem and show not
only that it is NP-hard, but it cannot be approximated within a
factor better than 2. Thereto, we define the decision version of the
FTCS, 𝑑-FTCS, to test whether 𝐺 contains a connected FirmTruss
community with diameter ≤ 𝑑 , that contains 𝑄 . Given 𝛼 ≥ 1 and
the optimal solution to FTCS, 𝐺 [𝐻∗], an algorithm achieves an 𝛼-
approximation to FTCS if it outputs a connected (𝑘, 𝜆)-FirmTruss,
𝐻 , such that 𝑄 ⊆ 𝐻 and 𝑑𝑖𝑎𝑚(𝐺 [𝐻]) ≤ 𝛼 × 𝑑𝑖𝑎𝑚(𝐺 [𝐻∗]).

Theorem 4 (FTCS Hardness and Non-Approximability). Not
only the 𝑑-FTCS problem is NP-hard, but also for any 𝜖 > 0, the
FTCS-problem cannot be approximated in polynomial-time within a
factor (2 − 𝜖) of the optimal solution, unless 𝑃 = 𝑁𝑃 .

In § 6, we provide a 2-approximation algorithm for FTCS, thus
essentially matching this lower bound.

Avoiding Free-rider Effect.We can show:

Theorem 5 (FTCS Free-Rider Effect). For any multilayer net-
work 𝐺 = (𝑉 , 𝐸, 𝐿) and query vertices 𝑄 ⊆ 𝑉 , there is a solution
𝐺 [𝐻] to the FTCS problem such that for all query-independent opti-
mal solutions 𝐺 [𝐻∗], either 𝐻∗ = 𝐻 , or 𝐺 [𝐻 ∪ 𝐻∗] is disconnected,
or 𝐺 [𝐻 ∪ 𝐻∗] has a strictly larger diameter than 𝐺 [𝐻].

5.3 Comparison of CS Models in ML Networks
We compare FirmTruss with existing CS models for ML networks.

Cohesiveness. In the literature, communities are defined as cohe-
sive, densely connected subgraphs. Hence, cohesiveness, i.e., high

density, is an important metric to measure the quality of commu-
nities. It is shown that FirmCore can find subgraphs with higher
density than the ML k-core [36]. Since each (𝑘, 𝜆)-FirmTruss is a
(𝑘 − 1, 𝜆)-FirmCore (Property 3), FirmTruss is more cohesive than
ML k-core. ML-LCD model [45] maximizes the similarity of nodes
within the subgrpah. RWM [60] is a random walk-based approach
and minimizes the conductance. Both of these models do not con-
trol the density of the subgraph. Thus, one node may have degree
1 within the subgraph, allowing non-cohesive structures.

Connectivity. A minimal requirement for a community is to be a
connected subgraph. Surprisingly, ML k-core, ML-LCD, and RWM
(with multiple query nodes) community search models do not guar-
antee connectivity! Natural attempts to enforce connectivity in
these communitymodels lead to additional complications andmight
change the hardness of the problem. Even after enforcing connec-
tivity, these models can be disconnected by just removing one intra-
layer edge, which is undesirable for community models [38]. Our
FirmTruss community model forces the subgraph to be connected,
and guarantees that after removing up to 𝜆 × (𝑘 − 1) intra-layer
edges, the (𝑘, 𝜆)-FirmTruss is still connected (Theorem 3).

EdgeRedundancy. InML networks, the rich information about node
connections leads to repetitions, meaning edges between the same
pair of nodes repeatedly appear in multiple layers. Nodes with
repeated connections are more likely to belong to the same commu-
nity [78]. Also, without such redundancy of connections, the tight
connection between objects inML networksmay not be represented
effectively and accurately. While none of the models ML k-core, ML-
LCD, and RWM guarantees edge redundancy, in a (𝑘, 𝜆)-FirmTruss,
each edge is required to appear in at least 𝜆 layers.

Hierarchical Structure. The hierarchical structure is a desirable
property for community searchmodels as it represents a community
at different levels of granularity, and can also avoid the Resolution
Limit problem as is discussed in [27]. While FirmTruss has a hier-
archical structure, none of the existing models has this property.

6 FTC ONLINE SEARCH
Given the hardness of the FTCS problem, we propose two online
2-approximation algorithms in top-down and bottom-up manner.

6.1 Global Search
We start by defining query distance in multilayer networks.

Definition 7 (Query Distance). Given a multilayer network𝐺 =

(𝑉 , 𝐸, 𝐿), a subgraph 𝐺 [𝐻] ⊆ 𝐺 , a set of query vertices 𝑄 ⊆ 𝐻 , and
a vertex set 𝑆 ⊆ 𝐻 , the query distance of 𝑆 in 𝐺 [𝐻], 𝑑𝑖𝑠𝑡𝐺 [𝐻] (𝑆,𝑄),
is defined as the maximum length of the shortest path from 𝑢 ∈ 𝑆 to
a query vertex 𝑞 ∈ 𝑄 , i.e., 𝑑𝑖𝑠𝑡𝐺 [𝐻] (𝑆,𝑄) = max𝑢∈𝑆,𝑞∈𝑄 𝑑𝑖𝑠𝑡 (𝑢, 𝑞).

For a graph𝐺 , we use𝑑𝑖𝑠𝑡𝐺 (𝑢,𝑄) to denote the query distance for
a vertex𝑢 ∈ 𝑉 . Previousworks (e.g., see [20, 44]) use a simple greedy
algorithm which iteratively removes the nodes with maximum
distance to query nodes, in order to minimize the query distance.
This approach can be inefficient, as it reduces the query distance
by just 1 in each iteration, in the worst case. We instead employ a
binary search on the query distance of a subgraph.

509

Algorithm 1: FTCS Global Search
Input :An ML graph𝐺 = (𝑉 , 𝐸, 𝐿) , a set of query vertices𝑄 ⊆ 𝑉 ,

and two integers 𝑘 ≥ 2 and 𝜆 ≥ 1
Output :A connected (𝑘, 𝜆)-FT containing𝑄 with a small diameter

1 𝐺0 ← Find a maximal connected (𝑘, 𝜆)-FirmTruss containing𝑄 ;
// See Algorithm 2 (or Algorithm 5)

2 𝑖 ← 0; 𝑑min ← 1; 𝑑max ← dist𝐺0 (𝐺0,𝑄) ; G ← 𝐺0;
3 while 𝑑min < 𝑑max do
4 𝑑𝑎𝑣𝑔 ← ⌊ 𝑑min+𝑑max

2 ⌋;𝐺 ′ ← G
5 𝑆 ← set of vertices with 𝑑𝑎𝑣𝑔 ≤ dist𝐺 ′ (𝑢,𝑄) ;
6 Delete nodes in 𝑆 and their incident edges from𝐺 ′ in all layers;
7 Maintain𝐺 ′ as (𝑘, 𝜆)-FirmTruss by removing vertices/edges;
8 if 𝑄 ⊈ 𝐺 ′ or𝐺 ′ is disconnected or 𝑑max < dist𝐺 ′ (𝐺 ′,𝑄) then
9 𝑑min ← 1 + 𝑑𝑎𝑣𝑔 ;

10 else
11 𝑑max ← dist𝐺 ′ (𝐺 ′,𝑄) ;
12 Let the remaining graph𝐺 ′ as G;
13 return G;

Algorithm 1 gives the details of the FTCS Global algorithm. It
first finds a maximal connected (𝑘, 𝜆)-FirmTruss 𝐺0 containing 𝑄 .
We keep our best found subgraph in G, through the algorithm.
Then in each iteration, we make a copy of G, 𝐺 ′, and for each
vertex 𝑢 ∈ 𝑉 [𝐺 ′], we compute the query distance of 𝑢. Then, we
conduct a binary search on the value of 𝑑𝑎𝑣𝑔 and delete vertices
with query distance ≥ 𝑑𝑎𝑣𝑔 and all their incident edges, in all layers.
From the resulting graph we remove edges/vertices to maintain
𝐺 ′ as a (𝑘, 𝜆)-FirmTruss (lines 6 and 7). We maintain the (𝑘, 𝜆)-
FirmTruss by deleting the edge schemas whose Top-𝜆 support is
< 𝑘 − 2. Finally, the algorithm returns a subgraph G, with the
smallest query distance.

The procedure for finding the maximal FirmTruss containing 𝑄
is given in Algorithm 2. Notice, a (𝑘, 𝜆)-FirmTruss (see Def. 6) is a
maximal subgraph 𝐺 [𝐽𝜆

𝑘
] in which each edge schema 𝜑 ∈ E[𝐽𝜆

𝑘
]

has Top-𝜆 support ≥ 𝑘 − 2. The algorithm first uses Property 3, and
removes all vertices with Top-𝜆 degree < 𝑘 − 1. It then iteratively
deletes all instances of disqualified edge schemas in all layers from
the original graph𝐺 , and then updates the Top-𝜆 support of their
adjacent edges. To do this efficiently, we use the following fact:
Fact 1. If two edge schemas𝜑 and𝜑 ′ are adjacent in layer ℓ , removing
edge schema 𝜑 cannot affect Top−𝜆(S𝜑 ′), unless Top−𝜆(S𝜑 ′) = Sℓ

𝜑 ′ .

Thus, in lines 12-20, we update the Top-𝜆 support of those edge
schemas whose Top-𝜆 support may be affected by removing 𝜑 .
Finally, we use BFS traversal from a query node 𝑞 ∈ 𝑄 to find the
connected component including query vertices. We omit the details
of FirmTruss maintenance since it can use operations similar to
those in lines 8-21 of Algorithm 2.
Example 6. In Figure 1, let 𝑘 = 4, 𝜆 = 2, and 𝑄 = {𝑣2}. Algorihtm 2
first calculates the support of each edge schema. Next, it removes the
edge schema 𝜑 = (𝑣12, 𝑣13) in all layers, as its Top-2 support is 0. Next,
it updates the support of edge schema adjacent to 𝜑 , and iteratively
removes all edges between green, red, and purple nodes since their
edge schema has Top-2 support less than 2. Finally, the remaining
graph, the union of blue of purple nodes, is returned by the algorithm.

Example 7. In Figure 1, let 𝑘 = 4, 𝜆 = 1, and 𝑄 = {𝑣1}. Algorithm 1
starts from the entire graph as 𝐺0. Since the query distance is 7, it

Algorithm 2:Maximal (𝑘, 𝜆)-FirmTruss containing 𝑄
Input :An ML graph𝐺 = (𝑉 , 𝐸, 𝐿) , a set of query nodes𝑄 ⊆ 𝑉 ,

and integers 𝑘 ≥ 2 and 𝜆 ≥ 1
Output :A maximal connected (𝑘, 𝜆)-FirmTruss containing𝑄

1 𝐺 ′ ← Remove all vertices with Top-𝜆 degree less than 𝑘 − 1;
2 Compute Sℓ𝜑 = 𝑠𝑢𝑝 (𝜑ℓ ,𝐺

′
ℓ) for each edge schema 𝜑 ∈ E and ℓ ∈ 𝐿;

3 𝑁, 𝐵 ← ∅;
4 forall 𝜑 ∈ E[𝐺 ′] do
5 𝐼 [𝜑] ← Top-𝜆 (S𝜑) + 2;
6 if 𝐼 [𝜑] < 𝑘 then
7 𝑁 ← 𝑁 ∪ {𝜑 };
8 while 𝑁 ≠ ∅ do
9 Pick and remove 𝜑 = (𝑣,𝑢) from 𝑁 ;

10 forall (𝑣, 𝑤, ℓ) ∈ 𝐸 [𝐺 ′] and 𝐼 [(𝑣, 𝑤)] ≥ 𝑘 and 𝜑ℓ ∈ 𝐸 do
11 if (𝑢, 𝑤, ℓ) ∈ 𝐸 [𝐺 ′] and 𝐼 [(𝑢, 𝑤)] ≥ 𝑘 then
12 if Sℓ(𝑣,𝑤) + 2 = 𝐼 [(𝑣, 𝑤)] then
13 𝐵 ← 𝐵 ∪ { (𝑣, 𝑤) };
14 if Sℓ(𝑢,𝑤) + 2 = 𝐼 [(𝑢, 𝑤)] then
15 𝐵 ← 𝐵 ∪ { (𝑢, 𝑤) };
16 Sℓ(𝑣,𝑤) ← Sℓ(𝑣,𝑤) − 1; Sℓ(𝑢,𝑤) ← Sℓ(𝑢,𝑤) − 1;
17 forall 𝜑 ′ = (𝑤, 𝑡) ∈ 𝐵 do
18 Update 𝐼 [𝜑 ′];
19 if 𝐼 [𝜑 ′] < 𝑘 then
20 𝑁 ← 𝑁 ∪ {𝜑 ′ };
21 Remove all instance of 𝜑 from𝐺 ′ in all layers;
22 𝐻 ← The connected component of𝐺 ′ containing𝑄 ;
23 return 𝐻 ;

sets 𝑑𝑎𝑣𝑔 = 7+1
2 = 4, removes all nodes with query distance ≥ 4, and

maintains the remaining graph as (4, 1)-FirmTruss. The remaining
graph includes blue, purple, and red nodes. Next, it sets𝑑𝑎𝑣𝑔 = ⌊ 3+12 ⌋ =
2, removes all vertices with query distance ≥ 2, and maintains the
remaining graph as a (4, 1)-FirmTruss, which includes blue nodes.
Algorithm 1 terminates and returns this subgraph as the solution.

Next, we analyze the approximation quality and complexity of
the FTCS Global algorithm.

Theorem 6 (FTCS-GlobalQualityApproximation). Algorithm 1
achieves 2-approximation to an optimal solution 𝐺 [𝐻∗] of the FTCS
problem, that is, the obtained (𝑘, 𝜆)-FirmTruss, 𝐺 [𝐻] satisfies

𝑑𝑖𝑎𝑚(𝐺 [𝐻]) ≤ 2 × 𝑑𝑖𝑎𝑚(𝐺 [𝐻∗]).

Lemma 1. Algorithm 2 takes O(∑︁ℓ∈𝐿 |𝐸ℓ |1.5 + |𝐸 | |𝐿 | + |𝐸 |𝜆 log |𝐿 |)
time, and O(|𝐸 | |𝐿 |) space.

Theorem 7 (FTCS-Global Complexity). Algorithm 1 takes
O(𝛾 (|𝑄 | |𝐸 [𝐺0] | +

∑︁
ℓ∈𝐿 |𝐸ℓ |1.5) + |𝐸 | |𝐿 | + |𝐸 |𝜆 log |𝐿 |) time, and

O(|𝐸 | |𝐿 |) space, where 𝛾 = log
(︁
𝑑𝑖𝑠𝑡𝐺0 (𝐺0, 𝑄)

)︁
.

6.2 Local Search
The top-down approach of the Global algorithm may incur un-
necessary computations over massive networks. The FTCS Local
algorithm (Algorithm 3), presented next, addresses this limitation
using a bottom-up approach.

We can first to collect all vertices whose query distances are
≤ 𝑑 into 𝑉 ′ (line 3) and then construct 𝐺 ′ as the induced subgraph
of 𝐺 by 𝑉 ′ (line 4). Next, given 𝑑 , examine whether 𝐺 ′ contains
a (𝑘, 𝜆)-FirmTruss whose query distance is 𝑑 . If such a FirmTruss

510

Algorithm 3: FTCS Local Search
Input :An ML graph𝐺 = (𝑉 , 𝐸, 𝐿) , a set of query vertices𝑄 ⊆ 𝑉 ,

and two integers 𝑘 ≥ 2 and 𝜆 ≥ 1
Output :A connected (𝑘, 𝜆)-FT containing𝑄 with a small diameter

1 𝑑min ← 1; 𝑑mid ← 1;𝐺out ← ∅ ; 𝑑max ←∞;𝑉 ′ = ∅;
2 while 𝑑min < 𝑑max and𝑉 ′ ≠ 𝑉 do
3 𝑉 ′ ← 𝑄 ∪ {𝑢 ∈ 𝑉 |dist𝐺 (𝑢,𝑄) ≤ 𝑑mid};
4 𝐺 ′ ← Induced subgraph of𝐺 by vertices𝑉 ′;
5 𝐺 ′ ← Find maximal (𝑘, 𝜆)-FirmTruss of𝐺 ′ containing𝑄 ;
6 while𝐺 ′ ≠ ∅ do
7 𝑁 ← ∅;
8 for 𝑢 ∈ 𝑉 [𝐺 ′] do
9 if dist𝐺 ′ (𝑢,𝑄) > 𝑑mid then
10 𝑁 ← 𝑁 ∪ {𝑢};
11 if 𝑁 = ∅ then
12 𝑑max ← 𝑑mid; 𝑑mid ← ⌊ 𝑑min+𝑑max

2 ⌋;
13 𝐺out ← 𝐺 ′;
14 Break; //Break in the inner while loop
15 else
16 Delete𝑁 and their incidents edges in all layers from𝐺 ′;
17 Maintain𝐺 ′ as (𝑘, 𝜆)-FirmTruss;
18 if 𝐺 ′ = ∅ then
19 𝑑min ← 𝑑mid + 1; 𝑑mid ← 2 × 𝑑mid;
20 return𝐺out;

exists, return it as the solution, and otherwise, increment 𝑑 by 1 and
iterate. One drawback of this approach is that it increases the query
distance only by 1 in each iteration, which is inefficient. We instead
conduct a binary search on the value of 𝑑 . One challenge is the lack
of upper bound on 𝑑 . A trivial upper bound, which is the query
distance in the entire graph, might lead to considering almost the
entire graph in the first iteration. We instead use a doubling search
whereby we double the query distance 𝑑 in every iteration until a
solution is found. Then by considering the resulting query distance
as an upper bound on 𝑑 , we conduct a binary search. Algorithm 3
shows the details.

Theorem 8 (FTCS-LocalQuality Approximation). Algorithm 3
achieves 2-approximation to an optimal solution 𝐺 [𝐻∗] of the FTCS
problem, that is, the obtained (𝑘, 𝜆)-FirmTruss, 𝐺 [𝐻] satisfies

𝑑𝑖𝑎𝑚(𝐺 [𝐻]) ≤ 2 × 𝑑𝑖𝑎𝑚(𝐺 [𝐻∗]).

Proof Sketch. We first prove that the binary search method
finds a solution with a smaller query distance than the optimal
diameter solution. Next, by the triangle inequality, we show that
the diameter of the found solution is at most twice the optimal. The
detailed proof can be found in Appendix A.2, [7]. □

Theorem 9 (FTCS-Local Complexity). FTCS-Local algorithm
takes O(𝛾 (|𝑄 | |𝐸 | + ∑︁

ℓ∈𝐿 |𝐸ℓ |1.5) + |𝐸 | |𝐿 | + |𝐸 |𝜆 log |𝐿 |) time, and
O(|𝐸 | |𝐿 |) space, where 𝛾 = log

(︁
𝑑𝑖𝑠𝑡𝐺0 (𝐺0, 𝑄)

)︁
.

7 INDEX-BASED ALGORITHM
Both online algorithms need to find FirmTruss from scratch. How-
ever, for each query set, computing the maximal FirmTruss from
scratch can be inefficient for large multilayer networks. In this
section, we discuss how to employ FirmTruss decomposition to ac-
celerate our algorithms, by storing maximal FirmTrusses as they are

Algorithm 4: FirmTruss Decomposition
Input :An ML graph𝐺 = (𝑉 , 𝐸, 𝐿)
Output :Skyline FirmTruss index of each edge schema

1 Compute Sℓ𝜑 = 𝑠𝑢𝑝 (𝜑ℓ ,𝐺ℓ) for each edge schema 𝜑 ∈ E in each
layer ℓ ∈ 𝐿;

2 forall 𝜆 = 1, 2, . . . , |𝐿 | do
3 reinitialize supports, Sℓ𝜑 ;
4 forall 𝜑 ∈ E do
5 𝐼 [𝜑] ← Top-𝜆 (S𝜑) + 2;
6 𝐵 [𝐼 [𝜑]] ← 𝐵 [𝐼 [𝜑]] ∪ {𝜑 };
7 forall 𝑘 = 2, 3, . . . , |𝑉 | do
8 while 𝐵 [𝑘] ≠ ∅ do
9 Pick and remove 𝜑 = (𝑣,𝑢) from 𝐵 [𝑘];

10 SFT(𝜑) ← SFT(𝜑) ∪ (𝑘, 𝜆) , 𝑁 ← ∅;
11 forall (𝑣, 𝑤, ℓ) ∈ 𝐸 and 𝐼 [(𝑣, 𝑤)] > 𝑘 and 𝜑ℓ ∈ 𝐸 do
12 if (𝑢, 𝑤, ℓ) ∈ 𝐸 and 𝐼 [(𝑢, 𝑤)] > 𝑘 then
13 if Sℓ(𝑣,𝑤) + 2 = 𝐼 [(𝑣, 𝑤)] then
14 𝑁 ← 𝑁 ∪ { (𝑣, 𝑤) };
15 if Sℓ(𝑢,𝑤) + 2 = 𝐼 [(𝑢, 𝑤)] then
16 𝑁 ← 𝑁 ∪ { (𝑢, 𝑤) };
17 Sℓ(𝑣,𝑤) ← Sℓ(𝑣,𝑤) − 1; Sℓ(𝑢,𝑤) ← Sℓ(𝑢,𝑤) − 1;
18 forall 𝜑 ′ = (𝑤, 𝑡) ∈ 𝑁 do
19 Remove 𝜑 ′ from 𝐵 [𝐼 [𝜑 ′]];
20 Update 𝐼 [𝜑 ′];
21 𝐵 [𝐼 [𝜑 ′]] ← 𝐵 [𝐼 [𝜑 ′]] ∪ {𝜑 ′ };
22 Remove all instance of 𝜑 from𝐺 in all layers;
23 Remove all dominated indices in SFT(𝜑) for each 𝜑 ∈ E;

identified into an index structure. We first present our FirmTruss
decomposition algorithm and then describe how the index can be
used for efficient retrieval of the maximal FirmTruss given a query.

7.1 FirmTruss Decomposition
In this section, we define the Skyline FirmTrussness index. For
an edge schema 𝜑 ∈ E, we let 𝐹𝑇 𝐼 (𝜑) denote the set {(𝑘, 𝜆) |
𝜑 is in a (𝑘, 𝜆)-FirmTruss}. We will use the following notion of in-
dex dominance.

Definition 8 (Index Dominance). Given two pairs of numbers
(𝑘1, 𝜆1) and (𝑘2, 𝜆2), we say (𝑘1, 𝜆1) dominates (𝑘2, 𝜆2), denoted
(𝑘2, 𝜆2) ⪯ (𝑘1, 𝜆1), provided 𝑘1 ≥ 𝑘2 and 𝜆1 ≥ 𝜆2.

Clearly, (𝐹𝑇 𝐼 (𝜑), ⪯) is a partial order.

Definition 9 (Skyline FirmTrussness). Let 𝜑 ∈ E be an edge
schema. The skyline FirmTrussness of 𝜑 , denoted SFT(𝜑), contains
the maximal elements of 𝐹𝑇 𝐼 (𝜑).

In order to find all possible FirmTrusses, we only need to compute
the skyline FirmTrussness for every edge schema in a multilayer
graph𝐺 . To this end, we present the details of FirmTruss algorithm
in Algorithm 4. For a given edge schema 𝜑 , if Top−𝜆(S𝜑) = 𝑘 − 2,
then it cannot be a part of a (𝑘′, 𝜆)-FirmTruss, for 𝑘′ > 𝑘 . Therefore,
given 𝜆, we can consider Top−𝜆(S𝜑) + 2 as an upper bound on the
FirmTruss index of 𝜑 (line 5). In the FirmTruss decomposition, we
recursively pick an edge schema 𝜑 with the lowest Top−𝜆(S𝜑),
assign its FirmTruss index as Top−𝜆(S𝜑) + 2, and then remove it
from the graph. After that, to efficiently update the Top-𝜆 support
of its adjacent edges, we use Fact 1 (lines 13-16). At the end of the

511

Algorithm 5: Index-based Maximal FirmTruss Finding
Input :An ML graph𝐺 = (𝑉 , 𝐸, 𝐿) , a set of query vertices𝑄 ⊆ 𝑉 ,

SFT indices, and two integers 𝑘 ≥ 2 and 𝜆 ≥ 1
Output :A maximal connected (𝑘, 𝜆)-FirmTruss containing𝑄

1 𝐺0 ← ∅; 𝑁 ← 𝑄 ;
2 while 𝑁 ≠ ∅ do
3 Pick and remove 𝑢 ∈ 𝑁 ;
4 for each unvisited edge schema 𝜑 = (𝑢, 𝑣) do
5 Mark 𝜑 as visited;
6 for each skyline FirmTruss index (𝑘𝑖 , 𝜆𝑖) ∈ SFT(𝜑) do
7 if (𝑘, 𝜆) ⪯ (𝑘𝑖 , 𝜆𝑖) then
8 add 𝑣 and 𝑢 with all their incident edges into𝐺0;
9 𝑁 ← 𝑁 ∪ {𝑣};

10 return𝐺0;

algorithm, we remove all dominated indices in SFT(𝜑) for each
𝜑 ∈ E to only store skyline indices (line 23). We can show:

Theorem 10 (FirmTruss Decomposition Complexity). Algo-
rithm 4 takes O(∑︁ℓ∈𝐿 |𝐸ℓ |1.5 + |𝐸 | |𝐿 |2) time.

7.2 Index-based Maximal FirmTruss Search
Using Algorithm 4, we can find offline all skyline FirmTruss indices
for a given edge schema and query vertex set. Next, we start from
the query vertices and by using a breadth-first search, check for
each neighbor whether its corresponding edge schema has a skyline
FirmTruss index that dominates the input (𝑘, 𝜆). Algorithm 5 shows
the procedure. We have:

Theorem 11. Algorithm 5 takes O(|𝐸 [𝐺0] |) time.

This indexing approach can be used in Algorithm 1 to find the
maximal 𝐺0, as well as in Algorithm 3 so that we only need to
add edges whose corresponding edge schema has an index that
dominates (𝑘, 𝜆). We refer to these variants of Global and Local as
iGlobal and iLocal, respectively.

8 ATTRIBUTED FIRMTRUSS COMMUNITY
Often networks come naturally endowed with attributes associ-
ated with their nodes. For example, in DBLP, authors may have
areas of interest as attributes. In protein-protein interaction net-
works, the attributes may correspond to biological processes, molec-
ular functions, or cellular components of a protein made avail-
able through the Gene Ontology (GO) project [4]. It is natural
to impose some level of similarity between a community’s mem-
bers, based on their attributes.

Network homophily is a phenomenon which states similar nodes
are more likely to attach to each other than dissimilar ones. Inspired
by this “birds of a feather flock together” phenomenon, in social net-
works, we argue that users remain engaged with their community if
they feel enough similarity with others, while users who feel dissim-
ilar from a community may decide to leave the community. Hence,
for each node, we measure how similar it is to the community’s
members and use it to define the homophily in the community.

We show that surprisingly, use of homophily in a definition
of attributed community offers an alternative means to avoid the
free-rider effect. In this section, we extend the definition of the
FirmTruss-based community to attributed ML networks, where we

assume each vertex has an attribute vector. In order to capture ver-
tex similarity, we propose a new function to measure the homophily
in a subgraph. We show that this function not only guarantees a
high correlation between attributes of vertices in a community but
also avoids the free-rider effect. Unlike previous work [21, 43, 79],
our model allows for continuous valued attributes. E.g., in a PPI
network, the biological process associated with a protein may have
a real value, as opposed to just a boolean or a categorical value.

Let A = {𝐴1, ..., 𝐴𝑑 } be a set of attributes. An attributed mul-
tilayer network 𝐺 = (𝑉 , 𝐸, 𝐿,Ψ), where (𝑉 , 𝐸, 𝐿) is a multilayer
network and Ψ : 𝑉 → R𝑑≥0 is a non-negative function that assigns
a 𝑑-dimensional vector to each vertex, with Ψ(𝑣) [𝑖] representing
the strength of attribute 𝐴𝑖 in vertex 𝑣 . Let ℎ(𝑣,𝑢) be a symmetric
and non-negative similarity measure based on attribute vectors
of 𝑢 and 𝑣 . E.g., ℎ(𝑣,𝑢) can be the cosine similarity between Ψ(𝑢)
and Ψ(𝑣). Let 𝑆 be a community containing 𝑣 . We define ℎ𝑆 (𝑣),
capturing the aggregate similarity between 𝑣 and members of 𝑆 :

ℎ𝑆 (𝑣) =
∑︂
𝑢∈𝑆
𝑢≠𝑣

ℎ(𝑣,𝑢) .

The higher the valueℎ𝑆 (𝑣) themore similar user 𝑣 “feels" they are
with the community 𝑆 . While cosine similarity of attribute vectors
is a natural way to compute the similarity ℎ(𝑣,𝑢), any symmetric
and non-negative measure can be used in its place.

Based onℎ𝑆 (𝑣), we define the homophily score of community 𝑆 as
follows. Let 𝑝 ∈ R∪{+∞,−∞} be any number. Then the homophily
score of 𝑆 is defined as:

Γ𝑝 (𝑆) =
(︄
1
|𝑆 |

∑︂
𝑣∈𝑆

ℎ𝑆 (𝑣)𝑝
)︄1/𝑝

.

The parameter 𝑝 gives flexibility for controlling the emphasis
on similarity at different ends of the spectrum. When 𝑝 → +∞
(resp. 𝑝 → −∞) , we have higher emphasis on large (resp. small)
similarities. This flexibility allows us to tailor the homophily score
to the application at hand.

8.1 Attributed FirmCommunity Model
Problem 2 (Attributed FirmTruss Community Search). Given
an attributed ML network𝐺 = (𝑉 , 𝐸, 𝐿,Ψ), two integers 𝑘 ≥ 2, 𝜆 ≥ 1,
a parameter 𝑝 ∈ R∪{+∞,−∞}, and a set of query vertices𝑄 ⊆ 𝑉 , the
attributed FirmTruss community search (AFTCS) is to find a connected
subgraph 𝐺 [𝐻] ⊆ 𝐺 satisfying:

(1) 𝑄 ⊆ 𝐻 ,
(2) 𝐺 [𝐻] is a connected (𝑘, 𝜆)-FirmTruss,
(3) Γ𝑝 (𝐻) is the maximum among all subgraphs satisfying (1)

and (2).

Hardness Analysis.Next we analyze the complexity of the AFTCS
problem and show that when 𝑝 is finite, it is NP-hard.

Theorem 12 (AFTCS Hardness). The AFTCS problem is NP-hard,
whenever 𝑝 is finite.

Proof Sketch. Finding the densest subgraph with ≥ 𝑘 vertices
in single-layer graphs [49] is a hard problem. Given an instance of
this problem, 𝐺 = (𝑉 , 𝐸), we construct a complete, attributed ML
graph and provide an approach to construct an attribute vector of

512

each node such that ∀ vertices 𝑢, 𝑣 , ℎ(𝑢, 𝑣) = 1
2 |𝑉 | if (𝑢, 𝑣) ∈ 𝐸, and

ℎ(𝑢, 𝑣) = 0, if (𝑢, 𝑣) ∉ 𝐸. So the densest subgraph with ≥ 𝑘 vertices
in 𝐺 is a solution for AFTCS, and vice versa. □

Free-rider Effect. Analogously to Theorem 5, we can show:

Theorem 13 (AFTCS Free-Rider Effect). For any attributed ML
network𝐺 = (𝑉 , 𝐸, 𝐿,Ψ) and query vertices𝑄 ⊆ 𝑉 , there is a solution
𝐺 [𝐻] to the AFTCS problem such that for all query-independent
optimal solutions𝐺 [𝐻∗], either𝐻∗ = 𝐻 , or𝐺 [𝐻∪𝐻∗] is disconnected,
or 𝐺 [𝐻 ∪ 𝐻∗] has a strictly smaller homophily score than 𝐺 [𝐻].

8.2 Algorithms
In this section, we propose an efficient approximation algorithm
for the AFTCS problem. We show that when 𝑝 = +∞, or −∞, this
algorithm finds the exact solution. We can show that our objective
function Γ𝑝 (.) is neither submodular nor supermodular (proof in [7],
Appendix C), suggesting this problem may be hard to approximate,
for some values of 𝑝 .

Peeling Approximation Algorithm. We divide the problem into
two cases: (i) 𝑝 > 0, and (ii) 𝑝 < 0. For finite 𝑝 > 0, argmax Γ𝑝 (𝑆) =
argmax Γ𝑝𝑝 (𝑆), so for simplicity, we focus on maximizing Γ

𝑝
𝑝 (.).

Similarly, for finite 𝑝 < 0, we focus on minimizing Γ
𝑝
𝑝 (.). Note that,

for any finite 𝑝 , an 𝛼-approximate solution for optimizing Γ
𝑝
𝑝 (.)

provides an 𝛼1/𝑝 -approximate solution for optimizing Γ𝑝 (.).
Consider a set of vertices 𝑆 ⊆ 𝑉 . Our approximation algorithm

is to greedily remove nodes 𝑢 ∈ 𝑆 that may improve the objective.
Since removing any node 𝑢 ∈ 𝑆 will change the denominator of
Γ
𝑝
𝑝 (𝑆) in the same way, we can choose the node that leads to the
minimum (maximum) drop in the numerator. Let us examine the
change to the Γ𝑝𝑝 (𝑆) from dropping 𝑢 ∈ 𝑆 :

Γ
𝑝
𝑝 (𝑆\{𝑢}) =

∑︁
𝑣∈𝑆\{𝑢} ℎ𝑆\{𝑢} (𝑣)𝑝

|𝑆 | − 1 =
1

|𝑆 | − 1

(︂
|𝑆 | · Γ𝑝𝑝 (𝑆) − Δ𝑢 (𝑆)

)︂
,

where

Δ𝑢 (𝑆) = ℎ𝑆 (𝑢)𝑝 +
⎛⎜⎝

∑︂
𝑣∈𝑆\{𝑢}

ℎ𝑆 (𝑣)𝑝 − [ℎ𝑆 (𝑣) − ℎ(𝑣,𝑢)]𝑝
⎞⎟⎠ .

Notice that Δ𝑢 (𝑆) represents the exact decrease in the numerator
of Γ𝑝𝑝 (𝑆) resulting from removing 𝑢. Based on this observation,
in Algorithm 6, we recursively remove a vertex with a minimum
(maximum) Δ value, and maintain the remaining subgraph as a
(𝑘, 𝜆)-FirmTruss. We have the following result:

Theorem 14 (AFTCS-Approx Complexity). Algorithm 6 takes
O(𝑑 |𝑉0 |2 + 𝑡 (|𝑉0 | + |𝐸0 |) +

∑︁
ℓ∈𝐿 |𝐸ℓ |1.5 + |𝐸 | |𝐿 | + |𝐸 |𝜆 log |𝐿 |) time,

and O(|𝐸 | |𝐿 | + |𝑉0 |2) space, where 𝑡 is the number of iterations, 𝑉0
and 𝐸0 are the vertex set and edge set of maximal (𝑘, 𝜆)-FirmTruss.

As for the approximation quality, we can show the following
when 𝑝 ≥ 1. The detailed proof and tightness example can be found
in [7], Appendix A.2 and B.

Theorem 15 (AFTCS-Approx Quality). Let 𝑝 ≥ 1, Algorithm 6
returns a (𝑝 + 1)1/𝑝 -approximation solution of AFTCS problem.

Algorithm 6: AFTCS-Approx
Input :An attributed ML graph𝐺 = (𝑉 , 𝐸, 𝐿,Ψ) , a set of query

vertices𝑄 ⊆ 𝑉 , and two integers 𝑘 ≥ 2 and 𝜆 ≥ 1
Output :A connected (𝑘, 𝜆)-FT containing𝑄 with a large Γ𝑝 (.)

1 𝐺0 ← Find a maximal connected (𝑘, 𝜆)-FirmTruss containing𝑄 ;
2 Calculate ℎ𝑉 [𝐺0] (𝑢) for all 𝑢 ∈ 𝑉 [𝐺0]; 𝑖 ← 0;
3 while𝑄 ⊆ 𝑉 [𝐺𝑖] do
4 if 𝑝 > 0 then
5 𝑢 ← argmin𝑢∈𝑉 [𝐺𝑖] Δ𝑢 (𝑉 [𝐺𝑖]) ;
6 else
7 𝑢 ← argmax𝑢∈𝑉 [𝐺𝑖] Δ𝑢 (𝑉 [𝐺𝑖]) ;
8 Delete vertex 𝑢 and its incident edges from𝐺𝑖 in all layers;
9 Maintain𝐺𝑖 as (𝑘, 𝜆)-FirmTruss by removing vertices/edges;

10 Let the remaining graph as𝐺𝑖+1; 𝑖 ← 𝑖 + 1;
11 return argmax𝐻 ∈{𝐺0,...,𝐺𝑖−1} Γ𝑝 (𝐻) ;

Proof Sketch. Let 𝐻∗ be the optimal solution. Since removing
a node 𝑢∗ ∈ 𝐻∗ will produce a subgraph with homophily score at
most Γ𝑝𝑝 (𝐻∗), we have Γ

𝑝
𝑝 (𝐻∗) ≤ Δ𝑢∗ (𝐻∗). Next, we show that the

first removed node 𝑢∗ ∈ 𝐻∗ by the algorithm cannot be removed by
maintaining FirmTruss, so it was a node with a minimum Δ. Then,
we use the fact that the minimum value of Δ is less than the average
of Δ over all nodes and provide an upper bound of (𝑝 + 1)Γ𝑝𝑝 (𝑆) for
the average of Δ over 𝑆 . Finally, we show that function |𝑆 |Γ𝑝𝑝 (𝑆)
is supermodular for 𝑝 ≥ 1, and based on its increasing differences
property, we conclude the approximation guarantee. □

Remark 1. How much good can Algorithm 6 work? As 𝑝 increases,
Algorithm 6 has a better approximation factor. In the worst case,
(𝑝 = 1), we get approximation factor = 2, and when 𝑝 → ∞, our
approximation factor has a limit of 1. This limit of the approximation
factor intuitively matches the fact that when 𝑝 = +∞ the optimal
solution is trivial to obtain by the maximal FirmTruss.

Exact Algorithm when 𝑝 = +∞, or −∞. The case 𝑝 = +∞
is straightforward, where we just want to maximize Γ+∞ (𝑆) =

max𝑣∈𝑆 ℎ𝑆 (𝑣). The solution of this case is the maximal subgraph
that satisfies the conditions (1) and (2) in Problem 2. In the 𝑝 = −∞
case, we want to maximize Γ−∞ (𝑆) = min𝑣∈𝑆 ℎ𝑆 (𝑣). We can recur-
sively remove a vertex with minimum value of ℎ𝑆 and maintain
the remaining subgraph such that satisfies conditions (1) and (2) in
Problem 2. The pseudocode is identical to Algorithm 6, except in
lines 5-8, we recursively remove a vertex with a minimum value of
ℎ𝑆 . We refer to this modified peeling algorithm as Exact-MaxMin.

Theorem 16 (Correctness of Exact-MaxMin). Exact-MaxMin
returns the exact solution to the AFTCS problem with 𝑝 = −∞.

9 EXPERIMENTS
We conduct experiments to evaluate the proposed CS models and
algorithms. Additional experiments on efficiency and parameter
sensitivity can be found in [7], Appendix F.

Setup. All algorithms are implemented in Python and compiled by
Cython. The experiments are performed on a Linux machine with
Intel Xeon 2.6 GHz CPU and 128 GB RAM.

513

Table 1: Network Statistics

Dataset |𝑉 | |𝐸 | |𝐿 | Size #FT Attribute GT

Terrorist 79 2.2K 14 17 KB 48
RM 91 14K 10 112 KB 113
FAO 214 319K 364 3 MB 2397
Brain 190 934K 520 10 MB 1493
DBLP 513K 1.0M 10 16 MB 66
Obama 2.2M 3.8M 3 60 MB 20
YouTube 15K 5.6M 4 106 MB 372
Amazon 410K 8.1M 4 123 MB 23
YEAST 4.5K 8.5M 4 97 MB 542
Higgs 456K 13M 4 205 MB 94
Friendfeed 510K 18M 3 291 MB 320
StackOverflow 2.6M 47.9M 24 825 MB 1098
Google+ 28.9M 1.19B 4 20 GB -
Size: graph size #FT: number of FirmTrusses GT: ground truth

Figure 2: Quality evaluation on ground-truth networks.

Baseline Methods.We compare our FTCS with the state-of-the-
art CS methods in ML networks. ML k-core [30] uses an objective
function to automatically choose a subset of layers and finds a sub-
graph such that the minimum of per-layer minimum degrees, across
selected layers, is maximized. ML-LCD [45] maximizes the ratio of
Jaccard similarity between nodes inside and outside of the local com-
munity. RWM [60] sends random walkers in each layer to obtain
the local proximity w.r.t. the query nodes and returns a subgraph
with the smallest conductance. We implemented a baseline based
on TrussCube [39], which finds a maximal connected TrussCube
containing query nodes. We compare our approach with CTC [44],
which finds the closest truss community in single-layer graphs, and
VAC [58], an attributed variant of CTC, also on single-layer graphs.

Datasets. We perform extensive experiments on thirteen real net-
works [1, 12, 17–19, 29, 32, 50, 52, 54, 61, 64] covering social, genetic,
co-authorship, financial, brain, and co-purchasing networks, whose
main characteristics are summarized in Table 1. While Terrorist
and DBLP datasets naturally have attributes, for RM and YouTube,
we chose one of the layers, embedded it using node2vec [34], and
used the vector representation of each node as its attribute vector.

Queries and Evaluation Metrics.We evaluate the performance
of all algorithms using different queries by varying the number
of query nodes, and the parameters 𝑘 , 𝜆, and 𝑝 . To evaluate the
quality of found communities 𝐶 , we measure their F1-score to
grade their alignment with the ground truth 𝐶̃ . Here, 𝐹1(𝐶, 𝐶̃) =
2𝑝𝑟𝑒 (𝐶,𝐶̃)𝑟𝑒𝑐 (𝐶,𝐶̃)
𝑝𝑟𝑒 (𝐶,𝐶̃)+𝑟𝑒𝑐 (𝐶,𝐶̃) , where 𝑝𝑟𝑒 (𝐶, 𝐶̃) =

|𝐶∩𝐶̃ |
|𝐶 | and 𝑟𝑒𝑐 (𝐶, 𝐶̃) = |𝐶∩𝐶̃ ||𝐶̃ | .

To evaluate the efficiency, we report the running time. In reporting
results, we cap the running time at 5 hours and memory footprint
at 100 GB. For index-based methods, we cap the construction time
at 24 hours. Unless stated otherwise, we run our algorithms over
100 random query sets with a random size between 1 and 10, and
report the average results. We randomly set 𝑘 and 𝜆 to one of the
common skyline indices of edge schemas incident to query nodes.

Table 2: Evaluation of FTCSwith the state-of-the-artmethods
on datasets without ground truth.

CS Model FAO Obama YEAST Higgs
Density Diameter Density Diameter Density Diameter Density Diameter

FTCS 979.71 1 9.81 1.84 177.27 1.52 65.14 1.93
ML k-core - - 8.13 ∞ 159.94 ∞ 59.41 ∞
ML-LCD 952.88 1.09 4.87 2.46 - - - -
RWM 911.94 1.12 4.62 3.07 25.45 1.84 24.99 3.16
TrussCube - - 4.71 2.03 147.33 1.87 26.89 2.14
CTC 733.85 1 5.35 1.99 139.03 1.92 35.18 2.05

Table 3: Evaluation of AFTCS with the state-of-the-art meth-
ods on attributed datasets with ground-truth.

CS Model Terrorist RM DBLP Youtube
F1 Density F1 Density F1 Density F1 Density

AFTCS

𝑝 = +∞ 0.52 15.29 0.77 62.35 0.62 8.29 0.45 11.64
𝑝 = 2 0.52 15.29 0.79 61.24 0.61 8.22 0.45 11.64
𝑝 = 1 0.61 15.22 0.83 64.31 0.60 7.91 0.45 11.59
𝑝 = 0 0.61 15.18 0.82 63.98 0.64 8.11 0.43 10.88
𝑝 = −1 0.59 13.76 0.81 63.19 0.61 8.19 0.44 11.24
𝑝 = −2 0.56 13.94 0.81 63.19 0.60 8.03 0.46 11.49
𝑝 = −∞ 0.57 14.08 0.85 62.46 0.62 7.97 0.46 11.49

FTCS 0.59 10.23 0.84 60.52 0.61 8.69 0.47 10.36
ML k-core 0.35 8.43 0.53 55.98 0.46 5.53 0.26 8.78
ML-LCD 0.32 7.82 0.49 47.26 0.50 6.49 - -
RWM 0.37 5.45 0.65 39.81 0.48 5.12 0.35 7.46
VAC 0.41 7.51 0.48 52.50 0.35 5.27 0.24 4.34

Quality. We evaluate the effectiveness of different community
search models over multilayer networks. Figure 2 reports the av-
erage F1-scores of all methods on datasets with the ground-truth
community. We observe that our approach achieves the highest
F1-score on all networks against baselines. The reason is two-fold.
First, in our problem definition, we enforce the minimum-diameter
restriction, effectively removing the irrelevant vertices from the re-
sult. Second, FirmTruss requires each edge schema to have enough
support in a sufficient number of layers, ensuring that the found
subgraphs are cohesive and densely connected. While CTC also
minimizes the diameter, it is a single-layer approach and misses
some structure due to ignoring the type of connections.

We also evaluate all algorithms in terms of other goodness met-
rics – density (𝛽 = 1), and diameter. Table 2 reports the results
on FAO, Obama, YEAST, and Higgs datasets. The results on other
datasets are similar, and are omitted for lack of space. We observe
that our approach achieves the highest density, and lowest diameter
on all networks against baselines.

Since there are no prior models for attributed community search
in ML networks, we compare the quality of AFTCS with our ML
unattributed baselines as well as VAC. Table 3 reports the F1-score
and density of communities found, over four datasets with ground-
truth communities. AFTCS consistently beats the baselines. Notice
that AFTCS has a higher F1-score than FTCS in all but one case, as
the existence of both attributes and structure is richer information
than only structure. Accordingly, AFTCS is better able to distinguish
members from non-members of a ground-truth community.

Efficiency. We evaluate the efficiency of different community
search models on multilayer graphs. Figure 3 shows the query pro-
cessing time of all methods. All of our methods terminate within

514

Figure 3: Efficiency Evaluation.

(a) Effect of 𝑘 (DBLP) (b) Effect of 𝜆 (DBLP) (c) Effect of 𝑝

Figure 4: Parameter Sensitivity Evaluation.

1 hour, except Global on the two largest datasets, as it generates
a large candidate graph 𝐺0. Our algorithms Local and iLocal run
much faster than Online-Global. Overall, iLocal achieves the best
efficiency, and it can deal with a search query within a second on
most datasets. Local is the only algorithm that scales to graphs
containing billions of edges. Bars for iGlobal and iLocal are missing
for Google+, as index construction time exceeds our threshold.

Parameter Sensitivity.We evaluate the sensitivity of algorithm
efficiency to the parameters 𝑘, 𝜆, and 𝑝 , varying one parameter at a
time. Figures 4(a) and (b) show the running time as a function of
𝑘 and 𝜆 on DBLP. The larger 𝑘 and 𝜆 for Global and iGlobal result
in lower running time since the algorithms generate a smaller𝐺0.
However, the larger 𝑘 and 𝜆 increase the running time of Local and
iLocal since they need to count more nodes in the neighborhood
of query nodes to find a (𝑘, 𝜆)-FirmTruss. This also is the reason
for the sharp increase of time in both plots. With large 𝑘 and 𝜆,
Local and iLocal need to count nodes farther away, and there is
a significant increase in the number of nodes that they need to
explore. Figure 4(c) shows the running time as a function of 𝑝 . We
observe that AFTCS-Approx achieves a stable efficiency on different
finite values of 𝑝 . Notice, when 𝑝 = −∞, this algorithm takes less
time as it does not need to calculate Δ𝑢 (𝑆) for each node and can
simply remove the vertex with minimum ℎ𝑆 (𝑢) in each iteration.

Scalability. We test our algorithms using different versions of
StackOverflow obtained by selecting a variable #layers from 1 to
24 and also with different subsets of edges. Figure 5 shows the
results of the index-based Global, Local Search, and AFTCS-Approx
algorithms. The results Global and iLocal are similar, and are omit-
ted for lack of space (see Appendix F [7]). The running time of
all approaches scales linearly in #layers. By varying #edges, all
algorithms scale gracefully. As expected, the Local algorithm is less
sensitive to varying #edges than #layers.

Index Construction. Figure 6 reports the SFT index construction
time and size. The size of indices is more dependent on the structure
of a graph than its size. That is, since we store the SFT indices for
each edge schema, the size of indices depends on the number of
FirmTrusses in the network. For all datasets, the SFT index can be

(a) iGlobal (b) Local Search (c) AFTCS-Approx

Figure 5: Scalability of proposed algorithms with varying the
number of layers and the number of edges.

Figure 6: Index Construction Costs.

(a) Ground truth (b) FirmTruss (c) ML-LCD (d) RWM

Figure 7: Detected functional systems.

built within 24 hours, and its size is within 2.6× of the original graph
size. The result shows the efficiency of SFT index construction.

Case Studies: Identify Functional Systems in Brain Networks.
Detecting and monitoring functional systems in the human brain
is a primary task in neuroscience. However, the brain network gen-
erated from an individual can be noisy and incomplete. Using brain
networks from many individuals can help to identify functional
systems more accurately. A community in a multilayer brain net-
work, where each layer is the brain network of an individual, can
be interpreted as a functional system in the brain. In this case study,
to show the effectiveness of the FTCS, we compare its detected
functional system with ground truth. Here, we focus on the “visual
processing” task in the brain. As the “Occipital Pole” is primarily re-
sponsible for visual processing [48], we use one of its representing
nodes as the query node. Figure 7 reports the found communities
by FTCS and baselines. The identified communities are highlighted
in red, and the query node is green. Results show the effectiveness
of FTCS as the community detected by our method is very similar
to the ground truth with F1-score of 0.75. RWM, which is a random
walk-based community model, includes many false-positive nodes
that cause F1-score of 0.495. On the other hand, some nodes in the
boundary region are missed byML-LCD that caused low F1-score of
0.4. The result of the ML k-core is omitted as it does not terminate
even before one week.

515

(a)𝐶ADHD (b)𝐶TD

Figure 8: FirmTruss community in TD and ADHD groups.

Table 4: Results of the ADHD classification task.
CS Model Accuracy Precision Recall F1-score

FTCS 76.56 ± 0.72 75.73 ± 1.00 83.77 ± 1.21 77.54 ± 0.66
ML-LCD 55.70 ± 1.25 55.43 ± 1.15 78.91 ± 1.64 64.13 ± 1.06
RWM 50.47 ± 0.18 53.03 ± 2.08 55.09 ± 0.41 45.59 ± 1.18

Case Studies: Classification on Brain Networks. Behavioral
disturbances in attention deficit hyperactivity disorder (ADHD)
are considered to be caused by the dysfunction of spatially dis-
tributed, interconnected neural systems [33]. In this section, we
employ our FTCS to detect common structures in the brain func-
tional connectivity network of ADHD individuals and typically
developed (TD) people. Our dataset is derived from the functional
magnetic resonance imaging (fMRI) of 520 individuals with the
same methodology used in [53]. It contains 190 individuals in the
condition group, labeled ADHD, and 330 individuals in the con-
trol group, labeled TD. Here, each layer is the brain network of an
individual person, where nodes are brain regions, and each edge
measures the statistical association between the functionality of its
endpoints. Since “Temporal Pole” is known as the part of the brain
that plays an important role in ADHD symptoms [65, 69], we use a
subset of its representing nodes as the query nodes.

Next, we randomly chose 230 individuals labeled TD and 90 indi-
viduals labeled ADHD to construct two multilayer brain networks
and then found the FirmTruss communities associated with “Tem-
poral Pole” in each group separately, referred to as𝐶TD and𝐶ADHD
in Figure 8. In the second step, for each individual unseen brain
network, we find the associated communities to the query nodes
using the FTCS model, setting |𝐿 | = 1. In order to classify an unseen
brain network, we calculate the similarity of its found communities
with 𝐶TD and 𝐶ADHD and then predict its label as the label of the
community with maximum similarity. Here, we use the overlap
coefficient [72] as the similarity measure between two communities.

To ensure that the result is statistically significant, we repeat this
process for 1000 trials and report the mean, and its relative standard
deviation of accuracy, precision, recall and F1-score in Table 4. Not
only does our FTCS outperform baseline community search models,
but it also achieves results comparable with the state-of-the-art
ADHD classification model [33], based on SVM, which reports an
accuracy of 76%. This comparable result is achieved by the FTCS
method, which is a white-box and explainable model.

Case Studies: DBLP.We conduct a case study on the DBLP dataset
to judge the quality of the AFTCS model and to show the effective-
ness of the homophily score in removing free riders. The multilayer

(a) AFTCS Community (b) Average attribute

Figure 9: Case study of DBLP.

DBLP dataset is a collaboration network derived following the
methodology in [11]. In this dataset, each node is a researcher, an
edge shows collaboration, and each layer is a topic of research. For
each author, we consider the bag of words drawn from the titles
of all their papers and apply LDA topic modeling [10] to automati-
cally identify 240 topics. The attribute of each author is the vector
that describes the distribution of their papers in these 240 topics.
We use "Brian D. Athey" as the query node. The maximal (8, 2)-
FirmTruss, including the query node, has 44 nodes with a minimum
homophily score of 0.08, shown in Figure 9(a). The community
found by AFTCS (𝑝 = −∞) is an (8, 2)-FirmTruss with a minimum
homophily score of 0.28, which resulted from removing 28 nodes
as free-riders. The found community is shown in the larger circle,
while the smaller circle shows free riders. We compute the average
attributes of community members and free-riders and then cluster
their non-zero elements into ten known research topics. Results are
shown in Figure 9(b). While researchers in the found community
have focused more on "Health Informatics," removed researchers
(free-riders) have focused more on “Databases.” The connection
between these two communities, which results in their union be-
ing an (8, 2)-FirmTruss, is the collaboration of “Brian D. Athey,”
from the “Health Informatics” community with some researchers
in “Databases” community. AFTCS divides the maximal FirmTruss
into two communities with more correlations inside each of them.

10 CONCLUSIONS
We propose and study a novel extended notion of truss decompo-
sition in ML networks, FirmTruss, and establish its nice proper-
ties. We then study a new problem of FirmTruss-based community
search over ML graphs. We show that the problem is NP-hard. To
tackle it efficiently, we propose two 2-approximation algorithms
and prove that our approximations are tight. To further improve
their efficiency, we propose an index and develop fast index-based
variants of our approximation algorithms.We extend the FirmTruss-
based community model to attributed ML networks and propose
a homophily-based model making use of generalized 𝑝-mean. We
prove that this problem is also NP-hard for finite value of 𝑝 and to
solve it efficiently, we develop a fast greedy algorithm which has
a quality guarantee for 𝑝 ≥ 1. Our extensive experimental results
on large real-world networks with ground-truth communities con-
firm the effectiveness and efficiency of our proposed models and
algorithms, while our case studies on brain networks and DBLP
illustrate their practical utility.

516

REFERENCES
[1] Carlo Abrate and Francesco Bonchi. 2021. Counterfactual Graphs for Explainable

Classification of Brain Networks. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery; Data Mining (Virtual Event, Singapore) (KDD
’21). Association for Computing Machinery, New York, NY, USA, 2495–2504.
https://doi.org/10.1145/3447548.3467154

[2] Esra Akbas and Peixiang Zhao. 2017. Truss-Based Community Search: A Truss-
Equivalence Based Indexing Approach. Proc. VLDB Endow. 10, 11 (aug 2017),
1298–1309. https://doi.org/10.14778/3137628.3137640

[3] Alberto Aleta and Yamir Moreno. 2019. Multilayer networks in a nutshell. Annual
Review of Condensed Matter Physics 10 (2019), 45–62.

[4] M. Ashburner, C.A. Ball, and J.A. Blake et al. 2000. Gene Ontology: Tool for the
Unification of Biology. Nature Genetics 25, 1 (2000), 25–29.

[5] N. Azimi-Tafreshi, J. Gomez-Garde, and S. N. Dorogovtsev. 2014. k-
corepercolation on multiplex networks. Physical Review E 90, 3 (Sep 2014).

[6] Ali Behrouz and Farnoosh Hashemi. 2022. CS-MLGCN: Multiplex Graph Convo-
lutional Networks for Community Search in Multiplex Networks. In Proceedings
of the 31st ACM International Conference on Information and Knowledge Man-
agement (Atlanta, GA, USA) (CIKM ’22). Association for Computing Machinery,
New York, NY, USA, 3828–3832. https://doi.org/10.1145/3511808.3557572

[7] Ali Behrouz, Farnoosh Hashemi, and Laks V. S. Lakshmanan. 2022. FirmTruss
Community Search in Multilayer Networks. https://doi.org/10.48550/ARXIV.
2205.00742

[8] Ali Behrouz and Margo Seltzer. 2022. Anomaly Detection in Multiplex Dynamic
Networks: from Blockchain Security to Brain Disease Prediction. In NeurIPS
2022 Temporal Graph Learning Workshop. https://openreview.net/forum?id=
UDGZDfwmay

[9] Bharat B Biswal, Maarten Mennes, Xi-Nian Zuo, Suril Gohel, Clare Kelly, Steve M
Smith, Christian F Beckmann, Jonathan S Adelstein, Randy L Buckner, Stan
Colcombe, et al. 2010. Toward discovery science of human brain function.
Proceedings of the National Academy of Sciences 107, 10 (2010), 4734–4739.

[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. J. Mach. Learn. Res. 3, null (mar 2003), 993–1022.

[11] Francesco Bonchi, Aristides Gionis, Francesco Gullo, Charalampos E.
Tsourakakis, and Antti Ukkonen. 2015. Chromatic Correlation Clustering.
ACM Trans. Knowl. Discov. Data 9, 4, Article 34 (jun 2015), 24 pages. https:
//doi.org/10.1145/2728170

[12] Fabio Celli, F Marta L Di Lascio, Matteo Magnani, Barbara Pacelli, and Luca Rossi.
2010. Social Network Data and Practices: the case of Friendfeed. In International
Conference on Social Computing, Behavioral Modeling and Prediction (Lecture
Notes in Computer Science). Springer Berlin Heidelberg, New York, NY, USA, –.

[13] Tanmoy Chakraborty, Sikhar Patranabis, Pawan Goyal, and Animesh Mukherjee.
2015. On the Formation of Circles in Co-Authorship Networks. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (Sydney, NSW, Australia) (KDD ’15). Association for Computing Machin-
ery, New York, NY, USA, 109–118. https://doi.org/10.1145/2783258.2783292

[14] Lu Chen, Chengfei Liu, Kewen Liao, Jianxin Li, and Rui Zhou. 2019. Contextual
Community Search Over Large Social Networks. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, Macau SAR, China, 88–99. https:
//doi.org/10.1109/ICDE.2019.00017

[15] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and BinWang. 2018.
Maximum Co-Located Community Search in Large Scale Social Networks. Proc.
VLDB Endow. 11, 10 (2018), 1233–1246. https://doi.org/10.14778/3231751.3231755

[16] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online
search of overlapping communities. In Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. Association for Computing
Machinery, New York, NY, USA, 277–288.

[17] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. 2013. The Anatomy of a
Scientific Rumor. Scientific Reports 3, 1 (2013), –.

[18] M. De Domenico, M. A. Porter, and A. Arenas. 2014. MuxViz: a tool for multilayer
analysis and visualization of networks. Journal of Complex Networks 3, 2 (Oct
2014), 159–176. https://doi.org/10.1093/comnet/cnu038

[19] M. DeDomenico, V. Nicosia, A. Arenas, and V. Latora. 2015. Structural reducibility
of multilayer networks. Nature communications 6 (2015), 6864.

[20] Zheng Dong, Xin Huang, Guorui Yuan, Hengshu Zhu, and Hui Xiong. 2021.
Butterfly-Core Community Search over Labeled Graphs. Proc. VLDB Endow. 14,
11 (jul 2021), 2006–2018. https://doi.org/10.14778/3476249.3476258

[21] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Jiafeng Hu. 2017.
Effective and efficient attributed community search. The VLDB Journal 26, 6
(2017), 803–828.

[22] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective
Community Search for Large Attributed Graphs. Proc. VLDB Endow. 9, 12 (aug
2016), 1233–1244. https://doi.org/10.14778/2994509.2994538

[23] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2019. A Survey of Community Search Over Big Graphs. https:
//doi.org/10.48550/ARXIV.1904.12539

[24] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Jiafeng Hu.
2019. Effective and Efficient Community Search Over Large Directed Graphs.

IEEE Transactions on Knowledge and Data Engineering 31, 11 (2019), 2093–2107.
[25] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Jiafeng Hu.

2019. Effective and Efficient Community Search Over Large Directed Graphs
(Extended Abstract). In 2019 IEEE 35th International Conference on Data Engineer-
ing (ICDE). IEEE, Macau SAR, China, 2157–2158. https://doi.org/10.1109/ICDE.
2019.00273

[26] Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3
(2010), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002

[27] Santo Fortunato and Marc Barthélemy. 2007. Resolution limit in
community detection. Proceedings of the National Academy of Sci-
ences 104, 1 (2007), 36–41. https://doi.org/10.1073/pnas.0605965104
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.0605965104

[28] Amita Gajewar and Atish Das Sarma. 2012. Multi-skill Collaborative Teams based
on Densest Subgraphs. In Proceedings of the 2012 SIAM International Conference on
Data Mining (SDM). Society for Industrial and Applied Mathematics, California,
USA, 165–176. https://doi.org/10.1137/1.9781611972825.15

[29] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core Decom-
position and Densest Subgraph in Multilayer Networks. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management (Singapore,
Singapore) (CIKM ’17). Association for Computing Machinery, New York, NY,
USA, 1807–1816. https://doi.org/10.1145/3132847.3132993

[30] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano.
2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and
Applications. ACM Trans. Knowl. Discov. Data 14, 1, Article 11 (2020), 40 pages.
https://doi.org/10.1145/3369872

[31] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: Lightweight
Interactive Community Search via Graph Neural Network. Proc. VLDB Endow.
14, 6 (feb 2021), 1006–1018. https://doi.org/10.14778/3447689.3447704

[32] Neil Zhenqiang Gong, Wenchang Xu, Ling Huang, Prateek Mittal, Emil Stefanov,
Vyas Sekar, and Dawn Song. 2012. Evolution of Social-Attribute Networks:
Measurements, Modeling, and Implications Using Google+. In Proceedings of the
2012 Internet Measurement Conference (Boston, Massachusetts, USA) (IMC ’12).
Association for Computing Machinery, New York, NY, USA, 131–144.

[33] Kristi R. Griffiths, Taylor A. Braund, Michael R. Kohn, Simon Clarke, Leanne M.
Williams, and Mayuresh S. Korgaonkar. 2021. Structural brain network topology
underpinning ADHD and response to methylphenidate treatment. Translational
Psychiatry 11, 1 (02 Mar 2021), 150. https://doi.org/10.1038/s41398-021-01278-x

[34] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. arXiv:1607.00653 [cs.SI]

[35] Fangda Guo, Ye Yuan, Guoren Wang, Xiangguo Zhao, and Hao Sun. 2021.
Multi-attributed Community Search in Road-social Networks. In 2021 IEEE
37th International Conference on Data Engineering (ICDE). 109–120. https:
//doi.org/10.1109/ICDE51399.2021.00017

[36] Farnoosh Hashemi, Ali Behrouz, and Laks V.S. Lakshmanan. 2022. FirmCore
Decomposition of Multilayer Networks. In Proceedings of the ACM Web Confer-
ence 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for Computing
Machinery, New York, NY, USA, 1589–1600. https://doi.org/10.1145/3485447.
3512205

[37] Allen L. Hu and Keith C. C. Chan. 2013. Utilizing Both Topological and Attribute
Information for Protein Complex Identification in PPI Networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 10, 3 (2013), 780–792.
https://doi.org/10.1109/TCBB.2013.37

[38] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2016.
Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (Indianapolis, Indiana, USA) (CIKM ’16). Association
for Computing Machinery, New York, NY, USA, 1241–1250. https://doi.org/10.
1145/2983323.2983748

[39] Hongxuan Huang, Qingyuan Linghu, Fan Zhang, Dian Ouyang, and Shiyu Yang.
2021. Truss Decomposition on Multilayer Graphs. In 2021 IEEE International
Conference on Big Data (Big Data). IEEE, virtual event, 5912–5915. https://doi.
org/10.1109/BigData52589.2021.9671831

[40] Ling Huang, Chang-Dong Wang, and Hong-Yang Chao. 2019. Higher-Order
Multi-Layer Community Detection. In Proceedings of the Thirty-Third AAAI Con-
ference on Artificial Intelligence and Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference and Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence (Honolulu, Hawaii, USA) (AAAI’19/IAAI’19/EAAI’19).
AAAI Press, -, Article 1271, 2 pages. https://doi.org/10.1609/aaai.v33i01.33019945

[41] Xinyu Huang, Dongming Chen, Tao Ren, and Dongqi Wang. 2021. A survey
of community detection methods in multilayer networks. Data Mining and
Knowledge Discovery 35, 1 (2021), 1–45.

[42] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying
K-Truss Community in Large and Dynamic Graphs. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
1311–1322. https://doi.org/10.1145/2588555.2610495

[43] Xin Huang and Laks VS Lakshmanan. 2017. Attribute-driven community search.
Proceedings of the VLDB Endowment 10, 9 (2017), 949–960.

517

https://doi.org/10.1145/3447548.3467154
https://doi.org/10.14778/3137628.3137640
https://doi.org/10.1145/3511808.3557572
https://doi.org/10.48550/ARXIV.2205.00742
https://doi.org/10.48550/ARXIV.2205.00742
https://openreview.net/forum?id=UDGZDfwmay
https://openreview.net/forum?id=UDGZDfwmay
https://doi.org/10.1145/2728170
https://doi.org/10.1145/2728170
https://doi.org/10.1145/2783258.2783292
https://doi.org/10.1109/ICDE.2019.00017
https://doi.org/10.1109/ICDE.2019.00017
https://doi.org/10.14778/3231751.3231755
https://doi.org/10.1093/comnet/cnu038
https://doi.org/10.14778/3476249.3476258
https://doi.org/10.14778/2994509.2994538
https://doi.org/10.48550/ARXIV.1904.12539
https://doi.org/10.48550/ARXIV.1904.12539
https://doi.org/10.1109/ICDE.2019.00273
https://doi.org/10.1109/ICDE.2019.00273
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.0605965104
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.0605965104
https://doi.org/10.1137/1.9781611972825.15
https://doi.org/10.1145/3132847.3132993
https://doi.org/10.1145/3369872
https://doi.org/10.14778/3447689.3447704
https://doi.org/10.1038/s41398-021-01278-x
https://arxiv.org/abs/1607.00653
https://doi.org/10.1109/ICDE51399.2021.00017
https://doi.org/10.1109/ICDE51399.2021.00017
https://doi.org/10.1145/3485447.3512205
https://doi.org/10.1145/3485447.3512205
https://doi.org/10.1109/TCBB.2013.37
https://doi.org/10.1145/2983323.2983748
https://doi.org/10.1145/2983323.2983748
https://doi.org/10.1109/BigData52589.2021.9671831
https://doi.org/10.1109/BigData52589.2021.9671831
https://doi.org/10.1609/aaai.v33i01.33019945
https://doi.org/10.1145/2588555.2610495

[44] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-
proximate Closest Community Search in Networks. Proc. VLDB Endow. 9, 4 (dec
2015), 276–287. https://doi.org/10.14778/2856318.2856323

[45] Roberto Interdonato, Andrea Tagarelli, Dino Ienco, Arnaud Sallaberry, and Pascal
Poncelet. 2017. Local community detection in multilayer networks. Data Mining
and Knowledge Discovery 31, 5 (2017), 1444–1479.

[46] V. Jethava and N. Beerenwinkel. 2015. Finding Dense Subgraphs in Relational
Graphs. In Machine Learning and Knowledge Discovery in Databases, Annalisa
Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge,
and Carlos Soares (Eds.). Springer International Publishing, Cham, 641–654.

[47] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou Huang.
2021. Query Driven-Graph Neural Networks for Community Search: From
Non-Attributed, Attributed, to Interactive Attributed. https://doi.org/10.48550/
ARXIV.2104.03583

[48] Eileanoir B. Johnson, Elin M. Rees, Izelle Labuschagne, Alexandra Durr, Blair R.
Leavitt, Raymund A.C. Roos, Ralf Reilmann, Hans Johnson, Nicola Z. Hobbs,
Douglas R. Langbehn, Julie C. Stout, Sarah J. Tabrizi, and Rachael I. Scahill. 2015.
The impact of occipital lobe cortical thickness on cognitive task performance:
An investigation in Huntington’s Disease. Neuropsychologia 79 (2015), 138–146.
https://doi.org/10.1016/j.neuropsychologia.2015.10.033

[49] Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In Proceedings
of the 36th International Colloquium on Automata, Languages and Programming
(ICALP ’09). Springer-Verlag, -, 597–608.

[50] Jungeun Kim and Jae-Gil Lee. 2015. Community Detection inMulti-Layer Graphs:
A Survey. SIGMOD Rec. 44, 3 (dec 2015), 37–48. https://doi.org/10.1145/2854006.
2854013

[51] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno,
and Mason A. Porter. 2014. Multilayer networks. Journal of Complex Networks 2,
3 (07 2014), 203–271. https://doi.org/10.1093/comnet/cnu016

[52] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings
of the 22nd International Conference on World Wide Web (Rio de Janeiro, Brazil)
(WWW ’13 Companion). Association for Computing Machinery, New York, NY,
USA, 1343–1350. https://doi.org/10.1145/2487788.2488173

[53] Tommaso Lanciano, Francesco Bonchi, and Aristides Gionis. 2020. Explainable
Classification of Brain Networks via Contrast Subgraphs. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery; Data Mining
(Virtual Event, CA, USA) (KDD ’20). Association for Computing Machinery, New
York, NY, USA, 3308–3318. https://doi.org/10.1145/3394486.3403383

[54] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The Dynamics
of Viral Marketing. ACM Trans. Web 1, 1 (May 2007), 5–es.

[55] Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xiaokui Xiao, Nong Xiao, and
Zibin Zheng. 2018. Skyline Community Search in Multi-Valued Networks. In
Proceedings of the 2018 International Conference on Management of Data (Houston,
TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY,
USA, 457–472. https://doi.org/10.1145/3183713.3183736

[56] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persis-
tent community search in temporal networks. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, Paris, France, 797–808.

[57] Boge Liu, Fan Zhang, Chen Zhang, Wenjie Zhang, and Xuemin Lin. 2019. Core-
Cube: Core Decomposition in Multilayer Graphs. InWeb Information Systems
Engineering – WISE 2019, Reynold Cheng, Nikos Mamoulis, Yizhou Sun, and Xin
Huang (Eds.). Springer International Publishing, Cham, 694–710.

[58] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao.
2020. VAC: Vertex-Centric Attributed Community Search. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, Dallas, Texas, USA,
937–948. https://doi.org/10.1109/ICDE48307.2020.00086

[59] Xueming Liu, Enrico Maiorino, Arda Halu, Kimberly Glass, Rashmi B. Prasad,
and Joseph Loscalzo. 2020. Robustness and lethality in multilayer biological
molecular networks. Nature Communications 11 (2020), –.

[60] Dongsheng Luo, Yuchen Bian, Yaowei Yan, Xiao Liu, Jun Huan, and Xiang Zhang.
2020. Local community detection in multiple networks. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data mining.
Association for Computing Machinery, New York, NY, USA, 266–274.

[61] Elisa Omodei, Manlio De Domenico, and Alex Arenas. 2015. Characterizing
interactions in online social networks during exceptional events. Frontiers in
Physics 3 (2015), 59. https://doi.org/10.3389/fphy.2015.00059

[62] Kaiyan Peng, Zheng Lu, Vanessa Lin, Michael R. Lindstrom, Christian Parkinson,
Chuntian Wang, Andrea L. Bertozzi, and Mason A. Porter. 2021. A Multilayer
Network Model of the Coevolution of the Spread of a Disease and Competing
Opinions. arXiv:2107.01713 [cs.SI]

[63] Jonathan D. Power, Alexander L. Cohen, Steven M. Nelson, Gagan S. Wig,
Kelly Anne Barnes, Jessica A. Church, Alecia C. Vogel, Timothy O. Laumann,

Fran M. Miezin, Bradley L. Schlaggar, and Steven E. Petersen. 2011. Functional
network organization of the human brain. Neuron 72, 4 (17 Nov 2011), 665–678.
https://doi.org/10.1016/j.neuron.2011.09.006 S0896-6273(11)00792-6[PII].

[64] N. Roberts and S. Everton. 2011. The Noordin Top Terrorist Network Data. (2011).
http://www.thearda.com/Archive/Files/Descriptions/

[65] Jacqueline F. Saad, Kristi R. Griffiths, Michael R. Kohn, Simon Clarke, Leanne M.
Williams, and Mayuresh S. Korgaonkar. 2017. Regional brain network orga-
nization distinguishes the combined and inattentive subtypes of Attention
Deficit Hyperactivity Disorder. NeuroImage: Clinical 15 (2017), 383–390. https:
//doi.org/10.1016/j.nicl.2017.05.016

[66] Pramod Shinde and Sarika Jalan. 2015. A multilayer protein-protein interac-
tion network analysis of different life stages in Caenorhabditis elegans. EPL
(Europhysics Letters) 112, 5 (dec 2015), 58001. https://doi.org/10.1209/0295-
5075/112/58001

[67] Mauro Sozio and Aristides Gionis. 2010. The Community-Search Problem and
How to Plan a Successful Cocktail Party. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Washington,
DC, USA). Association for Computing Machinery, New York, NY, USA, 939–948.

[68] Mauro Sozio and Aristides Gionis. 2010. The Community-Search Problem and
How to Plan a Successful Cocktail Party. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Washington,
DC, USA) (KDD ’10). Association for Computing Machinery, New York, NY, USA,
939–948. https://doi.org/10.1145/1835804.1835923

[69] Yunkai Sun, Lei Zhao, Zhihui Lan, Xi-Ze Jia, and Shao-Wei Xue. 2020. Dif-
ferentiating Boys with ADHD from Those with Typical Development Based
on Whole-Brain Functional Connections Using a Machine Learning Approach.
Neuropsychiatric disease and treatment 16 (10 Mar 2020), 691–702. https:
//doi.org/10.2147/NDT.S239013 PMC7071874[pmcid].

[70] Andrea Tagarelli, Alessia Amelio, and Francesco Gullo. 2017. Ensemble-Based
Community Detection in Multilayer Networks. Data Min. Knowl. Discov. 31, 5
(sep 2017), 1506–1543. https://doi.org/10.1007/s10618-017-0528-8

[71] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. 2012.
Structural diversity in social contagion. Proceedings of the National Academy
of Sciences 109, 16 (2012), 5962–5966. https://doi.org/10.1073/pnas.1116502109
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1116502109

[72] MK Vijaymeena and K Kavitha. 2016. A survey on similarity measures in text
mining. Machine Learning and Applications: An International Journal 3, 2 (2016).

[73] Yue Wang, Xun Jian, Zhenhua Yang, and Jia Li. 2017. Query Optimal k-Plex
Based Community in Graphs. (2017). https://doi.org/10.1007/s41019-017-0051-3

[74] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393, 6684 (01 Jun 1998), 440–442. https://doi.org/10.
1038/30918

[75] Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust Local Commu-
nity Detection: On Free Rider Effect and Its Elimination. Proc. VLDB Endow. 8, 7
(feb 2015), 798–809. https://doi.org/10.14778/2752939.2752948

[76] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network
Communities Based on Ground-Truth. In Proceedings of the ACM SIGKDD
Workshop on Mining Data Semantics (Beijing, China) (MDS ’12). Association
for Computing Machinery, New York, NY, USA, Article 3, 8 pages. https:
//doi.org/10.1145/2350190.2350193

[77] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2018. Index-
Based Densest Clique Percolation Community Search in Networks. IEEE Trans-
actions on Knowledge and Data Engineering 30, 5 (2018), 922–935. https:
//doi.org/10.1109/TKDE.2017.2783933

[78] Xuemeng Zhai, Wanlei Zhou, Gaolei Fei, Weiyi Liu, Zhoujun Xu, Chengbo
Jiao, Cai Lu, and Guangmin Hu. 2018. Null model and community structure in
multiplex networks. Scientific reports 8, 1 (2018), 1–13.

[79] Zhiwei Zhang, Xin Huang, Jianliang Xu, Byron Choi, and Zechao Shang. 2019.
Keyword-centric community search. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 422–433.

[80] Zibin Zheng, Fanghua Ye, Rong-Hua Li, Guohui Ling, and Tan Jin. 2017. Finding
weighted k-truss communities in large networks. Information Sciences 417 (2017),
344–360. https://doi.org/10.1016/j.ins.2017.07.012

[81] Qijun Zhu, Haibo Hu, Cheng Xu, Jianliang Xu, and Wang-Chien Lee.
2017. Geo-Social Group Queries with Minimum Acquaintance Constraint.
arXiv:1406.7367 [cs.DB]

[82] Rong Zhu, Zhaonian Zou, and Jianzhong Li. 2018. Diversified Coherent Core
Search on Multi-Layer Graphs. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE, 701–712. https://doi.org/10.1109/ICDE.2018.00069

[83] Yuanyuan Zhu, Qian Zhang, Lu Qin, Lijun Chang, and Jeffrey Xu Yu. 2018.
Querying Cohesive Subgraphs by Keywords. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). https://doi.org/10.1109/ICDE.2018.00141

518

https://doi.org/10.14778/2856318.2856323
https://doi.org/10.48550/ARXIV.2104.03583
https://doi.org/10.48550/ARXIV.2104.03583
https://doi.org/10.1016/j.neuropsychologia.2015.10.033
https://doi.org/10.1145/2854006.2854013
https://doi.org/10.1145/2854006.2854013
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/3394486.3403383
https://doi.org/10.1145/3183713.3183736
https://doi.org/10.1109/ICDE48307.2020.00086
https://doi.org/10.3389/fphy.2015.00059
https://arxiv.org/abs/2107.01713
https://doi.org/10.1016/j.neuron.2011.09.006
http://www.thearda.com/Archive/Files/Descriptions/
https://doi.org/10.1016/j.nicl.2017.05.016
https://doi.org/10.1016/j.nicl.2017.05.016
https://doi.org/10.1209/0295-5075/112/58001
https://doi.org/10.1209/0295-5075/112/58001
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.2147/NDT.S239013
https://doi.org/10.2147/NDT.S239013
https://doi.org/10.1007/s10618-017-0528-8
https://doi.org/10.1073/pnas.1116502109
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1116502109
https://doi.org/10.1007/s41019-017-0051-3
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.14778/2752939.2752948
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1109/TKDE.2017.2783933
https://doi.org/10.1109/TKDE.2017.2783933
https://doi.org/10.1016/j.ins.2017.07.012
https://arxiv.org/abs/1406.7367
https://doi.org/10.1109/ICDE.2018.00069
https://doi.org/10.1109/ICDE.2018.00141

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 FirmTruss Structure
	5 FirmTruss-Based Community Search
	5.1 Problem Definition
	5.2 Problem Analysis
	5.3 Comparison of CS Models in ML Networks

	6 FTC Online Search
	6.1 Global Search
	6.2 Local Search

	7 Index-based Algorithm
	7.1 FirmTruss Decomposition
	7.2 Index-based Maximal FirmTruss Search

	8 Attributed FirmTruss Community
	8.1 Attributed FirmCommunity Model
	8.2 Algorithms

	9 Experiments
	10 Conclusions
	References

