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ABSTRACT
To sustain the input rate of high-throughput streams, modern

stream processing systems rely on parallel execution. However,

skewed data yield imbalanced load assignments and create strag-

glers that hinder scalability. Deciding on a static partitioning for

a given set of “hot” keys is not sufficient as these keys are not

known in advance, and even worse, the data distribution can change

unpredictably. Existing algorithms either optimize for a specific

distribution or, in order to adapt, assume a centralized partitioner

that processes every incoming tuple and observes the whole work-

load. However, this is not realistic in a distributed environment,

where multiple parallel upstream operators exist, as the centralized

partitioner itself becomes the bottleneck and limits scalability.

In this work, we propose Dalton: a lightweight, adaptive, yet

scalable partitioning operator that relies on reinforcement learning.

By memoizing state and dynamically keeping track of recent expe-

rience, Dalton: i) adjusts its policy at runtime and quickly adapts

to the workload, ii) avoids redundant computations and minimizes

the per-tuple partitioning overhead, and iii) efficiently scales out to

multiple instances that learn cooperatively and converge to a joint

policy. Our experiments indicate that Dalton scales regardless of the

input data distribution and sustains 1.3 × - 6.7× higher throughput

than existing approaches.
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1 INTRODUCTION
Stream processing systems cope with data of enormous volume and

velocity. From social network analytics to gaming, fraud detection,

and stock trading, streaming applications require the real-time

processing of high-throughput, in-motion data. Failing to sustain

the input rate causes degradation in the quality of service and

often jeopardizes the integrity of the entire application. To meet the

ever-increasing computational demands, common wisdom suggests

parallelization [3, 9, 20, 24, 29, 40, 43].
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Figure 1: Impact of distribution changes and partitioner’s
parallelism on application’s throughput

The physical limitations of a single machine and the inherently

distributed nature of data sources (e.g., geo-distributed sensors in

IoT) have sparked a lot of interest in distributed streaming frame-

works such as Flink [20], Spark [43], and Kafka Streams [38], by

both academia and industry. These systems compile the task at hand

into a dataflow graph and follow a data-parallel approach, where dif-

ferent parts of the incoming data are assigned to different workers.

Scaling the application under this model requires efficient load bal-
ancing – uneven assignments lead to stragglers and resource under-

utilization. To make things worse, real data are often highly skewed,

stressing the need for efficient parallelization [10, 28]. Therefore, a

key research question is how to partition streams in order to achieve
balanced execution. While shuffling trivially solves the problem for

stateless operators, when state is involved, the optimal partition-

ing decision defines a complex optimization problem that is data-,

resource- and workload-dependent.

As an example, consider a windowed group-by operation. To

guarantee group-by semantics, a hash partitioner, which is sensi-

tive to skewed data, is usually applied. To remedy this, previous

research has proposed two techniques: i) re-partitioning [13, 15],

and ii) key-splitting [30, 31]. Re-partitioning is too heavyweight

as it involves state migration and transferring large data volumes

over the network. By avoiding both the I/O cost of re-partitioning

and the pitfalls of hashing, key-splitting has become the state-of-

the-art. Key-splitting works in a Map-Reduce-like fashion. In the

“map” stage, tuples are assigned to parallel workers. As each key

can be assigned to multiple workers, key-grouping semantics are

violated, but we benefit from the available parallelism even when

the data distribution is heavily skewed. Then, data is partially aggre-

gated and routed via hashing to the “reducers” for final aggregation.

As Katsipoulakis et al. [21] have shown, key-splitting creates a

trade-off between the effective parallelism in the first step and the

aggregation cost in the second.
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To identify the optimal trade-off, we have to answer many impor-

tant questions such as: which keys to split, how many workers do we
need for each key, and which these workers should be. To exacerbate

things, the input rate and the underlying data distribution are not

stationary but highly volatile and unpredictable: trending events

create spikes in the load, and topic drifts change the set of “hot”

keys that are responsible for load imbalance. Thus, key-splitting

decisions should not be part of an offline, optimize-once process

but a continuous and adaptive one.

During the past years, there have been many research efforts

that employ key-splitting for stream partitioning under both the

tuple-at-a-time [21, 30–32] and themicro-batching [1, 2] processing
models. However, existing techniques suffer from at least one of the

two following issues: i) they either do not adapt to distribution/rate

changes, or ii) they cannot scale efficiently when the partitioner

itself becomes the bottleneck and limits scalability. When the par-

titioner’s input comes from multiple upstream operators, a single

partitioning task may not be sufficient to sustain the load. Naively

scaling by replicating the partitioner does not resolve the problem,

as the locally-optimal decisions of each partitioner are not guar-

anteed to converge to a good global policy. Moreover, as existing

partitioning functions are stateless, they: i) incur multiple redun-

dant computations per tuple, further overloading the partitioner,

and ii) miss the opportunity to exploit past experience for quickly

converging to an efficient global policy.

Figure 1 illustrates a scenario that captures both deficiencies.

An input stream with two parallel data sources produces uniform

data, and all tuples go through a centralized partitioner. At 𝑡 = 50𝑘 ,

we double the partitioners, and for the majority of the examined

algorithms throughput increases, indicating that the partitioner

itself had become the bottleneck. Then, after a while, one of the

input streams becomes skewed due to a trending event. On the one

hand, we observe that when following a static policy (Hashing, Two-

Choices [31]), execution benefits from the second partitioner since

individual partitioners follow the same strategy. However, static

strategies cannot effectively handle all the different distributions.

On the other hand, DAGreedy [32], which follows an adaptive

policy, does not benefit from the second partitioner, as each of the

two replicas acts independently and the system cannot converge.

This work proposes Dalton: a stream partitioning operator that

can be injected into any stream processing system and jointly ad-

dresses both the adaptivity and the partitioner-scalability problem.

To adapt to the distribution, Dalton relies on reinforcement learning

(RL). For each assignment, a reward is instantly provided through a

cost model that effectively captures distribution changes. To make

our solution as lightweight as possible, we: i) reduce the RL state

to the minimum, and ii) similarly to previous work [13, 15, 32], we

employ a hybrid scheme that distinguishes heavy hitters from the

tail of the distribution. Memoizing a state that keeps track of past

experience reduces the per tuple overheads, as it avoids redundant

computations and enables an efficient mechanism to scale the par-

titioners. By gathering the learned states of all partitioners, we can

derive a new policy that is globally beneficial. Sharing experience

and cooperatively learning a common policy happens through a

distributed protocol with tunable synchronization overheads.

Our contributions are summarized as follows:

• We identify the joint distribution shift - partitioner scalability
problem in stream partitioning and analyze its requirements

and challenges.

• We propose Dalton: an RL-based stream partitioner that

efficiently scales and maximizes throughput regardless of

the data distribution. By adapting to the data and minimiz-

ing the per-tuple overheads, Dalton outperforms existing

approaches by 1.3× - 6.7×.
• As centralized partitioners can become the bottleneck, we

propose a distributed learning protocol that leverages lo-

cally learned states to converge to a common global policy.

Our protocol achieves 1.4× to 3.4× higher throughput than

simply replicating the partitioner.

2 PARTITIONING STATEFUL OPERATORS
The stream processing model assumes a dataflow, usually in the

form of a directed acyclic graph, where nodes represent operators

and edges data streams. We describe our formulation for the tuple-

at-a-time processing model but extend it to the micro-batch model

in Section 3.4. Each operator has an input and output queue and

works at the tuple granularity, i.e., it pulls a tuple from the input

queue, processes it individually, and enqueues it to the output.

Table 1: Notation table

𝑆𝑤 stream of window𝑤

𝑒𝑡 = (𝑡, 𝑘, •) tuple with order 𝑡 and key 𝑘

𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑛 partial aggregator subtasks

𝑃𝑡 : 𝑆 → {𝑐1, . . . , 𝑐𝑛} partitioning function

𝐿 (𝑡 ) (𝑐𝑖 ,𝑤) load of 𝑐𝑖 in𝑤 at time 𝑡

𝐼 (𝑡 ) (𝑃𝑡 ,𝑤) load imbalance in𝑤 using 𝑃

Γ (𝑡 ) (𝑤) aggregation cost in𝑤

L(𝑡 )𝑤 load vector of𝑤

X (𝑡 )𝑤 fragmentation vector

K number of distinct keys

Streams&Windows. A stream 𝑆 comprises an infinite sequence

of records that obey a partial order. We consider the sliding window

model (count- or time-based) and represent the records of a specific

window𝑤 with 𝑆𝑤 . We also assume that the order 𝑡 of a tuple 𝑒 in

the stream is explicitly expressed as an attribute of the tuple, i.e.,

𝑒𝑡 = (𝑡, •), and that it is used to assign tuples in windows.

Parallel dataflows. For each operator, distributed stream pro-

cessing systems have multiple deployed instances that we call sub-
tasks. For example, in Figure 2b, there are three subtasks for the

parallel window aggregation. When exchanging data with down-

stream operators, the routing decision often depends on a set of

specific attributes that act as partitioning keys. In the example of

Figure 2b, tuples that have the same group-by key should be routed

to the same subtask. To distinguish keys from the rest of the at-

tributes, we denote tuples as 𝑒𝑡 = (𝑡, 𝑘, 𝑣), where 𝑘 is the key. In

such key-based partitioning schemes, data skew causes significant

performance degradation, as it decreases the effective parallelism.

On top of that, the “hot” keys may change over time in an unpre-

dictable manner. Re-partitioning requires re-distributing the state

of stateful operators and incurs high I/O costs.

492



SELECT * FROM Stream S
WHERE S.v > 10
GROUP BY S.k
WINDOW 60 SLIDE 1

SRC FLTR AGGR OUT

(a) Query and abstract dataflow (b) Hash partitioning (c) Key-Splitting

Figure 2: Example of partitioning in a dataflow with windowed aggregation

Key-splitting: adaptivitywithout re-partitioning costs. Key-
splitting is a technique that allows dealingwith diverse distributions

without re-partitioning the state. The idea is to decompose the par-

allel stateful operators in two layers: In the first layer, we apply

a partitioning function of the form: 𝑃𝑡 : 𝑆 → {𝑐1, . . . , 𝑐𝑛}, where
𝑐𝑖 the partial aggregator subtasks

1
. Then, each subtask of the first

layer assigns the partitioned tuples 𝑆𝑖 , 𝑖 = 1, . . . , 𝑛 to windows and

computes a partial aggregate for each 𝑆𝑤
𝑖
. In the next step, partial

aggregates are routed via hashing to the second layer of subtasks

for final aggregation. For simplicity, and as this model resembles

Map-Reduce, we call the partial aggregators of the first layer com-
biners and the final aggregators reducers. Figure 2c demonstrates

key-splitting for our group-by example. The Partitioner 𝑃 uses an

arbitrary scheme to assign tuples to combiners 𝑐1, 𝑐2, 𝑐3, where

tuples are partially aggregated, and hashing is used to route the

partial aggregates to reducers 𝑟1, 𝑟2, where the final aggregates for

each window are computed.

Challenge 1: Balanced work in combiners. Key-splitting
permits arbitrary partitioning to combiners. However, to maximize

the benefit from the available parallelism, we should minimize load

imbalance. Assuming 𝐿 (𝑡 ) (𝑐𝑖 ,𝑤) denotes the number of tuples that

are assigned to𝑤 and have been routed to 𝑐𝑖 before the arrival of

the tuple (𝑡, 𝑘, 𝑣), and 𝑛 the number of combiners, load imbalance

is defined as:

𝐼 (𝑡 ) (𝑃𝑡 ,𝑤) =
 max

1≤𝑖≤𝑛
{𝐿 (𝑡 ) (𝑐𝑖 ,𝑤)} −

1

𝑛

𝑛∑︁
𝑖=1

𝐿 (𝑡 ) (𝑐𝑖 ,𝑤)
 (1)

Challenge 2: Minimal aggregation in reducers. Balancing
the load of the combiners is not enough to achieve high end-to-end

throughput, as the bottleneck can shift to the aggregation of the

reducers. Thus, the second goal a good partitioning scheme should

achieve is to minimize:

Γ (𝑡 ) (𝑤) = max

1≤ 𝑗≤𝑚
𝐴
(𝑡 )
𝑗
(𝑤), 𝑗 = 1 . . . ,𝑚 (2)

where𝑚 the number of reducers, and 𝐴
(𝑡 )
𝑗

the cost of the 𝑗-th

parallel reducer in the window𝑤 before the arrival of (𝑡, 𝑘, 𝑣).
Challenge 3: Lightweight partitioners. Addressing both of

the aforementioned challenges requires solving a multi-objective

1
The subscript in the partitioning function’s symbol denotes that partitioning decisions

are not fixed but can vary with time. At the same time, we show that changes in the

partitioning policy are not necessarily coupled with the window specification.

optimization problem. However, as this problem is proven to be in-

tractable [2], such an algorithm would require many computations

per tuple. To meet the latency requirements of streaming applica-

tions, the partitioner should be lightweight and never become the

performance bottleneck.

Challenge 4: Scaling the number of partitioners. Even if

Challenge 3 is resolved and a really efficient partitioner is available,

a partitioner that receives data at high rates from multiple parallel

upstream operators/sources can still become the bottleneck. Scaling

the number of partitioners is not trivial as, by default, partitioners

do not communicate with each other, and local decisions may lead

to a highly sub-optimal global partitioning. This is especially true

when the data distribution from each upstream operator differs.

Assuming that: i) tuples never arrive out-of-order, ii) the content

of a tuple does not affect the processing cost, and iii) hashing is

used for routing to the reducers, we compile all four challenges in

the scalable and adaptive partitioning problem:

Problem 1 (Scalable & Adaptive Partitioning). Devise a
partitioning scheme that distributes the load to the combiners and
satisfies the following requirements:

(1) It minimizes both 𝐼 (𝑃𝑡 ,𝑤) and Γ at the same time.

(2) It requires minimal latency per tuple.

(3) It quickly adapts to distribution changes.

(4) It can scale to multiple parallel partitioners.

State-of-the-art. While there is a lot of research on stream

partitioning, no existing technique covers all four points. Most

algorithms, e.g., Two-Choices [31], make static decisions that of-

fer different imbalance-aggregation trade-offs but do not adapt at

runtime [21, 30]. A state-of-the-art tuple-at-a-time algorithm of

key-splitting is DAGreedy [32]. DAGreedy does adapt, but for each

tuple, it calculates a score for each candidate combiner, and thus,

the partitioning overhead increases with the number of parallel

workers. Similarly, a state-of-the-art algorithm for the micro-batch

model is Prompt [2], which also adjusts its strategy but has the over-

head of sorting all keys in a batch based on their frequency. More

importantly, both algorithms cannot efficiently scale out. In cases

where multiple partitioning instances are deployed, as each of them

optimizes only the locally observed distribution, partitioning poli-

cies diverge and degrade the overall system’s performance. Even

if the partitioners were syncing and were periodically exchanging

load information, as the algorithm does not maintain state enriched

with past experience, decisions between the sync points would

again diverge, and convergence would never be achieved.
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3 LEARNING PARTITIONING POLICIES
The ever-changing nature of data streams makes static heuristics

incapable to provide an efficient partitioning policy during the

lifespan of a streaming application. Moreover, as we explained,

techniques that rely on stateless partitioning functions, that forget

past experience, increase processing per tuple and fail to scale in dis-

tributed environments. Reinforcement learning (RL) naturally fits

this problem: it learns actions based on the actual data distribution,

and as we show in Section 4, by keeping track of past experience, it

enables a mechanism for scaling the partitioners. However, trivially

applying RL results in a vast and impractical state-action space. In

Section 3.1, we analyze the complexity of an RL-based solution and

present three key-technical ideas that can decouple inter-dependent

components of the problem and render it in a manageable form.

3.1 Cost of RL-based Stream Partitioning
We mathematically model the problem as aMarkov Decision Process
(MDP). Formally, an MDP is defined as a tuple 𝑀 = (S,A, 𝑃𝑎, 𝑅𝑎),
where S is a finite set of states, A is a set of actions, 𝑃𝑎 is the tran-

sition function that expresses the dynamics of the environment

and 𝑅𝑎 the reward function. More specifically, 𝑃𝑎 (𝑠, 𝑠′) = 𝑃𝑟 (𝑠𝑡+1 =

𝑠′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) denotes the probability that an action 𝑎 taken at

time 𝑡 in state 𝑠 , will lead to state 𝑠′ at time 𝑡+1, and 𝑅𝑎 (𝑠, 𝑠′) the cor-
responding immediate reward. We consider the stream partitioner

as an agent that takes actions and transitions across states with

the aim of maximizing its cumulative reward. The environment is

non-stationary, and each partitioning decision changes the load

distribution in the combiners, thereby affecting future partitioning

decisions. Next, we formally define states, actions, and rewards.

States. Given an input tuple 𝑒𝑡 = (𝑡, 𝑘, 𝑣) and a window𝑤 , the

state of the partitioner should capture the key attribute of the tuple

at hand, and the current load distribution for the tuples in𝑤 that

arrived before 𝑒𝑡 , i.e., {𝑒𝑡 ′ : 𝑡 ′ ∈ 𝑆𝑤 ∧ 𝑡 ′ < 𝑡}. To describe the load

distribution, we use a load vector and a fragmentation vector.

Definition 3.1 (Load Vector). The load vector L(𝑡 )𝑤 is a vector that

contains the number of tuples 𝐿 (𝑡 ) (𝑐𝑖 ,𝑤) that each combiner 𝑐𝑖
received in the window𝑤 and before tuple 𝑒𝑡 arrives, i.e.,

L(𝑡 )𝑤 = [𝐿 (𝑡 ) (𝑐1,𝑤), . . . , 𝐿 (𝑡 ) (𝑐𝑛,𝑤)]

Definition 3.2 (Fragmentation Vector). The fragmentation vector

is defined as:

X (𝑡 )𝑤 = [1(𝑘1,𝑤, 𝑡)1, . . . ,1(𝑘1,𝑤, 𝑡)𝑛, . . . ,
1(𝑘K ,𝑤, 𝑡)1, . . . ,1(𝑘K ,𝑤, 𝑡)𝑛]

where K the number of distinct keys in the window 𝑤 . Con-

ceptually, X (𝑡 )𝑤 is a bit-vector that, for each key 𝑘 , shows which

combiners hold at least one tuple corresponding to key 𝑘 with order

𝑡 ′ < 𝑡 , in the window𝑤 .

Thus, we represent the state as a (𝑘,X (𝑡 )𝑤 , L(𝑡 )𝑤 ) triplet. Assuming

L tuples within a window before 𝑒𝑡 arrives, and following a “balls

into bins” argument for the load, the number of possible states is:

K × 2
K𝑛 ×


L + 𝑛 − 1

𝑛 − 1



Actions. At each step, an action consists of the selection of a

combiner for a given tuple 𝑒𝑡 . Therefore, the number of available

actions |A| corresponds to the number of combiners 𝑛.

Rewards. Based on Equations 1 and 2, the cost for an action

𝑒𝑡 consists of the action’s contribution to the: (i) imbalance in the

combiners, and (ii) the reducers’ aggregation cost. The cost can be

translated to the following rewards function:

𝑅𝑤 (𝑒𝑡 , 𝑎) = −(𝑝1 ∗𝐶𝐼 (𝑡 )𝑤 (𝑎) + 𝑝2 ∗𝐶𝐴(𝑡 )𝑤 (𝑘,𝑤))

where 𝑝1, and 𝑝2 are adjustable and control the contribution of each

metric (i.e., 𝑝1 + 𝑝2 = 1). We express the first term as:

𝐶𝐼
(𝑡 )
𝑤 (𝑎) =

𝐿 (𝑡+1) (𝑎,𝑤) − 𝐿 (𝑡+1)𝑤

𝑚𝑎𝑥{𝐿 (𝑡+1) (𝑎,𝑤), 𝐿 (𝑡+1)𝑤 }
(3)

where 𝐿
(𝑡 )
𝑤 := 1

𝑛

𝑛
𝑖=1

𝐿 (𝑡 ) (𝑐𝑖 ,𝑤) denotes the average load of the

combiners in the window 𝑤 before the arrival of tuple 𝑒𝑡 , and 𝑎

refers to the chosen combiner.𝐶𝐼 captures the cost of assigning one

more record to the combiner 𝑎. The metric is normalized, taking

values in the range [−1, 1]. Assigning the tuple to an underloaded

combiner results in a negative𝐶𝐼 . This corresponds to a high reward,

encouraging such choices. Conversely, choosing an overloaded

combiner is penalized with a low reward.

For the second term of the cost, we assume that the aggregation

cost that action 𝑎 incurs for the input tuple (𝑡, 𝑘, 𝑣) is proportional
to the fragmentation | |X (𝑡+1)𝑤 (𝑘) | | of key 𝑘 , where | | • (𝑘) | | denotes
the number of 1s in the X𝑤 bit-vector that correspond to key 𝑘 , and

thus to how many combiners 𝑘 is split. Again, we normalize the

cost, which is expressed as:

𝐶𝐴
(𝑡 )
𝑤 (𝑘) =

| |X (𝑡+1)𝑤 (𝑘) | |
𝑛

(4)

Solving the above RL problem with a technique such as Q-
learning [42] or Sarsa [36] would require tabulating |S×A| elements.

Even for a toy example, with 10 distinct keys and 100 tuples already

in the window, running with 8 combiners, the number of possible

states is approximately 3 × 10
35
. Furthermore, with each new tuple

in this window, as the load increases, the number of possible states

increases as well. The complexity is already prohibitive, and in

reality, we have millions of tuples per window and hundreds of

parallel worker threads, so this number will grow exponentially.

An offline learning approach, as in [1, 33] is also not going to

work since such a train-once process violates the third requirement

of Problem 1 – we need a partitioner that continuously learns in

an online fashion and adapts to the data.

To decrease the number of states, we employ three key ideas:

Key idea 1: Separation of concerns Following prior art, we

can decrease K by employing RL for the partitioning of the most

frequent keys and hashing for the rest. As we show later in Theo-

rem 3.4, the threshold we use to make this distinction results in a

maximum of 𝑛 frequent keys.

Key idea 2: Load space quantization. The number of possible

values that the load vector can assume is the largest factor in deter-

mining the size of the state space, |S|. To tame it, we can make the

load assignment representation more coarse-grained by quantiza-

tion. For a quantum 𝑞, assuming that a combiner 𝑐𝑖 has a current

load of 𝐿(𝑐𝑖 ,𝑤), we transition to a new load value only when𝑞more
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tuples are assigned to 𝑐𝑖 . The quantized representation can take one

of

 L
𝑞
+𝑛−1

𝑛−1


values, which corresponds to a significant reduction

of the state space. With these two modifications, for 𝑞 = 10 and

considering 8 frequent keys, the number of state-action pairs in our

example is already decreased to approximately 3 × 10
24
.

Key idea 3: Temporal invariability of fragmentation. The
new state to which we transition depends not only on the cho-

sen action but also on the next tuple of the stream. This makes

it infeasible to visit all possible states – the truly eligible states

for a transition are conditioned on the order in which the keys

appear. Let us assume that we are in state (𝑘 𝑗 ,X (𝑡 )𝑤 , L(𝑡 )𝑤 ) and all

combiners have loads corresponding to a new quantum. If the parti-

tioner does not decide on a further split for the key of the incoming

tuple (something it tries to avoid), then, for the given window𝑤 ,

X𝑤 will not change as well. Hence, given these assumptions, the

agent’s actions contribute to the selection of the next state only

every 𝑞 ≤ 𝑇 ≤ 𝑛(𝑞 − 1) + 1 tuples. In between, the next state is

solely determined by the keys in the stream. If we increase 𝑞 a lot,

in order to reduce the state space, then 𝑇 will increase as well and

the RL agent will degenerate to a contextual bandit [8, 26].

Algorithm 1: Dalton
local :𝑛: number of combiners

input : Incoming tuple 𝑒 : (𝑡, 𝑘, 𝑣)
1 UpdateFrequency(𝑘) ;

2 𝑓𝑘 ← EstimateFrequency(𝑘) ;
3 if 𝑓𝑘 ≥ L𝑛 or (k in Q and not expired) then
4 assign 𝑒 to 𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 {𝑄 (𝑘, 𝑖)} ;
5 compute reward 𝑅(𝑘, 𝑐∗) ;
6 𝑄 (𝑘, 𝑐∗) = 𝑄 (𝑘, 𝑐∗) + 𝛾 [𝑅(𝑘, 𝑐∗) −𝑄 (𝑘, 𝑐∗)] ;
7 else
8 assign 𝑒 to 𝑐∗ = ℎ𝑎𝑠ℎ(𝑘) ;
9 UpdateWorkerLoad(𝑐∗) ;

3.2 Reducing State using Contextual Bandits
Contextual bandits can be used to learn a different policy per key –

allowing for a key to be split according to its frequency – with con-

siderably reduced memory requirements. Furthermore, by discount-

ing past rewards, contextual bandits can be robust to distribution

shifts and quickly adapt their policy in an online manner.

A contextual bandit maintains a Q-table per key and aims to

learn an estimate of the value 𝑄 (𝑘, 𝑎) for all the possible assign-
ments of key 𝑘 to a combiner 𝑎. When presented with a new tuple,

the partitioner selects the action (combiner) that maximizes the

expected reward. A natural way to estimate𝑄 (𝑘, 𝑎) is by averaging

the rewards that have been received when the combiner 𝑎 was

selected for key 𝑘 . Nevertheless, since streams are unpredictable

and the underlying data distribution may change, the reward distri-

bution is non-stationary and we may desire to rely more heavily on

recent rewards than long-pasting ones. Let us denote with 𝑄𝑡 (𝑘, 𝑎)
the estimated average reward for action 𝑎 after observing the first

𝑡 − 1 rewards. Then, given the 𝑡-th reward 𝑅𝑡 (𝑘, 𝑎) for that action,
we update the learned value with the following rule:

𝑄𝑡+1 (𝑘, 𝑎) = 𝑄𝑡 (𝑘, 𝑎) + 𝛾 [𝑅𝑡 (𝑘, 𝑎) −𝑄𝑡 (𝑘, 𝑎)] (5)

where 𝛾 is a constant step-size parameter that takes values in

the range (0, 1]. Each key corresponds to a row in the Q-table and

based on Key-idea 1, there can be at most 𝑛 (“hot”) keys. Each row

in the Q-table has 𝑛 entries – one for each possible action – which

makes the total memory complexity of the algorithm 𝑂 (𝑛2).
Initial Values. We set the initial values to the minimum pos-

sible reward, i.e., −2 (Equations 3 and 4). This provides two nice

properties that prevent excessive key splitting. First, after the initial

assignment of a key 𝑘 to a combiner 𝑐𝑖 , subsequent records with

key 𝑘 have an affinity for the same worker; splitting happens only

through exploration. Second, even when exploration splits a key

and assigns it to a combiner 𝑐 𝑗 , due to the low initial value estimates,

the partitioner will be discouraged from sending more records to

𝑐 𝑗 unless the reward is substantially higher. Without substantially

higher rewards, when the tuple that the exploration assigned to 𝑐 𝑗
expires, the fragmentation of 𝑘 will be decreased.

Exploration. The agent uses an 𝜖-greedy policy: with a probabil-
ity 1−𝜖 it greedily chooses the action with the highest𝑄 (𝑘, 𝑎) value,
and with a probability 𝜖 it explores new assignments by randomly

choosing among all actions. This policy allows the partitioner to

explore new assignments by splitting or even migrating a key. The

probability 𝜖 should be low so that most of the time, the agent

makes decisions that have been already proven to be beneficial.

Our evaluation indicates that a good value is 𝜖 = 0.1.

Heavy hitters. As already mentioned, we employ the contextual

bandit agent for partitioning the most frequent keys and hashing for

the rest. The intuition behind our definition for heavy hitters is that

(i) the bandit should be used only for keys for which splitting can be

beneficial and (ii) splitting is beneficial when a key causes imbalance

even when it is the only heavy hitter assigned to a specific combiner.

This idea leads to the following definition:

Definition 3.3 (Heavy Hitters). Heavy hitter is a key 𝑘 whose

frequency 𝑓 (𝑘,𝑤) within the window 𝑤 satisfies 𝑓 (𝑘,𝑤) ≥ L
𝑛 ,

where L the total load of the current window.

Theorem 3.4. There can be at most 𝑛 heavy hitters in a window,
where 𝑛 is the number of combiners.

Proof. Let us consider that there are𝑥 heavy hitters {𝑘1, . . . , 𝑘𝑥 }.
Then, according to Definition 3.3:

𝑥
𝑖=1

𝑓 (𝑘𝑖 ,𝑤) ≥ 𝑥
𝑛 · L. But

L =
𝑥
𝑖=1

𝑓 (𝑘𝑖 ,𝑤) + 𝑌 , where 𝑌 is the total frequency of the non-

heavy hitters. Thus, 𝑥 ≤ 𝑛 ·
𝑥

𝑖=1
𝑓 (𝑘𝑖 ,𝑤 )𝑥

𝑖=1
𝑓 (𝑘𝑖 ,𝑤 )+𝑌 ≤ 𝑛 □
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K1à 1 0 0 1
K4à 1 1 1 1
K8à 0 0 1 0

HEAD

K1à 1 0 0 0
K4à 1 1 1 1

K1à 1 0 0 0
K4à 1 1 1 1
K2à 1 0 0 0

TAIL

K1à 1 0 0 0
K1à 2 0 0 0
K2à 1 0 0 0
K2à 1 0 0 0
K4à 1 1 1 1 
K4à 3 3 3 3

Aggr Struct XA

||1000 OR 1001|| = 
||1001||=2

Figure 4: Data structures for maintaining X𝑤

The problem with this definition is that the total load L of the

current window is not known before the window completes. We

solve this problem by using statistics from both the previous and

the current window. Details follow in the next subsection.

We call our partitioning operator Dalton and present the pseu-

docode of the bandit algorithm it employs in Algorithm 1. Figure 3

presents an overview of Dalton’s workflow. By maximizing the re-

ward function, Dalton learns a policy that minimizes the imbalance

and the aggregation cost and quickly adapts to distribution changes.

This covers the requirements (1) and (3) of Problem 1. Next, we

show the necessary enhancements to meet objectives (2) and (4).

3.3 Managing Windows
In the above discussion, we show that the computation of X𝑤 , L𝑤 ,
𝑅(𝑐𝑖 ,𝑤) and 𝑓 (𝑘 𝑗 ,𝑤) depends on a window. This window is not

necessarily the same for all four quantities. Here, we analyze the

requirements for each of them and present the system design we

use in order to achieve low latency in windowing operations and

meet the second objective of Problem 1.

Let us assume an application with a sliding window of size𝑊

and slide 𝑠 . In this case and for a starting point 𝑡0, every 𝑠 “time”

steps
2
, (𝑡0, 𝑡0 + 𝑠, . . . ), each combiner emits a partial aggregate for

the last window ((𝑡0−𝑊, 𝑡0], (𝑡0+𝑠−𝑊, 𝑡0+𝑆], . . . ). As partitioning
decisions must reflect the actual processing cost in both combiners

and reducers, the estimated cost of an action must account for the

load and fragmentation in ((𝑡0 −𝑊, 𝑡0], (𝑡0 + 𝑠 −𝑊, 𝑡0 + 𝑆], . . . ).
Therefore, the window we use for three out of the four quantities,

X𝑤 , L𝑤 , 𝑅(𝑐𝑖 ,𝑤), is𝑊 and it is updated every 𝑠 steps.

Reward Computation. To compute the reward 𝑅 in a sliding-

window fashion, we need sliding-window data structures for X𝑤
and L𝑤 . We opt for a design that has minimal update time and

avoids costly memory allocations in the critical path. In an abstract

level, both X𝑤 and L𝑤 follow a similar design: each has a dedicated

memory pool of size ⌈𝑊𝑠 ⌉ that contains one pre-allocated block per
slide organized in a circular linked list, and an extra structure that

holds aggregated information. Using this design, each incoming

tuple requires 𝑂 (1) update time by solely updating the head of the

list. Slide expiration also requires an𝑂 (1) update time to touch the

tail of the list and the aggregate structure.

More specifically, for the fragmentation vector X𝑤 , at each slide,

we get a block from the corresponding memory pool, and we main-

tain a map from the keys that appear in this slide to a bit-vector that

indicates to which combiners the specific key has been assigned

2
“time” just expresses an ordering and refers to both count- and time-based windows

(𝑘 → [11, . . . ,1𝑛]). Each time a tuple with key 𝑘𝑖 gets assigned to

a combiner 𝑐 𝑗 , we retrieve the map that exists in the head of the

list/pool, get the bit-vector of 𝑘𝑖 , and set the 𝑐 𝑗 -th bit to 1.

Assuming ⌈𝑊𝑠 ⌉ maps in the pool:𝑀1, 𝑀2, . . . , 𝑀⌈𝑊
𝑠
⌉ , where𝑀1

the head, the aggregate data structure XA maintains, in an incre-

mental way, the union for all past slides, i.e.,𝑀2 ∪ · · · ∪𝑀⌈𝑊
𝑠
⌉ and

a reference counter per key per combiner that shows in how many

of the past slides within the window, the key has been assigned to

the combiner. Then, each time a slide expires, we do the following:

(1) Remove the tail of the list that corresponds to the expired

slide and expire the corresponding keys. This consists of

reducing the reference counter in XA that corresponds

to each expired assignment and, if the counter becomes 0,

setting the corresponding bit in the bit-vector of XA .
(2) Merge the current head to XA , by computing XA ∪𝑀1,

and increasing the corresponding reference counters.

(3) Use the expired memory block as the new head.

AssumingK𝐻𝐸𝐴𝐷 ,K𝑇𝐴𝐼𝐿 denote the key cardinality in the head

and tail of the linked list, maintaining the XA structure incurs a

cost of 𝑂 (K𝐻𝐸𝐴𝐷 + K𝑇𝐴𝐼𝐿) each time a slide expires, but allows

the computation of Equation 4 in 𝑂 (1) time by simply computing

the 𝑂𝑅 function between two bit-vectors: one retrieved from the

head (𝑀1 (𝑘)), and one from XA (𝑘) (Figure 4).
In a similar spirit, we compute the load of each combiner 𝐿(𝑐𝑖 ,𝑊 ).

Concretely, for every slide, we keep a counter that stores the num-

ber of tuples assigned to this combiner. Additionally, we maintain

a sliding-window sum, corresponding to the total load of the com-

biner for all past slides, using the Subtract-on-Evict algorithm [37].

Statistics Computation. Although we need the window speci-

fication of the application (𝑊, 𝑠) for computing the rewards, this

is not true for the key frequencies 𝑓 (𝑘,𝑤). This window does not

interfere with the application’s semantics and is just used to iden-

tify the heavy hitters as time passes and distribution shifts. For

the windowing in statistics updates, we use a tumbling window

whose size is defined by the STATS_WIN system parameter; this is

a tuning knob that affects the partitioner’s latency. Then, heavy

hitters are computed by using the formula of Definition 3.3. We

estimate the load L of the current window by setting it equal to

the load observed during the previous STATS_WIN window. Once
a key is considered as a heavy hitter, it will be assigned using the

bandits policy for the current and the next STATS_WIN window.

At the end of the next window, if the key has not exceeded the

frequency threshold again, it is expired and its entry is deleted

from the Q-table. This allows the system to use past observations

and continuously learn the assignment policy of keys that remain

hot for more than one STATS_WIN window instead of resetting the

Q-table at the end of every window.

Intuitively, when STATS_WIN is too small, it is like we “zoom in”

a lot to the distribution and miss heavy hitters. Then, for the missed

heavy hitters, hashing is used instead of the bandit policy, and thus,

we allow for combiners to become stragglers and stale execution.

At the other extreme, if STATS_WIN is too large, we approximate

the distribution better, but in case of distribution shifts, we force

unnecessarily many tuples to go through the bandit and incur extra

performance overheads. For example, consider that the distribution
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changes every𝑇1 sec and STATS_WIN = 2𝑇1. Let us also assume that

initially, we had a set of heavy hittersK1, and when the distribution

changed at 𝑇1, the new heavy hitters became K2 : K1 ∩K2 = ∅.
Thus now, there are |K1 | + |K2 | keys that go through the bandit,

instead of just |K2 |.

3.4 Dalton for Micro-batches
To increase throughput at the cost of latency, micro-batch systems

accumulate incoming tuples and process them in batches. Each

operator pulls a batch from its input queue, processes it individually,

and enqueues it to the output. Thus, the partitioner is expected

to first see all the tuples of a batch, split them into subsets called

data blocks, and emit each data block to a combiner. Observing all

tuples of a batch before taking decisions can lead to more accurate

statistics and thus assist the whole partitioning process.

Typically, to perform windowed computations, a partial aggre-

gate is first calculated for every data block, followed by a final

aggregation that combines intermediate results (as in Section 2).

However, combiners do not reduce data at the window but at the

micro-batch level. Hence, the basic implementation difference is

that we must modify fragmentation vectors X (𝑡 ) to work over

micro-batches instead of windows.

4 MULTI-AGENT PARTITIONING
In real scenarios, there are multiple parallel input sources, each of

which can follow a different data distribution and inject data into

the system at a high rate. Passing all input streams through a single

partitioner will shift the bottleneck to the partitioner itself (Figure

5a). In this section, we show how we can use Dalton in a distributed

environment to coordinate multiple individual partitioners.

(a) (b)

Figure 5: (a) Dataflow topology with a single partitioner (b)
Dataflow topology in the case of multi-agent partitioning. A
Q-table server is used to aggregate individual Q-tables

4.1 Learning Distributed Data Streams
The high-level idea of the algorithm is that periodically, we com-

pute and communicate to all the partitioners a global policy that

is not beneficial only at an individual level but to the aggregate

throughput of the system. The algorithm relies on two properties

of the Q-tables: (i) they maintain information about the local heavy

hitters, and (ii) according to the observed rewards, they suggest

an optimal policy for the local input distribution. By averaging the

individual Q-tables, we compute a global structure that incentivizes

taking actions that have collected high rewards from the majority

of the partitioners. After each synchronization point, each parti-

tioner takes actions based on this global Q-table, and eventually,

the policies of different partitioners converge to a common one.

To realize the proposed algorithm, the system transparently adds

a QtableReducer (QS) operator, one sync stream, shown with solid

green lines in Figure 5b, and one feedback loop stream, shown with

dashed green lines. The two added streams serve as communication

channels between the QtableReducer and the individual partitioners.
Every DSYNC time steps, each of the individual partitioners sends

a SYNC message to the QtableReducer. This message contains: (i)

the local Q-table, (ii) the total number of records processed since

the last SYNC message, and (iii) a vector with the top-𝑛 most fre-

quent keys. Once the reducer processes the SYNC messages from all

the partitioners, it broadcasts back to the partitioner via the feed-
back loop channel the global Q-table, extended with an expiration

timestamp of each key, and the aggregate load GL.

Algorithm 2: Cooperative Dalton
local :𝑛: number of combiners

input : (i) incoming tuple 𝑒 : (𝑡, 𝑘, 𝑣) or, (ii) message from

QtableReducer (𝑄,GL)
1 if input is 𝑒 : (𝑡, 𝑘, 𝑣) then
2 UpdateFrequency(𝑘) ;

3 𝑓𝑘 ← EstimateFrequency(𝑘) ;
4 if 𝑓𝑘 ≥ L𝑛 or (k in Q and not expired) then
5 assign 𝑒 to 𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 {𝑄 (𝑘, 𝑖)} ;
6 compute reward 𝑅(𝑘, 𝑐∗) ;
7 if state = PREPARE then
8 𝑄 (𝑘, 𝑐∗) = 𝑄 (𝑘, 𝑐∗) + 𝛾 [𝑅(𝑘, 𝑐∗) −𝑄 (𝑘, 𝑐∗)] ;
9 else
10 AppendToBuffer((𝑘, 𝑐∗, 𝑅(𝑘, 𝑐∗))) ;
11 else
12 assign 𝑒 to 𝑐∗ = ℎ𝑎𝑠ℎ(𝑘) ;
13 UpdateWorkerLoad(𝑐∗) ;
14 if time from last sync = DSYNC then
15 SendSyncMsg(Q,L, GetTopKeys()) ;
16 state = AWAIT ;

17 else if input is (𝑄,GL) then
18 Q = 𝑄 , L = GL ;

19 AggregateBufferedRewards() ;

20 state = PREPARE ;

Algorithm 2 presents the pseudocode of a Dalton operator run-

ning in a distributed setup with many partitioners. Each of the P
partitioners can be in one of two distinct states: PREPARE and AWAIT.
While in the PREPARE state, a partitioner is individually learning by
taking actions and updating its local Q-table as described in Section

3.2. As soon as it emits the SYNCmessage, the partitioner enters the

AWAIT state in which it remains until it receives the global Q-table.

While in the AWAIT state, partitioners continue to receive tuples,

run locally the bandit algorithm, and assign rewards to partitioning

decisions. However, instead of updating the local Q-table, the re-

wards received during the AWAIT phase are just buffered so that they
can be merged with the global Q-table once it is received. When
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the global Q-table 𝑄 and the aggregate load GL are received, we

merge the buffered rewards using Equation 5, we update the local

load estimation to GL and transition back to the PREPARE state.
Once the QtableReducer has received the synchronization mes-

sages from all 𝑛 partitioners, it calculates the heavy hitters that

correspond to the global distribution and the global Q-table. For

the heavy hitters, the reducer computes the aggregate load GL =P
𝑖=1
L𝑖 , that was processed during the PREPARE phase and con-

siders the keys that have a frequency greater than
GL
𝑛 . Since the

reducer receives the 𝑛 most frequent keys of each partitioner and

the number of heavy hitters cannot exceed 𝑛 (Theorem 3.4), no

heavy hitters are missed.

For the global Q-table, the QtableReducer calculates a weighted
average over the local Q-tables. As keys are not equally frequent

in the distribution of all input streams, the weights reflect the

normalized frequencies as received by each partitioner. Therefore,

the update formula for a key 𝑘 is:

𝑄 (𝑘, 𝑐𝑖 ) =
P

𝑗=1

𝑓𝑗 (𝑘 )
GL 𝑄 𝑗 (𝑘, 𝑐𝑖 )
P ∀𝑖 ∈ [1, 𝑛]

where 𝑄 (𝑘, 𝑐𝑖 ) the global/averaged Q-value for a key 𝑘 and a

combiner 𝑐𝑖 . Using the frequencies as weights, the contribution of

each partitioner to the value of the global Q-table for a key 𝑘 is

proportional to the number of rewards it has received for it.

Our proposed synchronization mechanism achieves three im-

portant properties. First, it does not block execution - partitioners

continue to assign tuples while in AWAIT state. Second, by buffering

rewards received in the AWAIT state, all the learned rewards are

communicated to the reducer, and thus, we fully exploit acquired

experiences. Third, we do not allow keys that are frequent only

according to a local distribution but not for the global one to be

split and increase the aggregation cost. A partitioner considers a

key as a heavy hitter only if it exceeds the frequency threshold for

the global load GL or if the key is included in the global Q-table.

In the multi-agent case, we map the synchronization interval

DSYNC, to the STATS_WIN window used to maintain key frequency

statistics to ensure that no heavy hitters are missed by the QtableRe-
ducer. The value of DSYNC and, hence, the frequency in which the

SYNC events are emitted, affects the efficiency of the distributed

mechanism. On the one hand, a short sync period favors learning

but adds synchronization and communication overheads. On the

other hand, rare syncs permit individual learners to deviate from

the common policy. To hit a sweet spot, we propose an adaptive

communication protocol that changes the sync frequency – and,

hence, the STATS_WIN – at runtime.

If DSYNC time steps have passed since the last SYNC message was

sent and a partitioner is still in AWAIT state, it means that the reducer

cannot keep up with the synchronization rate and by the time the

updated global state is received, it is already stale. In that case, by

setting a field in the next SYNC message, the partitioner requests

to double the DSYNC interval. When the reducer receives the SYNC
messages, it first checks whether any node has requested to double

DSYNC; if that is the case, it fulfills the request and broadcasts the

new value along with the next global state. At the same time, the

reducer always monitors the amount of time it is idle, and if this is

longer than the time for processing Q-tables, it decreases DSYNC.

Discussion. We use multi-agent Dalton for optimizing a single

query. However, it can be trivially extended for multiple concurrent

queries over the same stream. If these queries are executed indepen-

dently of each other, the only difference is that the QTableReducer

should not be a query’s operator but implemented in the system’s

coordinator. Nevertheless, when multiple aggregates are processed

over the same stream, we can do much more than having a joint

partitioner. Common practice suggests a global plan with shared

streams and operators [19]. In such a work-sharing system, Dalton

can be yet another operator of the global plan and the implementa-

tion will remain exactly as described in Sec.4.1.

4.2 Optimizing for Non-Heavy Hitters

(a) 1 partitioner: key-forwarding
(b) Many partitioners: no for-
warding

Figure 6: Execution with and without key forwarding

In the tuple-at-a-time model, when we have a single partitioner,

as in Figure 6a, non-heavy hitters are hashed and are directly for-

warded to the output, avoiding the extra latency from the final

aggregation step. We call this scheme “key-forwarding”. However,
this cannot trivially happen in the distributed, multi-agent case.

As different partitioners may observe different distributions, they

cannot safely instruct a combiner to forward a key directly to the

output. In Figure 6b, key 𝑘1 (signified with the red color) is “hot”

according to the global distribution. Before synchronization hap-

pens, partitioner 𝑝1 hashes 𝑘1 and marks it as a non-heavy hitter.

Nevertheless, as 𝑝2 has already identified 𝑘1 as “hot” and split it, we

should not forward it to the output but rather to the reducers. For

this reason, in the default multi-agent implementation, we disable

the “key-forwarding” feature. Non-heavy hitters are still hashed to

avoid overloading the bandit learner but are always aggregated at

the reducers for correctness. In such cases, as the burden to reducers

is increased, they should be scaled out appropriately.

For the special case, where synchronization occurs at least once

per slide, we propose an optimization that enables “key-forwarding”
in the multi-agent case. Synchronizing before the window com-

pletes allows to repair wrong forwarding decisions before emitting

a result. For the example of Figure 6b, the partitioner 𝑝1 receives

the global Q-table before the end of the slide, and the global Q-table

marks 𝑘1 as “hot”. As this happens before the end of the slide, the

window is not completed yet and combiners have not emitted their

output. Thus, 𝑝1 instructs the combiner to disable forwarding for 𝑘1

and all intermediate results for 𝑘1 are aggregated. A question that

naturally arises is if synchronization is needed (e.g., what happens

if the message from the QTableReducer is delayed). To prevent such

issues, partitioners also disable forwarding if they have not received

a global Q-table before the window is completed.
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(a) T4SA dataset
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(b) Synthetic dataset (zipf-1.5)
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(c) Elections dataset

Figure 7: Word Count: Scalability for different distributions. window = 60𝑠𝑒𝑐, slide=1𝑠𝑒𝑐

0

20

40

60

8 16 32 64

Th
ro

ug
hp

ut
 (k

 r
ec

/s
)

parallelism
Hashing cAM Shuffling Two-Choices CM Prompt Dalton

(a) T4SA dataset

0

20

40

60

8 16 32 64

Th
ro

ug
hp

ut
 (k

 r
ec

/s
)

parallelism
Hashing cAM Shuffling Two-Choices CM Prompt Dalton

(b) Synthetic dataset (zipf-1.5)

0

20

40

60

8 16 32 64

Th
ro

ug
hp

ut
 (k

 r
ec

/s
)

parallelism
Hashing cAM Shuffling Two-Choices CM Prompt Dalton

(c) Elections dataset

Figure 8: Micro-batch model - Word Count: Scalability for different distributions. window = 60𝑠𝑒𝑐, slide=1𝑠𝑒𝑐

5 EXPERIMENTAL EVALUATION
This section experimentally evaluates the scalability and adaptivity

of Dalton when we vary the data distribution and the degree of

parallelism. We also perform a sensitivity analysis that shows how

the tuning knobs of Dalton affect performance.

PlatformWe use 5 two-socket Intel Xeon E5-2660 CPUs, 2.20

GHz servers with 8(×2) threads per socket and featuring 128 GB of

DRAM. Tuple-based algorithms are implemented in Flink v1.12 and

micro-batch in Storm Trident v2.4.0 using Java 11.0.9.1. We dedicate

one server to the JobManager/Nimbus and use the remaining four

for the TaskManagers/Supervisors for Flink and Storm respectively.

In all the experiments, we use the tuple-based implementation

unless otherwise specified.

Methodology Data is pre-loaded in main memory and is con-

tinuously consumed in a circular manner. We allow the system to

warm up and measure the sustainable input throughput only after

the system has been stabilized. This input rate achieves maximum

utilization while ensuring that there is no backpressure.

AlgorithmsWe compare Dalton against:

(1) 1-choice partitioners assign all tuples with the same key to

the same worker. From this group, we consider Hashing
and Group Affinity with Imbalance Minimization (cAM) [21]

(2) N-choice partitioners apply key-splitting following a static

policy for all keys. We consider Shuffling, Two-choices3 [31],
and, Cardinality Imbalance Minimization4 (CM) [21].

(3) Hybrid partitioners split the most frequent keys and hash

the rest. We consider DAGreedy [32]
5
for the tuple-at-a-

time processing model and Prompt [2]
4
for the micro-batch

model. To isolate the partitioning algorithm from the actual

implementation, we implement our optimization for the

non-heavy hitters (Section 4.2) for DAGreedy as well.

For Dalton, we set the step-size parameter𝛾 = 0.1, the STATS_WIN
interval equal to one slide and the cost model parameters 𝑝1 = 𝑝2 =

3
For Two-choices and CM, we use 2 hash functions

4
As there is no code available, for both systems, we used our own implementation.

0.5 based on our experimental evidence. For the frequency statis-

tics, we experiment with a common hashmap, a count-min sketch

[11], and a hybrid policy that dynamically selects one of the two, at

runtime, based on the statistics of the previous STATS_WIN interval.

Table 2: Summary of data characteristics

Dataset # of keys Frequency of top-1 key

T4SA ∼450k 2.69%

Elections ∼200k 7.2%

Voters 100k up to 38.45%

Synthetic 100k-1M up to 38.45%

Data To investigate the impact of different distributions, we

experiment with real and synthetic data. We consider two Twitter

datasets, T4SA [41] and Elections [14], and the voters dataset, which
represents the voter registry for North Carolina. For Twitter, we use

the hashtag as the key, and for voters the post-code. Table 2 shows

information for each dataset. For the synthetic data, we investigate

uniform and Zipf distributions with various exponents.

Applications The majority of the experiments are based on

Word Count as it represents a typical windowed aggregation exam-

ple. As partitioning should be more lightweight than the application

itself, inWord Count, we do not assume tuples directly in a key-value

form, but parsing and key extraction are part of the application. In

addition, to stress our reward model, we use Correlation Clustering,
a common data mining task. We use the VOTE [12] algorithm for

the combiners and the GREEDY algorithm [16] for the reducers.

Thus, this application has quadratic complexity in the combiners

and a much heavier final aggregation than the typical group by

queries. The quadratic complexity acts as an adversarial example to

our linear reward function. Except if mentioned otherwise, we use

sliding windows with a size of 60s and a slide of 1s and 20s forWord
Count and Correlation Clustering, respectively. We use the Twitter

datasets forWord Count and Voters for Correlation Clustering.
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Figure 9: Adaptivity to distribution shifts. (a) WordCount – Synthetic; (b) WordCount - Synthetic - Micro-batch model (c)
Correlation clustering – Voters; (d) WordCount Synthetic – Zipf with a variable exponent 𝑠, sampled uniformly at random from
[0.5, 1.5]. Distribution changes every 1000𝑠
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5.1 Scalability with the Number of Combiners
Figure 7 and 8 show how Word Count scales for different datasets

for the tuple-at-a-time and the micro-batch processing model re-

spectively. For the algorithms that require the final aggregation

step, we use 1, 2, 4, or 8 reducers, respectively, for parallelism of

8, 16, 32, and 64, and devote the rest of the resources to combiners.

The T4SA dataset is close to uniform, Elections is skewed, whereas

the synthetic one is configured to present an even higher degree

of skewness. We observe that hash-based algorithms scale well for

uniform data but do not exploit parallelism for highly skewed work-

loads; adding more resources does not result in higher throughput.

In contrast, algorithms that use key-splitting spread the load to

combiners and solve the imbalance problem. Nevertheless, they

cannot scale in the uniform case as they cause over-splitting and

pay a high aggregation cost at the reducers. Existing techniques

cannot scale in both uniform and skewed distributions. This is

a huge problem as the partitioning algorithm is selected before

launching a task and, hence, before knowing the data distribution,

and also the distribution changes at runtime. In the micro-batch

model the combiners compute partial aggregates per batch and

not per window. Hence, even the hash-based approaches require a

final aggregation step which results in a smaller difference in the

performance between hash-based and key-splitting algorithms.

Takeaway. Dalton scales almost linearly regardless of the distri-

bution. In the case of uniform data, it applies minimal splitting and

behaves almost like hashing, while in the Zipf case, it discovers a

policy that outperforms existing approaches by 1.5× to 6.7× for the
tuple-at-a-time and 1.6× to 2.1× for the micro-batch model.

5.2 Adaptivity to Distribution Changes
Next, we showcase the ability of each algorithm to adapt to dy-

namic workloads. We consider two types of distribution changes:

i) distribution alternates between uniform and Zipf. This scenario

simulates the sporadic occurrence of trending/hot events. ii) Ran-

dom changes between different Zipf distributions with different

degrees of skewness and different set of heavy hitters.

The first case is illustrated in Figures 9a and 9c for the tuple-at-

a-time model and the Word Count and Correlation Clustering task

and in Figure 9b for the micro-batch model and Word Count task.

When transitioning to a Zipf distribution, performance drops for all

algorithms. However, Dalton better absorbs the change, and while

the distribution is skewed, it outperforms the other algorithms by

1.3× to 6× and 1.1× to 1.8× for Word Count for the tuple-at-a-

time and the micro-batch model respectively and by 1.1× to 1.8×
for Correlation Clustering in the tuple-at-a-time model. Note that

only Dalton and DAGreedy can adapt, while Dalton outperforms

DAGreedy for skewed workloads.

For the second case, illustrated in Figure 9d, as distribution

changes happen frequently and transitions are restricted among

Zipf distributions, the transition points are not that visible – an

averaging effect is produced. However, by learning the appropriate

policy and by quickly adapting to the changes, Dalton achieves

1.1× to 1.3× higher throughput.

Takeaway. By continuously learning, Dalton adapts its policy

following distribution shifts. It achieves the performance of hashing

for uniform workloads and outperforms existing techniques for

skewed ones in tasks with completely different computation traits.
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5.3 Overhead of Partitioner
Next, we assess how Dalton’s tuning knobs affect the overhead it

introduces. Figures 10a and 10b show the cost of maintaining the

frequency statistics as a function of the STATS_WIN parameter. The

cost is the aggregate time required for updating the statistics for

the processing of a window with 100𝑀 elements. In Figure 10a,

where the distribution is uniform, STATS_WIN has no impact when

the Count-Min sketch is used. On the contrary, when using a hash-

map, higher STATS_WIN values translate to more keys in the map

and, consequently, more cache misses that deteriorate performance.

Therefore, there is no clear winner between exact computation and

sketches, but the answer depends on STATS_WIN and on the number

of keys. Note that while the relative difference between the two data

structures is seemingly small, as it translates to latency overhead,

delaying the window result by several seconds can significantly

lower the quality of service. Figure 10b shows that this effect in

the Zipfian case is milder due to more cache-friendly behavior (the

same hot keys appear over time). To minimize the overhead, Dalton

alternates between the two data structures at runtime.

Figure 10c shows: i) the latency that Dalton introduces as a

function of the number of keys considered for splitting, and ii) the

corresponding end-to-end application throughput. Increasing the

number of heavy hitters up to 4 leads to lower load imbalance and,

hence, higher throughput. For more heavy hitters, the partitioning

latency is increased, affecting throughput. This justifies our decision

to partition only the heavy hitters using the learner and showcases

the effectiveness of our defined threshold for heavy hitters. For this

experiment, we use a Zipf distributionwith 𝑠 = 1.0 to allow for more

than 600 distinct keys per slide. For this distribution and according

to our Definition 3.3 for heavy hitters, Dalton would consider 4

heavy hitters and, thus, achieve the maximum throughput.
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ton’s performance (Word Count)

Figure 11 shows the impact of two of Dalton’s optimizations on

the performance ofWordCount. TheNon-Hybrid variant is our base-
line; it considers all keys as heavy hitters, and hence all tuples go

through the bandit. The one without key forwarding distinguishes

heavy and non-heavy hitters but does not consider the forwarding

of Section 4.2. Enabling heavy hitter tracking gives a 1.2× speedup

on average. Finally, we enable key forwarding and have the full

Dalton system. As expected, key forwarding is particularly useful

in uniform distributions (T4SA) where it achieves a 3×.
Figure 12 shows the end-to-end throughput for word count at dif-

ferent input rates. For lower input rates, parallelism affects through-

put to a lesser extent since the input throughput can be sustained

with fewer workers. When the input rate is 40k rec/s, none of the

algorithms can sustain the input rate and they reach their peak.

Takeaway. Choosing the right data structure for the frequency

statistics can reduce the window latency by up to 24 𝑠𝑒𝑐 , while

using a hybrid approach that only splits the most frequent keys as

well as key-forwarding results in a speedup of up to 2.7×. This is
of significant importance in a streaming system with low latency

requirements and high input rates.
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5.4 Scaling the Partitioners
We experiment with setups with multiple input sources and par-

titioners. We use the task of Word Count and a window with a

size of 60𝑠𝑒𝑐 and a slide of 20𝑠𝑒𝑐 to allow for high throughput that

showcases the benefits of having multiple partitioners.
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Figure 13: Word count for different distribution per source

Figure 13 shows the performance of different algorithms for

two setups: i) one source is producing a uniform and the other a

Zipf distribution, and ii) both sources produce a Zipf but each with

different heavy hitters. We use 2 partitioners and for all Zipf distri-

butions 𝑠 = 1.5. As in our infrastructure, with 2 Dalton instances,

partitioning is never the bottleneck, scaling further does not yield

any improvement. When at least one distribution is uniform, hash-

based algorithms behave better and outperform DAGreedy, while

when both are Zipf, the contrary happens. In both cases, by appro-

priately coordinating the learners, Dalton converges to the best

global policy and outperforms existing techniques by 1.4× to 3.4×.
Sync frequency. Figure 14a shows the performance of Dalton

depending on the synchronization frequency of the partitioners

DSYNC. We use two partitioners, each consuming data from a differ-

ent source. We test 2 scenarios: i) one source produces data with

a uniform and the other with a Zipfian distribution (s=1.5), and ii)

both produce data with the same distribution. The second scenario

is equivalent to producing data from a uniform and a Zipfian distri-

bution in an alternating fashion. When the partitioners never sync,

the throughput is low since they optimize only locally; being agnos-

tic to the real load of the combiners, they give inaccurate rewards

to the bandit agent. More frequent synchronization improves per-

formance. However, the synchronization overhead increases when

DSYNC is higher than 10𝑠𝑒𝑐 causing performance degradation.
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Figure 14: Synchronization frequency (DSYNC) experiments
using two partitioners. (a) Impact of DSYNC to throughput for
different distributions; (b) Dalton’s policy for dynamically
updating DSYNC, under varying QTableReducer latency

Figure 14b shows how the protocol we propose for dynamically

adjusting the synchronization interval works. The top of the figure

shows throughput with the adaptive protocol and a fixed interval

of 20s and 10s. The bottom of the figure depicts the changes in

the value of DSYNC with the adaptive protocol. The initial value of

DSYNC is 20s. Initially, the partitioners observe that they receive

fast messages from the QTableReducer and propose more frequent

synchronization until DSYNC converges to 10s. This step happens

during the warmup of the system and, hence, is not depicted in the

figure. At 5000s, we artificially double the time the QTableReducer
needs to aggregate the Qtables. Hence, the partitioners propose less
frequent synchronization increasing DSYNC to 20s. At the time of

10000s, we make the time the QTableReducer needs for the aggrega-
tion 4 times higher than the initial, which brings DSYNC to 40s. At

15000s, we remove all imposed delays, and DSYNC returns to 10s.

Figure 15 shows the load imbalance (Equation 1) of the most im-

balanced combiner and the aggregation cost (Equation 2) imposed

by the most frequent key. In the case of multiple partitioners, half

observe a uniform distribution and half a Zipf-1.5. In the case of a

single partitioner, the input data is produced by alternating data

from a uniform and a Zipf-1.5. Learning converges to a global policy

and a stable cost in all cases. Crucially, while two partitioners have

a slightly increased imbalance compared to one, this overhead does

not increase with the number of partitioners. Moreover, not having

to pay for synchronization, the single partitioner converges faster.

However, for more than one partitioner, the rate of convergence is

not affected by the number of partitioners – as many partitioners

as necessary can be used without significantly affecting learning.

Takeaway. Our protocol successfully captures the global distri-

bution and, leveraging cooperative learning, outperforms existing

techniques by 1.4× to 3.4×. Moreover, Dalton automatically tunes

the synchronization frequency so that the communication with the

QTabeReducer does not stale execution.

6 RELATEDWORK
Partitioning for streams A traditional stream partitioning ap-

proach is to dynamically re-partition in case of imbalance [35]. How-

ever, re-partitioning comes hand-in-hand with the heavyweight

task of state migration which Dalton avoids altogether. A classic

key-splitting approach is the Two-choices algorithm [31] and its

extension [30]. These algorithms address load imbalance but are

agnostic to the aggregation cost. Moreover, they make static deci-

sions and fail to adapt to distribution changes. [21] proposes a set of
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Figure 15: Convergence of Dalton for different number of
partitioners

static heuristics that consider both load imbalance and aggregation

cost. However, our evaluation shows that these heuristics do not

cover all workloads and do not always adapt to distribution shifts.

To adapt to the data, more recent approaches use dynamic strate-

gies based on the key frequencies. [13, 15] use a routing table for

heavy hitters and hashing for the rest of the keys. However, they

employ state migration, which we eliminate. DAGreedy [32] also

hashes infrequent keys and greedily assigns frequent ones based

on a cost model. Prompt [2] is a heuristic-based partitioner for the

micro-batch model. Dalton outperforms DAGreedy and Prompt by

finding better partitioning assignments and avoiding over-splitting,

and can efficiently scale. In pull-based systems, late merging can

be used instead of upfront partitioning [44]. We focus on the push-

based model, adopted by most current systems [20, 40, 43].

A related topic to partitioning is elasticity, and re-configuration

[17, 18, 34]. Such techniques can also deal with stragglers and

increase the application’s throughput. Although many existing

approaches study the problem of elastically adjusting the number

of workers [2, 6], e.g., combiners and reducers, no existing work

focuses on the specific problem of scaling the partitioning operators.

Partitioning for Map-Reduce Partitioning has been widely

studied for Map-Reduce-based processing [7, 22, 23, 25]. While

conceptually similar, these approaches either require offline pre-

processing of the data and, thus, are not suitable with the streaming

model or optimize solely for the map or the reduce phase.

RL for load balancing. RL for load balancing and task sched-

uling is widely used in Cloud Computing [4, 5, 27, 39]. However,

these applications do not consider balancing among operators with

a windowed state. PartLy [1] uses deep RL for partitioning in the

micro-batch setup. However, it assumes prior knowledge of a fixed

distribution, which violates stream processing requirements.

7 CONCLUSION
The performance of stream processing systems highly depends on

the efficiency of partitioning the load among parallel workers. Re-

source underutilization and key oversplitting introduce overheads

degrading throughput. Moreover, as streams are unpredictable and

distributed in nature, to ensure high, effective parallelism, systems

should quickly adapt to the distribution at hand and be able to scale

not only the processing workers but also the partitioners. This work

presents Dalton, an RL-based operator that learns, with minimal

overhead, partitioning policies at runtime, meets both desiderata

and outperforms state-of-the-art approaches by up to 6.7×.
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