
RTIndeX: Exploiting Hardware-Accelerated GPU Raytracing for
Database Indexing

Justus Henneberg
Johannes Gutenberg University

Mainz, Germany
henneberg@uni-mainz.de

Felix Schuhknecht
Johannes Gutenberg University

Mainz, Germany
schuhknecht@uni-mainz.de

ABSTRACT
Datamanagement on GPUs has become increasingly relevant due to
a tremendous rise in processing power and available GPU memory.
Similar to main-memory systems, there is a need for performant
GPU-resident index structures to speed up query processing. Un-
fortunately, mapping indexes efficiently to the highly parallel and
hard-to-program hardware is challenging and often fails to yield
the desired performance and flexibility. Instead of proposing yet
another hand-tailored index, we investigate whether we can exploit
an indexing mechanism that is already built into modern GPUs:
The raytracing hardware accelerator provided by NVIDIA RTX
GPUs. To do so, we re-phrase the database indexing problem as a
raytracing problem, where we express the dataset to be indexed as
objects in a 3D scene, and point/range lookups as rays across the
scene. In this combination, coined RX in the following, lookups are
performed as intersection tests in hardware by dedicated raytracing
cores. To analyze the pros, cons, and usefulness of the raytracing
pipeline for database indexing, we carefully evaluateRX along four-
teen dimensions and demonstrate its competitiveness and potential
in a large variety of situations.

PVLDB Reference Format:
Justus Henneberg and Felix Schuhknecht. RTIndeX: Exploiting
Hardware-Accelerated GPU Raytracing for Database Indexing. PVLDB,
16(13): 4268 - 4281, 2023.
doi:10.14778/3625054.3625063

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://infosys.informatik.uni-mainz.de/rtindex.

1 INTRODUCTION
Implementing performant index structures for highly-parallel GPU
architectures is a challenging task [1–7, 16, 20, 23, 24, 28, 32, 33,
44, 49, 54, 57, 58]. But do we really have to implement a high-
performing data structure from scratch? Can we maybe utilize the
hardware indexing mechanism that is already integrated in modern
GPUs?

1.1 Hardware Accelerated Indexing on GPUs
This indexing mechanism appears on NVIDIA’s RTX workstation
and consumer GPUs in form of a raytracing hardware accelerator.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.
doi:10.14778/3625054.3625063

This accelerator enables rendering of ray-traced scenes in real time
at a high frame rate. The concept is simple: A 3D scene contains
many objects, which are usually approximated by thousands of
triangles each, and a virtual camera observing the scene from a
certain position. To create a realistic image, the GPU simulates the
light rays entering the camera. For efficiency reasons, rays are cast
in reverse, i.e., they originate at the camera lens and then travel in
the direction the camera is facing until they hit the closest object. To
speed up detecting intersections between rays and objects, graphics
applications build a so-called bounding volume hierarchy (BVH) over
all objects of the scene. Using the BVH, modern GPUs can perform
the intersection test efficiently in hardware for a large number of
rays in parallel using specialized raytracing cores that exist solely
for this purpose.

Conceptually, finding intersections this way is nothing but a
hardware-accelerated indexing mechanism. While the 3D objects
in the scene resemble a dataset, the BVH serves as an auxiliary
index structure on top of it. Casting a ray resembles a lookup: If a
ray intersects with an object, the lookup returns a unique identifier
associated with the object. This enables us to map other indexing
problems, such as database indexing, to this mechanism, and to
exploit the built-in hardware acceleration for fast lookups. To create
a secondary index on a table column, we express all entries in the
column as 3D objects, ordered by their magnitude in the coordinate
system of the scene. We associate each object with the rowID of
the corresponding entry in the table, which is retrieved when a
ray hits the object. To perform a lookup, we fire a ray through the
area of interest, let the hardware detect all collisions, and return all
associated rowIDs.

Unfortunately, expressing database indexing using this raytrac-
ing mechanism is not as straight-forward as it sounds at first glance
and comes with a surprising amount of design choices to make.
First, to encode each dataset entry as a 3D object, we use the power-
ful but non-trivial OptiX [15, 42] computing API, which allows us to
freely program parts of the raytracing pipeline. As OptiX provides
numerous options to set up the scene, for example in the types of
primitives to use and the way intersection tests are performed, we
can identify several drastically different ways to express database
indexing. Second, the raytracing hardware imposes certain restric-
tions that we have to respect. For example, OptiX only supports
single-precision floating-point numbers, while we want to index up
to 64-bit wide integer keys. Consequently, we have to work around
this problem, and again, there are multiple different ways to do so.
Third, the raytracing mechanism is a proprietary implementation
by NVIDIA, where details about the internal structure and behavior
are intentionally not made available to the public [41]. Therefore,
it is highly unclear how well the problem of database indexing

4268

https://doi.org/10.14778/3625054.3625063
https://infosys.informatik.uni-mainz.de/rtindex
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3625054.3625063
https://www.acm.org/publications/policies/artifact-review-and-badging-current

rowID Article Category

0 Juice 26 (𝑘0)
1 Bread 25 (𝑘1)
2 Cookies 29 (𝑘2)
3 Coffee 23 (𝑘3)
4 Donuts 29 (𝑘4)
5 Wine 27 (𝑘5)

(a) Exemplary database table.

y=5

#3 in buffer

y=0

k3

#1

k1

#0

k0

#5

k5

#2 #4

Q1 Q2

Q3

𝟎. 𝟓

(𝟎,−𝟎. 𝟓,−𝟎. 𝟓)

#0

x=0

#1

x=1

#2

x=2

𝝐

Q4

#3

x=3

𝝐

#4

y=3

x=0 x=1 x=2 x=3

y=4

#3 #5

#0#1

#6 #2
gap

gap

(−𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓)

(𝟎. 𝟓,−𝟎. 𝟓,
𝟎. 𝟓)

Q7

Q7

Q7

Z

x=0 x=1 x=2 x=3

𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q5 𝒅 𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q6 𝒅

x=0 x=1 x=2 x=3

#1

#6 V0

#0

#5

#4 #3

#2
V4

V2 V3V1

V0

V1

V2 V3
V4
#5
#4
#6

#0
#1

#3
#2

𝟎. 𝟐𝟓

gap
gap

gap
gap

x=23 x=24 x=25 x=26 x=27 x=28 x=29
k2 k4

(b) Corresponding triangle arrangement for the Category column.

Figure 1: Visualization of how our indexing approach RX represents a secondary index on the Category column. For each key 𝑘𝑖
in Category, we create a triangle centered around the point (𝑘𝑖 , 0, 0), where the triangles are stored internally in the same order
as the keys they represent. For each lookup, we fire a ray that is tested for intersection with all triangles. For example, the
range lookup Q1 tests for all keys in the range [23, 25] and consequently hits triangles #3 and #1, returning rowIDs 3 and 1.

maps to the architecture and how it reacts to certain workloads,
like dense/sparse key sets or the hit/miss ratio of lookups.

1.2 Contributions and Structure of the Paper
As a consequence of these observations, in the following work,
we investigate whether and in which form hardware accelerated
indexing can be used to realize database indexing on GPUs. We
organize our work along fourteen different dimensions composed of
five configuration dimensions and nine experimental dimensions:

First, we present how to re-phrase database indexing as a ray-
tracing problem. Based on that, we discuss our implementation,
coinedRX, using the OptiX computing API.RX supports hardware-
accelerated point and range lookups on 64-bit integer columns on
NVIDIA RTX GPUs.

Second, we discuss the configuration options of RX along five
dimensions: We implement (1) three different ways to express keys,
(2) three different types of scene primitives to express the indexed
dataset, (3) three different ways to express point and range lookups,
(4) a flexible key decomposition, and (5) two different options to
perform updates. Empirically, we identify the most suitable config-
uration that we will use throughout the rest of the paper.

Third, we perform an in-depth experimental evaluation where
we compare RX against three GPU-resident index structures along
nine experimental dimensions: We vary (6) the number of indexed
keys and fired lookups, (7) the multiplicity of the indexed keys,
(8) the order of the keys and lookups, (9) the batch size, (10) the
hit/miss ratio, (11) the selectivity of range lookups, (12) the key size,
and (13) the distribution of keys and lookups. Also, we (14) compare
the performance on the three latest hardware architectures. Note
that we perform a stand-alone evaluation of RX and its baselines to
clearly identify the impact of the individual dimensions in isolation
and without the interference of other system components.

2 DATABASE INDEXING→ RAYTRACING
We start by re-phrasing database indexing as a raytracing problem.
Figure 1 visualizes the high-level principle of the approach with
a simple example: Assume we want to create a secondary index
for the integer column Category of the exemplary database table
shown in Figure 1a. To do so, we want to represent each key in
the column by a corresponding primitive and associate it with its
rowID. For simplicity, we limit the discussion to triangles for now
and discuss other primitive types in Section 3.5.

2.1 Building the Index
To build the index, we first convert each key 𝑘𝑖 of the table col-
umn into a corresponding triangle 𝑇𝑖 , where the 3D point (𝑘𝑖 , 0, 0)
should be a part of 𝑇𝑖 . In other words, we are using the numerical
Category value as our 𝑥-coordinate. In the 3D scene, this results
in a line of triangles with gaps of varying sizes in between, as
visualized in Figure 1b. If an entry occurs multiple times in the
table (as is the case for key 29), multiple triangles will be created at
the same location. One way of constructing 𝑇𝑖 is by slightly offset-
ting each of the three triangle corners in a different direction, e.g.,
(𝑘𝑖 ,−0.5,−0.5), (𝑘𝑖 + 0.5,−0.5, 0.5), and (𝑘𝑖 − 0.5, 0.5, 0.5). OptiX
requires all triangles to be stored in a so-called vertex buffer. The
position at which triangle 𝑇𝑖 is stored in the vertex buffer is not
arbitrary, but must correspond to its rowID 𝑖 , as this position serves
as the unique identifier that is returned by OptiX if a collision with
𝑇𝑖 is detected. Once the vertices are arranged in the buffer, we can
pass it to optixAccelBuild() to generate the BVH. A BVH is a tree-
like data structure in which the individual triangles form the leaves
of the tree. These triangles are then combined into small disjoint
groups. For each group, the BVH stores a three-dimensional cuboid,
called a bounding volume, which encloses all triangles in the group.
These bounding volumes are then iteratively grouped and enclosed
in the same way until only one group remains, forming the root
of the tree. Figure 2 visualizes a bounding volume hierarchy for
seven triangles in two dimensions. On modern RTX GPUs, both
the traversal of the BVH as well as the intersection tests between
the ray and the candidate triangles in the bounding volume are
hardware-accelerated.

y=5

#3 in buffer

y=0

k3

#1

k1

#0

k0

#5

k5

#2 #4

Q1 Q2

Q3

𝟎. 𝟓

(𝟎,−𝟎. 𝟓,−𝟎. 𝟓)

#0

x=0

#1

x=1

#2

x=2

𝝐

Q4

#3

x=3

𝝐

#4

y=3

x=0 x=1 x=2 x=3

y=4

#3 #5

#0#1

#6 #2
gap

gap

(−𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓)

(𝟎. 𝟓,−𝟎. 𝟓,
𝟎. 𝟓)

Q7

Q7

Q7

Z

x=0 x=1 x=2 x=3

𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q5 𝒅 𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q6 𝒅

x=0 x=1 x=2 x=3

#1

#6 V0

#0

#5

#4 #3

#2
V4

V2 V3V1

V0

V1

V2 V3
V4
#5
#4
#6

#0
#1

#3
#2

𝟎. 𝟐𝟓

gap
gap

gap
gap

x=23 x=24 x=25 x=26 x=27 x=28 x=29
k2 k4

Figure 2: Exemplary bounding volume hierarchy for a (two-
dimensional) triangle arrangement.

2.2 Performing Lookups
Now that the BVH is prepared, let us see how we utilize OptiX
to answer lookups, where we start with the more general range

4269

lookups. Conceptually, to answer a range lookup on the Category
column, such as [23, 25] (Q1), we have to cast a ray along the line of
triangles, starting just before the 𝑥-coordinate 23 and ending right
after the 𝑥-coordinate 25. In Figure 1, the range lookup ray hits
triangles #1 and #3, implying that rows with rowID 1 and 3 in the
original table satisfy the range predicate. To realize point lookups,
we can either formulate single-key range lookups (as shown in
Q2), or cast a short ray perpendicularly to the line of triangles (as
shown in Q3). In practice, we can answer a large number of range
lookups [𝑙 (𝑖) , 𝑢 (𝑖)] concurrently to exploit the parallel nature of the
hardware. Here, 𝑙 (𝑖) and 𝑢 (𝑖) denote the inclusive lower bound and
upper bound, respectively, of the 𝑖-th range lookup. We formulate
our batch of range lookups by specifying a corresponding ray for
each pair of bounds, where each ray consists of a three-dimensional
origin point 𝑜 and a direction vector 𝑑 . A ray intersects a triangle
𝑇 if there exists a 𝑡 > 0 such that the point 𝑝 = 𝑜 + 𝑡 · 𝑑 is part of
the triangle 𝑇 , where 𝑡 is called the intersection parameter. Note
that we can restrict the intersection range by providing two addi-
tional parameters, 𝑡min and 𝑡max. In this case, we will only detect
intersections that also satisfy 𝑡min < 𝑡 < 𝑡max.

To implement the lookups in OptiX, we have to set up a pro-
grammable OptiX pipeline. The pipeline consists of multiple user-
provided functions, called programs, as well as some additional con-
figuration options, and it can be launched similar to a CUDA kernel
from the host CPU. When we start the pipeline, it spawns a CUDA
thread for each lookup, where each thread calls the ray generation
program. Therein, we concurrently convert each lookup range into
the two ray parameters 𝑜 and 𝑑 , then pass those to the optixTrace()
API function to initiate the hardware-accelerated tracing proce-
dure. Precisely, for range lookup [𝑙 (𝑖) , 𝑢 (𝑖)], optixTrace() receives
𝑜 = (𝑙 (𝑖) − 0.5, 0, 0), 𝑑 = (1, 0, 0), 𝑡min = 0, and 𝑡max =𝑢 (𝑖) − 𝑙 (𝑖) + 1,
along with a reference to the pre-computed BVH. To obtain inter-
section information, we also have to define the so-called any-hit
program, which is called when the tracing procedure finds a ray-
triangle intersection. The any-hit program receives the offset of the
triangle within the vertex buffer, which corresponds to the rowID
in the original table, for further processing.

3 DESIGN CHOICES
After discussing the core principle, let us discuss five fundamental
design choices we face. We carefully evaluate all options to identify
the strengths and weaknesses of each choice. Before that, let us
introduce our evaluation setup.

3.1 Experimental Setup and Methodology
As we purely target GPU-resident data management, which be-
comes increasingly attractive due to an increase in available GPU
memory, we assume there exists an array containing our key set
in GPU memory. From this array, we construct the actual index,
where each key’s rowID is determined by its position in the array.
Looking up a key in the index returns a set of rowIDs, which we
subsequently use to retrieve values from a second GPU-resident
array of the same size. This simulates the typical usage of a sec-
ondary index. As a final result, we compute the sum of all retrieved
values. In our evaluation, we perform both point lookups, where
we look up an exact key 𝑘 in the index, as well as range lookups,
where we look up all keys within a range [𝑙, 𝑢]. As mentioned,

we always perform batch lookups to utilize the parallel nature of
the hardware. In this case, all results for the batch of lookups are
stored in a corresponding result array. Note that if a lookup does
not return any rowIDs, a reserved miss value is written into the
result array instead.

In our initial set of experiments, we fill the key array with 226
consecutive unsigned 32-bit integers, starting at zero, where the
keys are shuffled arbitrarily. We use a dense key set here to ensure a
predictable number of hits – later on in Section 4, we will evaluate
sparse key sets, duplicate keys, and varying hit rates as well. To
generate the point lookups, we uniformly and randomly choose
keys from the key array. For range lookups, we also uniformly pick
a lower bound 𝑙 from the key array and increase it by the desired
number of hits to generate the upper bound 𝑢. In total, we generate
227 lookups for every experiment and fire them in a single batch
unless specified otherwise. As we will see in the evaluation, only
batch processing workloads, which, for instance, arise naturally in
index-based joins, are able to fully saturate the GPU. We always
report the average of five runs (after an initial “warmup run” to
check for correctness and to ensure that the GPU does not wait
for the release of resources anymore). Regarding hardware, our
system contains an NVIDIA RTX 4090 GPU with 24 GB of VRAM
and 128 raytracing cores. This GPU implements the most recent
Ada Lovelace architecture and is the fastest consumer RTX GPU
currently available. In Section 4.10, we compare the performance
with three other GPUs of two older RTX architectures.

Note that whenever experiments require a deeper investigation,
we use the following two GPU profiling tools: NVIDIA’s Nsight
Systems [38] tool can visualize the order and run time of GPU ac-
tivities, such as kernel launches and memory allocations. Another
tool, Nsight Compute [37], provides detailed hardware metrics for
individual kernels and for the user-programmable parts of the ray-
tracing pipeline. Unfortunately, Nsight Compute does not provide
a cost breakdown for the fixed-function parts of the raytracing
pipeline. However, we ran experiments to ensure all memory coun-
ters, which we frequently rely on, cover the pipeline end-to-end.

3.2 How Can We Express Keys?
The first configuration dimension centers around how we can ex-
press our keys in a 3D scene. This question is more challenging
than it seems since the straightforward implementation we de-
scribed so far omitted an inconvenient detail: OptiX only supports
single-precision floating-point numbers (float32) to represent 3D
coordinates. As a consequence, simply casting a 32-bit integer key
(or even a 64-bit key) to a floating-point coordinate will result in
a loss of precision, and therefore, wrong results. In the following,
we propose three different options to still express keys. With each
presented option, we extend the supported key range up to 64-bit.

Naive Mode. We start with the Naive Mode, where the high-
level idea is to naively express an integer key as a float32 vertex
coordinate. To understand the problem with this approach, let us
look at how the integer 22 can be represented as a float32. The
binary representation of 22 is (10110)2 or (10110.0)2 with a binary
point. To store this number as a float32, we first convert it into its
normalized form, which means the binary point is shifted next to
the most significant bit. In our example, this results in a shift of
four positions, which we can express as (10110.0)2 = 24 × (1.011)2.

4270

Table 1: Overview of our proposed order-preserving methods for converting integers to floating-point numbers.

Mode Distinct Keys Conversion Formula Gap Creation Triangles Spheres AABBs

Naive 223 𝑘 ↦→ (float(𝑘), 0.0, 0.0) ±0.5 Y Y Y
Extended 229 𝑘 ↦→ (bit_cast<float>(2𝑘 +𝐶), 0.0, 0.0) nextafter() Y N Y

3D 264 𝑘 ↦→ (float(𝑘22:0), float(𝑘45:23), float(𝑘63:46)) ±0.5 Y Y Y

Here, 4 is called the exponent 𝑒 , whereas (1.011)2 is called the
significand𝑚. In a float32, the (signed) exponent is represented
using 8 bits, whereas the significand can have at most 24 bits. Un-
fortunately, with a significand of 24 bits, the contiguous range of
non-negative integers that can be stored in a float32 is at most 224.
However, the situation is even worse: OptiX requires us to leave a
gap between the start/end of the ray and the adjacent triangles for
the hit to be registered (see Figure 1b). Thus, we also need to make
sure that for each key 𝑘 , 𝑘 ± 0.5 can be represented as a float32.
Therefore, we have to conservatively restrict the key range to 223.
Only then, querying the very last key 223 − 1 will work, as we can
express 𝑡𝑚𝑎𝑥 = 223 − 1 + 0.5 without a loss of precision. This would
not be the case for 224 − 1, where 𝑡𝑚𝑎𝑥 = 224 − 1 + 0.5 cannot be
represented.

21 22 23 24 25 26
Number of indexed keys [2n]

101

102

103

104

Cm
. l

oo
ku

p
tim

e
[m

s]

 N
/A

 N
/A

 N
/A

naive
ext
3d

(a) Standard conversion.

21 22 23 24 25 26
Number of indexed keys [2n]

101

102

103

104

Cm
. l

oo
ku

p
tim

e
[m

s]

 N
/A

 N
/A

 N
/A

 ext with stride 1
 ext with stride 2
 ext with stride 4

 3d with stride 1
 3d with stride 2
 3d with stride 4

(b) Introducing stride.

Figure 3: Effects of key representations on lookup time. No-
tice the irregular behavior of Extended Mode (“ext”).

Extended Mode. So far, we have converted each integer key 𝑘
to its corresponding float32 representation. This limited our sup-
ported key range to 223. However, the range of floating point num-
bers that can be represented by a float32 is significantly larger
than 223. To exploit this larger range, we need an order-preserving
mapping from an integer key 𝑘 to a corresponding floating point
number 𝑓 . We propose the following mapping: Each integer key 𝑘
is mapped to the 2𝑘-th representable floating-point number us-
ing bit_cast<float>(2k). Mapping to every second float32 en-
sures that there is always a "gap value" between adjacent keys.
The gap values next to a key 𝑘 can be identified by passing 𝑘

to the nextafter() function from the C standard library (instead

of computing 𝑘 ± 0.5). Finally, note that we offset 2𝑘 by a con-
stant 𝐶 prior to casting, as not offsetting yields wrong results
due to implementation details related to float32 processing. We
found 𝐶 = bit_cast<uint32_t>(0.5f) to produce correct results for
all keys up to 229.

3D Mode. While we can already express 229 distinct keys in
Extended Mode, a general-purpose index structure should be able
to operate with 64-bit keys. To achieve this, and since all vertices in
OptiX are three-dimensional anyway, we now decompose the key
bits into three smaller integers. We covert these integers to float32

individually, and use them as three-dimensional coordinates to
center each triangle around. In our case, for a 64-bit key 𝑘 , we use
the 23 least significant bits as the 𝑥 coordinate (written as 𝑥 = 𝑘22:0),
the next 23 bits constitute the 𝑦 coordinate, and the remaining
18 bits form the 𝑧 coordinate. In Section 3.4, we evaluate other
decompositions as well. To support 32-bit keys using this method,
we extend each key to 64 bits by padding it with zeros. This mode
is identical to Naive Mode for all keys smaller than 223.

Note that this approach requires slight modifications to point
lookups and range lookups. For point lookups, the origin 𝑜 now
requires a three-dimensional offset. For range lookups, a single ray
might now be insufficient, since the triangles do not form a single
"line" anymore, but are scattered across the 3D scene. Instead, we
have to cast distinct rays for each integer between 𝑙63:23 and 𝑢63:23.
If a range lookup spans at most 223 integers, it can be answered by
casting only one or two rays. Figure 4 demonstrates how to answer
the range lookup [𝑙, 𝑢] = [15, 21] (Q4) in 3D Mode. To visualize the
principle in the example, we assume to have only two dimensions,
where the 𝑥 coordinate is determined by the two least significant
bits of the corresponding key, and the𝑦 coordinate by all remaining
bits. Table 4a shows the indexed keys along with their 𝑥 and 𝑦

coordinates in decimal representation. We first split the upper and
lower bounds into their coordinates, i.e., 𝑙 = 15 into 𝑥𝑙 = 𝑙1:0 = 3 and
𝑦𝑙 = 𝑙63:2 = 3, and 𝑢 = 21 into 𝑥𝑢 =𝑢1:0 = 1 and 𝑦𝑢 =𝑢63:2 = 5. As the
range of interest along the 𝑦-axis ranges from 3 to 5, we have to fire
three corresponding rays in parallel to the 𝑥-axis. The first ray we
fire starts at 𝑥𝑙 −0.5 = 2.5, the last ray ends at 𝑥𝑢 +0.5 = 1.5, whereas
all intermediate rays (for 𝑦 = 4 in this example) are unbounded, i.e.,
they hit all triangles along that line.

Let us now see how the three key conversion methods perform
in comparison. Figure 3a shows the cumulative lookup times when
varying the build size from 221 to 226. As we can see, the lookup
times are very similar between all three conversion methods, apart
from one oddity: With Extended Mode, lookup takes an extraordi-
nary amount of time as soon as the build size exceeds 225. One could
suspect that the magnitude of keys might be responsible, since the
numbers produced in Extended Mode become very large at some
point, up to around 262/1018. We tested this suspicion by multi-
plying each key by ±220 after conversion, but for all conversion
methods, the lookup time was identical. Instead, the value range

4271

𝑘 𝑥𝑘 =𝑘1:0 𝑦𝑘 =𝑘63:2

0 19 3 4
1 17 1 4
2 23 3 5
3 14 2 3
4 12 0 3
5 15 3 3
6 20 0 5

(a) Keys.

y=5

#3 in buffer

y=0

k3

#1

k1

#0

k0

#5

k5

#2 #4

Q1 Q2

Q3

𝟎. 𝟓

(𝟎,−𝟎. 𝟓,−𝟎. 𝟓)

#0

x=0

#1

x=1

#2

x=2

𝝐

Q4

#3

x=3

𝝐

#4

y=3

x=0 x=1 x=2 x=3

y=4

#3 #5

#0#1

#6 #2
gap

gap

(−𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓)

(𝟎. 𝟓,−𝟎. 𝟓,
𝟎. 𝟓)

Q7

Q7

Q7

Z

x=0 x=1 x=2 x=3

𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q5 𝒅 𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q6 𝒅

x=0 x=1 x=2 x=3

#1

#6 V0

#0

#5

#4 #3

#2
V4

V2 V3V1

V0

V1

V2 V3
V4
#5
#4
#6

#0
#1

#3
#2

𝟎. 𝟐𝟓

gap
gap

gap
gap

x=23 x=24 x=25 x=26 x=27 x=28 x=29
k2 k4

(b) Visualization.

Figure 4: Answering the range lookup [15,21] in 3D Mode
(simplified to two dimensions).

of keys appears to be responsible for this behavior (i.e., the ratio
𝑞 between the largest and the smallest inserted key), and we in-
troduced key stride to verify this: Instead of inserting keys 1, 2, 3,
etc., we insert 1𝑠 , 2𝑠 , 3𝑠 , etc., with stride parameter 𝑠 = 1, 𝑠 = 2, and
𝑠 = 4 in Figure 3b. The lookup times increase drastically as soon
as 𝑞 hits 226, and for any larger 𝑞, the experiment timed out after
five minutes. This is confirmed by profiling, which reveals that
in Extended Mode, the raytracing pipeline loads 76× more data
from main memory, and 93× more data from the internal L2 cache
when compared to 3D Mode, despite the build/lookup setup being
identical. This indicates that the BVH has to traverse more triangles
internally, implying that less triangles could be excluded outright,
and cache bandwidth becomes the bottleneck.

Selected Configuration. In conclusion, only 3D Mode can rep-
resent 64-bit keys, and it also exhibits stable scaling behavior. There-
fore, we will use this mode as the default key conversion method
for all subsequent experiments.

Handling other data types. Before continuing, we want to
emphasize that RX does not only support unsigned 64-bit integers,
but can handle other data types as well. All native C data types can
be mapped to a uint64 while preserving their relative order (this
technique is traditionally used in radix sorting), and can therefore
be indexed by RX. In particular, float32 and float64 values should
always be converted in this way, and never be indexed directly,
since the ratio 𝑞 between the smallest and largest value might be
very large, leading to immense slowdowns. Composite data types
(structs, arrays, strings) can still benefit from RX if their natural
ordering is lexicographic. For these data types, we can convert the
first few components (e.g., the first eight characters in a string)
into unsigned integers individually, then densely pack them into
a single 64-bit integer that can be passed to RX. This results in
hardware-accelerated point and range lookups for the first 64 bits
of the data type. The remaining components have to be compared
and filtered in software.

3.3 How Should We Cast Rays for Lookups?
Next, let us discuss and evaluate the options we have in casting rays
for range and point lookups. Let us first look at answering a range
lookup [𝑙, 𝑢], which also covers point lookups by setting 𝑙 =𝑢.

Figure 5 shows the two optionswe have to look up the range [2, 3]:
In Parallel from offset (Figure 5a), which we used so far, the
ray (Q5) originates at 𝑙 − 0.5 and ends at 𝑢 + 0.5. Thus, the origin of
the ray is offset from zero. In Parallel from zero (Figure 5b), the
ray (Q6) always originates from 0 and ends after 𝑢 + 0.5. To avoid
false positives, the ray parameter 𝑡min is set to 𝑙 − 0.5. For point

y=5

#3 in buffer

y=0

k3

#1

k1

#0

k0

#5

k5

#2 #4

Q1 Q2

Q3

𝟎. 𝟓

(𝟎,−𝟎. 𝟓,−𝟎. 𝟓)

#0

x=0

#1

x=1

#2

x=2

𝝐

Q4

#3

x=3

𝝐

#4

y=3

x=0 x=1 x=2 x=3

y=4

#3 #5

#0#1

#6 #2
gap

gap

(−𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓)

(𝟎. 𝟓,−𝟎. 𝟓,
𝟎. 𝟓)

Q7

Q7

Q7

Z

x=0 x=1 x=2 x=3

𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q5 𝒅 𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q6 𝒅

x=0 x=1 x=2 x=3

#1

#6 V0

#0

#5

#4 #3

#2
V4

V2 V3V1

V0

V1

V2 V3
V4
#5
#4
#6

#0
#1

#3
#2

𝟎. 𝟐𝟓

gap
gap

gap
gap

x=23 x=24 x=25 x=26 x=27 x=28 x=29
k2 k4

(a) Parallel from offset.

y=5

#3 in buffer

y=0

k3

#1

k1

#0

k0

#5

k5

#2 #4

Q1 Q2

Q3

𝟎. 𝟓

(𝟎,−𝟎. 𝟓,−𝟎. 𝟓)

#0

x=0

#1

x=1

#2

x=2

𝝐

Q4

#3

x=3

𝝐

#4

y=3

x=0 x=1 x=2 x=3

y=4

#3 #5

#0#1

#6 #2
gap

gap

(−𝟎. 𝟓, 𝟎. 𝟓, 𝟎. 𝟓)

(𝟎. 𝟓,−𝟎. 𝟓,
𝟎. 𝟓)

Q7

Q7

Q7

Z

x=0 x=1 x=2 x=3

𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q5 𝒅 𝒕𝒎𝒊𝒏

𝒕𝒎𝒂𝒙𝒐
Q6 𝒅

x=0 x=1 x=2 x=3

#1

#6 V0

#0

#5

#4 #3

#2
V4

V2 V3V1

V0

V1

V2 V3
V4
#5
#4
#6

#0
#1

#3
#2

𝟎. 𝟐𝟓

gap
gap

gap
gap

x=23 x=24 x=25 x=26 x=27 x=28 x=29
k2 k4

(b) Parallel from zero.

Figure 5: Two ways of expressing the range lookup [2, 3].

lookups, we have a third option available: Using Perpendicular
(Figure 1b), the ray always targets only one specific triangle and is
fired from a perpendicular angle to it. Table 2 summarizes the three
options with their respective ray parameters. Note that in 3D Mode,
we additionally shift the origin to the correct 𝑦 and 𝑧 coordinates
(see Section 3.2).

Table 2: Ray configuration parameters.

Method 𝑜 𝑑 𝑡min 𝑡max

Para. offset (Q5) (𝑙 − 0.5, 0, 0) (1, 0, 0) 0 𝑢 − 𝑙 + 1
Para. zero (Q6) (0, 0, 0) (1, 0, 0) 𝑙 − 0.5 𝑢 + 0.5

Perpend. (Q3) (𝑙, 0, −0.5) (0, 0, 1) 0 1

In Figure 6, we first evaluate whether point lookups should
be expressed as parallel rays or as perpendicular rays. Note that
Extended Mode does not support offsetting the ray origin due to
float32 precision limits. Therefore, we only test rays starting from
zero in this experiment. We can clearly see that perpendicular rays
consistently yield better lookup times than parallel rays. This is
because the parallel ray, by definition, intersects with the majority
of the bounding boxes and has to rely on 𝑡𝑚𝑖𝑛 < 𝑡 < 𝑡𝑚𝑎𝑥 to exclude
potential hits, while the perpendicular ray misses most bounding
boxes by default.

21 22 23 24
Number of indexed keys [2n]

101

102

103

Cm
. l

oo
ku

p
tim

e
[m

s]

 N
/A

 N
/A

naive
ext
3d

parallel from zero
perpendicular

Figure 6: Lookup time for parallel and perpendicular rays.

To identify which choice works better for range lookups, in
Table 3, we compare the answering time for offset rays, and rays
starting at zero. Note that we evaluate only 3D Mode here, since
Extended Mode does not support rays with offset, and Naive Mode
works almost identically to 3D Mode. We can see that offsetting
the origin pays off in all cases over keeping the origin at zero.

Selected Configuration. RX uses perpendicular rays for point
lookups and rays with an offset origin for range lookups.

Table 3: Lookup time for two choices of ray origin for range
lookups in 3D Mode.

Number of hits 1 4 16 64 256

Parallel from offset [ms] 61 197 580 2086 8025
Parallel from zero [ms] 61 1209 1652 3382 10196

4272

21 22 23 24 25 26
Number of indexed keys [2n]

0

20

40

60

80

100

120

Cm
. l

oo
ku

p
tim

e
[m

s] triangle
sphere
aabb
uncompacted
compacted

(a) Lookup performance.

21 22 23 24 25 26
Number of indexed keys [2n]

0

25

50

75

100

125

Bu
ild

 ti
m

e
[m

s]

triangle
sphere
aabb
compaction time

(b) Build performance.

21 22 23 24 25 26
Number of indexed keys [2n]

0

1

2

3

BV
H

siz
e

[G
B]

triangle
sphere
aabb
uncompacted
compacted

(c) Memory footprint.

Figure 7: Comparison of primitive types.

3.4 How Can We Decompose the Key?
In Section 3.2, we have decomposed each key 𝑘 in 3D Mode as
𝑥 = 𝑘22:0, 𝑦 = 𝑘45:23, and 𝑧 = 𝑘63:46. This decomposition allowed us
to support 64-bit keys. Since other decompositions are possible
as well, in the following, we test different configurations to see
their impact on the performance. From Figure 8, we can see that
the choice of decomposition affects lookup performance. When we
allocate bits to the 𝑥 and 𝑧 components (bars on the right side), the
lookup time increases. Remember that we always fire rays along
the 𝑧-axis to answer point lookups. Assigning more bits to the 𝑧
component means that triangles will increasingly stack along the
𝑧-axis, which effectively turns the perpendicular ray into a parallel
ray (see Section 3.3). In contrast, when all triangles satisfy 𝑧 = 0
(bars of the left side), there is only one layer of triangles from the
perspective of the ray, and lookups are fast. Note that we also tested
a variant where the keys are not densely packed, but uniformly
picked from the entire 64-bit space. In this situation, as expected,
the lookup time was not affected by the decomposition at all, since
there is no dimensional clustering present in the key set.

23+3+0
22+4+0

21+5+0
20+6+0

19+7+0
18+8+0

17+9+0
16+10+0

23+0+3
22+0+4

21+0+5
20+0+6

19+0+7
18+0+8

17+0+9
16+0+10

Key decomposition [x+y+z]

0

20

40

60

80

Cm
. l

oo
ku

p
tim

e
[m

s]

Figure 8: Point lookups under varying key decompositions.
In Figure 9, we additionally evaluate different decompositions

for range lookups. We can see that the more the bits are assigned
to the 𝑥-dimension, the better the lookup time. Maximizing the
number of bits for the 𝑥-component also reduces the risk of having
to cast multiple rays for wide ranges (see Figure 4b), and if multiple
rays must be cast, their number is minimized.

Selected Configuration. RX uses the decomposition 𝑥 = 𝑘22:0,
𝑦 = 𝑘45:23, and 𝑧 = 𝑘63:46 throughout the rest of the paper, which
yields good results for both point and range lookups.
3.5 Which Primitive Type Is Ideal?
So far, we have discussed how to express our keys using triangles.
As each triangle is stored as nine float32 (three vertex coordinates
for each of the three vertices), let us see whether other primitive
types offer a better memory footprint and/or performance. Apart
from triangles, OptiX supports spheres and axis-aligned bounding
boxes (AABBs).

16+10+0
17+9+0

18+8+0
19+7+0

20+6+0
21+5+0

22+4+0
23+3+0

16+10+0
17+9+0

18+8+0
19+7+0

20+6+0
21+5+0

22+4+0
23+3+0

Key decomposition [x+y+z]

0

100

200

300

400

Cm
. l

oo
ku

p
tim

e
[m

s]  256 hits per ray  1024 hits per ray

Figure 9: Range lookups under varying key decompositions.

Spheres. In contrast to triangles, which are planar, spheres are
curved surfaces defined by their center point and their radius. A
ray-sphere intersection can only occur when the ray enters or exits
the volume of the sphere at some point. To ensure that a ray can
always start outside of a sphere, we must avoid packing the spheres
too densely. Just like with triangles, rays have to start and end in
the gaps between adjacent spheres. To leave a sufficiently large
gap, we choose 𝑟 = 0.25 as the radius for each sphere. Since the
radius is uniform for all spheres, OptiX allows us to specify the
radius for all spheres at once. Consequently, each sphere only re-
quires three float32 to store the center, making this representation
comparatively space-efficient.

AABBs. Like spheres, AABBs delimit a volume, and only register
an intersection when a ray strikes one of the six faces. AABBs are
intended to enclose user-defined primitives, e.g., implicitly defined
surfaces, allowing them to be part of a larger 3D scene without
requiring them to be supported by OptiX natively. Consequently,
the user is expected to provide their own intersection program to
figure out if a ray actually hits the object enclosed by the bounding
box. In our case, it is sufficient to move the contents of the any-hit
program into the intersection program, and not report a hit in the
end. Internally, each AABB is represented by two corner points on
opposite sides, requiring six float32 in total and making AABBs
more space-efficient than triangles.

Let us now compare the cumulative lookup time, the build time,
and the memory footprint for all three primitive types in Figure 7.
We show the results for both the (default) uncompacted variant, as
well aswhen an additional compaction step via optixAccelCompact()
is performed afterwards. Regarding lookup performance, triangles
clearly perform best with a significant margin. We attribute this
to the fact that the ray-triangle intersection test is implemented in
hardware [12], utilizing the raytracing cores, whereas spheres and
AABBs both call a software-based intersection program. Both the
uncompacted and the compacted variant perform almost identically
for all primitive types. In terms of BVH build time, AABBs perform

4273

best, closely followed by trianges, while sphere BVHs take longer
to create. Compacting the structure after building it is cheap for
all three methods, where especially for triangles, the overhead is
negligible. Unfortunately, the memory footprint of (uncompacted)
triangles is the highest in comparison. At the same time, we can
see that the memory footprint decreases by up to 50% under com-
paction. Surprisingly, a sphere BVH takes the most time to compact,
and the final memory footprint is the largest of the three primitives.

Selected Configuration. When optimizing for lookup perfor-
mance, triangles should be preferred in order to fully utilize hard-
ware acceleration. When optimizing for memory footprint, AABBs
should also be considered. As we prioritize lookup performance,
RX uses triangles. Also, we compact the BVH in all cases.

3.6 How Do We Perform Updates?
Next, let us discuss how we perform updates on an already exist-
ing index. OptiX natively supports in-place updates to bounding
volume hierarchies via optixAccelBuild(), albeit with a few restric-
tions [13]: A special flag has to be set during construction, which
disables the effects of compaction. Further, updates still require ad-
ditional temporarymemory, and updates cannot add new primitives
or remove existing primitives.

To evaluate OptiX’ update behavior, we build the BVH as de-
scribed earlier and set the aforementioned update flag. We then
test two different update workloads: (a) We swap pairs of adjacent
positions in the buffer. Since keys are not sorted in the buffer, this
simulates updates that significantly change keys. (b) We swap pairs
of (rank-)adjacent keys. This simulates updates that change keys
by ±1, since our key set is dense. In both cases, the set of keys itself
does not change, only the keys’ position within the buffer changes.
As such, we would expect the lookup time to remain identical. After
applying updates to the key buffer, we again convert all keys into
triangles and update the BVH via optixAccelBuild(). Note that the
triangle buffer does not only contain the updated primitives, but
also the untouched ones. After the updates have been applied, we
perform the usual lookup phase.

Table 4: Update and lookup time in milliseconds for 226 keys
when swapping adjacent buffer positions and adjacent keys.

Experiment Phase 24 28 212 224 rebuild

Swap adj.
positions

Updates 38.7 38.8 38.7 39.6 126.5
Lookups 68.1 129.1 5361.3 - 68.1
Total 106.8 167.9 5400.0 - 194.6

Swap adj.
keys

Updates 39.5 39.5 39.5 39.5 126.5
Lookups 68.1 68.2 68.2 68.2 68.1
Total 107.6 107.7 107.7 107.7 194.6

From Table 4, we can make a set of interesting observations:
(1) The time required to update the structure is independent from
the number of applied updates. This is the case since the entire
buffer must be passed to the update routine – not only the updated
entries. (2) Updating is still more than three times faster than re-
building the BVH from scratch. This suggests that the BVH is not
completely rebuilt, but the existing bounding volumes are merely
adjusted. (3) This adjustment can drastically impact the lookup
time. When swapping more than 28 keys in adjacent buffer posi-
tions, the adjusted bounding volumes are much larger than before,

increasing the amount of required intersection tests. In such a situ-
ation, a full rebuild should be preferred. This behavior of adjusting
the BVH is confirmed by the stable lookup times when swapping
rank-adjacent keys instead of adjacent positions. A profiler can
provide more insight via memory statistics: Although the amount
of main memory accesses does not differ significantly between
the two update variants, swapping adjacent positions leads to an
immense increase in L1/L2 cache reads, while the increase is barely
noticeable when swapping adjacent values. Again, this indicates
that the BVH cannot exclude as many potential hits as before. The
OptiX documentation confirms this behavior [13], claiming that
the quality of the BVH will degrade substantially when too many
triangles are relocated.

SelectedConfiguration.We conclude that updates inRX should
be realized via a full rebuild in favor of lookup performance.

4 EXPERIMENTAL EVALUATION
After identifying a reasonable and well-performing configuration,
we will now vary the experimental setup along nine dimensions and
compare RX against three traditional GPU-resident index struc-
tures as baselines. The experimental setup in this section is the
same as in Section 3.1, however, instead of restricting the key set to
consecutive integers, we now permit the full 32-bit integer range
as keys (the B+-Tree baseline does not support 64-bit keys). Any
changes to this setup will be stated explicitly.

4.1 Traditional GPU Indexes as Baselines
We compare against the following GPU-resident index structures:

HT. Our first baseline is WarpCore, a state-of-the-art GPU hash-
table [25, 26]. WarpCore implements cooperative probing, where
each key is assigned to a group of threads during inserts or lookups,
and each group accesses neighboring slots in the hashtable. This
accelerates the task of identifying an empty slot for insertion, or
discovering the key to be looked up, while still using the GPU’s
cache and load-store units to the maximum extent possible. The
authors show that WarpCore outperforms other recent GPU hashta-
bles, such as SlabHash [4] and cuDPP [2, 3], especially when the
majority of slots is occupied. Just like the authors, we use a target
load factor of 0.8 and fix the group size for cooperative probing to
8. Since there is no bulk-loading for hashtables, we insert each key
separately during the build phase.

B+. Our second baseline is the state-of-the-art GPU B+-Tree by
Awad et al. [6] in its recently updated version [7, 22]. This baseline
traverses the tree in groups of 16 threads, so that lookups within a
node can be done synchronously using warp intrinsics. The build
phase sorts the keys using CUB’s key-value DeviceRadixSort [14],
an out-of-place GPU radix sort that is considered the fastest way to
sort integers using a CUDA-enabled GPU, then bulk-loads the tree
with the sorted key-value pairs. UnlikeHT and RX, the B+-Tree
only supports 32-bit keys. In comparison to a GPU LSM tree [5],
the B+-Tree yields better lookup performance, making it an ideal
baseline for the read-only benchmarks in this section. Note that
we had to slightly modify the range lookup code for the B+-Tree in
order to support efficient aggregation.

SA. Our third baseline is a sorted array, which we combine with
a naive binary search for lookups. This mimics the access patterns
that would occur during lookups in a balanced binary tree, while

4274

13 15 17 19 21 23 25 27
Number of lookups [2n]

0

1

2

3

Th
ro

ug
hp

ut
 [l

oo
ku

ps
/s

] 1e6
HT
B+
SA
RX

(a) Throughput (varying number of lookups).

15 16 17 18 19 20 21 22 23 24 25 26
Number of indexed keys [2n]

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 [l

oo
ku

ps
/s

] 1e7
HT
B+
SA
RX

(b) Throughput (varying build set size).

25 26
Number of indexed keys [2n]

0

20

40

60

80

100

120

Bu
ild

 ti
m

e
[m

s]

HT
B+
SA
RX
unsorted inserts
sorted inserts

(c) Impact on the build time.

Figure 10: The scaling behavior of all indexing methods.

requiring less overall memory. Insertions and deletions cannot take
place after the index has been constructed. Still, this index is trivial
to implement, and serves as a great baseline for more sophisticated
approaches. Again, we utilize CUB’s radix sort to sort the array.

4.2 Varying the Number of Lookups and the
Number Of Indexed Keys

We first compare the scaling behavior, where we focus on lookup
throughput and build time, along with memory footprint.

In Figure 10a, we first vary the total number of point lookups on
the 𝑥-axis from 213 to 227 while keeping the number of indexed keys
constant at 226. In this experiment,HT clearly outperforms all other
indexes. However, RX remains competitive in comparison to the
other order-based index structures B+ and SA. We can also observe
that the throughput of all methods starts saturating at around 221
lookups per batch. Below that, the workload is too small to fully
utilize the GPU resources. Let us investigate this behavior for RX:
Each processing element on an NVIDIA GPU (called SM) executes
threads in groups of 32 (called warps). When running RX, a single
SM can dynamically schedule up to 16 warps, which allows the GPU
to hide memory latencies, similar to hyper-threading in modern
CPUs. Assigning less than 16 warps to an SM means that the SM
is more likely to idle while waiting for a memory dependency. At
the same time, all SMs on the GPU are limited by the peak memory
bandwidth, which remains under-utilized when the number of
memory accesses is low. Table 5 shows the average number of
active warps per SM and the percentage of the peak GPU memory
bandwidth utilization: Increasing the number of lookups rapidly
saturates the limit of 16 warps per SM, but also approaches the peak
bandwidth at the same time, which eventually leads to constant
throughput. Note that our default of 227 lookups will always ensure
that the GPU resources are fully utilized during each experiment.

Table 5: Average number of active warps per SM and percent-
age of the peak GPU memory bandwidth utilization.

Number of lookups 213 215 217 219 221

Active warps per SM 3.89 6.68 12.46 13.79 14.25
Memory BW [% of peak] 39.61 61.36 75.12 77.97 78.96

In Figure 10b, we continue by varying the number of indexed
keys from 215 to 226 while keeping the number of lookups constant
at 227. We can see that for smaller key sets of up to 219 keys, RX
shows the best lookup performance of all methods.With an increase
in the number of keys, the throughput of RX unfortunately falls
belowHT and B+. Profiling provides an explanation for this behav-
ior: When the build set is small, all methods read exactly the same
amount of GPU main memory during the lookup phase, indicating

that all index structures fit into the GPU’s L2 cache. The profiler
also shows that the relative performance of each index structure
loosely correlates with the total number of executed instructions:
For 215 inserted keys, RX requires very few instructions, since the
BVH traversal is done in hardware, while B+ requires around 40×
as many. On the other hand, when the size of the build set increases
beyond 220, the index structures no longer fit into the L2 cache,
and the lookup performance is now bounded by GPU memory. RX
and B+ load a comparable amount of memory, but both load more
thanHT and SA. However, SA falls behind due to latency overhead
from unfavorable (random) memory access patterns.

In Figure 10c, we also inspect the scaling of the build time when
doubling the number of keys from 225 to 226 for both a sorted and
an unsorted key set. RX scales linearly in this regard, however,
the BVH creation is significantly more expensive than the build
phase for the other indexes. This, in combination with the fact that
updates perform poorly (see Section 3.6), indicates that RX should
be primarily used as a read-only index structure.

Table 6: Memory footprint for 226 keys.

Memory Footprint HT B+ SA RX

Final size [GB] 0.68 1.23 0.54 2.78
Overhead during build [GB] 0 1.35 0.81 4.37

With the build time in mind, let us also inspect the memory
footprint of all methods when indexing 226 keys. We differentiate
between the space required during construction and the space
required afterwards. From the results in Table 6, we can see that
RX consumes considerably more space during construction than
the traditional methods. After construction, the footprint shrinks
noticeably, but is still around twice as high as for B+. This is a
consequence of RX representing each key as a triangle, where
other indexes can store each key as-is. SA consumes more space
thanHT during construction (caused by the out-of-place radix sort),
but has zero structural overhead afterwards. HT consumes slightly
more due to a 25% over-allocation to achieve its target load factor.

4.3 Varying the Key Multiplicity
So far, our key set was composed of unique keys only. In the follow-
ing, we will introduce duplicates by varying the the key multiplicity
and see the impact on the lookup time. In Figure 11, we vary the key
multiplicity from 20 (unique keys) in logarithmic steps to 28 (every
key appears 256 times) while keeping the number of point lookups
constant. As the number of results for a point lookup increases
with the number of duplicates per key, we normalize the obtained
cumulative lookup time by dividing it by the number of duplicates
per key. Note that we cannot show B+ in this experiment, because
it does not support key duplicates.

4275

0 1 2 3 4 5 6 7 8
Key multiplicity [2n]

0

25

50

75

100

125

Nr
m

. c
. l

oo
ku

p
tim

e
[m

s] HT
SA
RX

Figure 11: Impact of key multiplicity on point lookups.

From the results we can see that an increased key multiplicity
generally favors all indexes. For RX, duplicate keys lead to the cre-
ation of multiple primitives located at exactly the same coordinates
in the scene. Hence, they do not increase the size or complexity
of the BVH in any way, but lead only to more ray intersection
tests, which are carried out very efficiently in hardware. Since each
lookup ray hits all duplicate primitives in one go, RX handles high
key multiplicities well, and marginally wins the comparison for
more than 4 duplicates per key. According to the profiler, the num-
ber of GPU main-memory loads equalizes across the indexes as the
multiplicity increases to 27. Retrieving the value associated with
each key now overshadows the cost of traversal.

4.4 Ordering Inserts and Lookups
Until now, we assumed that the indexed keys are inherently un-
sorted. However, in practice, the build keys (and their associated
values) could be pre-sorted in the column to index. Also, if sorting
is cheap, sorting a batch of point lookups by their requested key
might be beneficial. We therefore investigate the impact of sorted
inserts and/or sorted point lookups over the unsorted alternatives.
However, note that sorting is only possible if a sufficient amount
of additional GPU memory is available.

both unsorted sorted inserts sorted lookups both sorted
0

20

40

60

80

100

120

140

Cm
. l

oo
ku

p
tim

e
[m

s] HT
B+
SA
RX
sort

Figure 12: Impact of sorted keys and sorted point lookups on
lookup performance.

For sorting, we again use CUB’s DeviceRadixSort. In Figure 12,
we analyze the impact on the cumulative point lookup time for
all four combinations. When the lookups are unsorted, the build
order does not influence lookup times at all. For the baselines, this
is not surprising, since we know that they re-order the keys as part
of the build process anyway, either by sorting (B+ and SA) or by
hashing (HT). For RX, the same independence is shown by our
experiment: As the run time remains identical, it is very likely that
keys are reordered during BVH construction. In contrast, sorting
the point lookups positively impacts all indexes significantly. This
can be attributed to improved memory locality when traversing
the index structure, since neighboring lookups are likely to be
answered simultaneously by neighboring threads. As a result, the

number of GPU main-memory accesses decreases (between -45%
for HT and -92% for SA), and just like we explained in Section 4.2,
the number of instructions per lookup now limits the throughput.
When both the build set and the lookups are sorted, this locality
also extends to the value column: Neighboring threads look up keys
with similar magnitude, which means their associated values will
be close together in the sorted build set and even share the same
cache line. Finally, note that GPU-resident sorting is surprisingly
cheap in comparison to the actual lookups.

4.5 Varying the Batch Size for Lookups
Next, let us analyze the impact of splitting our 227 lookups into
multiple batches, which we fire consecutively. A submission pattern
of multiple smaller batches occurs in practice if (a) only a limited
number of lookups are waiting to be answered simultaneously,
(b) the latency is required be small, or (c) we want to sort the
lookups like in Section 4.2, but there is not enough space available
to do it in one go.

7 11 15 19 23 27 7 11 15 19 23 27
Lookups per batch [2n]

0

100

200

300

400

500

Cm
. l

oo
ku

p
tim

e
[m

s]

 unsorted lookups  sorted lookups

HT
B+
SA
RX
sort

Figure 13: Impact of batching lookups (capped at 500 ms).

Thus, in Figure 13, we vary the number of batches to submit
from 1 batch (227 lookups per batch) to 220 batches (128 lookups per
batch) and report the cumulative lookup time on the 𝑦-axis. Again,
we evaluate both ordered and unordered lookups, to observe the
effect of sorting. We can see that increasing the number of batches
generally has a negative effect on all methods. While the perfor-
mance for 20, 24, 28, and 212 batches remains relatively constant, the
performance degrades heavily for more batches due to two reasons:
(1) From 216 batches onwards, each batch is too small to saturate
GPU resources (see Section 4.2). (2) The total amount of overhead
caused by launching CUDA kernels increases, since we have to
perform one launch per batch. Further, we can see that sorting
many small batches is more expensive than sorting few larger ones.
In a separate experiment, we confirmed that the runtime of CUB’s
DeviceRadixSort stabilizes at a lower bound for batch sizes below
220. Consequently, sorting lookups does not improve performance
for batch sizes smaller than 219. For RX, a sweet spot is reached
for 212 batches (32, 768 lookups per batch), where it surpasses the
performance of the other order-based indexes B+ and SA.

4.6 Varying the Hit Rate of Lookups
Up to this point, we ensured that all lookups were hits and therefore
returned a non-empty result. However, depending on the workload,
misses might occur as well, potentially affecting the performance.
Thus, in Figure 14, we vary the hit rateℎ, i.e., the fraction of lookups
that return a non-empty result, on the 𝑥-axis, and observe the
impact on the cumulative lookup time on the 𝑦-axis. Again, we test
both unordered and ordered lookups.

4276

1.0 0.99 0.9 0.7 0.5 0.3 0.1 0.01 0.0 1.0 0.99 0.9 0.7 0.5 0.3 0.1 0.01 0.0

Hit rate (h)

0

25

50

75

100

125

Cm
. l

oo
ku

p
tim

e
[m

s]

 unsorted lookups  sorted lookups

HT
B+
SA
RX
sort

Figure 14: Varying the hit rate ℎ.

With a decrease of ℎ, for unsorted lookups, we observe a notable
decrease in lookup time for all indexes except for HT. A constant
portion of the decrease can be attributed to the fact that only hits
require us to retrieve a corresponding value from the projected
column, whereas each miss can skip this step. Apart from that, we
see a drastically different impact of the hit rate on the different
indexes. Most notably, RX runs disproportionately faster (up to 3×
when going from ℎ = 1.0 to ℎ = 0.0), outperforming B+ and SA for
ℎ ≤ 0.5 and even HT for ℎ ≤ 0.1 under unordered lookups. Here
we see the advantage of the BVH over regular search trees: The
BVH traversal can be aborted as soon as no bounding volume at
the next lower level covers the searched key. These early aborts can
be seen during profiling as a disproportionate reduction in GPU
main-memory accesses (-63% from ℎ = 1.0 to ℎ = 0.0). In contrast,
aborting the traversal early is not possible on regular trees, which
always have to do a full traversal. We confirmed that early abort is
indeed the reason for the good performance of RX in an additional
separate experiment, where we evaluated the extreme case that
all misses lie outside the value range of the key column, i.e., each
missed key is smaller/greater than the smallest/greatest key in the
key set: In this situation, RX performs even better than shown in
Figure 14, as the BVH traversal can already be aborted at the root
node. Lastly, as expected, all methods are generally faster under
ordered lookups with SA being the dominant method – however,
as stated before, sorting is only an option if additional memory
is available. In contrast, the performance of HT suffers when the
hit rate decreases. HT implements open addressing, where a miss
usually causes longer probe sequences than a hit. For sorted lookups,
and excluding the sorting phase, a hit rate of ℎ = 0.0 leads to 36%
more instructions being executed than for ℎ = 1.0, and the amount
of GPU main memory accesses doubling.

4.7 Impact of the Size of Keys
So far, we focused on 32-bit keys, as B+ does not support larger
keys. Nevertheless, let us now extend the key size to 64 bits to see
how the remaining indexes react.

0

25

50

75

100

125

150

Cm
. l

oo
ku

p
tim

e
[m

s]

 N
/A

HT
B+
SA
RX
32-bit keys
64-bit keys

(a) Impact on the lookup times.
0.0

0.5

1.0

1.5

2.0

2.5

M
em

or
y

fo
ot

pr
in

t [
GB

]

 N
/A

(b) Impact on the index size.

Figure 15: Impact of the key size (32-bit vs 64-bit).

In Figure 15, we compare the lookup time and index size for
32-bit and 64-bit keys. We also show the 32-bit results for B+ as a
point of reference. Regarding cumulative lookup time, Figure 15a
shows that RX is unaffected by the increase in key size, since it
does not differentiate between 32-bit keys and 64-bit keys when
converting them to triangles. In contrast, SA and HT slow down
under 64-bit keys, which we attribute to the increased cost of 64-bit
integer comparisons on GPUs, in combination with the increased
memory footprint of the underlying data structure. Figure 15b
shows the memory footprint of all indexes. Since RX treats 32-bit
keys like 64-bit keys during construction, the size of the BVH is
mostly the same, apart from small random variations pertaining to
the choice of inserted keys. In contrast, both SA andHT store each
key in its original representation, and therefore, 64-bit keys lead to
a noticeable increase in memory consumption.

4.8 Varying the Skew
We have seen how the indexes perform on a set of uniformly dis-
tributed keys, answering uniformly distributed lookups. In the fol-
lowing, we will introduce skew to both the lookup distribution as
well as the key distribution and observe the effects on the indexes.

In Figure 16, we introduce skew to the lookups while keeping the
indexed key set uniformly distributed. The keys of our lookups fol-
low a Zipf distribution, where we vary the Zipf coefficient from 0.0
(resembling a uniform distribution) up to a very high skew of 2.0
on the 𝑥-axis and observe the cumulative lookup time on the 𝑦-axis.
Again, we evaluate both sorted and unsorted lookups.

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Zipf coefficient for queries

0

50

100

150

Cm
. l

oo
ku

p
tim

e
[m

s]

 unsorted lookups  sorted lookups

HT
B+
SA
RX
sort

Figure 16: Varying the skew of point lookups on uniformly
distributed keys.

From the results we can see that skewed lookups have a positive
effect on the performance of all methods, which holds especially
for unsorted lookups. We attribute this to improved access locality
under skew, as the lookups now focus on a smaller key range.
Again, the resulting decrease in memory accesses heavily benefits
RX (see Section 4.2), such that RX outperforms the competing
indexes under high lookup skew. Let us analyze this in detail by
comparing RX and B+. When inspecting the cache hit rate for both
methods while varying the skewness in Table 7, we can see that as
long as the skewness is low, the cache hit rate is low as well, and
both methods are bandwidth bound. In this case, B+ is superior
since it has to read less data from GPU main memory. However,
as soon as the cache hit rate increases due to a higher skewness,
both variants become compute bound. Now RX outperforms B+
since it executes around 56× fewer instructions due to the hardware
acceleration. With ordered lookups, the performance improvement
is less noticeable, as sorted lookups already ensure good access
locality (see Section 4.4). In a separate experiment, we introduced

4277

skew to the key distribution while retaining a uniform lookup
distribution (only hits). However, all methods essentially remained
unaffected by a skewed key set. This is reasonable because each
index is able to partition the key set equally well no matter whether
the keys are widely spread across the domain or not.

Table 7: Impact of skewness on the data transfers and the
number of executed instructions (unordered lookups).

Zipf Hit rate L1/L2 [%] Memory read [GB] Instructions
coefficient RX B+ RX B+ RX B+

0.0 26/44 39/55 54.31 41.32 390M 22B
0.5 26/44 39/55 53.82 40.80 390M 22B
1.0 36/71 89/78 22.19 16.18 390M 22B
1.5 82/90 92/93 0.85 0.79 390M 22B

4.9 Answering Range Lookups
So far, we solely evaluated point lookups, where each lookup tar-
geted at most one key, andHT is the fastest index most of the time.
However, as soon as we want to answer range lookups, which are
not supported by HT, the order-based indexes RX, B+, and SA
can show their strengths. Thus, in Figure 17, we compare these
indexes in terms of cumulative range lookup performance while
varying the number of qualifying entries from 20 (resembling point
lookups) to 210. Note that we normalize the cumulative lookup time
by dividing it by the number of qualifying entries per range lookup.

0 2 4 6 8 10
Number of qualifying entries per lookup [2n]

0

25

50

75

100

125

150

Nr
m

. c
. l

oo
ku

p
tim

e
[m

s]

B+
SA
RX

Figure 17: Evaluating the cumulative range lookup time.

To easily generate range lookups that return a specific number
of qualifying entries, we build each index from a column filled with
a dense shuffled key set containing all integers in [0, 226 − 1]. On
such a dense key set, looking up the range [𝑙 (𝑖) , 𝑢 (𝑖)] with a span of
𝑠 =𝑢 (𝑖) − 𝑙 (𝑖) + 1 will return exactly 𝑠 qualifying entries. Note that
this setup represents the worst-case scenario for range lookups, as
all potential keys within each range actually exist. Thus, it yields
an upper bound for the execution time. From the result, we see that
B+ yields the best performance across all choices of 𝑠 . RX initially
outperforms SA for small range lookups, but then quickly loses its
advantage. This can be explained by the fact that both B+ and SA
store the keys in an ordered fashion, and therefore, only have to
locate the smallest qualifying key in the index. All other qualifying
keys can be found by traversing the index structure sideways, until
the first non-qualifying key is found, where B+ implements side-
ways traversal through a linked list of leaf nodes. In addition, B+
can utilize warp-level aggregation to accelerate the summation of
values, giving it an additional advantage over its competitors. In
contrast, RX has to identify each qualifying entry individually by
detecting a collision with each triangle that represents a qualifying

key. Also, we see that the normalized cumulative lookup time of
RX decreases when the number of qualifying entries increases.
This shows that the cost of BVH traversal remains rather constant
while varying the number of qualifying entries, whereas the cost
for ray intersection tests naturally increases.

With these results at hand, we can actually approximate the cost
of both phases. Optimistically assuming that exactly one BVH tra-
versal must be carried out per range lookup and that no interleaving
takes place, we can create an overdetermined equation system with
six equations from the obtained results, where the equation for
2𝑛 qualifying entries has the form:

LookupTime(2𝑛) =TraversalTime + 2𝑛 · IntersectTime,

containing the two unknowns TraversalTime and IntersectTime.
Approximating a solution to this equation system using the method
of non-negative least squares [31] yields 102.85ms for Traver-
salTime and 36.01ms for IntersectTime, implying that the cost
for the BVH traversal dominates the cost for a ray intersection test.

4.10 Varying the Hardware Architecture
Until now,we evaluated all methods on themost recent Ada Lovelace
GPU architecture. By testing the two previous architectures, Am-
pere and Turing, we can find out how much has changed over the
generations, in particular given the varying number of available
raytracing cores in different core generations. Table 8 provides an
overview of the four test systems spanning three generations of
RTX GPUs. While each system features a different CPU model,
remember that all measurements are fully GPU-resident, and there-
fore, CPU performance can barely influence the results.

Table 8: Evaluated GPUs and hardware architectures.

Sys. GPU Architecture VRAM RTX cores CPU

S1 4090 Ada Lovelace 24GB 128 (3rd gen) TR 3990X
S2a A6000 Ampere 48GB 84 (2nd gen) i9 12900K
S2b 3090 Ampere 24GB 82 (2nd gen) i7 11700K
S3 2080Ti Turing 11GB 68 (1st gen) i9 9900K

In Figure 18, we show the cumulative lookup performance for
both sorted and unsorted point lookups on all four test systems.
We observe a significant performance improvement over the three
hardware generations due to an increase in memory bandwidth
and number of CUDA cores. However, we can also see that while
RX was not yet competitive on system S3, it is competitive on
system S1. For sorted lookups, when going from S3 to S1,RX shows
the most improvement of 3.23×, far more than HT (2.41×), SA
(2.33×), and B+ (1.88×). We attribute this difference to a significant
increase in the number and performance of the available raytracing
cores, which doubled their throughput of ray intersection tests
with every generation according to NVIDIA [39, 40]. For unsorted
lookups, this effect is less pronounced, as all methods are limited
by memory throughput. In this case, the improvement for RX of
3.25× is on par with that of B+ (3.17×), followed by HT (2.39×).
SA improved by 4.24×, but still performs noticeably worse than all
other baselines, especially on older hardware. Since this trend of
increasing the number of raytracing cores will likely continue in
future generations (such as the upcoming Grace Hopper generation),
RX might be able to outperform the traditional variants eventually.

4278

2080Ti 3090 4090 A6000 2080Ti 3090 4090 A6000
Hardware setup

0

100

200

300

400

500

600

Cm
. l

oo
ku

p
tim

e
[m

s]

 unsorted lookups  sorted lookups

HT
B+
SA
RX
sort

Figure 18: Impact of hardware architecture on lookup times.

5 RELATEDWORK
Obviously, NVIDIA RTX was originally designed to accelerate the
rendering of complex lighting effects, e.g., transparency, reflection,
refraction, and drop shadows, in real-time. However, apart from
this paper, there exist other works outside of rendering that utilized
hardware acceleration on RTX-enabled GPUs in creative ways.

For example, one line of work uses raytracing to perform point
containment tests [29, 36, 50, 55]. A point containment test deter-
mines whether a point lies inside the boundary of a polygon (in 2D)
or a polyhedron (in 3D). One way to implement such a test is by find-
ing the closest intersection with the boundary, which can be solved
efficiently on RTX-enabled GPUs. Another area of application is
time-of-flight imaging [35, 47, 53]. Time-of-flight sensors compute
distances to surrounding objects by measuring the difference be-
tween transmission and reception of electromagnetic or acoustic
pulses. Specialized software can then recreate a three-dimensional
scene from a sufficient number of measurements. To test these sys-
tems, researchers can simulate the propagation of pulses produced
by such a sensor with hardware-accelerated raytracing in a virtual
environment. Also, the problem of performing an efficient radius
search [18, 59] has been accelerated using RTX. A radius search lo-
cates all points within a fixed radius from a specified point. One can
improve this search with a bounding volume hierarchy to quickly
exclude far-away points, which can be delegated to the RTX cores.
Further areas of application include physical simulations for graph
rendering [56] and particle movement [8, 9, 51].

Note that raytracing cores are not limited to consumer and work-
station GPUs, but also integrated into some data-center GPUs, in-
cluding the NVIDIA T4, A2, A10, A16, A40, and L40, some of which
can be accessed easily through various cloud providers. Future data-
center GPUs might even incorporate more specialized versions of
these cores, if data management applications start exploiting them.

Independent from NVIDIA RTX, in recent years, there is a trend
of turning traditional index structures to GPU-resident index struc-
tures. Typically, this implies optimizations to the memory layout
and access patterns, and changes to the memory allocation strategy.
Occasionally, a GPU index requires profound algorithmic changes
to alleviate contention issues caused by the enormous number of
active threads. Note that some existing GPU indexes only allow
lookups on the GPU, while construction and updates can only be
done via the CPU. GPU hashtables [2–4, 24, 25, 32, 57] provide
key-value mappings which yield top-of-the-line performance for
point lookups, but require various degrees of over-allocation to
perform efficiently, and cannot answer range lookups. If one only
needs to test membership, Bloom filters [16, 23, 25] and quotient
filters [20] require less space than hashtables, but membership tests

can produce false positives. Radix trees [1] and comparison-based
trees [5–7, 28] also manage key-value mappings, but additionally
support range lookups. Trees generally perform worse than hashta-
bles since tree traversal entails multiple cache misses, and some
trees demand sophisticated in-GPU memory managers to dynami-
cally allocate new nodes. While our comparison includes a state-of-
the-art comparison-based tree, no code for the radix tree was freely
available at the time of writing. If a column is limited to a small
amount of discrete values, a GPU bitmap index [49] can also offer
fast point and range lookups, while keeping a minimal memory
footprint. Since we specifically devised RX to support all possible
64-bit values in Section 3, a fair comparison with bitmap indexes is
not possible. Spatial queries require more specialized solutions, such
as GPU R-Trees [44, 54] or GPU permutation indexes [33]. Since
R-Trees also employ bounding volumes, it would have been com-
pelling to compare a software R-Tree to our hardware-accelerated
BVH approach. Unfortunately, at the time of writing, no R-Tree
implementation was openly available. Finally, learned indexes [58]
achieve high performance on GPUs, since they heavily depend on
linear algebra operations, which have been extensively optimized
on GPUs, and some GPUs even offer specialized accelerators for
these operations. Regrettably, the corresponding implementation
cannot be found online. Apart from indexing on GPUs, there is has
been interesting work proposing entirely or partially GPU-resident
DBMS architectures [10, 11, 17]. Also, other DBMS operations like
joins [19, 30, 34, 43, 45] or grouping and aggregation [27, 48, 52]
have been migrated successfully to GPUs.

Finally, apart from OptiX, DirectX [46] and Vulkan [21] pro-
vide specialized APIs to specifically target hardware-accelerated
raytracing, which both support our proposed indexing scheme.

6 LESSONS LEARNED & CONCLUSION
We presented RX and showed that database indexing can indeed be
expressed as a raytracing problem to utilize the built-in hardware
acceleration of RTX GPUs. We analyzed five design dimensions
and empirically evaluated that by splitting 64-bit keys into three
parts (3DMode) and by using these parts as vertex coordinates for a
compacted triangle BVH, we achieve a good trade-off between space
utilization and lookup performance. Further, we discovered that
under point lookups, RX can compete with traditional comparison-
based indexes. In high-miss and high-skew scenarios, RX even
outperforms the traditional indexes, including the hashtable. RX
also works well when lookups are submitted in smaller batches,
and when the lookup distribution is skewed. However, we also
identified that RX is currently not competitive with traditional
indexes in terms of build time, memory footprint, and support for
updates. Thus,RX should be used in a read-only fashion. Finally, we
have seen that RX improves faster than the baselines over multiple
hardware generations. If this trend continues, RX might be able to
outperform the baselines on future RTX generations.
ACKNOWLEDGMENTS
This work is supported by NVIDIA’s Academic Hardware Grant,
which provided us with the A6000 GPU.

REFERENCES
[1] Md. Maksudul Alam, Srikanth B. Yoginath, and Kalyan S. Perumalla. 2016. Perfor-

mance of Point and Range Queries for In-memory Databases Using Radix Trees

4279

on GPUs. In 18th IEEE International Conference on High Performance Computing
and Communications; 14th IEEE International Conference on Smart City; 2nd IEEE
International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2016,
Sydney, Australia, December 12-14, 2016, Jinjun Chen and Laurence T. Yang (Eds.).
IEEE Computer Society, 1493–1500. https://doi.org/10.1109/HPCC-SmartCity-
DSS.2016.0212

[2] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Shubhabrata Sengupta,
Michael Mitzenmacher, John D. Owens, and Nina Amenta. 2009. Real-time
parallel hashing on the GPU. ACM Trans. Graph. 28, 5 (2009), 154. https:
//doi.org/10.1145/1618452.1618500

[3] Dan A. Alcantara, Vasily Volkov, Shubhabrata Sengupta, Michael Mitzenmacher,
John D. Owens, and Nina Amenta. 2012. Chapter 4 - Building an Efficient Hash
Table on the GPU. In GPU Computing Gems Jade Edition, Wen mei W. Hwu (Ed.).
Morgan Kaufmann, Boston, 39–53. https://doi.org/10.1016/B978-0-12-385963-
1.00004-6

[4] Saman Ashkiani, Martin Farach-Colton, and John D. Owens. 2018. A Dynamic
Hash Table for the GPU. In 2018 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018. IEEE
Computer Society, 419–429. https://doi.org/10.1109/IPDPS.2018.00052

[5] Saman Ashkiani, Shengren Li, Martin Farach-Colton, Nina Amenta, and John D.
Owens. 2018. GPU LSM: A Dynamic Dictionary Data Structure for the GPU.
In 2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2018, Vancouver, BC, Canada, May 21-25, 2018. IEEE Computer Society, 430–440.
https://doi.org/10.1109/IPDPS.2018.00053

[6] Muhammad A. Awad, Saman Ashkiani, Rob Johnson, Martin Farach-Colton,
and John D. Owens. 2019. Engineering a high-performance GPU B-Tree. In
Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2019, Washington, DC, USA, February 16-20, 2019,
Jeffrey K. Hollingsworth and Idit Keidar (Eds.). ACM, 145–157. https://doi.org/
10.1145/3293883.3295706

[7] Muhammad A. Awad, Serban D. Porumbescu, and John D. Owens. 2022. A GPU
Multiversion B-Tree. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, PACT 2022, Chicago, Illinois, October
8-12, 2022, Andreas Klöckner and José Moreira (Eds.). ACM, 481–493. https:
//doi.org/10.1145/3559009.3569681

[8] Pascal R. Bähr, Bruno Lang, Peer Ueberholz, Marton Ady, and Roberto Kersevan.
2022. Development of a hardware-accelerated simulation kernel for ultra-high
vacuum with Nvidia RTX GPUs. Int. J. High Perform. Comput. Appl. 36, 2 (2022),
141–152. https://doi.org/10.1177/10943420211056654

[9] Blyth, Simon. 2020. Meeting the challenge of JUNO simulation with Opticks:
GPU optical photon acceleration via NVIDIA OptiX. EPJ Web Conf. 245 (2020),
11003. https://doi.org/10.1051/epjconf/202024511003

[10] Nils Boeschen andCarsten Binnig. 2022. GaccO -AGPU-acceleratedOLTPDBMS.
In SIGMOD ’22: International Conference on Management of Data, Philadelphia,
PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi
(Eds.). ACM, 1003–1016. https://doi.org/10.1145/3514221.3517876

[11] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. 2019. HetExchange: Encapsulating heterogeneous CPU-GPU par-
allelism in JIT compiled engines. Proc. VLDB Endow. 12, 5 (2019), 544–556.
https://doi.org/10.14778/3303753.3303760

[12] NVIDIA Corporation. 2018. NVIDIA Turing Architecture In-Depth. https:
//developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/ Accessed: Feb-
ruary 27, 2023.

[13] NVIDIA Corporation. 2019. Dynamic Updates. https://raytracing-docs.nvidia.
com/optix7/guide/index.html#acceleration_structures#dynamic-updates Ac-
cessed: February 27, 2023.

[14] NVIDIA Corporation. 2022. CUB. https://nvlabs.github.io/cub/ Accessed on
February 27th, 2023.

[15] NVIDIA Corporation. 2023. NVIDIA OptiX. https://developer.nvidia.com/rtx/
ray-tracing/optix Accessed: February 27, 2023.

[16] Lauro B. Costa, Samer Al-Kiswany, and Matei Ripeanu. 2009. GPU support
for batch oriented workloads. In 28th International Performance Computing and
Communications Conference, IPCCC 2009, 14-16 December 2009, Phoenix, Arizona,
USA. IEEE Computer Society, 231–238. https://doi.org/10.1109/PCCC.2009.
5403809

[17] Harish Doraiswamy and Juliana Freire. 2022. SPADE: GPU-Powered Spatial
Database Engine for Commodity Hardware. In 38th IEEE International Conference
on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE,
2669–2681. https://doi.org/10.1109/ICDE53745.2022.00245

[18] I. Evangelou, G. Papaioannou, K. Vardis, and A. A. Vasilakis. 2021. Fast Radius
Search Exploiting Ray Tracing Frameworks. Journal of Computer Graphics
Techniques (JCGT) 10, 1 (5 February 2021), 25–48. http://jcgt.org/published/
0010/01/02/

[19] Hao Gao and Nikolai Sakharnykh. 2021. Scaling Joins to a Thousand GPUs. In
International Workshop on Accelerating Analytics and Data Management Systems
Using Modern Processor and Storage Architectures, ADMS@VLDB 2021, Copen-
hagen, Denmark, August 16, 2021, Rajesh Bordawekar and Tirthankar Lahiri (Eds.).
55–64. http://www.adms-conf.org/2021-camera-ready/gao_adms21.pdf

[20] Afton Geil, Martin Farach-Colton, and John D. Owens. 2018. Quotient Filters:
Approximate Membership Queries on the GPU. In 2018 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21-25, 2018. IEEE Computer Society, 451–462. https://doi.org/10.1109/IPDPS.
2018.00055

[21] Khronos Group. 2020. Ray Tracing in Vulkan. https://www.khronos.org/blog/
ray-tracing-in-vulkan Accessed: February 27, 2023.

[22] Owens Research Group. 2021. MVGpuBTree: Multi-Value GPU B-Tree. https:
//github.com/owensgroup/MVGpuBTree Accessed: February 27, 2023.

[23] Masatoshi Hayashikawa, Koji Nakano, Yasuaki Ito, and Ryota Yasudo. 2019.
Folded Bloom Filter for High Bandwidth Memory, with GPU Implementations.
In 2019 Seventh International Symposium on Computing and Networking, CANDAR
2019, Nagasaki, Japan, November 25-28, 2019. IEEE, 18–27. https://doi.org/10.
1109/CANDAR.2019.00011

[24] Daniel Jünger, Christian Hundt, and Bertil Schmidt. 2018. WarpDrive: Massively
Parallel Hashing on Multi-GPU Nodes. In 2018 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25,
2018. IEEE Computer Society, 441–450. https://doi.org/10.1109/IPDPS.2018.00054

[25] Daniel Jünger, Robin Kobus, André Müller, Christian Hundt, Kai Xu, Weiguo
Liu, and Bertil Schmidt. 2020. WarpCore: A Library for fast Hash Tables on
GPUs. In 27th IEEE International Conference on High Performance Computing,
Data, and Analytics, HiPC 2020, Pune, India, December 16-19, 2020. IEEE, 11–20.
https://doi.org/10.1109/HiPC50609.2020.00015

[26] Daniel Jünger. 2022. warpcore. https://github.com/sleeepyjack/warpcore
Accessed: February 27, 2023.

[27] Tomas Karnagel, René Müller, and Guy M. Lohman. 2015. Optimizing GPU-
accelerated Group-By and Aggregation. In InternationalWorkshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures -
ADMS 2015, Kohala Coast, Hawaii, USA, August 31, 2015, Rajesh Bordawekar,
Tirthankar Lahiri, Bugra Gedik, and Christian A. Lang (Eds.). 13–24. http:
//www.adms-conf.org/2015/gpu-optimizer-camera-ready.pdf

[28] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.
Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.
2010. FAST: fast architecture sensitive tree search on modern CPUs and
GPUs. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010,
Ahmed K. Elmagarmid and Divyakant Agrawal (Eds.). ACM, 339–350. https:
//doi.org/10.1145/1807167.1807206

[29] Moritz Laass. 2021. Point in Polygon Tests Using Hardware Accelerated Ray
Tracing. In SIGSPATIAL ’21: 29th International Conference on Advances in Geo-
graphic Information Systems, Virtual Event / Beijing, China, November 2-5, 2021,
Xiaofeng Meng, Fusheng Wang, Chang-Tien Lu, Yan Huang, Shashi Shekhar,
and Xing Xie (Eds.). ACM, 666–667. https://doi.org/10.1145/3474717.3486796

[30] Zhuohang Lai, Xibo Sun, Qiong Luo, and Xiaolong Xie. 2022. Accelerating multi-
way joins on the GPU. VLDB J. 31, 3 (2022), 529–553. https://doi.org/10.1007/
s00778-021-00708-y

[31] Charles L. Lawson and Richard J. Hanson. 1995. Solving least squares problems.
Classics in applied mathematics 15, SIAM (1995), 1–337.

[32] Yuchen Li, Qiwei Zhu, Zheng Lyu, Zhongdong Huang, and Jianling Sun. 2021.
DyCuckoo: Dynamic Hash Tables on GPUs. In 37th IEEE International Conference
on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 744–755.
https://doi.org/10.1109/ICDE51399.2021.00070

[33] Mariela Lopresti, Fabiana Piccoli, and Nora Reyes. 2021. GPU Permutation Index:
Good Trade-Off Between Efficiency and Results Quality. In Computer Science
- CACIC 2021 - 27th Argentine Congress, CACIC 2021, Salta, Argentina, October
4-8, 2021, Revised Selected Papers (Communications in Computer and Information
Science), Patricia Pesado and Gustavo Gil (Eds.), Vol. 1584. Springer, 183–200.
https://doi.org/10.1007/978-3-031-05903-2_13

[34] Vasilis Mageirakos, Riccardo Mancini, Srinivas Karthik, Bikash Chandra, and
Anastasia Ailamaki. 2022. Efficient GPU-accelerated Join Optimization for
Complex Queries. In 38th IEEE International Conference on Data Engineer-
ing, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 3190–3193.
https://doi.org/10.1109/ICDE53745.2022.00295

[35] Mogamat Yaaseen Martin, Simon Lucas Winberg, Mohammed Yunus Abdul
Gaffar, and David MacLeod. 2022. The Design and Implementation of a Ray-
tracing Algorithm for Signal-level Pulsed Radar Simulation Using the NVIDIA®
OptiX Engine. J. Commun. 17, 9 (2022), 761–768. https://doi.org/10.12720/jcm.
17.9.761-768

[36] Nate Morrical, Ingo Wald, Will Usher, and Valerio Pascucci. 2022. Accelerating
Unstructured Mesh Point Location With RT Cores. IEEE Trans. Vis. Comput.
Graph. 28, 8 (2022), 2852–2866. https://doi.org/10.1109/TVCG.2020.3042930

[37] NVIDIA. 2023. Nsight Compute. https://developer.nvidia.com/nsight-compute
Accessed: Jul 9, 2023.

[38] NVIDIA. 2023. Nsight Systems. https://developer.nvidia.com/nsight-systems
Accessed: Jul 9, 2023.

[39] NVIDIA. 2023. NVIDIA ADA GPU ARCHITECTURE. https:
//images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-
architecture-whitepaper-v2.1.pdf Accessed: July 13, 2023.

4280

https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0212
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0212
https://doi.org/10.1145/1618452.1618500
https://doi.org/10.1145/1618452.1618500
https://doi.org/10.1016/B978-0-12-385963-1.00004-6
https://doi.org/10.1016/B978-0-12-385963-1.00004-6
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1109/IPDPS.2018.00053
https://doi.org/10.1145/3293883.3295706
https://doi.org/10.1145/3293883.3295706
https://doi.org/10.1145/3559009.3569681
https://doi.org/10.1145/3559009.3569681
https://doi.org/10.1177/10943420211056654
https://doi.org/10.1051/epjconf/202024511003
https://doi.org/10.1145/3514221.3517876
https://doi.org/10.14778/3303753.3303760
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://raytracing-docs.nvidia.com/optix7/guide/index.html#acceleration_structures#dynamic-updates
https://raytracing-docs.nvidia.com/optix7/guide/index.html#acceleration_structures#dynamic-updates
https://nvlabs.github.io/cub/
https://developer.nvidia.com/rtx/ray-tracing/optix
https://developer.nvidia.com/rtx/ray-tracing/optix
https://doi.org/10.1109/PCCC.2009.5403809
https://doi.org/10.1109/PCCC.2009.5403809
https://doi.org/10.1109/ICDE53745.2022.00245
http://jcgt.org/published/0010/01/02/
http://jcgt.org/published/0010/01/02/
http://www.adms-conf.org/2021-camera-ready/gao_adms21.pdf
https://doi.org/10.1109/IPDPS.2018.00055
https://doi.org/10.1109/IPDPS.2018.00055
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://github.com/owensgroup/MVGpuBTree
https://github.com/owensgroup/MVGpuBTree
https://doi.org/10.1109/CANDAR.2019.00011
https://doi.org/10.1109/CANDAR.2019.00011
https://doi.org/10.1109/IPDPS.2018.00054
https://doi.org/10.1109/HiPC50609.2020.00015
https://github.com/sleeepyjack/warpcore
http://www.adms-conf.org/2015/gpu-optimizer-camera-ready.pdf
http://www.adms-conf.org/2015/gpu-optimizer-camera-ready.pdf
https://doi.org/10.1145/1807167.1807206
https://doi.org/10.1145/1807167.1807206
https://doi.org/10.1145/3474717.3486796
https://doi.org/10.1007/s00778-021-00708-y
https://doi.org/10.1007/s00778-021-00708-y
https://doi.org/10.1109/ICDE51399.2021.00070
https://doi.org/10.1007/978-3-031-05903-2_13
https://doi.org/10.1109/ICDE53745.2022.00295
https://doi.org/10.12720/jcm.17.9.761-768
https://doi.org/10.12720/jcm.17.9.761-768
https://doi.org/10.1109/TVCG.2020.3042930
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf

[40] NVIDIA. 2023. NVIDIA AMPERE GA102 GPU ARCHITECTURE.
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-
architecture-whitepaper-v2.pdf Accessed: July 13, 2023.

[41] NVIDIA. 2023. Statement from NVIDIA about inspecting the BVH.
https://forums.developer.nvidia.com/t/visualize-optix-generated-bvh-in-
nsight-compute/253837 Accessed: May 24, 2023.

[42] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hobe-
rock, David P. Luebke, David K. McAllister, Morgan McGuire, R. Keith Morley,
Austin Robison, and Martin Stich. 2010. OptiX: a general purpose ray tracing
engine. ACM Trans. Graph. 29, 4 (2010), 66:1–66:13. https://doi.org/10.1145/
1778765.1778803

[43] Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. 2021. MG-Join:
A Scalable Join for Massively Parallel Multi-GPU Architectures. In SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).
ACM, 1413–1425. https://doi.org/10.1145/3448016.3457254

[44] Sushil K. Prasad, Michael McDermott, Xi He, and Satish Puri. 2015. GPU-based
Parallel R-tree Construction and Querying. In 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop, IPDPS 2015, Hyderabad, India, May
25-29, 2015. IEEE Computer Society, 618–627. https://doi.org/10.1109/IPDPSW.
2015.127

[45] Ran Rui, Hao Li, and Yi-Cheng Tu. 2020. Efficient Join Algorithms For Large
Database Tables in a Multi-GPU Environment. Proc. VLDB Endow. 14, 4 (2020),
708–720. https://doi.org/10.14778/3436905.3436927

[46] Microsoft DirectX Team. 2018. AnnouncingMicrosoft DirectX Raytracing! https:
//devblogs.microsoft.com/directx/announcing-microsoft-directx-raytracing/ Ac-
cessed: February 27, 2023.

[47] Peter Thoman, Markus Wippler, Robert Hranitzky, and Thomas Fahringer. 2020.
RTX-RSim: Accelerated Vulkan Room Response Simulation for Time-of-Flight
Imaging. In Proceedings of the International Workshop on OpenCL (Munich, Ger-
many) (IWOCL ’20). Association for Computing Machinery, New York, NY, USA,
Article 17, 11 pages. https://doi.org/10.1145/3388333.3388662

[48] Diego G. Tomé, Tim Gubner, Mark Raasveldt, Eyal Rozenberg, and Peter A. Boncz.
2018. Optimizing Group-By and Aggregation using GPU-CPU Co-Processing. In
International Workshop on Accelerating Analytics and Data Management Systems
Using Modern Processor and Storage Architectures, ADMS@VLDB 2018, Rio de
Janeiro, Brazil, August 27, 2018, Rajesh Bordawekar and Tirthankar Lahiri (Eds.).
1–10. http://www.adms-conf.org/2018-camera-ready/tome_groupby.pdf

[49] Brandon Tran, Brennan Schaffner, Joseph M. Myre, Jason Sawin, and David Chiu.
2021. Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query
Processing. Data Sci. Eng. 6, 2 (2021), 209–228. https://doi.org/10.1007/s41019-
020-00148-8

[50] Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Valerio Pascucci.
2019. RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray Tracing
Cores for Tet-Mesh Point Location. In High-Performance Graphics 2019 - Short
Papers, Strasbourg, France, July 8-10, 2019, Markus Steinberger and Theresa Foley
(Eds.). Eurographics Association, 7–13. https://doi.org/10.2312/hpg.20191189

[51] Bin Wang, Ingo Wald, Nate Morrical, Will Usher, Lin Mu, Karsten E. Thompson,
and Richard Hughes. 2022. An GPU-accelerated particle tracking method for
Eulerian-Lagrangian simulations using hardware ray tracing cores. Comput.
Phys. Commun. 271 (2022), 108221. https://doi.org/10.1016/j.cpc.2021.108221

[52] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding, and
Xiaodong Zhang. 2014. Concurrent Analytical Query Processing with GPUs. Proc.
VLDB Endow. 7, 11 (2014), 1011–1022. https://doi.org/10.14778/2732967.2732976

[53] Qiang Wang, Bo Peng, Ziyuan Cao, Xing Huang, and Jingfeng Jiang. 2020. A
Real-time Ultrasound Simulator Using Monte-Carlo Path Tracing in Conjunction
with Optix Engine. In 2020 IEEE International Conference on Systems, Man, and
Cybernetics, SMC 2020, Toronto, ON, Canada, October 11-14, 2020. IEEE, 3661–3666.
https://doi.org/10.1109/SMC42975.2020.9283057

[54] Simin You, Jianting Zhang, and Le Gruenwald. 2013. Parallel spatial query pro-
cessing on GPUs using R-trees. In Proceedings of the 2nd ACM SIGSPATIAL Inter-
national Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL
2013, Nov 4th, 2013, Orlando, FL, USA, Varun Chandola and Ranga Raju Vatsavai
(Eds.). ACM, 23–31. https://doi.org/10.1145/2534921.2534949

[55] Stefan Zellmann, Daniel Seifried, Nate Morrical, Ingo Wald, Will Usher, Jamie
A. P. Law-Smith, Stefanie Walch-Gassner, and André Hinkenjann. 2022. Point
Containment Queries on Ray-Tracing Cores for AMR FlowVisualization. Comput.
Sci. Eng. 24, 2 (2022), 40–51. https://doi.org/10.1109/MCSE.2022.3153677

[56] Stefan Zellmann, MartinWeier, and IngoWald. 2020. Accelerating Force-Directed
Graph Drawing with RT Cores. In 31st IEEE Visualization Conference, IEEE VIS
2020 - Short Papers, Virtual Event, USA, October 25-30, 2020. IEEE, 96–100. https:
//doi.org/10.1109/VIS47514.2020.00026

[57] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong Zhang.
2015. Mega-KV: A Case for GPUs to Maximize the Throughput of In-Memory
Key-Value Stores. Proc. VLDB Endow. 8, 11 (2015), 1226–1237. https://doi.org/10.
14778/2809974.2809984

[58] Xun Zhong, Yong Zhang, Yu Chen, Chao Li, and Chunxiao Xing. 2022. Learned
Index on GPU. In 38th IEEE International Conference on Data Engineering Work-
shops, ICDEWorkshops 2022, Kuala Lumpur, Malaysia, May 9, 2022. IEEE, 117–122.
https://doi.org/10.1109/ICDEW55742.2022.00024

[59] Yuhao Zhu. 2022. RTNN: accelerating neighbor search using hardware ray
tracing. In PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022, Jaejin Lee,
Kunal Agrawal, and Michael F. Spear (Eds.). ACM, 76–89. https://doi.org/10.
1145/3503221.3508409

4281

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://forums.developer.nvidia.com/t/visualize-optix-generated-bvh-in-nsight-compute/253837
https://forums.developer.nvidia.com/t/visualize-optix-generated-bvh-in-nsight-compute/253837
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/3448016.3457254
https://doi.org/10.1109/IPDPSW.2015.127
https://doi.org/10.1109/IPDPSW.2015.127
https://doi.org/10.14778/3436905.3436927
https://devblogs.microsoft.com/directx/announcing-microsoft-directx-raytracing/
https://devblogs.microsoft.com/directx/announcing-microsoft-directx-raytracing/
https://doi.org/10.1145/3388333.3388662
http://www.adms-conf.org/2018-camera-ready/tome_groupby.pdf
https://doi.org/10.1007/s41019-020-00148-8
https://doi.org/10.1007/s41019-020-00148-8
https://doi.org/10.2312/hpg.20191189
https://doi.org/10.1016/j.cpc.2021.108221
https://doi.org/10.14778/2732967.2732976
https://doi.org/10.1109/SMC42975.2020.9283057
https://doi.org/10.1145/2534921.2534949
https://doi.org/10.1109/MCSE.2022.3153677
https://doi.org/10.1109/VIS47514.2020.00026
https://doi.org/10.1109/VIS47514.2020.00026
https://doi.org/10.14778/2809974.2809984
https://doi.org/10.14778/2809974.2809984
https://doi.org/10.1109/ICDEW55742.2022.00024
https://doi.org/10.1145/3503221.3508409
https://doi.org/10.1145/3503221.3508409

	Abstract
	1 Introduction
	1.1 Hardware Accelerated Indexing on GPUs
	1.2 Contributions and Structure of the Paper

	2 Database Indexing → Raytracing
	2.1 Building the Index
	2.2 Performing Lookups

	3 Design Choices
	3.1 Experimental Setup and Methodology
	3.2 How Can We Express Keys?
	3.3 How Should We Cast Rays for Lookups?
	3.4 How Can We Decompose the Key?
	3.5 Which Primitive Type Is Ideal?
	3.6 How Do We Perform Updates?

	4 Experimental Evaluation
	4.1 Traditional GPU Indexes as Baselines
	4.2 Varying the Number of Lookups and the Number Of Indexed Keys
	4.3 Varying the Key Multiplicity
	4.4 Ordering Inserts and Lookups
	4.5 Varying the Batch Size for Lookups
	4.6 Varying the Hit Rate of Lookups
	4.7 Impact of the Size of Keys
	4.8 Varying the Skew
	4.9 Answering Range Lookups
	4.10 Varying the Hardware Architecture

	5 Related Work
	6 Lessons Learned & Conclusion
	Acknowledgments
	References

