
ContTune: Continuous Tuning by Conservative Bayesian
Optimization for Distributed Stream Data Processing Systems

Jinqing Lian★, Xinyi Zhang§, Yingxia Shao★∗, Zenglin Pu★, Qingfeng Xiang★, Yawen Li★, Bin Cui§
★ Beijing University of Posts and Telecommunications

§School of Computer Science, and National Engineering Laboratory for Big Data Analysis and Applications, Peking
University

{jinqinglian,shaoyx,pzl_bupt,xiangqingfeng,warmly0716}@bupt.edu.cn,{zhang_xinyi,bin.cui}@pku.edu.cn

ABSTRACT
The past decade has seen rapid growth of distributed stream data
processing systems. Under these systems, a stream application is
realized as a Directed Acyclic Graph (DAG) of operators, where the
level of parallelism of each operator has a substantial impact on its
overall performance. However, finding optimal levels of parallelism
remains challenging. Most existing methods are heavily coupled
with the topological graph of operators, unable to efficiently tune
under-provisioned jobs. They either insufficiently use previous
tuning experience by treating successively tuning independently, or
explore the configuration space aggressively, violating the Service
Level Agreements (SLA).

To address the above problems, we propose ContTune, a contin-
uous tuning system for stream applications. It is equipped with a
novel Big-small algorithm, in which the Big phase decouples the
tuning from the topological graph by decomposing the job tuning
problem into sub-problems that can be solved concurrently. We
propose a conservative Bayesian Optimization (CBO) technique
in the Small phase to speed up the tuning process by utilizing the
previous observations. It leverages the state-of-the-art (SOTA) tun-
ing method as conservative exploration to avoid SLA violations.
Experimental results show that ContTune reduces up to 60.75%
number of reconfigurations under synthetic workloads and up to
57.5% number of reconfigurations under real workloads, compared
to the SOTA method DS2.

PVLDB Reference Format:
Jinqing Lian, Xinyi Zhang, Yingxia Shao, Zenglin Pu, Qingfeng Xiang,
Yawen Li, Bin Cui. ContTune: Continuous Tuning by Conservative
Bayesian Optimization for Distributed Stream Data Processing Systems.
PVLDB, 16(13): 4282 - 4295, 2023.
doi:10.14778/3625054.3625064

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ljqcodelove/ContTune.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.
doi:10.14778/3625054.3625064

*Yingxia Shao is the corresponding author.

Src1

Src2 O1

O2 Sink

Src1

Src2
O12

O21

Sink

O13

O11
O22

Logical DAG

Physical DAG

Configure levels
of parallelism

The level of parallelism of 𝐎𝟐 = 𝟐

The level of parallelism of 𝐎𝟏 = 𝟑

Figure 1: Logical and physical DAG of a stream job.

1 INTRODUCTION
In the past decade, distributed stream data processing systems
have been widely used and deployed to handle the big data. Sev-
eral mature production systems have emerged, including Flink [9],
Storm [64], Spark Streaming [74], Heron [37], and Samza [57]. They
can timely analyze the unbounded stream data with low latency
and high throughput. In these systems, an analytical job is generally
abstracted as a Directed Acyclic Graph (DAG) of operators, whose
levels of parallelism are configurable. The levels of parallelism refer
to the configuration of the number of physical instances used by
each operator in a job. These configurations directly determine the
allocation of resources for each operator and have a significant
impact on the performance of the job, such as latency and through-
put [10, 59]. Figure 1 is an example of a job in Apache Flink [9], and
the level of parallelism of operator O1 is three and the level of par-
allelism of operator O2 is two. Therefore, to reduce the Total Cost
of Ownership (TCO) while satisfying the Service Level Agreements
(SLA), it is critical to set the optimal levels of parallelism.

Given a stream application, configuring the optimal levels of
parallelism is non-trivial. First, there is no principled way to manu-
ally find the optimal levels of parallelism. Engineers typically try
several configurations and pick the one that satisfies the SLA with
minimum resource used [20]. Second, considering the dynamic and
long-running (i.e., 24/7) stream data, engineers are required to con-
tinuously tune the levels of parallelism so as to adapt to variable
workloads. As a result, developing effective systems to automat-
ically configure the levels of parallelism has attracted increasing
interest from academia and industry [18, 20, 33, 41, 44, 45, 50].

Researchers have put considerable efforts into studying paral-
lelism tuning, which can be classified into three categories. The
first category is rule-based methods [5, 11, 20, 24, 28, 29, 71, 74].
Their tuning policy is usually expressed in simple rules, e.g., if CPU
utilization is larger than 70% then increase the levels of parallelism

4282

https://doi.org/10.14778/3625054.3625064
https://github.com/ljqcodelove/ContTune
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3625054.3625064
https://www.acm.org/publications/policies/artifact-review-and-badging-current

until CPU utilization is smaller than 70%. The second category is
linearity-based methods (e.g., DS2 [33] and Turbine [50]) which
dynamically configure the analytical jobs by linearly increasing or
decreasing the levels of parallelism. The third category is Bayesian
Optimization-based methods, represented by Dragster [41] and
Fischer [18]. They adopt Bayesian Optimization which utilizes a
surrogate model to suggest the promising levels of parallelism and
updates the surrogate model based on the effect of the suggested
levels of parallelism. Owing to these efforts, parallelism tuning can
be automated, which largely saves the expensive human-labors.
However, when applying these methods to configure real-world
analytical jobs, we encounter several issues from the following
perspectives:

Inefficiency of tuning under-provisioned jobs. The symp-
tom of under-provisioning (e.g., backpressure) usually occurs when
the input load increases (workload spikes) and causes SLA viola-
tions, which are often associated with significant financial penal-
ties [27]. To configure the under-provisioned job, there are two
types of methods: “find bottleneck and tune it” and “workload es-
timation”. The former [11, 20, 28, 41, 45, 71] enlarges the level of
parallelism of the bottleneck operator one by one [33]. Under such
an approach, the operator could become a bottleneck repeatedly, in-
fluenced by the other tuned operators. This is because the operators
of a job follow the producer-consumer model, each operator serves
as both a producer for its downstream operators and a consumer for
its upstream operators in the DAG. When scaling up a bottleneck
operator, it increases the workloads of its upstream operators as con-
sumers and the workloads of its downstream operators as producers.
The increased workload can potentially lead to the emergence of
new bottleneck operators (as shown in [20, 24, 41]), leading to an
increase in the number of reconfigurations. So this approach might
interrupt the running job frequently and takes a long time to con-
verge to optimal levels of parallelism. The latter [18, 22, 33, 42, 50]
estimates the real upstream data rate and suggests corresponding
levels of parallelism to sustain the upstream data. However, the
real upstream data rate cannot be accurately estimated when the
job is under-provisioned, specifically for jobs containing stateful
operators (e.g., join and window operators) [43]. Besides, the re-
lationship between the configured levels of parallelism and the
sustained datas is non-linear and multi-modal. They adopt simple
approximation (e.g., linear function) and cannot characterize the
complex relationship [41].

Insufficiency of using previous tuning experience. In front
of the long-running stream application with inevitable workload
variations, most existing methods treat the successively tuning
independently, named as the one-shot parallelism tuning. To be
concrete, whenever the parallelism tuning of the analytical jobs is
triggered according to the changes of workload, such approaches
search for the optimal levels of parallelism from the scratch and do
not utilize any observations from previous tuning. One-shot par-
allelism tuning is inefficient for the dynamic unbounded stream
data and causes a large number of reconfigurations 1. A bad case
is that when the job encounters the historical workload (i.e., the
workload of stream data has been processed before), the historical
1To test a candidate level of parallelism, it requires one reconfiguration which is a
time-consuming step. An efficient tuning method finds the optimal level of parallelism
with a few (or minimal) number of reconfigurations.

optimal level of parallelism can be reused without tuning from the
beginning. As far as we know, Dragster [41] and Turbine [50] are
the only two parallelism tuning methods that utilize the historical
information, called continuous tuning in this paper. Dragster utilizes
Bayesian Optimization to find the optimal levels of parallelism for a
given upstream data rate. However, Dragster tends to aggressively
explore the entire configuration space of the levels of parallelism,
resulting in frequent violations of the SLA. Besides, since Dragster
establishes separate Bayesian Optimization models to find the op-
timal level of parallelism for different upstream data rates of each
operator, the reuse of previous tuning experience is only possible
when the upstream data rates are identical. However, in practice,
the range of upstream data rates is wide, making Dragster to rarely
reuse the tuning experience. Turbine makes predictions for future
workloads by using historical workloads to determine whether the
new configuration is optimal for the predicted future workload,
and does not use historical data to accelerate tuning itself. In sum-
mary, the insufficiency of using the historical tuning experience
makes the existing approach inefficient when handling the dynamic
workload, and the continuous tuning problem is not well studied
yet.

Our approach. To address the above challenges, we propose
ContTune, a continuous tuning system for elastic stream process-
ing. ContTune is equipped with a novel Big-small algorithm, in
which the Big phase first decouples the tuning from the topological
graph by decomposing the job tuning problem into 𝑁 sub-problems
(discussed in Section 4.1). The 𝑁 sub-problems can be tuned by
the Small phase concurrently, largely reducing the number of re-
configurations. On the basis of the Big-small algorithm, ContTune
prioritizes SLA – it quickly allocates sufficient resources for the
under-provisioned jobs in the Big phase and further improves the
resource utilization in the Small phase. Besides, we design a con-
servative Bayesian Optimization (CBO) technique to speed up the
tuning process by utilizing historical observations. Compared with
vanilla Bayesian Optimization, CBO leverages SOTA one-shot paral-
lelism tuning methods [33, 50] as conservative exploration to avoid
the SLA violations caused by aggressive exploration. Specifically,
CBO has two modules: (1) conservative exploration, which utilizes
SOTA one-shot parallelism tuning methods to avoid aggressive
exploration and warm up the tuning when having insufficient his-
torical observations; (2) fast exploitation, which utilizes historical
observations to suggests the levels of parallelism according to an
acquisition function. When compared to Dragster and Turbine,
CBO leverages historical observations to establish the relationship
between levels of parallelism and the corresponding processing
abilities, which is constant and can be used to deal with different
upstream data rates. On the basis of this relationship, ContTune
could quickly find the minimum level of parallelism whose process-
ing ability is lager than the upstream data rate. We theoretically
prove that ContTune finds optimal levels of parallelism with 𝑂 (1)
average complexity of the number of reconfigurations. Specifically,
we make the following contributions:

• We propose the Big-small algorithm to tune levels of paral-
lelism for distributed stream data processing systems. The
“Big phase” can decouple the tuning methods from the topo-
logical graph and the “Small phase” can concurrently tune

4283

Table 1: Summary of the reconfiguration methods of existing
DSDPSs.

Method Reconfiguration methods
Flink [9] Redeploy
Heron [37] Redeploy
Seep [11] Partial redeploy
Rhino [14] Partial update

Megaphone [31] Non-stop partial update
Chi [44] Partial update
Trisk [45] Partial update

all operators. Meanwhile, the Big-small algorithm priori-
tizes SLA to meet online tuning requirements.

• We propose CBO to cope with long-running jobs by us-
ing historical observations to fit the relationship between
the levels of parallelism and processing abilities for fast
exploitation. Besides, it first uses one-shot parallelism tuning
SOTA methods as conservative exploration in order to avoid
aggressive exploration in vanilla Bayesian Optimization.

• We implement the proposed method and evaluate on stan-
dard benchmarks and real workloads. Compared with the
SOTA method DS2, ContTune reduced up to 60.75% num-
ber of reconfigurations under synthetic workloads and up
to 57.5% number of reconfigurations under real workloads.

2 PRELIMINARY
We introduce more details of basic concepts such as stream jobs,
logical DAG, physical DAG, backpressure, reconfiguration, stateless
operators and stateful operators in this section, and formulate the
tuning problem.

2.1 Stream Processing Jobs in DSDPS
We target at configuring the job (i.e., a stream processing appli-
cation) in distributed stream data processing systems (DSDPSs)
that are Data Parallelization [59]. Data Parallelization executes
one operator on multiple instances. The count of these instances
is called as the level of parallelism of the operator. Data Paral-
lelization is commonly supported by DSDPSs, such as Esper [1],
Storm [64], Heron [37], Spark Streaming [74], Flink [9], and these
systems [23, 34, 35, 47–49, 51–55, 58, 60, 61, 70, 73].

Logical DAG. A job (i.e., a stream processing application) in
DSDPSs can be modeled as a logical Directed Acyclic Graph (DAG)
as shown in the left part of Figure 1, denoted as 𝐺 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
, 𝑒𝑑𝑔𝑒𝑠), where the performance of each operator heavily depends
on the others, and 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 indicate the operators of the job and
𝑒𝑑𝑔𝑒𝑠 indicate the passed records (workload) between operators.
Specifically, operators that only have outgoing edges are sources,
and operators that only have incoming edges are sinks.

Physical DAG. We denote a job running on the given physical
instances as a physical DAG. Figure 1 shows a logical DAG and its
corresponding physical DAG for Nexmark Q3 [2, 4, 66] with two
sources and one sink. Configuring the levels of parallelism of a
job decides the number of physical instances for each operator. In
Figure 1, operators O1 and O2 execute with three and two instances,
equivalent to their level of parallelism being set three and two.

Table 2: Notations in this paper.

Symbol Description

𝐺 logical dataflow Directed Acyclic Graph
𝑁 number of operators in 𝐺 (𝑁 > 1)
𝜆̂ aggregated observed upstream data rates
𝜆 real upstream data rates
𝑇𝑢 useful time for an operator
𝐻𝑡 historical observations in 𝑡 iterations
𝑜𝑖 the 𝑖𝑡ℎ operator in 𝐺
𝑃𝐴 the real processing ability
𝑝 𝑗 the level of parallelism at iteration 𝑗
𝑝𝑚𝑎𝑥 the max level of parallelism in 𝐻𝑡

𝑝𝑛𝑜𝑤 the now level of parallelism of an operator
𝑃 𝑗𝑜𝑏 the levels of parallelism of operators in 𝐺 given

by CBO
𝐺𝑃 Gaussian Process model
𝛼 a threshold for scoring function
𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡 the nearest distance between 𝑝𝑛𝑜𝑤 and the

observed levels of parallelism in 𝐻𝑡

𝑆𝑔 the known region segment
𝑙𝑒𝑛𝑎𝑙𝑙 the total length of merged region segments
𝜌 𝜌 tuning times
𝜒 CBO uses 𝜒 tuning times in 𝜌 tuning times
𝜙 the maximal number of reconfigurations of SOTA

method introduced by CBO of each tuning
𝜔 𝜔 tuning times for fast exploitation to converge
𝑊𝑢 the workload unit of synthetic workloads

Backpressure. Backpressure is a mechanism that propagates
overload notifications from operators backward to the sources so
that data emission rates can be throttled to alleviate overload [10].
It is a symptom observed in under-provisioned jobs. When this hap-
pens, workloads that cannot be immediately processed by sources
will not be discarded and are usually kept in the queue [3, 43].

Reconfiguration. The job requires reconfigurations to change
the levels of parallelism. Each DSDPS enables different reconfig-
urations methods. Table 1 shows that Flink and Heron need to
redeploy (stop and restart), and Trisk adopts a partial pause-and-
resume scheme. For all DSDPSs, efficient tuning method finds the
optimal level of parallelism using small number of reconfigurations.

The operator of a DSDPS job could be stateless or stateful: (a)
Stateless Operator. The data processed by the stateless operator is
only relevant to the current operator and the stateless operator does
not store the state from previous processing. Examples of stateless
operators are filter and rescaling. (b) Stateful Operator. The data
received by the stateful operator will be stored as state information
for computation, such as window [26] and join.

2.2 Problem Definition and Terminology
We formulate the parallelism tuning problem and discuss the related
terminology. Table 2 summarizes the notations.
Parallelism Tuning Problem. Given a logical DAG of a job with
𝑁 operators, the source operators generate records at a rate, defined
by application data sources (sensors, stock market feeds, etc.) [33].
To maximize system throughput, the physical DAG must sustain

4284

the full source rates. This means that each operator must be able
to process data without backpressure. Parallelism tuning aims to
find the minimal level of parallelism per operator in the physical
DAG that sustains all source rates (i.e., satisfying the SLA). Since
changing the level of parallelism of the operator requires costly
reconfiguration, we additionally want to find the optimal level of
parallelism in which each operator can sustain its real upstream
data rate via fewer reconfigurations.
Upstream Data Rate. An upstream data rate 𝜆̂ denotes the aggre-
gated number of observed records (i.e., workload) that an operator
receives from its all upstream operators per unit of time. Given a
DAG, the observed upstream data rate is affected by the source rate
and the processing ability of operators in the DAG (following the
producer-consumer model). When all operators can process their
upstream data rate (i.e., no backpressure occurs), the upstream data
rate is only affected by the source rate. Such an observed upstream
data rate is denoted as the real upstream data rate 𝜆.
Useful Time. Useful time 𝑇𝑢 is the time that an operator executes
in an ideal setting where it never has to wait to obtain input or
push output. It differs from the total observed execution time. 𝑇𝑢 is
the total time that an operator spends in serialization, processing
and deserialization [33].
Processing Ability. The processing ability 𝑃𝐴 denotes how many
records an operator can process per unit of useful time. We use the
same methodology as DS2 [33] to obtain 𝑃𝐴:

𝑃𝐴 =
𝜆̂

𝑇𝑢
. (1)

An operator’s processing ability is affected by its level of paral-
lelism but does not increase linearly with it [33, 41]. After applying
a given level of parallelism (denoted as 𝑝𝑖) for an operator 𝑜𝑖 , we
could obtain the processing ability of 𝑜𝑖 (i.e., 𝑃𝐴(𝑝𝑖)) according to
Equation 1. We use 𝐻𝑡

𝑖
to denote the historical observations in 𝑡

iterations for operator 𝑜𝑖 under different levels of parallelism, i.e.,

𝐻𝑡
𝑖
=
{︂⟨︂
𝑝
𝑗
𝑖
, 𝑃𝐴(𝑝 𝑗

𝑖
)
⟩︂}︂𝑡

𝑗=1
, where 𝑝 𝑗

𝑖
denotes the level of parallelism

for operator 𝑜𝑖 at iteration 𝑗 .

3 SYSTEM OVERVIEW
Figure 2 presents the overview of ContTune. The controller queries
the job-generated metrics and determines whether a job needs tun-
ing based on the conditions. For more details about the controller
we refer the reader to our technical report [39]. When a job tuning
is triggered, the controller checks the state of the job. It detects
symptoms of over-provisioning or under-provisioning (e.g. back-
pressure). Then under-provisioned jobs go through the Big and
Small phases, while over-provisioned jobs directly enter the Small
phase. The Big phase enlarges the levels of parallelism of the job,
following the Binary Lifting method which quickly eliminates the
under-provisioned state. The Small phase is executed when the job
is not under-provisioned. It finds the minimal level of parallelism
of each operator that can sustain the real upstream data rate via
conservative Bayesian Optimization (CBO). CBO adopts two strate-
gies to find the optimal levels of parallelism: fast exploitation and
conservative exploration. The fast exploitation utilizes historical ob-
servations. It fits Gaussian Processes (GP) on the observations and
suggests the levels of parallelism according to a carefully designed

…

Src O1 Sink 𝑺𝒔𝒓𝒄(Scoring Function
of Source)

𝑺𝒐𝒑𝒆𝒓(Scoring Function
of Operator 1)

𝑺𝒔𝒊𝒏𝒌(Scoring Function
of Sink)

Gaussian Process
Generate surrogate models

Over-provisioned
Hybrid

Database

Controller

𝐁𝐢𝐧𝐚𝐫𝐲 𝐋𝐢𝐟𝐭𝐢𝐧𝐠 𝐦𝐞𝐭𝐡𝐨𝐝

SOTA METHOD

Fast Exploitation

Conservative Exploration

Under-provisioned Over-provisioned

Metrics
and Samples

Jobs

Sub-problem 1

Sub-problem 2

Sub-problem 3

Sub-problem 4

𝐃𝐞𝐜𝐨𝐦𝐩𝐨𝐬𝐞 𝐭𝐡𝐞 𝐩𝐫𝐨𝐛𝐥𝐞𝐦

Big phase

Small phase
CBO

𝐩𝐦𝐚𝐱

𝐩𝐦𝐚𝐱 = 𝐩𝐦𝐚𝐱 ∗ 𝟐

YES

NO

enough?

Conservative
Acquisition Function

AF

AF AF AF

Under-provisioned
jobs

Over-provisioned
jobs

SOTA METHOD SOTA METHOD

Figure 2: Overall Architecture of ContTune.

acquisition function that guarantees the SLA. The conservative
exploration utilizes SOTA one-shot parallelism tuning methods to
avoid aggressive exploration and warm up the learning of GP. Con-
tTune adopts a scoring function to balance the fast exploitation and
conservative exploration. After CBO finds the optimal level of paral-
lelism of each operator, in order to avoid frequent reconfigurations,
the controller confirms whether applying the levels of parallelism
output by CBO is necessary given the current levels of parallelism.
If necessary, the controller reconfigures the job with the levels of
parallelism output by CBO, otherwise skips this reconfiguration.
At the end of each tuning, the observed levels of parallelism of op-
erators and their corresponding processing abilities will be added
to 𝐻𝑡 .

4 BIG-SMALL ALGORITHM
In this section, we first discuss the decomposition of the parallelism
tuning problem which can be efficiently solved. Then we present
the Big phase to decompose the problem and the Small phase to
solve the decomposed problem.

4.1 Decomposing the Parallelism Tuning
Given a logical DAG of a job with 𝑁 operators, parallelism tuning
aims to find the minimal level of parallelism per operator that
sustains all source rates. Sustaining all source rates is equivalent to
that every operator can process their real upstream data rates. Note
that the real upstream data rate reflects the real workload of each
operator under the producer-consumer model, which is different
from the observed one when the job is under-provisioned. The real
upstream data rate only can be observed when the job is not under-
provisioned. Therefore, if we can obtain the real upstream data rates
of each operator, the parallelism tuning of a job can be decomposed
to the parallelism tunings of each operator. Each operator can be
concurrently tuned to fulfill their corresponding upstream data rate
𝜆𝑖 . And there is no need to tune a single bottleneck operator one
by one (requiring several reconfigurations), as "find bottleneck and
tune it" used by many existing tuning methods (e.g., Dhalion [20],
Dragster [41], IBM Streams [24] and GOVERNOR [13]). Formally,
we aim to solving the following equation to achieve the minimal
number of reconfigurations:

4285

argmin
𝑝1,...,𝑝𝑁

𝑝𝑖 , 𝑎𝑛𝑑 𝑝𝑖 ≤ 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑜𝑢𝑛𝑑

subject to 𝑃𝐴(𝑝𝑖) ≥ 𝜆𝑖 .
(2)

Other existing tuning methods (e.g., DS2 [33]) use instrumenta-
tion of bottleneck detection tools (e.g., SnailTrail [30]) to estimate
𝜆 via selectivities between operators. We find that these tuning
methods face two problems. First, the instrumentation brings addi-
tional overhead, which increases the per-record latency (e.g., 13%
as shown in [33]). Second, the estimated 𝜆 might be inaccurate
since selectivities between stateful operators are inaccurate [39, 43].
Federico et. al [43] point out that stateful operators have a large stan-
dard deviation of the observed selectivities (discussed in [33, 43, 65])
due to their semantics, and it is inaccurate for “workload estima-
tion” method to use observed selectivities at a specific moment to
represent the selectivities of these operators. For example, window,
a typical stateful operator, splits the infinite stream into “buckets”
of finite size, over which DSDPSs can apply computations. It may
obtain a observed selectivity of zero if no “buckets” are computed
within the observed time. Then the inaccurate selectivity is used
to estimate the upstream data rates to the downstream operators.
The inaccuracy is propagated over the topological graph, leading
to the non-optimal levels of parallelism of the operators. We use
the Big-small algorithm to tackle these two problems. If the job is
under-provisioned at the beginning, the Big phase first make the
job not in backpressure state and then uses the observed 𝜆̂ as the
real 𝜆. Then the parallelism tuning problem can be decomposed
into 𝑁 sub-problems that find the minimal level of parallelism per
operator whose processing ability is not less than its real upstream
data rate, i.e., 𝑃𝐴(𝑝𝑖) ≥ 𝜆𝑖 . The Big phase decouples the parallelism
tuning from the topological graph by decomposing the parallelism
tuning to 𝑁 sub-problems. Then the Small phase can concurrently
tune these 𝑁 sub-problems. The parallelism tuning problem of the
over-provisioned job at the beginning can be directly decomposed
into 𝑁 sub-problems and concurrently tuned by the Small phase.
4.2 Big Phase and Small Phase
Algorithm 1 illustrates the main procedures of the Big-small al-
gorithm. The algorithm has two phases: Big and Small. Under-
provisioned jobs go through these two phases, while over-provisioned
jobs directly enter the Small phase. The Big phase increases the
efficiency of tuning by first giving sufficient levels of parallelism so
that the job is not in backpressure state. For the over-provisioned
job, the Small phase aims to quickly find minimal levels of paral-
lelism that the job can sustain all source rates, thereby improving
resource utilization.
Big Phase. The Big phase focuses on the fast elimination of op-
erator’s backpressure using the Binary Lifting method, which can
even out the time complexity with the help of historical observa-
tions 𝐻𝑡 (discussed in Section 6.2). The Big phase maintains the
maximal level of parallelism as 𝑝𝑚𝑎𝑥 , among all the observations
in 𝐻𝑡 . All jobs that are at the end of the Big phase, rather than
the end of the Small phase, satisfy their SLA, which means the Big
phase prioritizes SLA to meet online tuning requirements. Specifi-
cally, the Big phase first checks if each operator’s current level of
parallelism 𝑝𝑛𝑜𝑤

𝑖
is equivalent to 𝑝𝑚𝑎𝑥 (Line 4 – Line 7). If each

𝑝𝑛𝑜𝑤
𝑖

is equivalent to 𝑝𝑚𝑎𝑥 and the job is still under-provisioned,

Algorithm 1 Big-small Algorithm
Input: A stream job with 𝑁 operators, the maximal level of paral-

lelism observed 𝑝𝑚𝑎𝑥 in all 𝐻𝑡 for the job
Output: The levels of parallelism suggested for the given job 𝑃 𝑗𝑜𝑏
1: // “Big” phase
2: while the job is under-provisioned do
3: 𝐹𝑙𝑎𝑔← True
4: for 𝑖 ← 1 . . . 𝑁 do
5: if 𝑝𝑛𝑜𝑤𝑖 ≠ 𝑝

𝑚𝑎𝑥 then
6: 𝐹𝑙𝑎𝑔← False
7: end if
8: end for
9: if 𝐹𝑙𝑎𝑔 then, 𝑝𝑚𝑎𝑥 ← 2 ∗ 𝑝𝑚𝑎𝑥

10: end if
11: for 𝑖 ← 1 . . . 𝑁 do
12: 𝑝𝑛𝑜𝑤𝑖 ← 𝑝𝑚𝑎𝑥

13: end for
14: 𝑃 𝑗𝑜𝑏 ←

{︁
𝑝𝑛𝑜𝑤
𝑖

}︁𝑁
𝑖=1 and apply 𝑃 𝑗𝑜𝑏 via a reconfiguration

15: end while
16:
17: // “Small” phase
18: for 𝑖 ← 1 . . . 𝑁 do
19: 𝜆𝑖 ← 𝜆̂𝑖 // The job is not under-provisioned now
20: end for
21: Use Algorithm 2 to get 𝑃 𝑗𝑜𝑏

it indicates that 𝑝𝑚𝑎𝑥 is not enough to sustain the upstream data
rate, thus ContTune doubles 𝑝𝑚𝑎𝑥 (Line 9). Finally, the Big phase
sets the current 𝑝𝑛𝑜𝑤

𝑖
to 𝑝𝑚𝑎𝑥 , 𝑖 = 1, .., 𝑁 via one reconfiguration

(Line 12). The above process (Line 4 – Line 14) is repeated until the
job is not under-provisioned.
Small Phase. In the Small phase, we use CBO (details are discussed
in Section 5) to find the optimal levels of parallelism for the over-
provisioned jobs to improve resource utilization while satisfying
𝑃𝐴(𝑝𝑖)) ≥ 𝜆𝑖 .

5 CONSERVATIVE BAYESIAN OPTIMIZATION
We adopt Bayesian Optimization to configure the levels of paral-
lelism to improve resource utilization. We present how we adopt
the BO to suggest the configuration with minimal resource usage
while considering the SLA requirements in Section 5.1. To further
avoid the SLA violation, we introduce the conservative Bayesian
Optimization (CBO) in Section 5.2, which adopts linearity-based
methods to replace the aggressive exploration in the vanilla BO.

5.1 BO for Parallelism Tuning
As discussed in Section 4.1, optimizing the whole DAG can be
decomposed to optimizing 𝑁 sub-problems as Equation 2. As guar-
anteed by the Big phase, 𝑝𝑚𝑎𝑥 is set as the maximal bound in
Equation 2. To find the desired 𝑝𝑖 , one naive method is to evaluate
all possible levels of parallelism, which is prohibitively expensive
due to the number of required reconfigurations and the violation
of SLA. To this end, we adopt Bayesian Optimization (BO) to guide
the search for desired 𝑝𝑖 .

4286

BO is a widely-used optimization framework for the efficient
optimization of expensive black-box functions. It has two key mod-
ules: (1) a surrogate model that learns the relationship between
configurations and the performances, (2) an acquisition function
that measures the utility of the given configurations according to
the estimation of the surrogate model. In contrast to evaluating
the expensive black-box function, the acquisition function is cheap
to compute and can therefore be thoroughly optimized [68]. BO
works iteratively: it chooses the next configuration to evaluate by
maximizing the acquisition function and then updates the surrogate
model based on the augmented observations. The main challenge
of adopting BO is to set up suitable surrogate model and acqui-
sition function for parallelism tuning. For more details about the
techniques of handling noise, we refer the reader to our technical
report [39].

Surrogate Model. In our BO method, we adopt Gaussian Pro-
cess (GP) as the surrogate model. GP is a non-parametric model that
can adaptively adjust its complexity to fit the data, which allows GP
to capture intricate patterns and adapt to various data distributions.
Besides, it provides well-calibrated uncertainty estimations and
closed-form computability of the predictive distribution [32]. Other
data-intensive techniques, e.g., deep learning may struggle with
low data efficiency and interpretability. We use GP to learn the
relationship between the levels of parallelism of the operator 𝑜𝑖 and
its processing abilities, based on 𝐻𝑡

𝑖
. Formally, it fits a probability

distribution 𝑝 (𝑓 |𝑝𝑖 , 𝐻𝑡
𝑖
) of the target function 𝑃𝐴 (𝑝𝑖) on the ob-

servations 𝐻𝑡
𝑖
. With the help of GP, given a level of parallelism 𝑝𝑖 ,

we can estimate its processing ability as a Gaussian variable with
mean 𝜇 (𝑝𝑖) and variance 𝜎2 (𝑝𝑖) (indicating the confidence level of
the estimation):

𝜇 (𝑝𝑖) = 𝑘𝑇∗ 𝐾−1𝑦,

𝜎2 (𝑝𝑖) = 𝑘∗
(︁
𝑝𝑖 , 𝑝𝑖

)︁
− 𝑘𝑇∗ 𝐾−1𝑘,

(3)

where 𝑘 is the covariance function, 𝑘∗ denotes the vector of covari-
ances between 𝑝𝑖 and all previous observations, 𝐾 is the covariance
matrix of all previously evaluated configurations and 𝑦 is the ob-
served function values. To this end, we can utilize the confidence
level to obtain the bound of the estimation: 𝑙 (𝑝𝑖) = 𝜇 (𝑝𝑖) − 𝛽𝜎 (𝑝𝑖)
and 𝑢 (𝑝𝑖) = 𝜇 (𝑝𝑖) + 𝛽𝜎 (𝑝𝑖), where the parameter 𝛽 controls the
tightness of the confidence bounds [63]. The true function value of
𝑃𝐴(𝑃𝑖) falls into the interval [𝑙 (𝑝𝑖), 𝑢 (𝑝𝑖)] with a high probability.

Acquisition Function. The sub-problem is essentially a mini-
mization problem with an unknown constraint, as shown in Equa-
tion 2. The desired acquisition function should guide the finding
of desired 𝑝𝑖 as soon as possible, and avoid the SLA violation dur-
ing tuning. Common acquisition functions such as UCB [62] and
Expected Improvement (EI) [56] do not support the constraint con-
ditions. Recently, Constrained EI (CEI) is proposed to optimize a
black-box function with unknown constraints for optimizing the
resource usage in data management systems [25, 76]:

𝑎𝑟𝑔max
𝑝𝑖

(︁
(𝑝∗𝑖 − 𝑝𝑖) × 𝑃𝑟 [𝑓 (𝑝𝑖) ≥ 𝜆]

)︁
, (4)

where 𝑝∗
𝑖
denotes the minimal feasible level of parallelism and

𝑃𝑟 [𝑓 (𝑝𝑖) ≥ 𝜆] denotes the probability of feasibility. The probability
of feasibility guides the search for feasible level of parallelism, while
the reduced level of parallelism, i.e., (𝑝∗

𝑖
−𝑝𝑖) encourages improving

resource utilization. However, CEI does not consider the constraint
safety-critical, and it may suggest infeasible levels of parallelism
during tuning (e.g., trying the level of parallelism 𝑝𝑖 with large
𝑝∗
𝑖
− 𝑝𝑖 but small 𝑃𝑟 [𝑓 (𝑝𝑖) ≥ 𝜆]). Once these levels of parallelism

are suggested, additional reconfigurations are required to keep the
job from under-provisioned. To prioritize the SLA while tuning, we
make the safety constraint of CEI more strict and use the following
acquisition function:

𝑎𝑟𝑔max
𝑝𝑖
(𝑝∗𝑖 − 𝑝𝑖)𝐼 (𝜇 (𝑝𝑖) − 𝜆𝑖) (5)

, where 𝐼 (𝑥) is an indicator function:

𝐼 (𝑥) =
{︄
1 𝑖 𝑓 𝑥 ≥ 0,
0 𝑖 𝑓 𝑥 < 0.

(6)

In the acquisition function, 𝐼 (𝜇 (𝑝𝑖) − 𝜆𝑖) filters the infeasible levels
of parallelism based on GP’s estimation. Thus, the SLA guarantee
is considered the first priority while tuning.

5.2 Trade-off between Conservative Exploration
and Fast Exploitation

The above acquisition function filters infeasible levels of paral-
lelism based on GP’s estimation. However, in the region with few
observations (i.e., unknown region), the estimation will yield large
uncertainty (e.g., the cold start case). Exploring the unknown region
is inevitable in vanilla BO since it serves as part of learning for the
objective functions. However, aggressive exploration is unfavorable
in parallelism tuning, since the SLA cannot be guaranteed.

To tackle the problem, we propose to utilize linearity-based
tuning methods to warm up the learning of GP and cope with
sudden changes in workload. The linearity-based methods estimate
the processing ability per instance and essentially suggest the levels
of parallelism of operators based on the ratio between the upstream
data rate and the processing ability. Since the relationship between
the levels of parallelism and processing abilities is non-linear [41],
they cannot converge to the optimal level of parallelism in one
step. But the linearity-based methods are suitable for warming
up the GP and being conservative exploration to avoid aggressive
exploration. Since the aggressive exploration is avoided, CBO can be
used in real online environments. We refer to the level of parallelism
suggested by linearity-based methods for operator 𝑜𝑖 as 𝑝𝑙𝑖𝑛𝑖 and
the level of parallelism suggested by the acquisition function as
𝑝
𝑎𝑐𝑞

𝑖
. Concretely, CBO applies 𝑝𝑙𝑖𝑛

𝑖
, when GP’s estimation has large

uncertainty – in other words, when 𝑝𝑎𝑐𝑞
𝑖

falls in the unknown
region. Otherwise, CBO applies 𝑝𝑎𝑐𝑞

𝑖
. DS2 is adopted as the linearity-

based method in CBO. Intuitively, in CBO, the surrogate model and
the acquisition function serve as fast exploitation, and the linearity-
based method serves as conservative exploration.

CBO uses a scoring function to achieve the trade-off between
conservative exploration and fast exploitation. Given a level of
parallelism, GP’s estimation will be more accurate when the given
level of parallelism is closer to the observed levels of parallelism.
Thus, we use a scoring function to decide whether 𝑝𝑎𝑐𝑞

𝑖
falls in the

unknown region by how far 𝑝𝑎𝑐𝑞
𝑖

is from the current observations.
Specifically, we use 𝑑𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡 to denote the minimal value of the
distance between 𝑝𝑎𝑐𝑞

𝑖
and the observed level of parallelism in 𝐻𝑡

𝑖
.

4287

Algorithm 2 CBO algorithm
Input: A stream job with 𝑁 operators, real upstream data rates

for each operator 𝜆𝑖𝑁𝑖=0,observations for each operator 𝐻𝑡
𝑖
, a

threshold for scoring function 𝛼
Output: The suggested levels of parallelism 𝑃 𝑗𝑜𝑏 for the given job
1: Initialize 𝑃 𝑗𝑜𝑏 as an empty list
2: for 𝑖 ← 1 . . . 𝑁 do
3: Fit 𝐺𝑃𝑖 based on 𝐻𝑡

𝑖
and obtain 𝑝𝑎𝑐𝑞

𝑖
following Equation 5

4: 𝑑𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← +∞
5: for (𝑝, 𝑃𝐴(𝑝)) in 𝐻𝑡

𝑖
do

6: 𝑑𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← min
(︂
𝑑𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , |𝑝

𝑎𝑐𝑞

𝑖
− 𝑝 |

)︂
7: end for
8: if 𝑑𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ≤ 𝛼 then
9: Append 𝑝𝑎𝑐𝑞

𝑖
to 𝑃 𝑗𝑜𝑏

10: else
11: Obtain 𝑝𝑙𝑖𝑛

𝑖
through linearity-based method

12: Append 𝑝𝑙𝑖𝑛
𝑖

to 𝑃 𝑗𝑜𝑏
13: end if
14: end for
15: Apply 𝑃 𝑗𝑜𝑏 via one reconfiguration
16: for 𝑖 ← 1 . . . 𝑁 do
17: Observe 𝑃𝐴(𝑝𝑖) and append ⟨𝑝𝑖 , 𝑃𝐴(𝑝𝑖)⟩ to 𝐻𝑡

𝑖
18: end for
19: return 𝑃 𝑗𝑜𝑏

When 𝑑𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is smaller than or equal to a threshold, namely 𝛼 ,
CBO applies 𝑝𝑎𝑐𝑞

𝑖
. Otherwise, the linearity-based method is adopted

and CBO applies 𝑝𝑙𝑖𝑛
𝑖

. And the augmented observation from the
linearity-based method is also added to 𝐻𝑡

𝑖
, as a training sample for

GP, which warms up GP’s learning.
Algorithm 2 presents one tuning step of CBO formally. CBO deals

with each operator separately (Line 2), since the tuning problem is
decomposed into 𝑁 sub-problems as Equation 2. CBO first obtains
true 𝜆 as the job is not in backpressure state. Then it fits a GP model
on 𝐻𝑡

𝑖
and obtain 𝑝𝑎𝑐𝑞

𝑖
and decides whether to use 𝑝𝑎𝑐𝑞

𝑖
or 𝑝𝑙𝑖𝑛

𝑖
by

the scoring function (Line 3 - Line 13). After all the sub-problems
are solved, CBO applies the suggested levels of parallelism via one
reconfiguration (Line 15) and saves the corresponding observations
(Line 17).

5.3 Continuous Tuning via CBO
Given a stream job, the workload of stream data (i.e., source rate) is
dynamic and the applied levels of parallelism can become inappro-
priate for the source rate, thus parallelism tuning will be triggered
accordingly. Such a scenario is called continuous tuning. CBO adopts
GP as the surrogate model to fit the relationship between the levels
of parallelism and processing abilities. Although the source rate
changes, the relationship between the levels of parallelism and
processing abilities of an operator is constant. And the surrogate
models (i.e., GPs) in CBO can be reused for continuously tuning a
stream application in spite of different source rates. Intrinsically,
the GPs in CBO enable the speedup of target tuning via historical
observations. In contrast to one-shot parallelism tuning methods,
CBO is specifically designed to undergo continuous improvement.

This means that as the number of historical observations increases,
the tuning performance of CBO also improves correspondingly.
It employs an acquisition function (Equation 5) to identify suit-
able level of parallelism based on GPs for fast identification of the
optimal levels of parallelism.

6 EFFICIENCY OF CONTTUNE
We first discuss the convergence of ContTune in Section 6.1, and
analyze its average complexity of the number of reconfigurations
in Section 6.2.

6.1 Analysis of ContTune Convergence
Given an observation ⟨𝑝 𝑗 , 𝑃𝐴(𝑝 𝑗)⟩ in𝐻𝑡 , CBO considers the region
round 𝑝 𝑗 with 𝛼 as the radius to be a known region (i.e., the region
with small uncertainty) and the 𝑝𝑎𝑐𝑞 falls in the known region
[max(𝑝 𝑗 − 𝛼, 0),min(𝑝 𝑗 + 𝛼, 𝑝𝑚𝑎𝑥)] will be applied. The closer the
level of parallelism to the observed level of parallelism in 𝐻𝑡 the
greater the confidence level in the surrogate model, i.e. the smaller
the 𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡 the greater the confidence level. As shown in Figure 3,
for 𝐻𝑡 with size 𝑡 , therefore there are 𝑡 known regions, and we
refer to the total size for the 𝑡 regions as 𝑙𝑒𝑛𝑎𝑙𝑙 . And the maximal
bound for the configuration space of the level of parallelism is 𝑝𝑚𝑎𝑥 .
Given a random variable ranging from 0 to 𝑝𝑚𝑎𝑥 , the probability
𝑃𝑟𝑢𝑠𝑒 that it falls in the known region is 𝑙𝑒𝑛𝑎𝑙𝑙

𝑝𝑚𝑎𝑥 . As the number of
observations increases, the probability that 𝑝𝑎𝑐𝑞 falls in the known
region will also increase and the scoring function will be more
likely to recommend 𝑝𝑎𝑐𝑞 . The existence of an upper bound on
the workloads implies that the 𝑝𝑚𝑎𝑥 is smaller than or equal to a
constant value. Implying that as tuning proceeds, and the 𝑙𝑒𝑛𝑎𝑙𝑙 is
increasing, the probability 𝑙𝑒𝑛𝑎𝑙𝑙

𝑝𝑚𝑎𝑥 is increasing. And CBO converges
to fast exploitation over time. In fact, the real-world workload is
not uniformly distributed, and the probability of hitting the fast
exploitation is not less than 𝑙𝑒𝑛𝑎𝑙𝑙

𝑝𝑚𝑎𝑥 .
Figure 3 presents a concrete example. For an operator, CBO has

its five levels of parallelism (1,4,9,10,15) in 𝐻𝑡 with correspond-
ing processing abilities (𝑃𝐴(1), 𝑃𝐴(4), 𝑃𝐴(9), 𝑃𝐴(10), 𝑃𝐴(15)), and
the surrogate model fitted by 𝐻𝑡 of this operator is shown in Fig-
ure 3 without showing the confidence interval. In this tuning, the
workload indicates the upstream data rates received by this op-
erator. There are five known regions, and 𝑙𝑒𝑛𝑎𝑙𝑙 = 12. Because
𝑝𝑚𝑎𝑥 = 15, we get 𝑃𝑟𝑢𝑠𝑒 = 12

15 = 4
5 based on this 𝐻𝑡 . CBO recom-

mends 𝑝𝑎𝑐𝑞 = 13 at this time, and the nearest observed level of
parallelism in 𝐻𝑡 from 𝑝𝑎𝑐𝑞 is 15. The 𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is 2, and CBO sets
𝛼 to 2, and 𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ≤ 𝛼 , so CBO recommends 𝑝𝑎𝑐𝑞 in this round
of tuning, otherwise, CBO recommends 𝑝𝑙𝑖𝑛 .

6.2 Average Complexity of the Number of
Reconfigurations of ContTune

In the scenario of one-shot parallelism tuning, the efficiency of a
tuning method is often evaluated based on the convergence speed.
However, considering the long-running nature of jobs in distributed
stream data processing systems, it is inappropriate to assess the
efficiency of tuning solely based on the speed of convergence in a
single tuning time. Instead, we use the average complexity of the
number of reconfigurations across continuous tuning scenarios as

4288

R
e
al

 P
ro

ce
ss

in
g

 A
b

il
it

y
(E

ve
n

ts
)

Parallelism
1 4 7 10 13 15

5

10

15

1e6

observed parallelism 𝑝𝑖 in 𝐻𝑡

predict

Workload

𝑝𝑚𝑎𝑥 = 15

𝑝𝑎𝑐𝑞 = 12.01 = 13

𝑙𝑒𝑛1 = 5 𝑙𝑒𝑛2 = 5 𝑙𝑒𝑛3 = 2

𝑙𝑒𝑛𝑎𝑙𝑙 = 5+ 5+ 2 = 12

𝑃𝑟𝑢𝑠𝑒 =
𝑙𝑒𝑛𝑎𝑙𝑙
𝑝𝑚𝑎𝑥

=
12

15

𝑃𝑟𝑛𝑜𝑡𝑈𝑠𝑒 = 1− 𝑃𝑟𝑢𝑠𝑒 =
3

15

𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡 = 15− 13 = 2

𝛼 = 2

𝐼𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ≤ α, so
use 𝑝𝑎𝑐𝑞𝑆𝑔𝑖 = (max(0, 𝑝𝑖 − α),min(𝑝𝑚𝑎𝑥, 𝑝𝑖 + α))

𝑀𝑎𝑘𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 𝑝𝑖 𝑖𝑛 𝐻
𝑡 𝑡𝑜 𝑆𝑔𝑖

𝑀𝑒𝑟𝑔𝑒 𝑎𝑙𝑙 𝑆𝑔𝑖 , 𝑙𝑒𝑛2 𝑖𝑠 𝑚𝑒𝑟𝑔𝑒𝑑 𝑏𝑦 𝑆𝑔2 𝑎𝑛𝑑 𝑆𝑔3

A surrogate model
that does not show
confidence intervals

Figure 3: The process of calculating 𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡 and probabilities.

a metric to evaluate the efficiency of ContTune. When ContTune
tunes long-running jobs, the exploration may delay convergence at
a particular tuning time, but it can increase the confidence of the
model and yield better results in subsequent tuning times.

We denote the number of tuning for a job as 𝜌 , and the Big
phase uses the Binary Lifting method, so the complexity of the
number of reconfigurations of getting 𝑝𝑚𝑎𝑥 (Line 9 in Algorithm 1)
is log2 𝑝𝑚𝑎𝑥 , and the worst-case is that job is under-provisioned at
the beginning of each tuning, and needs to reconfigure once (Line 12
in Algorithm 1) at each tuning making job not in backpressure state,
and during 𝜌 tuning times, the job needs to be reconfigured 𝜌 times
in worst. So the worst-case number of reconfigurations of the Big
phase is log2 𝑝𝑚𝑎𝑥 + 𝜌 , and the worst average complexity of the
number of reconfigurations of the Big phase is:

𝑂

(︃
log2 𝑝𝑚𝑎𝑥 + 𝜌

𝜌

)︃
. (7)

We denote the number of tuning using conservative exploration
as 𝜒 (𝜒 ≤ 𝜌), then the remaining (𝜌 − 𝜒) number of tuning is used
for fast exploitation. We denote the maximal number of reconfig-
urations used for tuning of the SOTA method for each tuning as
𝜙 2, therefore conservative exploration introduces (𝜒 × 𝜙) number
of reconfigurations. If CBO employs fast exploitation, CBO uses
only one reconfiguration in fast exploitation for each tuning in the
best case, a simple example is CBO has every level of parallelism
ranging from 1 to 𝑝𝑚𝑎𝑥 in 𝐻𝑡 . For this best case, fast exploitation
introduces (𝜌 − 𝜒) number of reconfigurations.

In the worst case, if CBO employs fast exploitation when fast
exploitation has not yet converged, CBO may find an inappropriate
level of parallelism that makes the operator bottlenecked. The sug-
gested inappropriate level of parallelism found by fast exploitation
doesn’t belong to 𝐻𝑡 , because the processing ability in 𝐻𝑡 is accu-
rate and not estimated by GP. The worst case would employ CBO 3

2For DS2, 𝜙 = 3 [33].
3Using CBO rather than ContTune because we have got the real upstream data rate 𝜆,
so for under-provisioned jobs, the Big phase is not used.

once again. We denote the number of reconfigurations introduced
by the worst case as 𝜔 , and 𝜔 ≤ 𝑝𝑚𝑎𝑥 . For this worst case, fast
exploitation introduces (𝜌 − 𝜒) + 𝜔 number of reconfigurations.

So the worst average complexity of the number of reconfigura-
tions of CBO is:

𝑂

(︃
(𝜒 × 𝜙) + (𝜌 − 𝜒) + 𝜔

𝜌

)︃
. (8)

The worst average complexity of the number of reconfigurations
of ContTune including the Big phase and CBO is:

𝑂

(︃ (︁
log2 𝑝𝑚𝑎𝑥 + 𝜌

)︁
+ ((𝜒 × 𝜙) + (𝜌 − 𝜒) + 𝜔)

𝜌

)︃
. (9)

We assume within 𝜌 tuning times, there is an upper bound on the
upstream data rates, and correspondingly, there is an upper bound
on the 𝑝𝑚𝑎𝑥 , 𝜙 ≤ 3 and 𝜔 ≤ 𝑝𝑚𝑎𝑥 , so average complexity of the
number of reconfigurations of ContTune is 𝑂 (1).

7 EXPERIMENTAL EVALUATION
In this section, we evaluate ContTune through end-to-end, dy-
namic scaling experiments with Flink. We verify the efficiency of
ContTune in tuning under-provisioned jobs, over-provisioned jobs,
stateless jobs and stateful jobs in two scenarios: synthetic work-
loads and real workloads in Section 7.2 and 7.3. We then validate the
design of ContTune by comparing different acquisition functions in
Section 7.4. For more experimental results (e.g., the ablation study
of Top-K and Mean-reversion), we refer the reader to our technical
report [39].

7.1 Setup
Configurations. We run all experiments and use Apache Flink
1.13 configured with 45 TaskManagers, each with 2 slots (maximal
level of parallelism per operator = 90) on up to three machines, each
with 16 AMD EPYC 7K62 48-Core Processor @2.60GHz cores and
32GB of RAM, running tLinux 2.2 (based on CentOS 7.2.1511).
Queries. We use 6 applications, WordCount chosen from original
Dhalion publication benchmark [20] and Queries Q1-3, 5, 8 from
Nexmark benchmark (multiple queries over a three entities model
representing on online auction system) [2, 4, 33, 66], and 3 real
applications Video streaming, ETL andMonitoring.

• WordCount, Q1 and Q2 contain only stateless operators,
such as map and filter and there are 3 operators in Word-
Count, 3 operators in Q1 and 3 operators in Q2.

• Q3 contains incremental join, a stateful record-at-a-time
two-input operator and there are 5 operators in Q3.

• Q5 and Q8 contain two window operators: sliding window,
tumbling window join and there are 3 operators in Q5, 4
operators in Q8.

• Video streaming contains 3 operators with huge data for
Tencent Meeting.
• ETL contains 8 operators with complex DAG for Wechat.
• Monitoring contains 9 operators with 3 sources and 3

sinks.
Dynamic Workloads Construction. We simulate real-world
stream applications by constructing dynamic workloads (i.e., vary-
ing their source rate along time). We use the workload unit in

4289

Table 3: Workload Unit rate (records/s) configuration for
WordCount and Nexmark queries on Apache Flink.

Source
WordCount 100K - -

Bids Auctions Persons
Q1 700K - -
Q2 900K - -
Q3 - 200K 40K
Q5 80K - -
Q8 - 100K 60K

0 800 1600 2400 3200 4000 4800 5600 6400 7200

4000

6000

8000

10000

12000

R
e
c
o
rd

s
/s

Video streaming

0 800 1600 2400 3200 4000 4800 5600 6400 7200

30

35

40

45

50

R
e
c
o
rd

s
/s

ETL

0 800 1600 2400 3200 4000 4800 5600 6400 7200

Elapsed time [s] (from 00:00 p.m. to 02:00 p.m.)

1600

1700

1800

1900

R
e
c
o
rd

s
/s

Monitoring

Figure 4: The job workload from Tencent’s real cluster from
00:00 p.m. to 02:00 p.m..

Table 3 and simulate the fluctuation using the full permutation of
length 10. For example, we generate a period of workloads by vary-
ing the source rate as [9𝑊𝑢 , 2𝑊𝑢 , 3𝑊𝑢 , 10𝑊𝑢 , 1𝑊𝑢 , 4𝑊𝑢 , 5𝑊𝑢 , 8𝑊𝑢 ,
6𝑊𝑢 , 7𝑊𝑢], which has 10 tuning times. To simulate the periodicity,
we replicate the 10 different source rate, forming a permutation of
20 source rates, which has 20 tuning times. We sample 6 permuta-
tions (𝑝𝑒𝑟1 − 6) for each application, i.e., a total of 120 tuning times
for each application. According to the mechanism of applied tuning
method, each tuning time may bring different reconfigurations,
even zero due to that the tuner is not triggered.

For applications Video streaming, ETL andMonitoring, we
collected their real aggregated workloads on Sources from zero p.m.
to two p.m. as shown in Figure 4.
Baselines. The baselines are presented below.

• Dhalion [20]: Dhalion is a rule-based method which in-
creases the level of parallelism of an operator suffering from
backpressure. We adopted the same rule as in its paper.

• DS2 [33]: DS2 is a linearity-based method and the SOTA
parallelism tuning method. We used the same parameters
as in its paper.

• Big + DS2: The Big phase first ensures that the job is not
in backpressure state and get the real upstream data rate 𝜆,
and then DS2 tunes the backpressure-free job.

• Dragster [41]: Dragster is a Bayesian Optimization-based
method, which needs to preset the upper bound of the
level of parallelism. Dragster provides two tuning methods,
“Online Saddle Point Algorithm” and a “Two-level Online

60 80 100 120 140

0.0

0.5

1.0

C
D

F

WordCount

ContTune 13 cores

DS2 14 cores

10 20 30 40 50

0.0

0.5

1.0

C
D

F

Q1

ContTune 25 cores

DS2 26 cores

10 20 30 40 50 60 70

0.0

0.5

1.0

C
D

F

Q2

ContTune 23 cores

DS2 24 cores

0 100 200 300 400 500 600 700

0.0

0.5

1.0

C
D

F

Q3

ContTune 18 cores

DS2 18 cores

0 100 200 300 400 500

p99 latency ms

0.0

0.5

1.0

C
D

F

Q5

ContTune 22 cores

DS2 25 cores

0 200 400 600 800 1000

p99 latency ms

0.0

0.5

1.0
Q8

ContTune 10 cores

DS2 11 cores

Figure 5: Observed per-record p99 latencyCDFs for six quries.

Optimization Framework”. The former has shown to ac-
complish the tuning with fewer reconfigurations, so we
used Dragster with “Online Saddle Point Algorithm”. For
the maximal bound, we use 𝑝𝑚𝑎𝑥 in ContTune (𝛼 = 3)
as the maximal bound for each query. Specially, Dragster
caches hyper parameters of each tuning for the case that
the workload has been processed.

• ContTune (𝛼 = 0): It uses ContTune to tune the levels of
parallelism and sets 𝛼 to 0. Therefore, it will only apply
the observed levels of parallelism in 𝐻𝑡 or the levels of
parallelism suggested by linearity-based tuning methods.
Then ContTune (𝛼 = 0) can be considered as linearity-based
tuning methods with cache.

• ContTune (𝛼 = 3): It uses ContTune to tune the levels of
parallelism and sets 𝛼 to 3.

• Random Search (RS): It randomly suggests the levels
of parallelism with a given maximal bound. The maximal
bound is obtained in the same way as Dragster. The search
ends once it finds the same optimal levels of parallelism
given by the above methods. Due to the excessive number
of reconfigurations required, we enumerate the levels of
parallelism and the corresponding processing abilities of
all operators beforehand and simulate the search with a
program instead (the simulation phase is not accompanied
by a real reconfiguration).

7.2 Evaluations on Synthetic Workloads
We compare ContTune with the baselines on synthetic workloads
and make the following observations.
ContTune finds the optimal levels of parallelism via mini-
mal number of reconfigurations. Table 4a shows the average
number of reconfigurations per tuning to find the optimal levels
of parallelism. In all cases, ContTune (𝛼 = 3) takes the minimum
number of reconfigurations. This shows that ContTune is the most
efficient tuning method, and ContTune (𝛼 = 0) has reduced average
35.42% ((2.40−1.55)2.40) number of reconfigurations compared to DS2
and ContTune (𝛼 = 3) has reduced average 46.25% ((2.40−1.29)2.40)
number of reconfigurations compared to DS2. Due to the ability
of the GP to fit the processing ability of the level of parallelism
near the observed level of parallelism in historical observations 𝐻𝑡 ,

4290

Table 4: Evaluations on synthetic workloads. Random Search is simulated due to the large number of reconfigurations. Therefore,
Random Search is unable to obtain the end-to-end running time, tuning time, and CPU usage.

⁓
A means the second-best result.

(a) Average number of reconfigurations per tuning.

Baseline WordCount Q1 Q2 Q3 Q5 Q8 SUM
Dhalion 3.08 5.36 4.97 3.84 5.59 3.61 4.41
DS2 1.78 2.29 2.29 1.49 3.34 3.21 2.40

Big + DS2 1.73 2.22 2.29 1.66 3.34 3.02 2.37
Dragster 2.75 3.85 3.85 2.75 4.95 3.85 3.67

ContTune (𝛼 = 0)
⁓⁓⁓
1.33

⁓⁓⁓
1.61

⁓⁓⁓
1.62

⁓⁓⁓
1.26

⁓⁓⁓
2.01

⁓⁓⁓
1.46

⁓⁓⁓
1.55

ContTune (𝛼 = 3) 1.16 1.32 1.28 1.18 1.55 1.26 1.29
Random Search 11.16 22.72 17.43 16.18 13.36 8.72 14.93

(b) Maximal number of requested CPU Cores.

Baseline WordCount Q1 Q2 Q3 Q5 Q8
Dhalion 17

⁓⁓
30

⁓⁓
29

⁓⁓
22

⁓⁓
27

⁓⁓
13

DS2 14 26 24 18 25 11
Big + DS2 16 32 32 32 32 16
Dragster 16 32 32 32 32 16

ContTune (𝛼 = 0) 16 32 32 32 32 16
ContTune (𝛼 = 3) 16 32 32 32 32 16
Random Search 16 32 32 32 32 16

(c) End-to-end running time (s).

Baseline WordCount Q1 Q2 Q3 Q5 Q8
Dhalion 81503.71 87407.70 83633.13 82783.87 88572.63 80546.21
DS2 76658.36 76397.77 76144.72 75148.37 80467.74 79644.56

Big + DS2 76762.78 76236.57 76248.81 75607.61 80230.45 78697.58
Dragster 81062.96 80691.36 80405.64 78828.27 84426.93 81806.26

ContTune (𝛼 = 0)
⁓⁓⁓⁓⁓⁓
75518.32

⁓⁓⁓⁓⁓⁓
75050.01

⁓⁓⁓⁓⁓⁓⁓
74931.15

⁓⁓⁓⁓⁓⁓⁓
74636.20

⁓⁓⁓⁓⁓⁓⁓
77506.44

⁓⁓⁓⁓⁓⁓⁓
75126.16

ContTune (𝛼 = 3) 75213.18 74560.88 74350.65 74439.40 76626.16 74772.08

(d) Tuning time (s).

Baseline WordCount Q1 Q2 Q3 Q5 Q8
Dhalion 8226.54 9441.17 8888.33 7870.00 11928.58 8032.83
DS2 4624.70 3991.42 4014.15 2955.07 7128.68 7163.79

Big + DS2 4641.78 3901.92 4100.27 3414.64 6941.12 6697.58
Dragster 8569.01 7685.27 7681.32 6757.03 11533.06 9570.16

ContTune (𝛼 = 0)
⁓⁓⁓⁓⁓
3394.57

⁓⁓⁓⁓⁓⁓
2725.56

⁓⁓⁓⁓⁓⁓
2818.33

⁓⁓⁓⁓⁓⁓
2476.41

⁓⁓⁓⁓⁓⁓
4209.26

⁓⁓⁓⁓⁓⁓
3090.27

ContTune (𝛼 = 3) 2947.20 2293.70 2206.18 2304.35 3324.88 2736.19

(e) The percentage of backlogged data.

Baseline WordCount Q1 Q2 Q3 Q5 Q8
Dhalion 12.79 (%) 28.31 (%) 19.39 (%) 22.03 (%) 27.43 (%) 7.38 (%)
DS2 1.92 (%) 4.60 (%) 2.86 (%) 3.53 (%) 8.03 (%) 1.52 (%)

Big + DS2 1.52 (%) 3.22 (%) 1.96 (%) 2.33 (%) 7.00 (%) 1.40 (%)
Dragster 6.08 (%) 7.97 (%) 7.11 (%) 2.52 (%) 7.49 (%) 5.14 (%)

ContTune (𝛼 = 0) 1.01 (%)
⁓⁓⁓
2.04

⁓⁓⁓
(%) 1.31 (%)

⁓⁓⁓
1.76

⁓⁓⁓
(%)

⁓⁓⁓
6.86

⁓⁓⁓
(%)

⁓⁓⁓
0.66

⁓⁓⁓
(%)

ContTune (𝛼 = 3)
⁓⁓
1.04

⁓⁓⁓
(%) 1.72 (%)

⁓⁓⁓
1.34

⁓⁓⁓
(%) 1.59 (%) 6.48 (%) 0.63 (%)

(f) Total CPU cost (Cores × second).

Baseline WordCount Q1 Q2 Q3 Q5 Q8
Dhalion

⁓⁓⁓⁓⁓⁓⁓
540840.16 874697.97 796300.50 692169.32 863432.32 520995.33

DS2 550029.28 906065.83 821041.00
⁓⁓⁓⁓⁓⁓⁓
698066.74

⁓⁓⁓⁓⁓⁓⁓
876788.87

⁓⁓⁓⁓⁓⁓⁓
524793.87

Big + DS2 562825.71 929565.85 853817.58 732693.26 899933.87 535530.00
Dragster 570678.66 947174.81 865663.73 736326.66 930962.75 543605.93

ContTune (𝛼 = 0) 548514.47
⁓⁓⁓⁓⁓⁓⁓
903635.23 820388.86 698339.79 878424.08 533789.47

ContTune (𝛼 = 3) 532022.10 905940.99
⁓⁓⁓⁓⁓⁓⁓
817178.90 699401.10 878743.96 533849.47

Table 5: CPU cores requested of ContTune andDS2when they
second face the same maximal upstream data rate 10 ×𝑊𝑢 .

Queries ContTune (𝛼 = 3) DS2
WordCount 13 CPU cores 14 CPU cores

Q1 25 CPU cores 26 CPU cores
Q2 23 CPU cores 24 CPU cores
Q3 18 CPU cores 18 CPU cores
Q5 22 CPU cores 25 CPU cores
Q8 10 CPU cores 11 CPU cores

which helps ContTune hit the minimal number of CPU cores. In all
experiments, ContTune applies the minimal number of CPU cores
at the end of each tuning as shown in Table 5. Figure 5 shows the
stable job latency of ContTune and DS2 (SOTA method) for the
same maximal workload at the end of tuning is similar in 6 jobs,
where ContTune applies 1,1,1,0,3,1 (cf. Table 5) CPU cores less than
DS2. Despite using fewer CPU resources, the latency of ContTune
tuned jobs is essentially the same as that of DS2 tuned jobs.
ContTune finds the optimal levels of parallelism viaminimal
running time. The total end-to-end running time as show in Ta-
ble 4c consists of three parts (1) job ideal running time, 72000 (s); (2)
time of processing buffered data as show in Table 6; (3) tuning time
(including the time of reconfigurations) as shown in Table 4d. Each
source of the job generates data for 600 seconds, so the job ideal run-
ning time is 600 × 120 (20 × 6 𝑝𝑒𝑟𝑠) = 72000 (𝑠). The inappropriate
configurations will make job under-provisioned and unprocessed
data buffered in the queue, and needs time to solve these buffered
data. Besides, eachmethod spends time on finding the optimal levels
of parallelism by making reconfigurations. In all cases, ContTune
achieves both minimum running time in Table 4c and tuning time

Table 6: Total time (s) of processing buffered data.

Baseline WordCount Q1 Q2 Q3 Q5 Q8
Dhalion 1277.17 5966.53 2744.8 2913.87 4644.05 513.38
DS2 33.66 406.35

⁓⁓⁓⁓⁓
130.57 193.3 1339.06 480.77

Big + DS2
⁓⁓⁓
121 334.65 148.54 192.97

⁓⁓⁓⁓⁓
1289.33 0.04

Dragster 493.95 1006.09 724.32 71.24 893.87 236.1
ContTune (𝛼 = 0) 123.75

⁓⁓⁓⁓⁓
324.45 112.82 159.79 1297.18

⁓⁓⁓⁓
35.89

ContTune (𝛼 = 3) 265.98 267.18 144.47
⁓⁓⁓⁓⁓
135.05 1301.28

⁓⁓⁓⁓
35.89

in Table 4d compared to other methods. This shows that ContTune
is the most efficient tuning method, and ContTune (𝛼 = 0) has
reduced average 2.52% ((464461.52−452768.28)464461.52) end-to-end running
times compared to DS2 and ContTune (𝛼 = 3) has reduced aver-
age 3.12% ((464461.52−449962.35)464461.52) end-to-end running times com-
pared to DS2. ContTune (𝛼 = 0) has reduced average 37.36%
((29877.81−18714.4)29877.81) end-to-end tuning time compared to DS2 and
ContTune (𝛼 = 3) has reduced average 47.08% ((29877.81−15812.5)29877.81)
end-to-end tuning time compared to DS2.
ContTune temporarily requests more CPU Cores and could
quickly eliminate the backlogged data.We show the maximal
number of CPU Cores requested by each method in Table 4b and
the total CPU cost (Core × second) in Table 4f. Dhalion and DS2
request the less maximal number of requested CPUCores than other
methods as shown in Table 4b, because both Dhalion and DS2 tune
levels of parallelism from small to big for under-provisioned jobs.
And the maximum number of CPU Cores requested by ContTune is
more thanDhalion andDS2 due to its Big phase. However, due to the
efficiency of finding the optimal levels of parallelism, the total CPU
cost is only a little more than DS2 as shown in Table 4f. In all cases,
Dhalion achieves the minimum total CPU cost, ContTune and DS2
use almost the same total CPU cost. ContTune (𝛼 = 3) uses average

4291

Table 7: TuningWordCount on synthetic workloads, 𝜅 means
all the number of reconfigurations, 𝜃 means the number of
reconfigurations for eliminating backpressure and 𝜁 means
the number of reconfigurations for over-provisioned jobs.

𝜅 𝜃 𝜁

DS2 ContTune DS2 ContTune DS2 ContTune
𝑝𝑒𝑟1 35 24 22 11 13 10
𝑝𝑒𝑟2 38 23 25 13 13 9
𝑝𝑒𝑟3 35 22 26 13 9 8

0.22% ((4376785.59−4367136.52)4367136.52) total CPU cost smaller than DS2 and
ContTune (𝛼 = 3) uses average 1.84% ((4367136.52−4288435.6)4288435.6) total
CPU cost bigger than Dhalion. So ContTune temporarily requests
more CPU Cores.

When the job is reconfigured, the data in the processing queue
that have not been processed are the backlogged data as shown in
Table 4e. These data must wait until the job completes the reconfig-
uration before they can be processed (e.g., Flink, Samza and Heron
use the kill-and-restart method to execute reconfigurations [45]),
and the waiting time will increase the job latency. Table 4e shows
that Big + DS2, ContTune (𝛼 = 0) and ContTune (𝛼 = 3) have less
backlogged data than DS2, Dragster and Dhalion thanks to the Big
phase. Both ContTune (𝛼 = 0) and ContTune (𝛼 = 3) achieve the
best or second-best result as shown in Table 4e, and ContTune
(𝛼 = 3) has reduced average 89.09% ((117.33−12.8)117.33) number of back-
logged data compared to Dhalion and ContTune (𝛼 = 3) has reduced
average 43.01% ((22.46−12.8)22.46) number of backlogged data compared
to DS2. Big + DS2, ContTune (𝛼 = 0) and ContTune (𝛼 = 3) also
have less time of processing these backlogged data than DS2, Drag-
ster and Dhalion thanks to the Big phase as shown in Table 6, and
ContTune (𝛼 = 3) has reduced average 88.10% ((18059.8−2149.85)18059.8)
time of processing backlogged data compared to Dhalion and Cont-
Tune (𝛼 = 3) has reduced average 16.79% ((2583.71−2149.85)2583.71) time
of processing backlogged data compared to DS2. The Big phase
temporarily requests more CPU Cores in order to quickly eliminate
these backlogged data.
ContTune prioritizes the job SLA. Table 7 presents the total
reconfigurations to find the optimal levels of parallelism and the
number of reconfigurations used to eliminating backpressure. We
observe that ContTune is faster than DS2 in eliminating the under-
provisioned jobs and uses less number of reconfigurations to find
the optimal levels of parallelism. This could be contributed to the
design of the Big-small algorithm. In the Big phase, ContTune
quickly allocates sufficient resources for the under-provisioned
jobs. Then, at the beginning of the Small phase, the SLA of the job
is satisfied, and the subsequent tuning is used only to improve the
CPU resource utilization.
ContTune effectively utilizes the previous tuning observa-
tions to speed up the tuning process. The Big phase algorithm
can quickly eliminate job backpressure and obtain the 𝜆. DS2 em-
ploys other methods (e.g., SnailTrail [30]) to estimate the 𝜆. There-
fore, in this experiment, to validate the efficiency of tuning methods
after obtaining the 𝜆, we proactively obtained the 𝜆 of each oper-
ator, and focused on comparing the efficiency of CBO based on
BO with the linear search of DS2 to demonstrate the efficiency of

0 250 500 750 1000 1250 1500 1750 2000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
c
o
rd

s
/s

1e7

DS2

ContTune(a=3)

Traget Rate

1000 1050 1100 1150 1200

5.0

5.5
1e6

0 250 500 750 1000 1250 1500 1750 2000
0

4

8

12

16

20

24

28

32

36

40

C
P
U

 C
o
re

s

DS2

ContTune(a=3)

1000 1050 1100 1150 1200

9

10

11

0 250 500 750 1000 1250 1500 1750 2000

Elapsed time [s]

40

60

80

100

120

C
P
U

 u
ti

li
z
a
ti

o
n
 (

%
)

DS2

ContTune(a=3)

100% line
1000 1100 1200

100

110

Figure 6: Aggregated Records/s of sources and CPU cores and
CPU utilization of Q2 on latter 10 tuning times.

ContTune. Figure 6 presents the performance of latter 10 tuning
times for Q2. The real CPU utilization does not exceed 100%. Any
CPU utilization above the 100% line in Figure 6 means that the job
is under-provisioned. We observe that ContTune performs better
than DS2 in the latter 10 tuning times. It takes full advantage of
historical observations in the face of a workload that has processed
before, rather than starting from the scratch like DS2. In all 10
tuning times, the number of reconfigurations used for ContTune is
smaller than or equal to the number of reconfigurations used for
DS2. And, the CPU cores used is smaller than or equal to the CPU
cores used for DS2, and the CPU cores used at the 1𝑠𝑡 , 5𝑡ℎ , 8𝑡ℎ , and
10𝑡ℎ tuning time smaller than that used for DS2.

7.3 Evaluations on Real Workloads
Figure 7 shows the total number of reconfigurations on real work-
loads. Since real workloads do not significantly vary as much as
synthetic workloads, the number of tuning may also vary depend-
ing on the controller, for example, controller triggers 26, 21 and 15
tuning times for Video Streaming, ETL andMonitoring. Figure 7
shows that compared to DS2, ContTune (𝛼 = 0) reduced 24.14%
((58−44)58) number of reconfigurations on Video streaming, and
25.64% ((39−29)39) number of reconfigurations on ETL, and reduced
45% ((40−22)40) number of reconfigurations on theMonitoring. And
ContTune (𝛼 = 3) reduced 44.83% ((58−32)58) number of reconfig-
urations on Video streaming, and 43.59% ((39−22)39) number of
reconfigurations on ETL, and reduced 57.5% ((40−17)40) number of
reconfigurations on Monitoring. The main reason that ContTune
(𝛼 = 0) and Dragster are not as efficient as the case on synthetic
workloads is that the period of real workload we captured do not
necessarily contain multiple workload replication, making it un-
likely to apply a simple caching mechanism. So the efficiency of
the above methods is compromised. In ContTune (𝛼 = 3) the fitting
ability of the GP compensates for this drawback better.

4292

Dhalion Dragster DS2 ContTune (α = 0) ContTune (α = 3) RS

Methods
0

50

100

150

200

250

300

350

400

Re
co

nf
ig

ur
at

io
ns

62

182

58
44 32

258

65

147

39 29 22

403

67

105

40
22 17

221

Video Streaming
ETL
Monitoring

Figure 7: Total reconfigurations on real workloads.

Table 8: Total reconfigurations of Q1 on synthetic workloads
with different acquisition function (AF).

Baseline 𝑝𝑒𝑟1 𝑝𝑒𝑟2 𝑝𝑒𝑟3 𝑝𝑒𝑟4 𝑝𝑒𝑟5 𝑝𝑒𝑟6 𝑠𝑢𝑚

DS2 51 44 47 41 46 46 275
CBO (AF 4) 26 25 27 28 32 26 164
CBO (AF 5) 22 23 27 28 25 26 151

7.4 Analysis of ContTune
Comparison of Different Acquisition Functions. We propose
a carefully designed acquisition function (Equation 5) that allows
ContTune to suggest the optimal levels of parallelism while strictly
satisfying SLA, and we compare it with CEI (Equation 4). Table 8
shows that CBO with Equation 5 has less number of reconfigura-
tions than CBO with CEI (Equation 4). CEI does not consider the
constraint safety-critical, and it may suggest infeasible levels of
parallelism during tuning (e.g., trying the level of parallelism 𝑝𝑖
with large 𝑝∗

𝑖
− 𝑝𝑖 but small 𝑃𝑟 [𝑓 (𝑝𝑖) ≥ 𝜆]). Once these levels of

parallelism are suggested, additional reconfigurations are required
to keep the job from backpressure. Mean represents exploitation in
BO, Equation 5 uses only mean and the surrogate model compose
of fast exploitation. These designs will avoid re-creating application
under-provisioned in the Small phase and reduce the number of
reconfigurations.

8 RELATEDWORK
Configuration of distributed stream data processing systems.
Many distributed stream data processing systems have a wide
range of configuration parameters, and tuning these parameters
can improve performance and reduce resource utilization. Operator
scaling techniques elastically tunes the amount of each operator’s
needed resource in order to be suitable for workload variations.
The user can horizontally or vertically scale operators. Horizontally
scaling deploys parallel instances of the same operator leveraging
Data Parallelization, and each instance processes a share of the in-
put stream. Vertically scaling focuses on tuning computer resource
(e.g., CPU time, instance memory) of the existing instance instead

of tuning the level of parallelism. In this survey [10], horizontally
scaling is more efficient than vertically scaling, so ContTune focuses
on horizontally scaling. There are many researches for horizontally
scaling. [5, 11, 15, 20, 24, 28, 29, 69, 71, 72] are rule-based tuning
methods, their effect depends on the setting of rules and thresholds,
and they often propose different rules and thresholds for different
systems, so the applicability of their methods is poor. [33, 50] use
the performance relation between workload and operator process
ability, but they do not know the non-linear relation between the
level of parallelism and process ability, so they use other recon-
figurations to tune the levels of parallelism. [18, 41] use Bayesian
Optimization to tune the levels of parallelism, and the shorts of
aggressive exploration brings many reconfigurations, but the use of
historical observations is helpful to establish the surrogate model
of the level of parallelism and process ability.
Bayesian Optimization. Bayesian Optimization (BO) is a SOTA
optimization framework for optimizing of expensive-to-evaluate
black-box function. It has been extensively used in many scenar-
ios, including hyperparameter tuning [7, 40, 67], experimental de-
sign [21] and controller tuning [8, 17, 19, 46]. BO uses an acquisition
function to suggest the next configuration that trades off explo-
ration (i.e., acquiring new knowledge) and exploitation (i.e., making
decisions based on existing knowledge) [36]. Instead of evaluating
the expensive black-box function, the acquisition function relies
on a surrogate model that is cheap to compute, and thus can be
efficiently minimized in each iteration. BO has been adopted to con-
figure the parameters of data management systems [6, 12, 16, 38, 75–
77]. However, its favor of exploration causes applying configura-
tions in unknown region with potentially bad performance, which
is unacceptable for mission-critical applications. For online tuning
with SLA requirement, we propose the CBO algorithm that utilizes
the safe configurations generated from linearity-based methods as
conservative exploration.

9 CONCLUSION
In this paper, we describe and evaluate ContTune, a continuous
tuning system for elastic stream processing using the Big-small al-
gorithm, the Big phase and the Small phase (CBO). ContTune uses
the Big phase to quickly eliminate job backpressure and buffered
data in the queue, and decouple tuning from the topological graph.
The Big phase can quickly satisfy SLA for under-provisioned jobs,
and the Small phase can quickly find optimal the level of parallelism
for over-provisioned jobs. CBO uses GP as the surrogate model to
fit the non-linear relationship for continuous tuning and introduces
the SOTA one-shot parallelism tuning method as conservative ex-
ploration to avoid SLA violations. ContTune performs tuning with
𝑂 (1) average complexity of the number of reconfigurations. Cont-
Tune achieves the best results for benchmarks or real applications,
synthetic or real workloads, compared to the SOTA method DS2.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (Nos. 62272054, 62192784, U22B2037, 61832001, 62172056),
Xiaomi Young Talents Program and the Fundamental Research
Funds for the Central Universities (2023PY11).

4293

REFERENCES
[1] 2019. Esper. Retrieved\from\https://www.espertech.com/.
[2] September 18, 2023. ApacheBeamNexmarkbenchmarksuite. https://beam.apache.

org/documentation/sdks/java/nexmark.
[3] September 18, 2023. Network buffer. https://nightlies.apache.org/flink/flink-

docs-release-1.15/docs/deployment/memory/network_mem_tuning/.
[4] September 18, 2023. NEXMark benchmark. http://datalab.cs.pdx.edu/niagaraST/

NEXMark.
[5] Yanif Ahmad, Bradley Berg, Uǧur Cetintemel, Mark Humphrey, Jeong-Hyon

Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alexander Rasin,
Nesime Tatbul, et al. 2005. Distributed operation in the borealis stream processing
engine. In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. 882–884.

[6] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In SIGMOD Conference. ACM, 1009–1024.

[7] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for Hyper-Parameter Optimization. In NIPS. 2546–2554.

[8] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. 2014.
An experimental comparison of Bayesian optimization for bipedal locomotion.
In ICRA. IEEE, 1951–1958.

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[10] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo
Russo. 2022. Runtime Adaptation of Data Stream Processing Systems: The State
of the Art. ACM Computing Surveys (CSUR) 54, 11s (2022), 1–36.

[11] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2013. Integrating scale out and fault tolerance in stream processing
using operator state management. In Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. 725–736.

[12] Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. 2021.
CGPTuner: a Contextual Gaussian Process Bandit Approach for the Automatic
Tuning of IT Configurations Under Varying Workload Conditions. Proc. VLDB
Endow. 14, 8 (2021), 1401–1413.

[13] Xin Chen, Ymir Vigfusson, Douglas M Blough, Fang Zheng, Kun-Lung Wu, and
Liting Hu. 2017. GOVERNOR: Smoother stream processing through smarter
backpressure. In 2017 IEEE International Conference on Autonomic Computing
(ICAC). IEEE, 145–154.

[14] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020.
Rhino: Efficient management of very large distributed state for stream processing
engines. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 2471–2486.

[15] S. Desimone. 2017. Storage reimagined for a streamingworld. https://pravega.io/
blog/2017/04/09/storage-reimagined-for-a-streaming-world/.

[16] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning Data-
base Configuration Parameters with iTuned. Proc. VLDB Endow. 2, 1 (2009),
1246–1257.

[17] Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, and
Andreas Krause. 2019. Safe Contextual Bayesian Optimization for Sustainable
Room Temperature PID Control Tuning. In IJCAI. ijcai.org, 5850–5856.

[18] Lorenz Fischer, Shen Gao, and Abraham Bernstein. 2015. Machines tuning
machines: Configuring distributed stream processors with bayesian optimization.
In 2015 IEEE International conference on cluster computing. IEEE, 22–31.

[19] Lorenz Fischer, Shen Gao, and Abraham Bernstein. 2015. Machines Tuning Ma-
chines: Configuring Distributed Stream Processors with Bayesian Optimization.
In CLUSTER. IEEE Computer Society, 22–31.

[20] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-
masamy. 2017. Dhalion: self-regulating stream processing in heron. Proceedings
of the VLDB Endowment 10, 12 (2017), 1825–1836.

[21] Adam Foster, Martin Jankowiak, Eli Bingham, Paul Horsfall, Yee Whye Teh,
Tom Rainforth, and Noah D. Goodman. 2019. Variational Bayesian Optimal
Experimental Design. In NeurIPS. 14036–14047.

[22] Tom ZJ Fu, Jianbing Ding, Richard TB Ma, Marianne Winslett, Yin Yang, and
Zhenjie Zhang. 2017. DRS: Auto-scaling for real-time stream analytics. IEEE/ACM
Transactions on networking 25, 6 (2017), 3338–3352.

[23] Bugra Gedik, Habibe G Özsema, and Özcan Öztürk. 2016. Pipelined fission for
stream programs with dynamic selectivity and partitioned state. J. Parallel and
Distrib. Comput. 96 (2016), 106–120.

[24] Buğra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2013. Elastic
scaling for data stream processing. IEEE Transactions on Parallel and Distributed
Systems 25, 6 (2013), 1447–1463.

[25] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. 2014. Bayesian Optimiza-
tion with Unknown Constraints. In UAI. AUAI Press, 250–259.

[26] Lukasz Golab and M Tamer Özsu. 2003. Issues in data stream management. ACM
Sigmod Record 32, 2 (2003), 5–14.

[27] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. PRESS: PRedictive Elastic
ReSource Scaling for cloud systems. 2010 International Conference on Network
and Service Management (2010), 9–16.

[28] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Sori-
ente, and Patrick Valduriez. 2012. Streamcloud: An elastic and scalable data
streaming system. IEEE Transactions on Parallel and Distributed Systems 23, 12
(2012), 2351–2365.

[29] ThomasHeinze, Zbigniew Jerzak, GregorHackenbroich, and Christof Fetzer. 2014.
Latency-aware elastic scaling for distributed data stream processing systems. In
Proceedings of the 8th ACM International Conference on Distributed Event-Based
Systems. 13–22.

[30] Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki Kalavri, Desislava C.
Dimitrova, Sebastian Wicki, Zaheer Chothia, and Timothy Roscoe. 2018. Snail-
Trail: Generalizing Critical Paths for Online Analysis of Distributed Dataflows.
In NSDI. USENIX Association, 95–110.

[31] Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John
Liagouris, and Timothy Roscoe. 2019. Megaphone: Latency-conscious state mi-
gration for distributed streaming dataflows. Proceedings of the VLDB Endowment
12, 9 (2019), 1002–1015.

[32] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automatic
Machine Learning: Methods, Systems, Challenges. Springer.

[33] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova, Matthew
Forshaw, and Timothy Roscoe. 2018. Three steps is all you need: fast, accurate,
automatic scaling decisions for distributed streaming dataflows. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 783–798.

[34] Nikos R Katsipoulakis, Alexandros Labrinidis, and Panos K Chrysanthis. 2017. A
holistic view of stream partitioning costs. Proceedings of the VLDB Endowment
10, 11 (2017), 1286–1297.

[35] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L
Wolf, Paolo Costa, and Peter Pietzuch. 2016. Saber: Window-based hybrid stream
processing for heterogeneous architectures. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. 555–569.

[36] Andreas Krause and Cheng Soon Ong. 2011. Contextual Gaussian Process Bandit
Optimization. In NIPS. 2447–2455.

[37] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD international conference on Management of data. 239–250.

[38] Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop
an AutoTuner for Memory-based Analytics. In SIGMOD Conference. ACM, 1667–
1683.

[39] Jinqing Lian, Xinyi Zhang, Yingxia Shao, Zenglin Pu, Qingfeng Xiang,
Yawen Li, and Bin Cui. 2023. ContTune: Continuous Tuning by Conserva-
tive Bayesian Optimization for Distributed Stream Data Processing Systems.
arXiv:2309.12239 [cs.DB]

[40] Edo Liberty, Zohar S. Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun,
Ramesh Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das,
Can Balioglu, Saswata Chakravarty, Madhav Jha, Philip Gautier, David Arpin,
Tim Januschowski, Valentin Flunkert, Yuyang Wang, Jan Gasthaus, Lorenzo
Stella, Syama Sundar Rangapuram, David Salinas, Sebastian Schelter, and Alex
Smola. 2020. Elastic Machine Learning Algorithms in Amazon SageMaker. In
SIGMOD Conference. ACM, 731–737.

[41] Yang Liu, Huanle Xu, and W. Lau. 2022. Online Resource Optimization for Elastic
Stream Processing with Regret Guarantee. Proceedings of the 51st International
Conference on Parallel Processing (2022).

[42] Björn Lohrmann, Peter Janacik, and Odej Kao. 2015. Elastic stream processing
with latency guarantees. In 2015 IEEE 35th International Conference on Distributed
Computing Systems. IEEE, 399–410.

[43] Federico Lombardi, Leonardo Aniello, Silvia Bonomi, and Leonardo Querzoni.
2017. Elastic symbiotic scaling of operators and resources in stream processing
systems. IEEE Transactions on Parallel and Distributed Systems 29, 3 (2017),
572–585.

[44] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman,
Paolo Costa, Terry Kim, SaravananMuthukrishnan, Vamsi Kuppa, et al. 2018. Chi:
A scalable and programmable control plane for distributed stream processing
systems. Proceedings of the VLDB Endowment 11, 10 (2018), 1303–1316.

[45] Yancan Mao, Yuan Huang, Runxin Tian, Xin Wang, and Richard TB Ma. 2021.
Trisk: Task-Centric Data Stream Reconfiguration. In Proceedings of the ACM
Symposium on Cloud Computing. 214–228.

[46] Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas
Krause, Stefan Schaal, and Sebastian Trimpe. 2017. Virtual vs. real: Trading off
simulations and physical experiments in reinforcement learning with Bayesian
optimization. In ICRA. IEEE, 1557–1563.

[47] Ruben Mayer, Christian Mayer, Muhammad Adnan Tariq, and Kurt Rothermel.
2016. Graphcep: Real-time data analytics using parallel complex event and graph
processing. In Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems. 309–316.

4294

Retrieved \ from \ https://www.espertech.com/
https://beam.apache.org/documentation/sdks/java/nexmark
https://beam.apache.org/documentation/sdks/java/nexmark
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/deployment/memory/network_mem_tuning/
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/deployment/memory/network_mem_tuning/
http://datalab.cs.pdx.edu/niagaraST/NEXMark
http://datalab.cs.pdx.edu/niagaraST/NEXMark
https://pravega.io/blog/2017/04/09/storage-reimagined-for-a-streaming-world/
https://pravega.io/blog/2017/04/09/storage-reimagined-for-a-streaming-world/
https://arxiv.org/abs/2309.12239

[48] Ruben Mayer, Ahmad Slo, Muhammad Adnan Tariq, Kurt Rothermel, Manuel
Gräber, and Umakishore Ramachandran. 2017. SPECTRE: Supporting consump-
tion policies in window-based parallel complex event processing. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference. 161–173.

[49] Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel. 2017. Minimizing
communication overhead in window-based parallel complex event processing.
In Proceedings of the 11th ACM International Conference on Distributed and Event-
based Systems. 54–65.

[50] Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y Levin, Gabriela Jacques-
Silva, Nikhil Simha, Anirban Banerjee, Brian Smith, Tim Williamson, Serhat
Yilmaz, et al. 2020. Turbine: Facebook’s service management platform for stream
processing. In 2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 1591–1602.

[51] Gabriele Mencagli, Massimo Torquati, and Marco Danelutto. 2018. Elastic-PPQ:
A two-level autonomic system for spatial preference query processing over
dynamic data streams. Future Generation Computer Systems 79 (2018), 862–877.

[52] Gabriele Mencagli, Massimo Torquati, Marco Danelutto, and Tiziano De Matteis.
2017. Parallel continuous preference queries over out-of-order and bursty data
streams. IEEE Transactions on Parallel and Distributed Systems 28, 9 (2017),
2608–2624.

[53] Gabriele Mencagli, Massimo Torquati, Fabio Lucattini, Salvatore Cuomo, and
Marco Aldinucci. 2018. Harnessing sliding-window execution semantics for
parallel stream processing. J. Parallel and Distrib. Comput. 116 (2018), 74–88.

[54] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, David Garcia-
Soriano, Nicolas Kourtellis, and Marco Serafini. 2015. The power of both choices:
Practical load balancing for distributed stream processing engines. In 2015 IEEE
31st International Conference on Data Engineering. IEEE, 137–148.

[55] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, Nicolas Kourtel-
lis, and Marco Serafini. 2016. When two choices are not enough: Balancing at
scale in distributed stream processing. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE). IEEE, 589–600.

[56] Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh. 2017.
Regret for Expected Improvement over the Best-Observed Value and Stopping
Condition. In ACML (Proceedings of Machine Learning Research), Vol. 77. PMLR,
279–294.

[57] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,
Indranil Gupta, and Roy H Campbell. 2017. Samza: stateful scalable stream
processing at LinkedIn. Proceedings of the VLDB Endowment 10, 12 (2017), 1634–
1645.

[58] Nicoló Rivetti, Emmanuelle Anceaume, Yann Busnel, Leonardo Querzoni, and
Bruno Sericola. 2016. Online scheduling for shuffle grouping in distributed
stream processing systems. In Proceedings of the 17th International Middleware
Conference. 1–12.

[59] Henriette Röger and Ruben Mayer. 2019. A comprehensive survey on paralleliza-
tion and elasticity in stream processing. ACM Computing Surveys (CSUR) 52, 2
(2019), 1–37.

[60] Omran Saleh, Heiko Betz, and Kai-Uwe Sattler. 2015. Partitioning for scalable
complex event processing on data streams. In New Trends in Database and In-
formation Systems II: Selected papers of the 18th East European Conference on
Advances in Databases and Information Systems and Associated Satellite Events,
ADBIS 2014 Ohrid, Macedonia, September 7-10, 2014 Proceedings II. Springer, 185–
197.

[61] Scott Schneider, Joel Wolf, Kirsten Hildrum, Rohit Khandekar, and Kun-LungWu.
2016. Dynamic load balancing for ordered data-parallel regions in distributed
streaming systems. In Proceedings of the 17th International Middleware Conference.
1–14.

[62] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. 2009.
Gaussian process optimization in the bandit setting: No regret and experimental
design. arXiv preprint arXiv:0912.3995 (2009).

[63] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger.
2010. Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design. In ICML. Omnipress, 1015–1022.

[64] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 147–156.

[65] Yi-Cheng Tu, Song Liu, Sunil Prabhakar, and Bin Yao. 2006. Load shedding in
stream databases: a control-based approach. (2006).

[66] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. Nexmark–
a benchmark for queries over data streams (draft). Technical Report. Technical
Report. Technical report, OGI School of Science & Engineering at

[67] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2015. Sequential
Model-Free Hyperparameter Tuning. In ICDM. IEEE Computer Society, 1033–
1038.

[68] Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng.
2019. Hyperparameter optimization for machine learning models based on
Bayesian optimization. Journal of Electronic Science and Technology 17, 1 (2019),
26–40.

[69] Sai Wu, Ying Li, Haoqi Zhu, Junbo Zhao, and Gang Chen. 2022. Dynamic index
construction with deep reinforcement learning. Data Science and Engineering 7,
2 (2022), 87–101.

[70] Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic stateful stream
computation in the cloud. In 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 723–734.

[71] Le Xu, Boyang Peng, and Indranil Gupta. 2016. Stela: Enabling stream process-
ing systems to scale-in and scale-out on-demand. In 2016 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 22–31.

[72] Qiang Yin, Jianhua Wang, Sheng Du, Jianquan Leng, Jintao Li, Yinhao Hong,
Feng Zhang, Yunpeng Chai, Xiao Zhang, Xiaonan Zhao, et al. 2022. An Adaptive
Elastic Multi-model Big Data Analysis and Information Extraction System. Data
Science and Engineering 7, 4 (2022), 328–338.

[73] Nikos Zacheilas, Nikolas Zygouras, Nikolaos Panagiotou, Vana Kalogeraki, and
Dimitrios Gunopulos. 2016. Dynamic load balancing techniques for distributed
complex event processing systems. In Distributed Applications and Interoperable
Systems: 16th IFIP WG 6.1 International Conference, DAIS 2016, Held as Part of
the 11th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings 16. Springer,
174–188.

[74] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the twenty-fourth ACM symposium on operating systems
principles. 423–438.

[75] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin
Cui. 2022. Facilitating Database Tuning with Hyper-Parameter Optimization:
A Comprehensive Experimental Evaluation. Proc. VLDB Endow. 15, 9 (2022),
1808–1821.

[76] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by
Meta-Learning for Cloud Databases. In SIGMOD Conference. ACM, 2102–2114.

[77] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. To-
wards Dynamic and Safe Configuration Tuning for Cloud Databases. In SIGMOD
Conference. ACM, 631–645.

4295

	Abstract
	1 Introduction
	2 PRELIMINARY
	2.1 Stream Processing Jobs in DSDPS
	2.2 Problem Definition and Terminology

	3 System Overview
	4 Big-small Algorithm
	4.1 Decomposing the Parallelism Tuning
	4.2 Big Phase and Small Phase

	5 Conservative Bayesian Optimization
	5.1 BO for Parallelism Tuning
	5.2 Trade-off between Conservative Exploration and Fast Exploitation
	5.3 Continuous Tuning via CBO

	6 Efficiency of ContTune
	6.1 Analysis of ContTune Convergence
	6.2 Average Complexity of the Number of Reconfigurations of ContTune

	7 Experimental Evaluation
	7.1 Setup
	7.2 Evaluations on Synthetic Workloads
	7.3 Evaluations on Real Workloads
	7.4 Analysis of ContTune

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

