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ABSTRACT
Recent publications suggest using natural language analysis on

database schema elements to guide tuning and profiling efforts. The

underlying hypothesis is that state-of-the-art language processing

methods, so-called language models, are able to extract information

on data properties from schema text.

This paper examines that hypothesis in the context of data cor-

relation analysis: is it possible to find column pairs with correlated

data by analyzing their names via language models? First, the paper

introduces a novel benchmark for data correlation analysis, cre-

ated by analyzing thousands of Kaggle data sets (and available for

download). Second, it uses that data to study the ability of language

models to predict correlation, based on column names. The analysis

covers different language models, various correlation metrics, and

a multitude of accuracy metrics. It pinpoints factors that contribute

to successful predictions, such as the length of column names as

well as the ratio of words. Finally, the study analyzes the impact

of column types on prediction performance. The results show that

schema text can be a useful source of information and inform future

research efforts, targeted at NLP-enhanced database tuning and

data profiling.
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1 INTRODUCTION
Consider a table named “cars” with columns named “maker” and

“model”. Most people would assume, based on column names and

commonsense knowledge, that maker and model columns are cor-

related (i.e., knowing the maker will restrict options for the model).

Such reasoning is possible if column names are meaningful. Assign-

ing meaningful column names is good practice, but of course there

are rare exceptions which we are not concerned with here. In this

paper, we study the question of whether automated tuning tools
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could apply a similar kind of reasoning, exploiting recent innova-

tions in the domain of natural language analysis (NLP): pre-trained

language models [10].

This research question is motivated by my recent work [48, 52],

suggesting to use NLP on database schema elements to inform

database tuning, in particular, to help prioritizing data profiling

operations. The underlying hypothesis behind those suggestions,

namely, whether language models are able to infer relevant infor-

mation with sufficiently high reliability, has not been investigated

in detail. This paper closes that gap, focusing on extracting infor-

mation about data correlations.

Detecting correlations in data has been a topic of significant

interest in the database research community [5, 16]. Knowing data

correlation is useful in many scenarios. For instance, query opti-

mizers [43] (as well as other tuning tools) often depend on accurate

predictions of intermediate result sizes. Classical prediction models

assume uncorrelated data, thereby being misled in practice [24].

As pointed out in prior work [16], knowing about correlations

can help to correct cardinality estimates. Alternatively, knowing

about possible data correlations can help to prune options with

correlation-related uncertainty from the search space (e.g., the opti-

mizer can favor join orders where intermediate result sizes do not

depend on columns that are likely correlated).

Detecting data correlations requires comparing data in different

columns, often making correlation detection more expensive than

operations that focus on different columns in separation. This has

motivated dedicated research on algorithms that make correlation

detection more efficient [5, 16]. Typically, those prior algorithms do

not exploit information gained via analysis of the database schema,

using languagemodels. However, as suggested inmy prior work [48,

52], such analysis could be helpful in order to better allocate and

prioritize profiling efforts. For instance, given a limited profiling

budget, the analysis scope could be restricted to column subsets that

are more likely to be correlated, based on the results of NLP. Within

those column subsets, any of the existing algorithms for correlation

detection could be used. This assumes, however, that NLP is indeed

useful to extract relevant information form the database schema.

Whether or not that is actually the case, is the subject of the current

study.

The hope of extracting useful information from database schema

names alone is filled by recent advances in the field of natural lan-

guage processing. Primarily, those advances are due to two key

developments: a novel neural network architecture, the so-called

Transformer [55], as well as new training methods that exploit

large amounts of unlabeled training data [40]. Among other advan-

tages, Transformer models enable efficient training of large neural

network models with hundreds of millions [10] to hundreds of
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billions [8, 11] of trainable parameters. Generating task-specific

training data at sufficiently large scale is often prohibitively ex-

pensive. Fortunately, it is typically possible to reduce the required

amount of task-specific training significantly by a pre-training

stage that uses large amounts of unlabeled data (e.g., Web text) [13].

This study evaluates pre-trained Transformer models, fine-tuned

with a moderate amount of training data that is specific to the

task of correlation detection. Whereas large Transformer models

with hundreds of billions of parameters are nowadays available,

typically hosted remotely by providers such as OpenAI [11], this

study focuses on much smaller models (with parameter counts in

the hundreds of millions “only”) that can be run with moderate

overheads on commodity machines. This seems reasonable as over-

heads due to using large language models may otherwise eclipse

data profiling overheads altogether.

This study is based on a newly generated benchmark for data

correlation detection. Prior benchmarks of algorithms for correla-

tion detection typically use a small number of data sets [16]. This is

reasonable, as long as performance depends on data properties but

not on data semantics. When analyzing column names via language

models, however, the data domain may have significant impact on

prediction performance (e.g., benefiting application domains that

appear more frequently in the pre-training data). Hence, to evalu-

ate language models under realistic conditions, this study uses a

benchmark generated from around 4,000 tabular data sets, down-

loaded from the Kaggle platform. For those data sets, the benchmark

analyzes correlation between column pairs according to multiple

popular correlation metrics, namely Pearson correlation [56], Spear-

man’s correlation coefficient [4], and Theil’s U [37]. While this data

is useful to test the primary hypothesis evaluated in this paper, i.e.

that relevant information can be extracted from schema elements

via language models, it can also be used to test NLP-enhanced data

profiling approaches. We will see one example of that in Section ??.
In summary, the original scientific contributions in this experi-

mental paper are the following.

• The paper introduces a new benchmark, useful to test corre-

lation prediction, based on column names, and to evaluate

approaches for NLP-enhanced database tuning.

• The paper tests the ability of language models to infer infor-

mation on data correlation from column names, considering

different correlation metrics, scenarios, and models.

• The paper evaluates a simple baseline algorithm for efficient

correlation prediction, exploiting information gained via

natural language analysis.

The remainder of this paper is organized as follows. Section 2

provides background on the techniques used throughout the paper

and discusses related work. Section 3 describes the generation of the

benchmark, used to evaluate correlation detection methods. Next,

Section 4 analyzes the benchmark data set, in terms of data statistics

and correlation properties. Section 5 compares different methods

for predicting data correlations from column names, including pre-

trained models and simpler baselines. Section 6 studies the impact

of several scenario properties, including the amount and quality

of training data, to study the impact on prediction performance.

Section 7 analyzes prediction performance for different data subsets

separately, breaking down, for instance, by column name length

among other properties. Section 8 considers different correlation

metrics, thereby obtaining insights into how well the prior findings

generalize. Finally, Section 9 evaluates the impact of column types

on prediction performance.

2 BACKGROUND AND RELATEDWORK
This section discusses prior work, related to this study. Section 2.1

discusses prior work on data profiling, a primary application do-

main for the approaches evaluated in this paper. Section 2.2 dis-

cusses, more specifically, prior work on data correlation analysis.

Section 2.3 discusses the technology that this study is based upon:

pre-trained language models. Finally, Section 2.4 discusses prior

work applying such or similar technology in the context of data

management.

2.1 Data Profiling
The goal of data profiling is to generate statistics and meta-data

about a given data set [31]. Specialized tools have been developed

for data profiling, including systems from industry [15, 17] as well

as academia [5, 16, 32, 36]. Typically, users specify a target data set

for profiling as well as specific types of meta-data to consider. Data

profiling is expensive and may have to be repeated periodically as

the data changes. Hence, profiling tools often allow users to restrict

profiling overheads, e.g. by setting time limits [32, 45].

Profiling methods have been proposed for mining different kinds

of meta-data, ranging from statistics over single columns [9] to

more expensive operations such as unique column combination

discovery [1, 34], detecting inclusion dependencies [33], foreign

keys [39], order dependencies [18, 23], or statistical data correla-

tions [5, 16], the focus of this study.

2.2 Detecting Correlations
The fact that data correlations are important has motivated work

aimed at finding correlations in data sets [5, 16]. To guide profil-

ing efforts, such tools typically analyze data samples. The sample

size is often chosen as a function of total data size. In contrast, the

time for predicting correlation based on column names does not

depend on the data size. Significant work has been dedicated to the

problem of selectivity estimation with correlations [6, 29, 54]. Here,

correlations play an important role in estimating aggregate selectiv-

ity of predicate groups. More recently, machine learning has been

proposed as a method to solve various types of tuning problems

in the context of databases [28, 35, 53, 57, 59]. Correlated data is a

primary reason to replace more traditional cost models, often based

on the independence assumption, via learned models. This stream

of work connects to this study as it applies machine learning for

predicting correlations. However, this study uses machine learning

in the form of NLP-based analysis of database schema elements.

2.3 Language Models
Pre-trained language models, based on the Transformer architec-

ture [55], have recently led to significant advances on a multitude

of NLP tasks [58]. Pre-trained language models are based on the

idea of “transfer learning”. For many specialized NLP tasks, it is

difficult to accumulate a large enough body of training data. Also,

overheads related to the training of large neural networks from
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scratch can be significant. This motivates a pre-training step, train-

ing a Transformer model on an NLP task for which training data is

in ample supply. For instance, this includes the “masked language

modelling” task [10]. Here, the goal is to predict masked words in

a sentence. Doing so requires many capabilities that are useful for

other NLP tasks as well. Furthermore, any written text can be used

as training data for the latter task. After pre-training, the resulting

network (with associated weights) can be specialized (“fine-tuning”)

to another task. This refinement step requires only moderate com-

putational resources and few training samples [13], compared to the

initial training. Nowadays, pre-trained language models [22, 27, 42]

achieve state of the art performance over a wide range of NLP tasks.

While the largest models have nowadays hundreds of billions of

trainable parameters [11], this study focuses on smaller models

that run on today’s commodity machines, making them practical

to guide data profiling operations with moderate overheads.

2.4 NLP for Databases
There have been significant efforts to leverage NLP techniques for

database systems [51]. Typically, the focus of those efforts is the

query interface. Here, a long standing goal in database research is

to enable natural language query interfaces [2, 19, 20, 25, 26, 41, 44].

Sequence-to-sequence models have been successfully used for this

task over the past years [14, 60, 62]. Recently, pre-trained language

models, based on the Transformer architecture [55], have achieved

excellent results on text-to-SQL benchmarks such as Spider [61]

or WikiSQL [62]. They form the basis for this study as well. Other

applications of language models in the context of databases include

data discovery and integration [21, 30] as well as data preparation

tasks [46].

This study connects to prior work exploiting language models

to support the database backend. For instance, this includes work

leveraging such models to write code for data processing or process

data directly [3, 47, 49] or to parse technical documentation to

support automated database tuning [50]. More specifically, this

study is motivated by my prior work suggesting the use of language

models on database schema elements to support database tuning

and data profiling [48, 52].

3 BENCHMARK
This section describes a benchmark for correlation prediction and

NLP-enhanced database tuning, created specifically for the purpose

of this study. This benchmark covers a wide variety of data sets

from different domains. This ensures that the results on prediction

performance are representative.

3.1 Benchmark Data
The benchmark uses data sets from the Kaggle Web site

1
(using

a corresponding API
2
). The choice of Kaggle data is motivated by

the large number and diversity of data sets, available on that plat-

form. At the same time, Kaggle data is used for analysis by many

data scientists
3
. Any approach that works well on Kaggle data is

likely to benefit a large number of users. As a potential drawback,

1
www.kaggle.com

2
https://github.com/Kaggle/kaggle-api

3
https://www.kaggle.com/code/carlmcbrideellis/kaggle-in-numbers

since Kaggle data is often discussed on the Web, it is possible that

data used for pre-training language models contains references to

Kaggle data. However, determining data correlation (the predic-

tion target of this benchmark) requires additional data analysis,

beyond mere access to data. To the best of my knowledge, no large-

scale correlation analysis with similar correlation metrics has been

conducted on Kaggle data, prior to the time period during which

the models used for experiments were pre-trained. This makes it

unlikely that pre-training data contains relevant information on

Kaggle data correlation.

Data sets are obtained by querying the Kaggle API for data sets

with the following filters. First, data sets are filtered based on their

format, retrieving data sets in “.csv” format (i.e., tabular data). Sec-

ond, to enable retrieval and analysis of a large number of data sets,

covering various domains, a size limit of one megabyte was used.

The benchmark integrates several thousand data sets, taken from

the result of this retrieval query (in the order in which they are

returned by the Kaggle API). For those data sets, the benchmark

contains various correlation metrics for column pairs within the

same table (obtained by analyzing the corresponding data). Prior

work reports that considering correlation between column pairs,

as opposed to correlation between more than two columns, “can

remove most of the correlation-induced selectivity estimation er-

rors” [16]. At the same time, the number of possible correlations

grows exponentially in the number of correlated columns, making

it more expensive to search for multi-column correlation. Hence,

the benchmark focuses on discovering correlation between column

pairs. For each table, only up to 100 column pairs are analyzed.

More precisely, for tables with more than ten columns, the first

ten columns are selected for the benchmark (thereby enabling 100

pairs). The benchmark contains each column pair only once. More

precisely, for any given columns 𝑐1 and 𝑐2, the benchmark con-

tains only one of ⟨𝑐1, 𝑐2⟩ or ⟨𝑐2, 𝑐1⟩ (but not both). While some of

the correlation metrics we consider are not symmetric, this avoids

using training samples that are too similar (thereby, potentially,

leading to overly optimistic prediction performance results). For

each column pair, the benchmark contains column names and dif-

ferent correlation metrics. The correlation analysis was executed

using Python 3 and SciPy’s stats package
4
.

The benchmark measures correlation according to different met-

rics. First, it contains results for the Pearson correlation coeffi-

cient [56]. This coefficient is a measure of linear correlation between

two data sets. The coefficient itself, denoted as 𝑅, is contained in

the interval [−1, 1]. It comes with a p-value, indicating the prob-

ability of obtaining a specific 𝑅 value by chance. The following

experiments define correlation via different thresholds for |𝑅 | while
typically using a threshold of 5% for the p-Value.

Beyond Pearson correlation, measuring linear dependencies, the

benchmark also considers Spearman’s correlation coefficient [12].

This coefficient, typically denoted as 𝜌 , measures how well the rela-

tionship between two data sets can be characterized by a monotonic

(but not necessarily linear) function. Again, the coefficient takes

values from the interval [−1, 1]. It comes with a p-Value, indicating

the probability of observing given correlations for uncorrelated

data. The following experiments consider different thresholds on

4
https://docs.scipy.org/doc/scipy/reference/stats.html
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𝜌 while typically requiring a p-value of 5% or less (to qualify as

statistically significant correlation).

The two aforementioned coefficients, Pearson’s and Spearman’s

coefficient, apply to numerical columns. For categorical columns

(in addition to numerical ones), the benchmark measures the en-

tropy coefficient [38], also called Theil’s U, instead. This coefficient

is a normalized version of the mutual information between two

variables. Intuitively, it measures how many bits we can predict

for one column, given the value in the other one. The following

experiments vary the threshold on Theil’s U, starting from which

we consider two columns correlated.

For all coefficients, the benchmark models correlation predic-

tion as a binary classification problem (classifying column pairs as

correlated or uncorrelated, based on the column names). E.g., as

an alternative, it is also possible to formulate correlation predic-

tion as a regression problem, aiming to predict correlation metrics

such as p-Values or raw coefficient values. Arguably, this is a more

challenging problem, as a perfect predictor for the regression vari-

ant yields a perfect predictor for the classification version but not

vice-versa. At the same time, the classification variant has practical

applications, e.g., to select or prioritize column pairs for profiling.

Section ?? of the extended technical reports results for a proof-of-

concept system, focusing on that use case. For those reasons, this

paper focuses on the classification variant and leaves the regression

version for future work.

The result of data preparation is a benchmark, containing the

names of columns pairs, meta-data such as the column data type, as

well as correlation results according to different correlation metrics.

3.2 Benchmark Metrics
The following experiments use the benchmark data for two types of

experiments. First, the experiments evaluate the ability of language

models to predict data correlation from column names. Second, the

experiments evaluate a simple algorithm for NLP-enhanced data

profiling, exploiting predictions on data correlation to prioritize

data profiling steps.

To measure the ability of language models to predict data cor-

relation, the experiments measure prediction quality according to

multiple metrics. More precisely, the experiments consider five met-

rics of prediction quality: recall, precision, and the F1 score (which

combines recall and precision). Here, recall is the percentage of

correlated column pairs that were accurately identified. Precision

is the ratio of actual column pairs among the ones predicted to be

correlated. The F1 score is defined as 2 · 𝑝 · 𝑟/(𝑝 + 𝑟 ) (where 𝑝 and

𝑟 are precision and recall, respectively). The aforementioned three

metrics are typically used in scenarios where a relatively sparse

class of elements should be identified. Strongly correlated column

pairs qualify as they tend to be relatively sparse (as shown in the

next section).

The experiments also measureMatthew’s Correlation Coefficient

(MCC) [7] and simple prediction accuracy (considering the two

classes “correlated” and “uncorrelated” for each column pair). All of

the aforementioned quality metrics yield values from the interval

[0, 1] and higher values represent better quality. The following plots
report all five metrics. When verifying hypotheses about prediction
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Figure 1: Distribution of column name length, measured as
the number of characters (left) and number of tokens (right).

quality, we consider a hypotheses as validated, if it is validated

according to all of those five metrics.

The performance of NLP-enhanced data profiling tools is evalu-

ated by the number of correlated column pairs, verified within a

budget on computation overheads. This budget can bemeasured, for

instance, by the number of column pairs analyzed (the benchmark

contains time measurements for correlation analysis as well, en-

abling experiments with budgets on computation time). Section ??
contains more details on this scenario.

4 BENCHMARK ANALYSIS
This section analyzes the benchmark, introduced in the previous

section. Table 1 shows an extract from this data set. The upper part

of the table shows five highly correlated columns, measured via the

Pearson coefficient, the lower half shows five column pairs with

low correlation. At the same time, it shows column names and the

names of the associated data sets.

For the examples in the table, it seems often possible, using com-

monsense knowledge, to identify likely candidates for correlations.

For instance, the number of points for a team in a table with sports

statistics often correlates with the number of wins (more points

often lead to more wins). Indeed, the corresponding column pair

shows relatively high correlation that is statistically significant

(using the common thresholds of 5% to separate statistically signifi-

cant from non-significant p-Values). On the other side, there is no

obvious indication of any correlation between two columns named

“Williamsburg Bridge” and “Unnamed: 0”. Indeed, the correspond-

ing column pair shows only weak correlation. This paper studies

the question whether language models are able to simulate such

reasoning.

Table 2 summarizes size-related statistics, describing the bench-

mark data. Altogether, the benchmark contains correlations from

about 4,000 data sets. Those data sets derive from various sources

and cover various topics (the examples in Table 1 give a first impres-

sion of their diversity). For those data sets, the benchmark contains

results about 120K column pairs, about half of them of numerical

(or integer) type. In average, the source data sets contain over 100K

rows and each column contains over 6K unique values.
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Table 1: Examples for strongly correlated (top) and less correlated (bottom) columns according to Pearson’s coefficient.

Data Set Column 1 Column 2 𝑅 value 𝑝 value

epl1920leaguetable.csv Points Wins 99% 0%

emission data.csv 1751 1752 100% 0%

india-districts-census-2011.csv Female_Literate Male_Literate 98% 0%

Google_Stock_Price_Test.csv High Open 96% 0%

housing.csv total_bedrooms total_rooms 93% 0%

time_series_2019-ncov-Confirmed.csv 1/24/20 0:00 Lat -6% 83%

diabetes_merged_date-time-sorted-includes-patient-id.csv code patient_id 2% 0%

Heart.csv RestECG Sex 2% 71%

2020.12.09/2020.12.09.csv num_pkts_out dest_ip -5% 0%

nyc-east-river-bicycle-counts.csv Williamsburg Bridge Unnamed: 0 10% 16%

Table 2: Statistics on benchmark data sets.

Property Value

Number of data sets 3,952

Number of column pairs 119,384

Number of numerical column pairs 59,449

Number of rows (Avg.) 103,126

Number of distinct values per column (Avg.) 6,200

The ability to predict likely correlation from column names may

depend on features such as the column name length. Intuitively, hav-

ing longer column names should be more informative. Potentially,

this makes correlation prediction easier. Figure 1 shows histograms

summarizing the distribution of column name length, measured

according to different metrics. The left plot shows the distribution

over character length. The right plot measures the number of tokens

(i.e., text snippets separated by spaces or underscores) in column

pairs. Note the logarithmic x-axis. The average column name length

is around 16 characters. This is sufficient for few, short words. The

number of tokens is typically limited to two (i.e., one word in each

of the columns).

The following experiments vary the threshold, starting from

which columns are considered correlated. This makes it interesting

to analyze how correlation is distributed over column pairs. Figure 2

shows histograms, characterizing the corresponding distributions.

From left to right, it shows correlation according to Pearson’s co-

efficient, Spearman’s coefficient, and according to Theil’s U. In

particular for Pearson’s and Spearman’s coefficients, low values

are more likely than higher ones. For all correlation metrics, we

see a slightly bimodal distribution with increased probability for

maxima and minima.

5 COMPARING PREDICTION METHODS
This section compares different prediction methods in terms of

their training time (if any) and output quality. Most of them use
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Figure 2: Distribution of correlation coefficient values accord-
ing to different metrics.

pre-trained language models, based on the recently proposed Trans-

former architecture [55]. Such models achieve state of the art per-

formance in a variety of NLP tasks [13].

5.1 Description of Methods
The experiments consider three pre-trained models, small enough

to be used locally on today’s commodity machines. All of them are

encoder models, pre-trained to associate input tokens with high-

dimensional vectors. For classification problems, a thin layer is

added thatmaps vectors to scores for the relevant classes. Roberta [27]

(short for “Robustly Optimized BERT approach”) expands BERT [10],

another pre-trained language model that has achieved widespread

popularity. Compared to BERT, Roberta is pre-trained using more

data and for a longer period of time. The resulting model outper-

forms the original BERT model on various benchmarks.

Albert (short for “A lite BERT architecture”) [22] reduces the

number of parameters, compared to BERT and Roberta, significantly.

It uses two parameter reduction techniques. First, it decomposes the

vocabulary embedding matrix into two smaller matrices. Second, it

shares parameters across different layers (thereby reducing param-

eter growth as a function of network depth). This model achieves

significant speedups without affecting result quality significantly.
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Distilbert [42], a “distilled” version of BERT, uses knowledge

distillation to reduce parameters and training time. As suggested by

the name, it uses knowledge distillation to reduce the network size,

compared to BERT. Here, BERT serves as a “teacher” that trains a

smaller network, Distilbert. The authors of Distilbert show that the

resulting model realizes attractive tradeoffs between training time

and result quality.

Beyond pre-trained models, the evaluation considers a simple

baseline. This baseline decomposes names of compared columns

into tokens. Then, it computes the Jaccard similarity on the two

token sets, associated with the compared columns. It predicts a

correlation if the Jaccard similarity is at least 0.5. Hence, this base-

line considers columns as correlated if their names are sufficiently

similar.

Note that the evaluation focuses uniquely on methods that work

with column names alone, as opposed to methods that exploit the

actual data for correlation analysis. As demonstrated in Section ??,
methods of the former category can be used to guide application of

methods that belong to the latter category.

5.2 Experimental Setup
The experiments in this and the following sections use an EC2

instance of type p3.2xlarge, recommended for machine learning

workloads. It features a Tesla V100 GPU with 5,120 CUDA cores,

8 vCPUs, and 488 GB of RAM. Prediction methods are implemented

using the simpletransformers Python library
5
, using the default

parameter settings of that library, unless noted otherwise. The

simpletransformers library is internally based on the Huggingface

library
6
which supports a wide range of pre-trained language mod-

els.

5.3 Comparison Results
The following experiments use the Pearson correlation coefficient.

Two columns are considered correlated if |𝑅 | ≥ 0.9 with a p-value

of at most 5%. For training, 80% of numerical column pairs are used

(around 47K pairs) while reporting results for the remaining 20%.

Prediction quality is measured according to all metrics introduced

in Section 3.2.

Hypothesis 1. Pre-trained language models predict correlations
better than simpler baselines.

Figure 3 compares prediction quality across the four prediction

methods. The simple baseline performs quite well (even though

not as good as the other methods) for precision and accuracy. Here,

the baseline benefits as it predicts no correlation in most cases. As

correlated column pairs are rare, this simple strategy can achieve a

relatively high accuracy (which, among other things, motivates the

use of multiple quality metrics). The baseline predicts a correlation

for columns with very similar names. It seems that such column

pairs tend to be correlated indeed, explaining the reasonably high

precision values. However, the simple baseline achieves only poor

results for recall, F1 score, and the MCC metric. For instance, its

recall is around 1% only. This demonstrates the need for a more

sophisticated approach (thereby validating Hypothesis 1).

5
https://simpletransformers.ai/

6
https://huggingface.co/transformers/
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Figure 3: Comparison of correlation prediction methods.
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Figure 4: Training time of different transformer variants.

Hypothesis 2. Larger models predict correlations more reliably
than smaller models.

The performance of all three pre-trained models is quite similar.

For the F1 score, precision, MCC, and recall, Roberta performs best,

even though only by a small margin. This is expected as Roberta

is the largest of the three models. For recall, Distilbert has a slight

advantage. In general, Distilbert performs slightly better thanAlbert

in the experiments. MCC is the metric with the largest gap between

the three models. Here, Roberta gains a performance advantage

of 4% over Albert. Altogether, the three models realize however

comparable prediction performance (providing only weak evidence

for Hypothesis 2).

Hypothesis 3. Varying the model size enables different tradeoffs
between computational overheads and accuracy.

Figure 4 reports training time (in minutes) for the three pre-

trained models. More precisely, it reports the time for fine-tuning

the three models to the problem of correlation prediction (i.e., it

does not report time for pre-training which is significantly more

expensive).

Albert and Distilbert have been designed with the goal of reduc-

ing overheads, compared to larger models such as Roberta. The

results indicate that this approach pays off for the correlation pre-

diction task as well. For instance, training time is more than two

times smaller for Distilbert, compared to Roberta. Given the slightly

better performance of Distilbert, compared to Albert, this model
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seems like the best alternative to reduce training overheads. In the

following, due to slightly higher precision, Roberta is used as de-

fault method for correlation prediction. Overall, the results support

Hypothesis 3.

6 SCENARIO VARIANTS
The following experiments analyze how scenario properties influ-

ence prediction performance. This section considers variations in

the amount of training data as well as in the relationship between

training and test data. Also, it compares performance for different

definitions of correlation.

The following experiments use the Roberta model and define

correlation via the Pearson coefficient, using a maximal p-Value of

5%. The threshold on the absolute value of 𝑅 varies in the following,

using a default of |𝑅 | ≥ 0.9. The quantity of training data varies as

well, using 80% of numerical column pairs as default. The remaining

data is used for testing.

Hypothesis 4. Correlation predictions becomemore accurate when
training on more column pairs.

Figure 5a reports results related to Hypothesis 4. It compares

prediction performance as a function of the training (and test) ratio.

It compares performance in two scenarios. The first scenario uses

80% of column pairs as training data (i.e., around 47K column pairs)

and the rest for testing. The second scenario uses 20% of column

pairs as training data while using the rest for testing. The third

scenario uses no training data whatsoever (i.e., zero-shot setting).

For all five metrics of prediction quality, as expected, having more

training data helps. This validates Hypothesis 4.

However, given the significant difference in the amount of train-

ing data (the amount of training data differs by a factor of four

across the two scenarios), the differences in prediction performance

seem moderate. The maximal difference across all five performance

metrics is six percent. This is consistent with prior results for other

tasks from the NLP domain, showing that pre-trained languagemod-

els achieve reasonable performance, already with modest amounts

of training data [13].

Hypothesis 5. Predicting correlations for new column pairs be-
comes easier after observing correlations from other column pairs in
the same data set.

The following analysis focus on relationship between training

and test data on prediction performance. It considers two scenarios.

The first scenario separates training and test data at the granularity

of column pairs. This means that training and test data may contain

column pairs from the same data set. Of course, each column pair

is considered only once. The second scenario ensures that train-

ing and test data are derived from different data sets. This means

separating data sets (the ones used for correlation analysis) into

training and test data sets, then deriving column pairs for train-

ing and testing only from the corresponding data sets. With this

method, training and test samples derive from entirely different data

sets. Of course, training and test data sets may still have similarities.

For instance, the same column names may appear in different data

sets. However, even if column names are identical, the associated

data (and therefore the correlation results) may still differ. Overall,

since similarities between data sets are common beyond Kaggle,
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Figure 5: Prediction quality for Pearson correlation coeffi-
cient in different scenarios.

the results for the second scenario are of high practical relevance.

They illustrate the performance obtained by training predictors on

a representative collection of data sets, then applying them to new

data sets (while benefiting from naturally occurring similarities

between training data and new data).

Figure 5b shows corresponding results. It varies the quality (i.e.,

how closely it relates to the test examples) but not the quantity of
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training data. For all five quality metrics, allowing column pairs

from the same data set in training and testing improves performance.

Depending on the metric, this increase is moderate (recall increase

by only 2%) or more significant (precision increases by 14%). In any

case, the results support Hypothesis 5.

Hypothesis 6. Predicting strong correlations is easier than pre-
dicting weak correlations.

Hypothesis 6 connects the criterion for defining correlation to

prediction performance. The following experiment uses a p-Value

threshold of 5% but varies the threshold on |𝑅 | between 0.8 and

0.99. Figure 5c shows corresponding results. The results do not

show clear tendencies. Recall generally increases while precision

and F1 scores decrease, as the requirements for correlation become

tighter. Accuracy and MCC do not show clear tendencies. Alto-

gether, the experimental results do not provide strong evidence for

Hypothesis 6.

7 RESULT BREAKDOWNS
This section explores the question of which properties of test cases

contribute to making correlations more or less difficult to predict,

breaking down results based on properties of column names.

The following experiments use the Roberta model and the Pear-

son correlation coefficient. They consider columns correlated for

an absolute R-value of at least 0.9 and a p-Value of at most 5%.

Hypothesis 7. Longer column names yield more information and
make prediction more accurate.

The following experiments focus on Hypothesis 7 and consider

two metrics of column name length: the number of characters and

the number of tokens (i.e., the number of text snippets, separated by

spaces and underscores). Figure 6a reports results for the number

of characters and Figure 6b results for the number of tokens. Both

figures report results for three length ranges separately. Those

ranges refer to the quantiles (e.g., the range “Q50-100%” includes

pairs of columns whose length is at or above average length).

The differences are significant. For both column name metrics

and all five prediction quality metrics, having longer column names

improves performance. Those differences are more pronounced

when measuring length as the number of characters (compared to

the number of words). For instance, when measuring length as the

number of characters, the MCC score improves from 42% to 83%

when going from short to long names. Precision improves from

45% to 81%. Those results provide strong experimental evidence

validating Hypothesis 7. Shorter column names may indicate a

higher ratio of “placeholder” names (e.g., based on column numbers)

or correlate with less detailed explanations of column semantics.

The next hypothesis relates to the nature of column names.

Hypothesis 8. Column names with a higher ratio of English
words (as opposed to abbreviations or other symbols) can be more
easily interpreted and make predictions more accurate.

Figure 6c reports results for subsets of column pairs, character-

ized by the ratio of English words in column names. It measures

that ratio as follows. First, both column names are divided into

tokens, using common separators. Then, each token is compared
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Figure 6: Breakdown of prediction quality by test case prop-
erties for the Pearson correlation coefficient.

to an English dictionary. The ratio of words, contained in the dic-

tionary, to the number of all tokens is the word ratio. For Figure 8

separates column pairs into three groups, associated with different

ranges for that ratio (e.g., “Q50-100%” includes column pairs whose

ratio of English words is at or above the average).

Here, the absolute differences between low and high word ratios

are relatively small. For instance, MCC scores increase only from
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Figure 7: Comparison of different correlation measures.

60% to 65%, moving from low to high ratios. Recall, for instance,

decreases slightly from 88% to 87%. Altogether, the experimental

evidence for Hypothesis 8 is weak.

The results in this section also show that it is possible to assess

the confidence of correlation predictions, based on properties of

column names (specifically: the length). This may be useful for sys-

tems exploiting correlation prediction as a component, as discussed

in more detail in Section ?? of the extended technical report.

8 OTHER CORRELATION METRICS
This section expands the experimental scope from Pearson correla-

tion to other correlation metrics, thereby verifying whether prior

findings generalize. The following experiments consider Spear-

man’s coefficient and Theil’s U (discussed in more detail in Sec-

tion 3). Unless noted otherwise, they consider columns correlated,

according to Spearman’s coefficient, if the absolute coefficient value

is at or above 0.9 (|𝜌 | ≥ 0.9) with a p-value of at most 5%. For Theil’s

U, it uses a threshold of 0.9 as well. By default, it uses again 80% of

column pairs as training data and separate training from test data

at the granularity of column pairs. Note that Theil’s U applies to

all column data types, thereby increasing the number of eligible

column pairs (for training and testing) to around 119,000.

Figure 7 compares prediction performance for all three defini-

tions of correlation. While prediction performance is close for Pear-

son and Spearman coefficients, prediction performance increases

for Theil’s U according to all quality metrics. A first hypothesis is

that the higher amount of training data (columns of all types as op-

posed to numerical columns only) contributes to that performance.

Figure 8 re-tests the hypotheses from Section 6 for Spearman’s

coefficient. Clearly, increasing the amount of training data also

increases prediction performance (Hypothesis 4), as well as shar-

ing data sets among training and test cases (Hypothesis 5). The

tendencies are less clear for the threshold on 𝜌 (Hypothesis 6).

Figure 9 validates the hypotheses from Section 7 for Spearman’s

coefficient. It considers different data subsets and compare predic-

tion performance. Again, the most important parameter influencing

prediction performance seems to be the column name length (Hy-

pothesis 7).
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Figure 8: Prediction quality for Spearman’s coefficient in
different prediction scenarios.

Figure 10 compares different prediction scenarios for Theil’s

U. Here, the relative tendencies are similar to prior experiments

while the absolute values are significantly better. It is interesting

that prediction quality for Theil’s U, when using 20% training data

(i.e., around 24K training samples), is still better than prediction

performance for the other coefficients when using 80% of training

data (i.e., around 47K training samples). This shows that, beyond
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Figure 9: Breakdown of prediction quality by test case prop-
erties for Spearman’s coefficient.

the amount of training data, other factors must contribute to the

improved performance.

Figures 11a to 11c study prediction performance for Theil’s U

and different data subsets. While column name length remains the

most important factor, a higher ratio of English words in column

names relates to better prediction accuracy as well (except for the
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Figure 10: Prediction quality for Theil’s U in different pre-
diction scenarios.

precision metric). Despite of that, the absolute differences remain

relatively small.

Altogether, the primary outcomes of prior experiments general-

ize to other definitions of correlation.
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Figure 11: Breakdown of prediction quality by test case prop-
erties for Theil’s U.

9 COLUMN TYPES
This section focuses on column types and their impact on prediction

quality.

Hypothesis 9. Prediction quality varies as a function of column
types.

Tables 3 to 5 break down prediction results according to the

data types of the involved columns. Column types are inferred

Table 3: Impact of types on Pearson correlation prediction.

Types F1 Pre Rec Acc MCC

F-F 0.88 0.84 0.93 0.93 0.84

F-I 0.67 0.58 0.78 0.98 0.66

I-F 0.85 0.83 0.88 0.99 0.84

I-I 0.62 0.49 0.85 0.81 0.54

Table 4: Impact of types on Spearman correlation prediction.

Types F1 Pre Rec Acc MCC

F-F 0.87 0.82 0.93 0.93 0.83

F-I 0.68 0.60 0.78 0.97 0.67

I-F 0.71 0.63 0.81 0.97 0.70

I-I 0.56 0.41 0.90 0.76 0.49

Table 5: Impact of types on Theil’s U correlation prediction.

Types F1 Pre Rec Acc MCC

O-O 0.92 0.92 0.92 0.90 0.80

O-F 0.93 0.92 0.93 0.90 0.79

O-I 0.94 0.95 0.93 0.92 0.83

O-B 0.50 0.33 1.00 0.86 0.53

F-O 0.95 0.95 0.94 0.93 0.85

F-F 0.95 0.96 0.95 0.93 0.80

F-I 0.94 0.94 0.94 0.93 0.86

F-B 0.00 0.00 0.00 0.80 0.00

I-O 0.93 0.92 0.93 0.92 0.85

I-F 0.94 0.96 0.93 0.93 0.85

I-I 0.80 0.89 0.73 0.85 0.69

I-B 0.00 0.00 0.00 1.00 0.00

B-O 0.89 0.84 0.93 0.85 0.69

B-F 0.80 0.67 1.00 0.80 0.67

B-I 0.96 1.00 0.92 0.95 0.90

B-B 0.18 0.11 0.50 0.67 0.10

automatically by the pandas framework, considering types bool (B),

float64 (F), int64 (I), and object (O). The first column of each table

contains the types of column pairs (e.g., “I-F” indicates a column

pair where the first column is of type int64 whereas the second

column is of type float64). Table 3 breaks down results for Pearson

correlation, Table 4 reports results for the Spearman correlation

coefficient, and Table 5 reports results for Theil’s U.

Clearly, column types have significant impact on prediction accu-

racy. E.g., for Pearson correlation, MCC scores vary by 30% across

different column type combinations. The order of types matters

(e.g., comparing F-I versus I-F in Table 3). This can be explained

by the fact that the column position correlates with the likelihood

of correlations. For instance, key columns tend to appear first in

tables and are often of type integer. Hence, the probability of corre-

lation for an integer column, followed by a float column, is different
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than for the complementary order. This can influence accuracy

and other performance metrics for prediction. At the same time,

it motivates extensions of the approach that exploit the column

position in addition to column names.

Overall, the results clearly support Hypothesis 9 and could be

exploited, e.g., to assess the confidence in a prediction, based on

column types. At the same time, they raise the question whether

column types may be useful as additional input for the language

model itself.

Hypothesis 10. Integrating column types as additional feature
increases prediction accuracy.

Prior experiments have focused on predicting data correlation

from column names alone. The following experiment considers col-

umn types as an additional feature. Figure 12 reports corresponding

results. Different from before, the input to the language model now

contains column names, followed by column types (separated by a

single space). E.g., for two columns “car” and “maker” of types “ob-

ject”, the input consists of the pair “car object” and “maker object”.

Figure 12 compares results with and without types (using 80% of

data for training). Considering types leads to moderate benefits for

most correlation metrics and in most scenarios. E.g., using types

leads to improvements of four percentage points in precision when

predicting correlation according to Theil’s U. On the other hand,

it leads to slight losses when predicting correlation according to

Spearman’s correlation coefficient. Overall, the results provideweak

support for Hypothesis 10.

10 CONCLUSION
In recent publications, I suggest using advanced natural language

analysis on text associated with database schema elements. This

is a cheap source of information as the cost depends only on the

schema, but not on the data size. Ideally, natural language analysis

yields insights on likely data properties, that are helpful to guide

automated tuning or data profiling efforts.

This suggestion is based on the assumption that pre-trained

language models are indeed able to extract useful insights from

schema text. For the first time, this study evaluates that hypothesis

in detail, focusing on the problem of correlation detection. Correla-

tion detection is an expensive process that has received significant

attention in the database community, due to its various use cases

in database optimization. Hence, obtaining additional information

to guide corresponding profiling efforts is practically useful.

The experiments yields the following insights (among others):

• In many, even though not all, cases, pre-trained language

models are able to infer useful information on data correla-

tion from column names alone.

• This is already possible with relatively small models, e.g.

Distilbert, with parameter counts in the tens of millions,

enabling their use on commodity machines.

• Those findings hold for a variety of popular data corre-

lation metrics, including Pearson correlation, Spearman

correlation, and Theil’s U.

• Training models for correlation prediction on data sets that

are similar to test data increases performance, motivating

domain specialization.
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Figure 12: Exploiting types of columns for classification (in
addition to column names).

• Surprisingly, prediction accuracy is only marginally af-

fected by the degree of data correlation.

• On the other hand, predictions become more accurate if

more text is available, i.e. if column names are longer.

The experimental results inform future research aimed at NLP-

enhanced database tuning and data profiling. They provide evidence

supporting assumptions underlying that nascent research direction.
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