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ABSTRACT
Epilepsy is a chronic neurological disease, ranked as the second
most burdensome neurological disorder worldwide. Detecting Inter-
ictal Epileptiform Discharges (IEDs) is among the most important
clinician operations to support epilepsy diagnosis, rendering auto-
matic IED detection based on electroencephalography (EEG) signals
an important topic. However, most existing solutions were designed
and evaluated upon arti�cially balanced IED datasets, which do
not conform to the real-world highly imbalanced scenarios. In this
work, we propose the iEDeaL framework for automatic IED detec-
tion in challenging real-world use cases. The main components of
iEDeaL are the new SC neural network architecture, to e�ciently
detect IEDs on raw EEG series instead of extracted features, and
SaSu, a novel loss function to train SC by optimizing the �V -score.
Experiments on two real-world imbalanced IED datasets verify the
advantages of iEDeaL in o�ering more accurate and e�cient IED
detection when compared with other state-of-the-art deep learning-
based and spectrogram feature-based solutions.
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1 INTRODUCTION
[Motivation] Epilepsy is a neurological disorder characterized by
disabling repetitive seizures, ranked as the second most burden-
some neurological disorder worldwide [14]. Approximately 15% of
epileptic patients are pharmacoresistant, for whom surgical treat-
ment can be considered, requiring the identi�cation of the brain
area in which seizures are initiated. If no cortical lesion can be
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(a) IED series (b) Non-IED series

Figure 1: Examples of the IED and non-IED series in the ICM
dataset. The gray line indicates the IED peak timestamp.

identi�ed with neuroimaging (e.g. by magnetic resonance imaging,
MRI), further EEG exploration within the brain is necessary by
means of stereotaxic Electroencephalography (EEG) [105]. EEG
provides crucial information on epileptic seizures and Interictal
Epileptic Discharges (IEDs). IEDs are brief (<250ms), morphologic-
ally de�ned events observed in the EEG of patients predisposed to
spontaneous seizures of focal onset [81]. Figure 1 illustrates two
subsequence examples of a multivariate EEG signal (derived us-
ing �ve sensors, or channels): one that contains an IED, and one
that does not. Interictal spikes are highly correlated with spontan-
eous seizures [15, 58, 87]. The presence of IEDs is therefore used to
support the diagnosis of epilepsy [62, 81, 94].

The detection and annotation of IEDs are extremely tedious and
time-consuming for human experts. Furthermore, inter-expert and
intra-expert agreement is known to be sub-optimal [2, 5, 30, 31,
36, 41, 80, 82, 86, 91, 92]. E�cient IED detection algorithms are
of great potential utility for clinical and fundamental research of
long-term EEG recordings by decreasing time-consuming manual
annotation of IEDs, and increasing objectivity and sensitivity in
their detection. Without automatic IED detection, the annotation
of weeks of data typically recorded during clinical evaluations is
practically impossible, limiting their usefulness and the impact of
scienti�c studies, where long periodic patterns in epileptic activity
spanning multi-day periods are observed [6, 74].
[Challenges] While early automatic IED detection algorithms
might have been less accurate than that of experts, more recent
implementations have been greatly improved [9, 61, 78, 80]. Never-
theless, automatic spike detection remains challenging for a number
of reasons: de�nitions of a spike are simplistic, human experts of-
ten do not mark the same events as spikes, the ratio of candidate
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Figure 2: In�uence on the classi�cation decision boundaries
of the common BCE/MSE loss functions, the surrogate �V -
score loss functions, and the proposed SaSu loss function.

spike events to actual spike events is very large (due to noise and
artifacts), spike morphology and background vary widely between
patients, and well-de�ned training sets are very time-consuming
and expensive to develop [31, 93].

Traditional automatic IED detection algorithms are mostly de-
signed upon expert-crafted feature templates [38, 45]. Recent years
have witnessed the development of deep learning-based IED detec-
tion algorithms [76]. However, deep learning algorithms for IED
detection encounter a speci�c methodological problem: IEDs are
short-lasting and occur only sporadically. As a consequence, real-
world datasets of IEDs contain only a small proportion of positive
(IED) instances, compared to a much larger set of negative (non-
IED) background. More often than not, the imbalanced nature of
the data is not addressed when automatic IED detection algorithms
are evaluated, and are instead tested on a comparable number of
IED and non-IED instances. While this avoids the problem alto-
gether [18], it prevents an evaluation of the generalizability of the
models when applied to real-life imbalanced scenarios.
[ProposedApproach] In this paper, we propose iEDeaL (imbalanced
IED detection viaDeep Learning), a deep learning approach for IED
detection in real use cases. Our approach o�ers a practical, sensitive,
and time-e�cient procedure that requires only a small subset of
the data to be annotated by experts. The model can then be used to
identify IEDs in the whole dataset, thus, greatly increasing the re-
turn on human e�ort and expertise. The iEDeaL approach consists
of a novel deep learning architecture, called Seanet Classi�er (SC)
to detect IED on raw EEG series, and SaSu (Sample-based �V -score
Surrogate), a new loss function to guide the SC model training at
optimizing the �V -score. We note that compared to State-Of-The-
Art (SOTA) solutions deployed in real-world IED detection [28, 76],
raw EEG series-based detection removes the need for spectrogram
generation, and hence achieves signi�cantly faster detection.

The SC architecture is designed to e�ciently detect IEDs based
on the raw EEG series. It is derived from the SEAnet architec-
ture, which has been veri�ed to be e�ective for data series applica-
tions [89]. SC’s basic structure follows an unmasked full-preactivation
ResNet [33], augmented with exponentially increasing dilations [4].
Compared to recent SOTA IED detection methods based on spec-
trogram features [28, 76], SC is signi�cantly faster, since it avoids
spectrogram generation.

The SaSu loss function is a novel sample-based surrogate �V -
score loss function. (It is necessary to use a surrogate since the �V -
score is both non-di�erentiable and non-decomposable, preventing
its direct deployment as a loss function in gradient-based learning

algorithms for training neural network models.) Compared to other
surrogate �V -score loss functions [39, 46], SaSu further re�nes the
decision boundary by drawing a portion of non-IED samples for
training, while keeping track of the truth imbalance ratio. We il-
lustrate this intuition in Figure 2. Compared to the Binary Cross
Entropy (BCE) and Mean Squared Error (MSE) loss functions [29],
surrogate �V -score loss functions adjust the decision boundary
by preventing its excessive expansion towards the minority class
driven by the majority-dominated optimization. By considering a
proper portion of non-IED samples, SaSu further re�nes the de-
cision boundary to better �t the underlying distributions of both
classes. Our analysis shows that when optimizing SaSu we converge
at the same parameters as directly optimizing the �V -score.

Employing SaSu on imbalanced datasets introduces the prob-
lem of imbalanced gradients from IED and non-IED instances, a
problem common to surrogate �V -score loss functions [39, 46].
As a result, the model is prone to gradient explosion/vanishing,
hindering the SC model convergence. To deliver easy SC model
training on SaSu, we equip iEDeaLwith a dynamically weighted reg-
ularization, and two novel curriculum learning-based [7] auxiliary
training strategies. The regularization reduces SaSu’s gradients for
well-classi�ed instances [50]. The two auxiliary training strategies
incorporate pretraining SC with BCE, and increasing the number
of negative samples, starting from a balanced ratio and going up to
the actual imbalanced ratio as the training epochs increase.

In summary, iEDeaL handles imbalanced datasets more accur-
ately and 2 orders of magnitude faster than the SOTA methods in
real-world IED detection. Our contributions are as follows:

(1) Our work is (to the best of our knowledge) the �rst to ex-
plicitly tackle the imbalance problem of real-world IED detection,
by using surrogate �V -score loss functions. Thus, the proposed ap-
proach enables analysts to train models that better �t their real
datasets, leading to superior performance on the test data.

(2) We propose the iEDeaL framework to detect IEDs on im-
balanced real-world datasets. iEDeaL is based on the new raw
EEG series-based SC architecture and the novel SaSu loss func-
tion, serving as a general and easy-to-use framework.

(3) We design SaSu, a novel negative sampling-based surrogate
�V -score loss function. Its correctness is established upon approx-
imately sharing the same condition of �rst-order stationary points
with �V -score.

(4) To facilitate SC model training on SaSu, we equip iEDeaL
with simple auxiliary designs, i.e., a dynamically weighted regulariz-
ation and two novel curriculum learning-based training strategies.

(5) Experimental results on two real-world IED datasets veri�ed
iEDeaL’s e�ectiveness and e�ciency by outperforming existing
STOA deep learning and spectrogram feature-based solutions.

2 RELATEDWORK
[IED detection] Traditional IED detection solutions are mostly
expert-tuned template matching [43], or handcrafted feature engin-
eering [32], including adaptive morphological �lters [45] and signal
envelope distribution modelling [38]. Motivated by its success in
computer vision and natural language processing, employing deep
learning techniques for IED detection has become popular and
demonstrates promising performance [12]. Recent proposals cover
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Convolutional Neural Networks (CNN) [1, 16, 25, 26, 54, 76, 85],
Long Short-Term Memory (LSTM) [57] and Generative Adversarial
Networks (GAN) [27, 84]. According to recent studies on data
series classi�cation, CNN models (e.g., ResNet [22] and Inception-
Time [23]) generally achieve the SOTA performance [22]. Following
the conventions, we also formalize IED detection to be a binary
classi�cation problem over sliding windows in our work.

However, existing deep models were trained with BCE or MSE
loss functions, despite the fact that IED datasets are intrinsically
imbalanced, leading to suboptimal performance in their real-world
deployments. Moreover, their scalability was also limited by the
time-consuming spectrogram feature extraction step [28, 76].
[Imbalanced Data Series Classi�cation] In general machine
learning studies, mainstream solutions to imbalanced binary clas-
si�cation fall into the following categories: surrogate loss func-
tions [39, 59], cost-sensitive learning [17, 21, 103, 104], threshold
selections [51], undersampling the majority class [49, 52, 73] or
oversampling the minority class [11, 83, 95], and ensembling [24,
53, 77, 99]. Among these methods, only surrogate �V -score loss
functions [39, 46] demonstrated theoretical consistency with �V -
score under challenging scenarios. To the best of our knowledge,
few methods were adopted for imbalanced data series classi�ca-
tion [10, 11], and real-world IED detections.

On the other hand, the proposed iEDeaL framework employs a
novel easy-to-use SaSu loss function as a surrogate for �V -score.
Compared to other �V -score surrogates, SaSu enjoys straightfor-
ward formula and negative sampling-re�ned decision boundary.

Besides practical and theoretical considerations, we claim that
iEDeaL has no con�ict and can be combined with most existing
methods of the other categories. For example, undersampling tech-
niques [73] can be deployed in iEDeaL to sample non-IED instances.
[Surrogate �V -score Loss Function] �V -score is a common evalu-
ation metric to avoid the majority bias in imbalanced binary classi-
�cation [88]. However, its non-di�erentiability and non-decomposability
prevent its direct usage as a loss function to train deep models.
Non-di�erentiability refers to that �V -score is derived from discrete
counts, where gradients cannot be calculated and backpropagated.
Non-decomposability refers to that �V -score is a global metric,
which cannot be combined from �V -scores of mini-batches.

Theoretical machine learning studies have been conducted re-
cently to tackle the problem of non-di�erentiability [19, 39, 44, 65,
66, 98] and non-decomposability [42, 60, 79, 96]. However, most of
their �V -consistency [59] analysis was built upon either linear mod-
els, which do not apply to deep models, or sophisticated assump-
tions, which are non-trivial for real-world veri�cation. Moreover,
the high time and space complexities (e.g., for �ne-grain grid searches
over cost-sensitive loss coe�cients and decision thresholds [65, 79])
also prevent their application in training deep models.

On the contrary, we design iEDeaL and SaSu with more prac-
tical considerations than strong theoretical soundness. Built upon
smooth functions [39] and a recent formula template [46], SaSu
uses a di�erentiable and decomposable formula, rendering iEDeaL
easy to adopt for scalable real-world IED detection. Its correctness
is established by the fact is shares the same 1st-order stationary
points [13] with �V -score and empirically veri�ed (against wBCE,
ewBCE [17], Focal [50]) with 2 real IED datasets.

3 BACKGROUND
In this section, we brie�y introduce the notations and de�nitions for
surrogate �V -score loss functions. Our results are built on several
recent studies [21, 39, 46].

In the context of binary classi�cation, entries in the confusion
matrix could be rewritten into the following equation.

)% (⇥) = 2̄11 =
=’
8=1

~8 ~̂8 , )# (⇥) = 2̄00 =
=’
8=1

(1 � ~8 ) (1 � ~̂8 )

�% (⇥) = 2̄01 =
=’
8=1

(1 � ~8 ) ~̂8 , �# (⇥) = 2̄10 =
=’
8=1

~8 (1 � ~̂8 )

where = is the number of instances in the dataset, ~8 , ~̂8 2 {0, 1}
are the truth and predicted labels of the 8th instance G8 , ⇥ is the
parameter set (omitted when there is no ambiguity).

Precision, recall and �V -score are confusion matrix-based evalu-
ation metrics, de�ned in Equation 1.

% =
2̄11

2̄11 + 2̄01
, ' =

2̄11
2̄11 + 2̄10

, �V =
(1 + V2) · % · '
V2 · % + '

(1)

where % is precision, ' is recall.
We introduce ?̄1⇤, ?̄10, ?̄01 to denote the sample proportions

of positive instances, false negatives, and false positives as the
following.

?̄1⇤ =
=1
=
, ?̄10 =

2̄10
=1

, ?̄01 =
2̄01
=0

where =1 and =0 are the number of positive and negative instances,
= = =1 + =0. We de�ne the imbalance ratio using A8< := =0/=1.
Based on the weak law of large numbers, the sample proportions
converge to the true probabilities, i.e., ?̄1⇤ ! ?1⇤, ?̄10 ! ?10 and
?̄01 ! ?01, as the sample sizes =, =1, and =0 tend to in�nity.

Using these sample proportions, the limit of �V -score could be
rewritten to the following equation.

�̃ V = lim
=!1 �V =

(1 + V2) · ?1⇤ · (1 � ?10)
?1⇤ · (V2 + 1 � ?10 � ?01) + ?01

However, �̃ V cannot be directly adopted as a loss function be-
cause ?10 and ?01 are non-decomposable and non-di�erentiable
with respect to ⇥. We do not require ?1⇤ to be di�erentiable since
it is dataset statistics without dependence on ⇥.

To work around the non-di�erentiability, a conventional tool is
to approximate �̃ V with ?10 and ?01’s smooth functions. In SaSu, we
adopt Equation 2 under the mild assumption |~̂� 5 (G ;⇥) | < 0.5 [39].

?̃10 = E[1 � 5 (G ;⇥) |~ = 1], ?̃01 = E[5 (G ;⇥) |~ = 0] (2)

where 5 (G ;⇥) 2 [0, 1] is the classi�er output given instance G .

4 THE iEDeaL FRAMEWORK
In this section, we present the proposed iEDeaL framework. The
complete work�ow is illustrated in Figure 3. Figure 3a shows the
BCE-based SC model initialization, and Figure 3b shows the SaSu-
based SC model training for �V -score optimization. Given an EEG
series collection, the negative sampling module draws a portion of
negative instances to be combinedwith all positive instances in both
procedures. The di�erence is that the number of negative instances
for initialization is the same as positive instances (=1), while the
number of negative instances for training is gradually increased
from the same number (=1) to a pre-calculated maximal number
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(a) Model initialization with the BCE
loss function.
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(b) Main procedure of the SaSu-based
SC model training.

Figure 3: The iEDeaL model training framework. Purple
indicates SaSu-guided operations. Pink indicates curriculum
learning-based auxiliary training operations.
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Figure 4: The SC architecture and the dilated full-
preactivation ResBlock (in the dashed box).

(=B � =1, where =B is the size of the sampled training set). The
module of increasing the number of negative instances determines
the number of negative samples for each epoch.

We �rst present the SC architecture in Section 4.1. SC is adap-
ted from the SEAnet architecture [89]. Its backbone structure is a
unmasked full-preactivation ResNet [33]. It adopts the exponen-
tially increasing dilations, which has been veri�ed to be e�ective
on raw data series [4]. We provide a formal de�nition of the SaSu
loss function in Section 4.2. Its correctness is formally established
based on the observation that SaSu shares (approximately) the same
condition of �rst-order stationary points [13] as �̃ V -score, i.e., op-
timizing SaSu is equivalent to optimizing the �V -score. We discuss
in Section 4.3 the critical role negative sampling plays in deploying
iEDeaL for real-world IED detection, i.e., in re�ning the decision
boundaries and facilitating model convergence.

To further facilitate SCmodel convergence on SaSu, we propose a
dynamically weighted regularization in Section 4.2.1, i.e., reducing
gradients for well-classi�ed instances [50], and two curriculum
learning-based auxiliary training strategies in Section 4.4, i.e., BCE-
based model initialization and increasing the number of negative
samples, as in Figure 3. Bene�ting from its symmetric structure,
BCE serves as an easier target to initialize deep models for the
harder SaSu loss function. Gradually increasing the number of
negative samples helps by simply starting SC model training from
the easier balanced mini-batches.

4.1 The SC Architecture
The SC architecture is illustrated in Figure 4. SC is a multi-layer
residual CNN, stacking the full-preactivation ResBlocks (in the
dashed box). The dilations for convolutional kernels increase expo-
nentially with the depth of the ResBlocks. Compared with constant

dilations, exponentially increasing dilations has been veri�ed to
e�ectively broaden the receptive �elds for raw data series [4]. We
determine the number of ResBlocks by making SC’s receptive �elds
cover the whole series. The �rst ConvLayer targets to expand the
channels and extract raw features. Other ConvLayers in ResBlocks
take a kernel size of 3, following the conventions of ResNet [33].
The dimension of latent features is kept the same as the dimension
of the input series for all ConvLayers.

4.2 The SaSu Loss Function
We now describe SaSu, a novel negative sampling-based surrogate
�V -score loss function. SaSu is de�ned in the following equation.

!(0(D (5 (G ;⇥), ~) = � ~ log 5 (G ;⇥)

+ (1 � ~) log(V2
?̄1⇤,B

U (1 � ?̄1⇤,B )
+ 5 (G ;⇥))

where U = (= � =1)/(=B � =1) � 1 is the number of all negative
instances over the drawn negative samples. The sampling procedure
only happens for the negative instances, i.e., we use all the positive
instances in model training.

Given the above de�nition, it is easy to verify that !(0(D is
di�erentiable since !(0(D is continuous on 5 (G ;⇥) 2 [0, 1] and
r!(0(D exists as long as r5 (G ;⇥) exists. !(0(D is also intrinsically
composable as it is de�ned at the instance level instead of the
dataset level. Lemma 1 states that optimizing !(0(D on a negative-
sampled training set surrogates to optimize �V -score on the whole
training set in terms of approximately sharing the same condition
of �rst-order stationary points [13]. (See full version for proof.)

L���� 1. Given an i.i.d. (independent and identically distributed)
subset of negative instances-0,B from-0, where-0,B and-0 share the
same underlying distribution % (G |~ = 0,⇥), !(0(D on the negative-
sampled training set {-0,B ,-1} approximately shares the same 1st-
order stationary point conditions as �V -score on the full training set.

Wenote that Lemma 1’s i.i.d. distribution assumption on negative
samples is a simple and practical assumption in real-world scen-
arios. Similar assumptions have been made before while emphasiz-
ing slightly di�erent perspectives [21, 98]. A su�cient number of
random negative samples simply satis�es this assumption [17]. We
present more details of iEDeaL’s negative sampling in Section 4.3.

Another important observation from Lemma 1 is that ?̄1⇤,B/U (1�
?̄1⇤,B ) = ?̄1⇤/(1 � ?̄1⇤). Intuitively, this observation proxies to train
our model on a training set with a certain imbalance ratio, while
targeting to deploy it on a real-world testing set with another dif-
ferent imbalance ratio. Similar insights have been made before [21]
to theoretically support the undersampling techniques.

4.2.1 Regularizing SaSu. Although !(0(D is capable of optimizing
�V -score and integrating negative sampling, its asymmetric formula
introduces extra burdens tomodel convergence, compared to simple
loss functions, e.g., BCE or MSE. We �rst discuss the problem of
large gradients for well-classi�ed negative instances in this section,
and then tackle the asymmetric gradient problem in Section 4.4.

The equation of !(0(D ’s gradients for negative instances is in
the following equation.

r!(0(D (5 (G ;⇥), ~ = 0) = 1

V2
?̄1⇤,B

U (1�?̄1⇤,B )
+ 5 (G ;⇥)

· r5 (G ;⇥)
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Forwell-classi�ed negative instances, i.e., 5 (G ;⇥) ! 0,r!(0(D (5 , 0)
has the largest coe�cient ! 1/(V2?̄1⇤,B/U (1 � ?̄1⇤,B )). This is an
undesired property, introducing unnecessary turbulence around
the convergence parameter hyper-regions.

To tackle this problem, we introduce modulating terms to reg-
ularize the gradients for well-classi�ed instances, following the
intuition behind the Focal loss function [50]. The regularized SaSu
loss function is shown in the following equation:

!(0(D (5 (G ;⇥), ~) = � (1 � 5 (G))W1~ log 5 (G ;⇥)

+ 5 (G)W0 (1 � ~) log(V2
?̄1⇤,B

U (1 � ?̄1⇤,B )
+ 5 (G ;⇥))

where W1,W0 2 R+ are hyperparameters. 5 (G) denotes the output
values (i.e., the predictions) of the SC models, detached from gradi-
ent propagation. For well-classi�ed instances, the modulating terms
go to 0 and the gradients are down-weighted to 0. For misclassi�ed
instances, the modulating terms are near 1 and the gradients are
una�ected. Hence, the regularized SaSu loss function achieves more
stable convergence points.

We use the regularized version of SaSu by default in the fol-
lowing sections. We �x W1 = W0 = 1/2 in our implementation to
avoid suppressing the gradients to undesired small values, which
empirically worked well across di�erent cases in our experiments.

4.3 Negative Sampling in iEDeaL
We now describe how to draw negative samples satisfying the
distribution assumption in Lemma 1. We propose two di�erent
domain-independent sampling strategies, i.e., to draw a su�cient
number of random samples [17], or to draw a smaller number of data
series index-based representative samples [89]. Choices between
them depend on model complexity and computation resource, i.e.,
how many training samples can be supported.

The �rst sampling strategy is to draw a theoretically su�cient
number of random negative samples. This idea naturally conforms
to the law of large numbers. The key question is to derive the
minimal su�cient number. One recent estimation [17] is ⇢ (=B �
=1) = (1 � V=�=1 )/(1 � V), where V = (= � 1)/=, enlightened by
the random covering problem [40]. We employ this strategy in our
experiments due to its simplicity.

The second strategy focuses on drawing a smaller number of
selected negative samples than the su�cient number of random
samples. We propose to draw negative samples based on data series
indexes [89, 100]. Similar negative instances are grouped adja-
cently in index-partitioned local groups (e.g., leaf nodes in tree
indexes) [20, 63, 64, 67–71, 90], either in the input or latent feature
space. By traversing the index structure, it is e�cient to draw a
small number of representative samples, covering all local groups,
hence preserving the distribution. This strategy is promising to
facilitate iEDeaL’s deployment in extremely large-scale imbalanced
scenarios [3], which we defer to future studies.

4.4 Curriculum Learning-based Auxiliary
Training Strategies

SaSu introduces convergence challengeswhen compared to BCE/MSE
due to its asymmetric structure, i.e., the gradients by mislabeling

positive and negative instances are di�erent. Moreover, the asym-
metric numbers of positive and negative instances also introduce
more gradient instability than balanced mini-batches. Thus, train-
ing SC models on SaSu in imbalanced datasets is more prone to
gradient exploding/vanishing, resulting from both the asymmetric
loss structure and the imbalanced mini-batches.

In order to better control SC model convergence on SaSu, we
propose two curriculum learning-based auxiliary training strategies.
The general idea of curriculum learning is to train models with
increasing di�culty levels to bene�t convergence [7]. The �rst
strategy is to pretrain SC models with the BCE loss function for
a few epochs, based on the observation that BCE and SaSu share
the same gradient structure for mislabeling positive instances. The
second strategy is to gradually increase the number of negative
samples from the same number (=1) as the positive instances to a
pre-calculated maximal number (=B �=1), motivated by that models
are harder to converge on more imbalanced datasets [66, 97]. By
combining the two strategies with regularized SaSu into iEDeaL, the
SC models enjoy more steady convergence to optimizing �V -score
on imbalanced IED datasets.

4.4.1 Initializing the SC model with BCE. The BCE loss function is
formalized in the following equation:

!⌫⇠⇢ (5 (G ;⇥), ~) = �~ log 5 (G ;⇥) � (1 � ~) log(1 � 5 (G ;⇥))

Notably, !(0(D and !⌫⇠⇢ share the same gradient formula for mis-
labeling positive instances. Hence, training on BCE for a few initial
epochs guides deep models to the same parameter hyper-regions
as SaSu for correctly classifying positive instances.

Although their negative gradient formula is di�erent, generally
they both help the model to correctly classify negative instances.
As long as being stopped before falling into BCE’s local optima
and losing SaSu’s momentum, BCE-based initialization should not
damage the convergence to SaSu’s local optima. This can be simply
achieved by limiting the number of initial epochs and learning rates.
Thus, training with !(0(D after being initialized with !⌫⇠⇢ implies
a better initial parameter state than random initialization.

4.4.2 Increasing the number of negative samples. Intuitively, bal-
anced mini-batches are easier to provide stable gradients by avoid-
ing internal covariate shifts [37], bene�ting model convergence.
Recent studies also con�rm this intuition by �nding that models are
harder to converge to the optimal parameters on more imbalanced
datasets [97]. Hence, we propose to gradually increase the number
of negative samples from the same number (=1) as the positive
instances to a pre-calculated maximal number (=B � =1).

We implement this strategy using simple heuristics, i.e., to in-
crease the number of negative samples at exponential rates. Speci�c-
ally, we draw min (d1log0 4 e=1,=B � =1) negative samples at epoch
4 , where 0,1 > 1. For BCE-based model initialization, the number
of negative samples is �xed to be =1, i.e., by the balanced ratio.
This implementation empirically worked well in our experiments
with 0 =

p
2,1 = 2, which generally ensures enough epochs left to

�ne-tune the model on the largest sample sets.

5 EXPERIMENTS
We present the experimental evaluation of the iEDeaL framework
on two real-world IED datasets against other SOTA methods. In
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summary, the results demonstrate that iEDeaL was 20%more accur-
ate than other SOTA deep learning methods [23, 33], and 100x faster
than existing SOTA spectrogram-based IED detection frameworks
deployed in real neuroscience applications [28, 76].
[Setup] All deep models were trained using Nvidia Tesla V100
SXM2 (16G memory). Software environments were python/3.8.11,
pytorch-gpu/py3/1.10.0 and cuda/11.0.
[Methods]We �rst evaluate iEDeaL against four SOTA deep learn-
ing methods of di�erent �avors, ResNet-18 [33, 76], Inception-
Time [23], TimeNet [56], and TST [101]. ResNet-18 and Inception-
Time are convolutional models, TimeNet is a recurrent model, and
TST is a Transformer model. ResNet-18 was originally designed for
image classi�cation [33], and further deployed in the AiED frame-
work [76]. Since iEDeaL uses the raw series instead of the spectro-
gram in AiED, we evaluated iEDeaL against 1D ResNet-18 rather
than 2D ResNet-18. InceptionTime [23] was widely considered as
the SOTA data series classi�cation algorithm [22]. We removed
BatchNorm layers in ResNet-18 and InceptionTime since the highly
imbalanced mini-batches damaged the stability of BatchNorm.

All models were trained up to 100 epochs using mini-batched
Stochastic Gradient Descent (SGD). The batch size was set to 256.
Learning rate was searched from {54-3, 14-2, 24-2} and linearly
decayed to 14-5 [89]. Gradient clipping [102] was conducted for
all methods with maximal norm = 1. Other hyperparameters were
set to their default values. We used BCE in all other methods than
iEDeaL, following their original designs. For iEDeaL, the number
of BCE-based initialization epochs was set to be 3, 0 =

p
2,1 = 2

for exponentially increasing the number of negative instances, and
W1 = W0 = 1/2 for SaSu regularization. We evaluated these settings
in sensitivity studies, as well as an index-based sampling method,
SEAsam [89], against the default random sampling.

To further evaluate the e�ectiveness of SaSu in iEDeaL, we de-
signed ablation experiments with SC models trained by other loss
functions. These results could also be considered as evaluating SaSu
as an imbalanced classi�cation solution against other SOTA solu-
tions, including ewBCE [17], Focal [50], and SF [46]. Speci�cally,
the loss functions in SaSu’s ablation experiments were constituted
by: (i) BCE. (ii) bBCE, BCE on a balanced undersampled (randomly)
training set. (iii) wBCE, the weighted BCE on the whole training
set. Weights were set to be the inverse of positive/negative instance
numbers, i.e., 1/=1 and 1/(=B � =1), and then normalized with sum
= 2. (iv) ewBCE, the weighted BCE on a negative-sampled training
set. The number of negative samples was set to ⇢ (=B � =1) de�ned
in Section 4.3 [17]. Weights were set similarly to wBCE. (v) Focal,
the dynamically weighted BCE on the whole training set, as in
Section 4.2.1 [50]. We set W = 2 following the original designs [50].
(vi) SF, a surrogate �V -score loss function [46] on the whole training
set. Note that only SF and iEDeaL are capable to train deep models
optimizing �V -score with di�erent V .

5.1 Datasets
Our experiments were conducted on two real-world EEG datasets,
i.e., the ICM datasets [47] and the public TUEV datasets [72], cov-
ering a range of di�erent imbalance levels (0.97%  ?1  24.6%).
We present the dataset statistics in Table 1.

Table 1: Dataset statistics. =1 denotes the number of positive
instances, =0 denotes the number of negative instances and
?1 denotes the percentage of positive instances.

Train & Validation Test

Dataset =1 =0 ?1 (%) =1 =0 ?1 (%)

ICM1 10,923 71,529 13.2 2,185 14,306 13.2
ICM2 8,910 62,108 12.5 1,782 12,422 12.5
ICM3 6,001 80,698 6.92 1,201 16,140 6.93
ICM4 3,113 86,732 3.46 623 17,347 3.47
ICM5 2,635 82,599 3.09 528 16,520 3.10
ICM6 2,820 91,705 2.98 565 18,342 2.99
ICM7 2,304 86,138 2.61 461 17,228 2.61
ICM8 1,792 90,187 1.95 359 18,038 1.95

TUEV3,3 18,083 65,949 21.5 7,242 22,179 24.6
TUEV1,1 645 53,726 1.19 567 19,646 2.81
TUEV1,3 645 65,949 0.97 567 22,179 2.49

[ICM] The ICM datasets are part of an ongoing study on inter-
ictal activity, consisting of data of eight epileptic patients from
our database [47]. Patients were implanted with intracranial depth
electrodes (Ad-Tech® Medical Instrument Corporation, Oak Creek,
WI, USA), consisting of 4 to 8 macroelectrode contacts separated by
5mm (1.3mmØ). Trajectories, anatomical targets, number of elec-
trodes, and number of electrode contacts, were determined accord-
ing to the clinical practice and the epilepsy features of the patients.
Implantation was performed at the Department of Neurosurgery
of the Pitié-Salpêtrière Hospital using Leksell Model G stereotactic
system (Elekta, Inc, Norcross, GA) or using the robotic assistant
device ROSA (ROSA® Brain, Medtech, France). Signals from macro-
electrodes were continuously recorded at 4 kHz, using a hardware
high-pass �lter at 0.01Hz (Atlas Recording System, NeuraLynx,
Tucson, AZ, USA). All patients gave written informed consent (pro-
ject C11-16 conducted by INSERM and approved by the local ethics
committee, CPP Paris VI).

For each patient, the �rst 24 hours were visually annotated for
IEDs according to standard guidelines [34, 35], using software de-
veloped in-house (MUSE) [47]. Annotation and analyses were per-
formed on the �ve deepest macroelectrode contacts, located within
the amygdala-hippocampal complex, as part of ongoing research
on IEDs in the medial-temporal lobe.

Signals were bipolar referenced to increase spatial resolution
and reduce common noise (i.e., feature channel 1=raw channel 1
� raw channel 2) [48], �ltered between 1Hz to 50Hz, and down-
sampled to 512Hz. After being preprocessed, 1.5 s IED instances
were �rst extracted. Non-IED instances were extracted for the �rst
24 hours using 1.5 s sliding windows, non-overlapping with the IED
instances. Datasets for all patients were randomly split by 4 : 1 : 1
for the training, validation, and test sets.
[TUEV] The TUEV dataset is a subset of the public TUH EEG Cor-
pus that contains annotations of EEG segments as one of six classes:
spike and sharp wave (SPSW), generalized periodic epileptiform
discharges (GPED), periodic lateralized epileptiform discharges
(PLED), eye movement (EYEM), artifact (ARTF), and background
(BCKG) The SPSW class corresponds exactly to the IED class in
our context [32]. Following the TUEV usage conventions [28], we
extract 3 subsets from the TUEV dataset: (i) TUEV3,3, where SPSW,
GPED, and PLED are positive classes, and EYEM, ARTF, and BCKG
are negative classes; (ii) TUEV1,1, where SPSW is the positive class
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Table 2: The �1-scores for di�erent IED detection methods. Best result (higher is better) is marked in bold, second best is
underlined. - indicates the result was not available (for HDL) or the model did not converge (for the rest).

Methods ICM1 ICM2 ICM3 ICM4 ICM5 ICM6 ICM7 ICM8 TUEV3,3 TUEV1,1 TUEV1,3 AvgRank

HDL [28] - - - - - - - - 0.53 0.36 0.27 5.41
TimeNet [56] 0.87 0.88 0.82 0.66 0.77 0.48 0.83 - - - - 4.91
ResNet-18 (AiED [76]) 0.87 0.90 0.89 0.73 0.81 0.56 0.79 0.72 0.91 0.57 - 3.59
InceptionTime [23] 0.87 0.91 0.86 0.69 0.79 0.57 0.81 0.70 0.89 0.51 0.43 3.45
TST [101] 0.91 0.94 0.91 0.85 0.90 0.73 0.86 0.87 0.31 0.73 0.12 2.36
iEDeaL 0.95 0.96 0.96 0.90 0.94 0.80 0.91 0.90 0.88 0.57 0.49 1.27

and BCKG is the negative class; (iii) TUEV1,3, where SPSW is the
positive class, and EYEM, ARTF, and BCKG are negative classes.
Although the TUH EEG Corpus contains scalp EEG instead of SEEG,
its annotations were conducted over single event occurrences rather
than occurrence periods. Hence, it is suitable for evaluating iEDeaL.

The TUEV dataset was already split into training (including val-
idation) and test sets. We further randomly split the given training
set by 4 : 1 for training and validation. SOTA results on the TUEV
datasets were obtained using the Hybrid Deep Learning (HDL) al-
gorithm [28]. We derived binary classi�cation results from the HDL
confusion matrix by considering an instance being misclassi�ed
only if its prediction falls into an event of the opposite class.

5.2 Results
In summary, the proposed iEDeaL framework provided higher �1-
scores than all other methods in 9 of 11 cases, achieving an average
rank of 1.27/6. Moreover, iEDeaL was 100x faster than HDL and
AiED, which were deployed in the real-world scenarios [28, 76],
due to the fact that iEDeaL does not involve expensive feature ex-
traction (e.g., spectrogram generation). In ablation experiments,
we demonstrate the e�ectiveness of the SaSu loss function and
the curriculum learning-based auxiliary training strategies in im-
proving the �1-score, achieving average ranks of 2.09/7 and 1.73/3,
respectively. This veri�ed SaSu to be an e�ective loss function for
imbalanced classi�cation, compared with other imbalanced clas-
si�cation solutions, including ewBCE [17] and Focal [50]. iEDeaL
also provided higher �2-scores than SC models trained using other
loss functions, achieving an average rank of 1.86/7.
[�1-scores for iEDeaL] The �1-scores of all methods on each
dataset are listed in Table 2. iEDeaL outperformed all other methods
in 9 of 11 cases, achieving an average rank of 1.27/6. Speci�cally,
iEDeaL has larger advancements than ResNet-18 and InceptionTime
on more imbalanced ICM datasets (⇠ 20% on ICM4 to ICM8).

TST was the second best performer, behind iEDeaL, achieving
an average rank of 2.36/6. TimeNet lagged behind other methods
in 5 cases and did not converge in 4 cases, signaling the hardness
of capturing EEG generative patterns due to their nonstationary
morphology. ResNet-18 outperformed InceptionTime in 6 of 10
cases (excluding 1 tie) but did not converge in the most imbalanced
TUEV1,3, ending with an average rank of 3.59/6. The di�erences
between iEDeaL, ResNet-18, and InceptionTime were the smal-
lest on the most balanced TUEV3,3, signi�cantly outperforming
HDL, which veri�ed the e�ectiveness of raw EEG series-based deep
learning methods over explicit feature extraction-based solutions.
[Ablation results for SaSu]We evaluated the e�ectiveness of the
SaSu loss function in iEDeaL against SC models trained using other

Table 3: �1-scores of SC models with di�erent loss functions.

Dataset bBCE BCE wBCE ewBCE Focal SF SaSu

ICM1 0.94 0.95 0.94 0.95 0.94 0.94 0.95
ICM2 0.96 0.96 0.95 0.96 0.95 0.96 0.96
ICM3 0.95 0.94 0.93 0.96 0.95 0.95 0.96
ICM4 0.80 0.90 0.90 0.90 0.90 0.91 0.90
ICM5 0.72 0.93 0.92 0.92 0.94 0.86 0.94
ICM6 0.59 0.77 0.76 0.76 0.74 0.72 0.80
ICM7 0.73 0.90 0.85 0.90 0.89 0.89 0.91
ICM8 0.58 0.88 0.63 0.81 0.88 0.84 0.90

TUEV3,3 0.88 0.88 0.88 0.88 0.90 0.90 0.88
TUEV1,1 0.48 0.47 0.46 0.54 0.49 - 0.57
TUEV1,3 0.43 0.36 0.39 0.31 0.38 - 0.49

AvgRank 5.36 3.73 5.23 3.64 3.41 4.55 2.09

loss functions. The �1-scores of all methods on di�erent datasets
are shown in Table 3.

The iEDeaL (i.e., the SaSu column) framework achieved the
highest average rank of 2.09/7. It provided the highest �1-scores, es-
pecially on more imbalanced datasets, e.g., ICM5 to ICM6, TUEV1,1
and TUEV1,3. SC+Focal reached 2nd place, with an average rank
of 3.41/7. This veri�ed the e�ectiveness of dynamical weighting in
helping model convergence. SC+ewBCE function came 3rd place,
with an average rank of 3.64/7. This observation followed the in-
tuition that negative sampling bene�ts imbalanced IED detections.
SC+BCE achieved an average rank of 3.73/7. We believe this be-
ne�ted from BCE’s easy convergence for SC models on the ICM
dataset. SC+SF did not converge on TUEV1,1 and TUEV1,3, due to its
imbalanced gradients for positive and negative instances. SC+bBCE
had the lowest average rank of 5.36/7, demonstrating that training
SC models on (randomly) balanced datasets generally cannot be
deployed in real-world imbalanced scenarios.

Besides the �1-scores, we also evaluated the �2-scores. Detailed
results were omitted due to the lack of space. �2-score increases the
importance of the precision and hence prefers solutions with fewer
false alarms, which is generally a desired property in real-world
IED detection applications. Notably, only iEDeaL and SC+SF can
be trained targeting di�erent V values in �V -score. Other results
were selected from the same set of trained models as in Table 3,
using their �2-scores on the validation set. The iEDeaL framework
achieved the highest average rank of 1.86/7. SC+SF improved to 2nd
place with an average rank of 3.82/7 for �2-scores, from 4.55/7 for
�1-scores. SC+BCE and SC+Focal had follow-up performance than
iEDeaL, bene�ted from their well-converged models. SC+bBCE
kept the lowest average rank of 5.45/7.

To conclude, the �1- and �2-scores veri�ed that SaSu in iEDeaL
helped to train better SC models for imbalanced IED detection.
[Ablation results for the auxiliary training strategies] We
evaluated the e�ectiveness of curriculum learning-based auxiliary
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Table 4: �1-scores for ablation experiments of the auxiliary training strategies.

Methods ICM1 ICM2 ICM3 ICM4 ICM5 ICM6 ICM7 ICM8 TUEV3,3 TUEV1,1 TUEV1,3 AvgRank

SC + SaSu 0.95 0.97 0.95 0.91 0.92 0.76 0.90 0.88 0.89 0.64 0.30 2.14
+ PreBCE 0.95 0.96 0.95 0.91 0.93 0.79 0.89 0.88 0.88 0.65 0.35 2.14
+ IncNeg = iEDeaL 0.95 0.96 0.96 0.90 0.94 0.80 0.91 0.90 0.88 0.57 0.49 1.73

Table 5: �1-scores for the random negative sampling and index-based negative sampling (i.e., SEAsam).

negative sample ratios (=B � =1)/(= � =1)
Methods 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Avg

Random 0.56 0.61 0.56 0.70 0.61 0.62 0.54 0.67 0.85 0.87 0.87 0.88 0.89 0.87 0.90 0.89 0.74
SEAsam [89] 0.70 0.65 0.64 0.63 0.67 0.70 0.58 0.62 0.83 0.86 0.87 0.89 0.88 0.88 0.89 0.89 0.76

(a) �1-scores for di�erent W0
and W1 on the ICM8 dataset.

(b) Running time for detecting IEDs in the
ICM dataset.

Figure 5: (a) Sensitivity study for W ; (b) Running times.

training strategies in iEDeaL by ablation experiments. The �1-scores
on di�erent datasets were reported in Table 4. PreBCE indicates
model initialization with the BCE loss function. IncNeg indicates
increasing the number of negative instances with more training
epochs. Hence, iEDeaL=SC+SaSu+PreBCE+IncNeg.

As shown in Table 4, iEDeaL outperformed both SC+SaSu and
SC+SaSu+PreBCE in 6/10 cases (excluding 1 tie), achieving an av-
erage rank of 1.73/3. SC+SaSu+PreBCE outperformed SC+SaSu in
4/7 cases, excluding 4 ties. Hence, we concluded that the auxiliary
training strategies helped to train better SC models on SaSu for
imbalanced IED detection.
[Sensitivity study for W1 and W0] We evaluated the sensitivity
of W1 and W0 on the ICM8 dataset, and the results are shown in
Figure 5a. The best performance region for W0 and W1 is within
[0.1, 0.5]. Increasing W0 hurts model performance more heavily
than increasing W1, con�rming our main motivation to employ W0
and W1 for �xing the divergent gradients of negative instances.
[Sensitivity study for 0 and 1] We evaluated the sensitivity of
0,1 2 [

p
2, 4]. The trained models achieved stable performance

across di�erent combinations, since enough epochs were left for
�ne-tuning on the largest sample sets. (Details omitted for brevity.)
[Negative sampling methods]We compared in Table 5 the ran-
dom negative sampling strategy against the index-based negative
sampling strategy, i.e., SEAsam [89]. When a small ratio (<10%)
of negative samples were collected for training, SEAsam outper-
formed random sampling. With the increase of the sampling ratio,
the performance di�erence between two methods diminishes.
[Detection time for iEDeaL] We compared the detection time
of iEDeaL against the existing SOTA IED detection methods de-
ployed in real neuroscience applications, including HDL [28] and

AiED [75]. The reported numbers did not count the data prepro-
cessing procedures described in Section 5.1, which were the same
for all methods. AiED-opt is the best possible detection time of
AiED, where we assume all IED instances pass the �rst template
matching step while non-IED instances cannot pass at all. Since
the code of HDL is not available, we estimated the HDL detection
time using its spectrogram-based feature extraction (borrowed from
AiED) time only, denoted by HDL-lb.

As shown in Figure 5b, iEDeaL was more than 100x faster than
AiED-opt, AiED, and HDL-lb. The detection time of AiED and HDL
was dominated by the spectrogram generation, showing the bene�ts
of detecting on the raw series instead of on expensive explicit
feature (e.g., spectrogram) extractions. Note also that iEDeaL was
3x faster than TST. Hence, we conclude that working directly on
the raw EEG series, iEDeaL is not only an e�ective but also an
extremely e�cient method for real-world IED detection at scale.

6 CONCLUSIONS
In this paper, we propose the iEDeaL framework for real-world,
highly imbalanced IED detection. When evaluated on real datasets,
iEDeaL is more accurate and 2 orders of magnitude faster than
the current SOTA methods, deployed in real applications, making
it an important tool for clinicians and researchers. In our future
work, we will study how to further improve the iEDeaL work�ow,
determining the minimal number of annotations required for both
model training and transferring, in order to reduce time and in-
crease objectivity in clinical research. Finally, we will study the
use of iEDeaL and its interpretability [8] in other neuroscience
applications that involve pattern detection in imbalanced datasets,
including sporadic epileptiform discharges [34], benign sporadic
sleep spikes and wicket spikes [55].
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