
SparqLog: A System for Efficient Evaluation of SPARQL 1.1
Queries via Datalog

Renzo Angles
Universidad de Talca

Talca, Chile
rangles@utalca.cl

Georg Gottlob
University of Oxford

Oxford, United Kingdom
georg.gottlob@cs.ox.ac.uk

Aleksandar Pavlović
TU Wien

Vienna, Austria
apavlovi@dbai.tuwien.ac.at

Reinhard Pichler
TU Wien

Vienna, Austria
pichler@dbai.tuwien.ac.at

Emanuel Sallinger
TU Wien

Vienna, Austria
sallinger@dbai.tuwien.ac.at

ABSTRACT

Over the past decade, Knowledge Graphs have received enormous
interest both from industry and from academia. Research in this
area has been driven, above all, by the Database (DB) community
and the Semantic Web (SW) community. However, there still re-
mains a certain divide between approaches coming from these two
communities. For instance, while languages such as SQL or Datalog
are widely used in the DB area, a different set of languages such as
SPARQL and OWL is used in the SW area. Interoperability between
such technologies is still a challenge. The goal of this work is to
present a uniform and consistent framework meeting important
requirements from both, the SW and DB field.

PVLDB Reference Format:

Renzo Angles, Georg Gottlob, Aleksandar Pavlović, Reinhard Pichler,
and Emanuel Sallinger. SparqLog: A System for Efficient Evaluation of
SPARQL 1.1 Queries via Datalog. PVLDB, 16(13): 4240 - 4253, 2023.

doi:10.14778/3625054.3625061

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/joint-kg-labs/SparqLog.

1 INTRODUCTION

Since Google launched its Knowledge Graph (KG) roughly a decade
ago, we have seen intensive work on this topic both in industry
and in academia. However, there are two research communities
working mostly isolated from each other on the development of KG
management systems, namely the Database and the Semantic Web

community. Both of them comewith their specific key requirements
and they have introduced their own approaches.

Of major importance to the Semantic Web (SW) community is
the compliance with the relevant W3C standards:
[RQ1] SPARQL Feature Coverage. The query language SPARQL
is one of the major Semantic Web standards. Therefore, we require
the support of the most commonly used SPARQL features.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.
doi:10.14778/3625054.3625061

[RQ2] Bag Semantics. SPARQL employs per default bag semantics

(also referred to as multiset semantics) unless specified otherwise
in a query. We therefore require the support of this.

[RQ3] Ontological Reasoning. OWL 2 QL to support ontological
reasoning is a major Semantic Web standard. Technically, for rule-
based languages, this means that existential quantification (i.e.,
łobject inventionž) in the rule heads is required.

The Database (DB) community puts particular emphasis on the
expressive power and efficient evaluation of query languages. This
leads us to the following additional requirement:

[RQ4] Full Recursion. Full recursion is vital to provide the ex-
pressive power needed to support complex querying in business
applications and sciences (see e.g., [30]) and it is the main feature of
the relational query language Datalog [35]. Starting with SQL-99,
recursion has also been integrated into the SQL standard and most
relational database management systems have meanwhile incorpo-
rated recursion capabilities to increase their expressive power.

Finally, for an approach to be accepted and used in practice, we
formulate the following requirement for both communities:

[RQ5] Implemented System. Both communities require an im-
plemented system. This makes it possible to verify if the theoretic
results are applicable in practice and to evaluate the usefulness of
the approach under real-world settings.

The above listed requirements explain why there exists a certain
gap between the SW and DB communities. There have been several
attempts to close this gap. However, as will be detailed in Section 2,
no approach has managed to fulfil the requirements of both sides
so far. Indeed, while existing solutions individually satisfy some
of the requirements listed above, all of them fail to satisfy central
other requirements. The goal of this work is to develop one uniform
and consistent framework that satisfies the requirements of both
communities. More specifically, our contributions are as follows:

Theoretical Translation. We provide a uniform and complete
framework to integrate SPARQL support into a KG language that
meets all of the above listed requirements RQ1śRQ5. We have
thus extended, simplified and ś in some cases ś corrected previous
approaches of translating SPARQL queries (under both set and bag
semantics) to various Datalog dialects [3, 26, 28]. For instance, to
the best of our knowledge, all previous translations have missed or

4240

https://www.acm.org/publications/policies/artifact-review-and-badging-current

did not consider correctly certain aspects of the SPARQL standard
of the zero-or-one and zero-or-more property paths.

Translation Engine.We have developed the translation engine
SparqLog on top of the Vadalog system that covers most of the
considered SPARQL 1.1 functionality. We thus had to fill several
gaps between the abstract theory and the practical development
of the translation engine. For instance, to support bag semantics,
we have designed specific Skolem functions to generate a universal
duplicate preservation process. On the other hand, the use of the
Vadalog system as the basis of our engine made significant sim-
plifications possible (such as letting Vadalog take care of complex
filter constraints) and we also get ontological reasoning łfor freež.
SparqLog therefore supports both query answering and ontological
reasoning in a single uniform and consistent system.

Experimental Evaluation. We carry out an extensive empirical
evaluation on multiple benchmarks with two main goals in mind:
to verify the compliance of SparqLog with the SPARQL standard as
well as to compare the performance of our system with comparable
ones. It turns out that, while SparqLog covers a great part of the
selected SPARQL 1.1 functionality in the correct way, some other
systems (specifically Virtuoso) employ a non-standard behaviour
on queries containing property paths. As far as query-execution
times are concerned, the performance of SparqLog is, in general,
comparable to other systems such as the SPARQL system Fuseki
or the querying and reasoning system Stardog and it significantly
outperforms these systems on complex queries containing recursive
property paths and/or involving ontologies.

Structure of the paper. After a review of existing approaches in Sec-
tion 2, and the preliminaries in Section 3, we present our main
results: the general principles of our SparqLog system in Section 4,
a more detailed look into the translation engine in Section 5, and an
experimental evaluation in Section 6. We conclude with Section 7.
Further details on our theoretical translation, implementation, and
experimental results are provided in the full technical report of this
paper [1]. The source code of SparqLog and all material (queries,
input and output data, performance measurements) of our experi-
mental evaluation are provided in the supplementary material1.

2 RELATED APPROACHES

We review several approaches ś both from the Semantic Web and
the Database community. This discussion of related approaches is
divided into theoretical and practical aspects of our work.

2.1 Theoretical Approaches

Several theoretical research efforts have aimed at bridging the gap
between the DB and SW communities.

Translations of SPARQL to Answer Set Programming. In a
series of papers, Polleres et al. presented translations of SPARQL
and SPARQL 1.1 to various extensions of Datalog. The first transla-
tion from SPARQL to Datalog [26] converted SPARQL queries into
Datalog programs by employing negation as failure. This transla-
tion was later extended by the addition of new features of SPARQL
1.1 and by considering its bag semantics in [28]. Thereby, Polleres
and Wallner created a nearly complete translation of SPARQL 1.1

1https://github.com/joint-kg-labs/SparqLog (last visited 09/25/2023)

queries to Datalog with disjunction (DLV) programs. However, the
translation had two major drawbacks: On the one hand, the chosen
target language DLV does not support ontological reasoning as it
does not contain existential quantification, thereby missing a key
requirement (RQ3) of the Semantic Web community. On the other
hand, the requirement of an implemented system (RQ5) is only par-
tially fulfilled, since the prototype implementation DLVhex-SPARQL
Plugin [27] of the SPARQL to Datalog translation of [26] has not
been extended to cover also SPARQL 1.1 and bag semantics.

Alternative Translations of SPARQL to Datalog. An alterna-
tive approach of relating SPARQL to non-recursive Datalog with
stratified negation (or, equivalently, to Relational Algebra) was pre-
sented by Angles and Gutierrez in [2]. The peculiarities of negation
in SPARQL were treated in a separate paper [4]. The authors later
extended this line of research to an exploration of the bag semantics
of SPARQL and a characterization of the structure of its algebra and
logic in [3]. They translated a few SPARQL features into a Datalog
dialect with bag semantics (multiset non-recursive Datalog with
safe negation). This work considered only a small set of SPARQL
functionality on a very abstract level and used again a target lan-
guage that does not support ontological reasoning, failing to meet
important requirements (RQ1, RQ3) of the SW community. Most
importantly, no implementation exists of the translations provided
by Angles and Gutierrez, thus failing to fulfil RQ5.

Supporting Ontological Reasoning via Existential Rules. In
[15], Datalog± was presented as a family of languages that are par-
ticularly well suited for capturing ontological reasoning. The ł+ž in
Datalog± refers to the crucial extension compared with Datalog by
existential rules, that is, allowing existentially quantified variables
in the rule heads. However, without restrictions, basic reasoning
tasks such as answering Conjunctive Queries w.r.t. an ontology
given by a set of existential rules become undecidable [23]. Hence,
numerous restrictions have been proposed [9, 10, 14, 16, 17, 21] to
ensure decidability of such tasks, which led to the ł−ł in Datalog±.
Of all variants of Datalog±, Warded Datalog± [5] ultimately turned
out to constitute the best compromise between complexity and ex-
pressiveness and it has been implemented in an industrial-strength
system ś the Vadalog system [11], thus fulfilling requirement RQ5.
However, the requirement of supporting SPARQL (RQ1) with or
without bag semantics (RQ2) have not been fulfilled up to now.

Warded Datalog± with Bag Semantics. In [12], it was shown
that Warded Datalog± using set semantics can be used to represent
Datalog using bag semantics by using existential quantification to
introduce new tuple IDs. It was assumed that these results could be
leveraged for future translations from SPARQL with bag semantics
to Warded Datalog± with set semantics. However, the theoretical
translation of SPARQL to Vadalog (RQ1) using these results and
also implementation (RQ5) by extending Vadalog were left open in
[12] and considered of primary importance for future work.

2.2 Practical Approaches

Several systems have aimed at bridging the gap between DB and
SW technologies. The World Wide Web Consortium (W3C) lists
StrixDB,DLVhex SPARQL-engine and RDFox as systems that support

4241

SPARQL in combination with Datalog2. Furthermore, we also have
a look at ontological reasoning systems Vadalog, Graal and VLog,
which either understand SPARQL to some extent or, at least in
principle, could be extended in order to do so.

DLVhex-SPARQL Plugin. The DLVhex-SPARQL Plugin [27] is a
prototype implementation of the SPARQL to Datalog translation
in [26]. According to the repository’s ReadMe file3, it supports
basic graph patterns, simple conjunctive FILTER expressions (such
as ISBOUND, ISBLANK, and arithmetic comparisons), the UNION,
OPTIONAL, and JOIN operation. Other operations, language tags,
etc. are not supported and query results do not conform to the
SPARQL protocol, according to the ReadMe file. Moreover, the
limited support of existential quantification (see [20]) by DLV does
not suffice for ontological reasoning as required by the OWL 2 QL
standard (RQ3). Also the support of bag semantics is missing (RQ2).

RDFox. RDFox is an RDF store developed and maintained at the
University of Oxford [25]. It reasons over OWL 2 RL ontologies
in Datalog and computes/stores materialisations of the inferred
consequences for efficient query answering [25]. The answering
process of SPARQL queries is not explained in great detail, except
stating that queries are evaluated on top of thesematerialisations, by
employing different scanning algorithms [25]. However, translating
SPARQL to Datalog ś one of the main goals of this paper ś is not
supported4. Moreover, RDFox does currently not support property
paths and some other SPARQL 1.1 features5 (RQ1).

StrixDB. StrixDB is an RDF store developed as a simple tool for
working with middle-sized RDF graphs, supporting SPARQL 1.0
and Datalog reasoning capabilities6. To the best of our knowledge,
there is no academic paper or technical report that explains the
capabilities of the system in greater detail. The StrixStore docu-
mentation page7 lists examples of how to integrate Datalog rules
into SPARQL queries, to query graphs enhanced by Datalog ontolo-
gies. However, translating SPARQL to Datalog is not supported8.
Moreover, important SPARQL 1.1 features such as aggregation and
property paths are not supported by StrixDB (RQ1).

Graal. Graal was developed as a toolkit for querying ontologies
with existential rules [8]. The system does not focus on a specific
storage system, however specializes in algorithms that can answer
queries regardless of the underlying database type [8]. It reaches this
flexibility, by translating queries from their host system language
into Datalog±. However, it pays the trade-off of restricting itself
to answering conjunctive queries only [8] and therefore supports
merely a small subset of SPARQL features9 Ð e.g. basic features
such as UNION or MINUS are missing (RQ1).

VLog. VLog is a rule engine, developed at the TU Dresden [18]. The
system transfers incoming SPARQL queries to specified external
SPARQL endpoints such as Wikidata and DBpedia and incorporates

2https://www.w3.org/wiki/SparqlImplementations (last visited 09/25/2023)
3https://sourceforge.net/p/dlvhex-semweb/code/HEAD/tree/dlvhex-
sparqlplugin/trunk/README (last visited 09/25/2023)
4see https://docs.oxfordsemantic.tech/reasoning.html (last visited 09/25/2023)
5https://docs.oxfordsemantic.tech/3.1/querying-rdfox.html#query-language (last vis-
ited 09/25/2023)
6http://opoirel.free.fr/strixDB/ (last visited 09/25/2023)
7http://opoirel.free.fr/strixDB/DOC/StrixStore_doc.html (last visited 09/25/2023)
8see http://opoirel.free.fr/strixDB/dbfeatures.html (last visited 09/25/2023)
9https://graphik-team.github.io/graal/ (last visited 09/25/2023)

1 SELECT ?N ?L

2 FROM <http://example.org/graph.rdf>

3 WHERE { ?X <http://ex.org/name> ?N

4 . OPTIONAL { ?X <http://ex.org/lastname> ?L }}

5 ORDER BY ?N

Figure 1: Example of SPARQL query.

the received query results into their knowledge base [18]. Therefore,
the responsibility of query answering is handed over to RDF triple
stores that provide a SPARQL query answering endpoint, thus
failing to provide a uniform, integrated framework for combining
query answering with ontological reasoning (RQ5).

The Vadalog system [11] is a KG management system implement-
ing the logic-based language Warded Datalog±. It extends Datalog
by including existential quantification necessary for ontological rea-
soning, while maintaining reasonable complexity. As an extension
of Datalog, it supports full recursion. Although Warded Datalog±

has the capabilities to support SPARQL 1.1 under the OWL 2 QL
entailment regime [5] (considering set semantics though!), no com-
plete theoretical nor any practical translation from SPARQL 1.1 to
Warded Datalog± exists. Therefore, the bag semantics (RQ2) and
SPARQL feature coverage (RQ1) requirements are not met.

3 PRELIMINARIES

3.1 RDF and SPARQL

RDF [19] is a W3C standard that defines a graph data model for
describing Web resources. The RDF data model assumes three data
domains: IRIs that identify Web resources, literals that represent
simple values, and blank nodes that identify anonymous resources.
An RDF triple is a tuple (𝑠, 𝑝, 𝑜), where 𝑠 is the subject, 𝑝 is the
predicate, 𝑜 is the object, all the components can be IRIs, the subject
and the object can alternatively be a blank node, and the object can
also be a literal. An RDF graph is a set of RDF triples. A named graph

is an RDF graph identified by an IRI. An RDF dataset is a structure
formed by a default graph and zero or more named graphs.

For example, consider that <http://example.org/graph.rdf> is
an IRI that identifies an RDF graph with the following RDF triples:
<http://ex.org/glucas> <http://ex.org/name> "George"

<http://ex.org/glucas> <http://ex.org/lastname> "Lucas"

_:b1 <http://ex.org/name> "Steven"

This graph describes information about film directors. Each line
is an RDF triple, <http://ex.org/glucas> is an IRI, "George" is a
literal, and _:b1 is a blank node.

SPARQL [22, 29] is the standard query language for RDF. The
general structure of a SPARQL query is shown in Figure 1, where:
the SELECT clause defines the output of the query, the FROM clause
defines the input of the query (i.e. an RDF dataset), and the WHERE

clause defines a graph pattern.
The evaluation of a query begins with the construction of the

RDF dataset to be queried, whose graphs are defined by one or more
dataset clauses. A dataset clause is either an expression FROM 𝑢

or FROM NAMED 𝑢, where 𝑢 is an IRI that refers to an RDF graph.
The former clause merges a graph into the default graph of the
dataset, and the latter adds a named graph to the dataset.

TheWHERE clause defines a graph pattern (GP). There are many
types of GPs: triple patterns (RDF triples extended with variables),

4242

basic GPs (a set of GPs), optional GPs, alternative GPs (UNION),
GPs on named graphs (GRAPH), negation of GPs (NOT EXISTS and
MINUS), GPs with constraints (FILTER), existential GPs (EXISTS),
and nesting of GPs (SubQueries). A property path is a special GP
which allows to express different types of reachability queries.

The result of evaluating a graph pattern is a multiset of solution
mappings. A solution mapping is a set of variable-value assignments.
E.g., the evaluation of the query in Figure 1 over the above RDF
graph returns two mappings {𝜇1, 𝜇2} with 𝜇1(?N) = "George", 𝜇1(?L)
= "Lucas" and 𝜇1(?N) = "Steven".

The graph pattern matching step returns a multiset whose solu-
tion mappings are treated as a sequence without specific order. Such
a sequence can be arranged by using solution modifiers:ORDER BY

allows to sort the solutions; DISTINCT eliminates duplicate solu-
tions; OFFSET allows to skip a given number of solutions; and
LIMIT restricts the number of output solutions.

Given the multiset of solution mappings, the final output is
defined by a query form: SELECT projects the variables of the so-
lutions; ASK returns true if the multiset of solutions is non-empty
and false otherwise; CONSTRUCT returns an RDF graph whose
content is determined by a set of triple templates; and DESCRIBE

returns an RDF graph that describes the resources found.

3.2 Warded Datalog± and the Vadalog System

In [15], Datalog± was presented as a family of languages that ex-
tend Datalog (whence the +) to increase its expressive power but
also impose restrictions (whence the −) to ensure decidability of
answering Conjunctive Queries (CQs). The extension most relevant
for our purposes is allowing existential rules of the form

∃𝑧𝑃 (𝑥 ′, 𝑧) ← 𝑃1 (𝑥1), . . . , 𝑃𝑛 (𝑥𝑛),

with 𝑥 ′ ⊆
⋃︁

𝑖 𝑥𝑖 , and 𝑧 ∩
⋃︁

𝑖 𝑥𝑖 = ∅. Datalog
± is thus well suited to

capture ontological reasoning. Ontology-mediated query answering
is defined by considering a given database 𝐷 and program Π as
logical theories. The answers to a CQ𝑄 (𝑧) with free variables 𝑧 over
database 𝐷 under the ontology expressed by Datalog± program Π

are defined as {𝑎 | Π ∪ 𝐷 |= 𝑄 (𝑎)}, where 𝑎 is a tuple of the same
arity as 𝑧 with values from the domain of 𝐷 .

Several subclasses of Datalog± have been presented [5, 9, 10, 14,
16, 17, 21] that ensure decidability of CQ answering (see [14] for
an overview). One such subclass is Warded Datalog± [5], which
makes CQ answering even tractable (data complexity). For a formal
definition of Warded Datalog±, see [5]. We give the intuition of
Warded Datalog± here. First, for all positions in rules of a program
Π, distinguish if they are affected or not: a position is affected, if
the chase may introduce a labelled null here, i.e., a position in a
head atom either with an existential variable or with a variable that
occurs only in affected positions in the body. Then, for variables
occurring in a rule 𝜌 of Π, we identify the dangerous ones: a variable
is dangerous in 𝜌 , if it may propagate a null in the chase, i.e., it
appears in the head and all its occurrences in the body of 𝜌 are at
affected positions. ADatalog± programΠ iswarded if all rules 𝜌 ∈ Π
satisfy: either 𝜌 contains no dangerous variable or all dangerous
variables of 𝜌 occur in a single body atom 𝐴 (= the łwardž) such
that the variables shared by 𝐴 and the remaining body occur in at
least one non-affected position (i.e., they cannot propagate nulls).

Apart from the favourable computational properties, another
important aspect of Warded Datalog± is that a full-fledged engine
(even with further extensions) exists: the Vadalog system [11]. It
combines full support of Warded Datalog± plus a number of exten-
sions needed for practical use, including (decidable) arithmetics,
aggregation, and other features. It has been deployed in numerous
industrial scenarios, including the finance sector as well as the
supply chain and logistics sector.

4 THE SPARQLOG SYSTEM

This section introduces SparqLog, a system that allows to evaluate
SPARQL 1.1 queries on top of the Vadalog system. To the best of our
knowledge, SparqLog is the first system that provides a complete
translation engine from SPARQL 1.1 with bag semantics to Datalog.
In order to obtain a functional and efficient system, we combined
the knowledge provided by the theoretical work with database
implementation techniques.

SparqLog implements three translation methods: (i) a data trans-
lation method 𝑇𝐷 which generates Datalog± rules from an RDF
Dataset; (ii) a query translationmethod𝑇𝑄 which generates Datalog±

rules from a SPARQL query; and (iii) a solution translation method

𝑇𝑆 which generates a SPARQL solution from a Datalog± solution.
Hence, given an RDF dataset 𝐷 and a SPARQL query 𝑄 , SparqLog
generates a Datalog± program Π as the union of the rules returned
by 𝑇𝐷 and 𝑇𝑄 , then evaluates the program Π, and uses 𝑇𝑆 to trans-
form the resulting Datalog± solution into a SPARQL solution.

4.1 Example of Graph Pattern Translation

In order to give a general idea of the translation, we will sketch the
translation of the RDF graph and the SPARQL query presented in
Section 3.1. To facilitate the notation, we will abbreviate the IRIs
by using their prefix-based representation. For example, the IRI
http://ex.org/name will be represented as ex:name, where ex is a
prefix bound to the namespace http://ex.org/. Additionally, we
will use graph.rdf instead of http://example.org/graph.rdf.

4.1.1 Data translation. Consider the RDF graph 𝐺 presented in
Section 3.1. First, the data translation method𝑇𝐷 generates a special
fact for every RDF term (i.e., IRI, literal, and blank node) in 𝐺 :

iri("ex:glucas"). iri("ex:name"). iri("ex:lastname").

literal("George"). literal("Lucas"). literal("Steven").

bnode("b1").

These facts are complemented by the following rules, which repre-
sent the domain of RDF terms:

term(X) :- iri(X).

term(X) :- literal(X).

term(X) :- bnode(X).

For each RDF triple (s,p,o) in graph 𝐺 with IRI g, 𝑇𝐷 generates a
fact triple(s,p,o,g). Hence, in our example, 𝑇𝐷 produces:

triple("ex:glucas", "ex:name", "George", "graph.rdf").

triple("ex:glucas", "ex:lastname", "Lucas", "graph.rdf").

triple("b1", "ex:name", "Steven", "graph.rdf").

4.1.2 Query translation. Assume that 𝑄 is the SPARQL query pre-
sented in Figure 1. The application of the query translation method
𝑇𝑄 over 𝑄 returns the Datalog± rules shown in Figure 2. The gen-
eral principles of the translation will be discussed in Section 5.1. In

4243

1 // SELECT ?N ?L

2 ans(ID, L, N, D) :- ans1(ID1, L, N, X, D),

3 ID = ["f", L, N, X, ID1].

4 // P1 = { P2 . OPTIONAL { P3 } }

5 ans1(ID1, V2_L, N, X, D) :- ans2(ID2, N, X, D),

6 ans3(ID3, V2_L, V2_X, D), comp(X, V2_X, X),

7 ID1 = ["f1a", X, N, V2_X, V2_L, ID2, ID3].

8 ans1(ID1, L, N, X, D) :- ans2(ID2, N, X, D),

9 not ans_opt1(N, X, D), null(L),

10 ID1 = ["f1b", L, N, X, ID2].

11 ans_opt1(N, X, D) :- ans2(ID2, N, X, D),

12 ans3(ID3, V2_L, V2_X, D), comp(X, V2_X, X).

13 // P2 = ?X ex:name ?N

14 ans2(ID2, N, X, D) :-

15 triple(X, "ex:name", N, D),

16 D = "default",

17 ID2 = ["f2", X, "ex:name", N, D].

18 // P3 = ?X ex:lastname ?L

19 ans3(ID3, L, X, D) :-

20 triple(X, "ex:lastname", L, D),

21 D = "default",

22 ID3 = ["f3", X, "ex:lastname", L, D].

23 @post("ans", "orderby(2)").

24 @output("ans").

Figure 2: Datalog± rules for SPARQL query 𝑄 in Figure 1.

the interest of readability, we slightly simplify the presentation, e.g.,
by omitting language tags and type definitions and using simple
(intuitive) variable names (rather than more complex ones as would
be generated by SparqLog to rule out name clashes).

The query translation method 𝑇𝑄 produces rules for each lan-
guage construct of SPARQL 1.1 plus rules defining several auxiliary
predicates. In addition, also system instructions (e.g., to indicate
the answer predicate or ordering requirements) are generated. The
translation begins with the WHERE clause, then continues with the
SELECT clause, and finalizes with the ORDER BY clause.

The most complex part of 𝑇𝑄 is the translation of the graph pat-
tern defined in the WHERE clause. In our example, the graph pattern
defined by the WHERE clause is of the form 𝑃1 = 𝑃2 OPTIONAL 𝑃3 with
triple patterns 𝑃2 = ?X ex:name ?N and 𝑃3 = ?X ex:lastname ?L. The
instruction @output (line 24) is used to define the literal of the goal
rule ans. It realises the projection defined by the SELECT clause. The
instruction @post("ans","orderby(2)") (line 23) realises the ORDER

BY clause; it indicates a sort operation over the elements in the sec-
ond position of the goal rule ans(ID,L,N,D), i.e. sorting by N (note
that ID is at position 0). The ans predicate is defined (lines 2ś3) by
projecting out the X variable from the ans1 relation, which contains
the result of evaluating pattern 𝑃1. The tuple IDs are generated as
Skolem terms (line 3 for ans; likewise lines 7, 10, 17, 22). In this
example, we assume that the pattern 𝑃1 and its subpatterns 𝑃2 and
𝑃3 are evaluated over the default graph. This is explicitly defined
for the basic graph patterns (lines 15, 20) and propagated by the
last argument D of the answer predicates.

The OPTIONAL pattern 𝑃1 gives rise to 3 rules defining the
predicate ans1: a rule (lines 11ś12) to define the predicate ans_opt1,
which computes those mappings for pattern 𝑃2 that can be extended
to mappings of 𝑃3; a rule (lines 5ś7) to compute those tuples of

ans1 that are obtained by extending mappings of 𝑃2 to mappings of
𝑃3; and finally a rule (lines 8ś10) to compute those tuples of ans1
that are obtained from mappings of 𝑃2 that have no extension to
mappings of 𝑃3. In the latter case, the additional variables of 𝑃3
(here: only variable L) are set to null (line 9). The two basic graph
patterns 𝑃2 and 𝑃3 are translated to rules for the predicates ans2
(lines 14ś17) and ans3 (lines 19ś22) in the obvious way.

4.1.3 Solution translation. The evaluation of the program Π pro-
duced by the data translation and query translationmethods yields a
set of ground atoms for the goal predicate 𝑝 . In our example, we thus
get two ground atoms: ans(id1, "George","Lucas", "graph.rdf")
and ans(id2, "Steven","null","graph.rdf"). Note that the ground
atoms are guaranteed to have pairwise distinct tuple IDs. These
ground atoms can be easily translated to the multiset of solution
mappings by projecting out the tuple ID. Due to the simplicity of
our example, we only get a set {𝜇1, 𝜇2} of solution mappings with
𝜇1(?N) = "George", 𝜇1(?L) = "Lucas" and 𝜇2(?N) = "Steven".

4.2 Example of Property Path Translation

A property path is a feature of the SPARQL query language that
allows the user to query for complex paths between nodes, instead
of being limited to graph patterns with a fixed structure. SPARQL
defines different types of property path, named: PredicatePath, In-
versePath, SequencePath, AlternativePath, ZeroOrMorePath, One-
OrMorePath, ZeroOrOnePath and NegatedPropertySet. Next we
present an example to show the translation of property paths.

Assume that <http://example.org/countries.rdf> identifies an
RDF graph with the following prefixed RDF triples:

@prefix ex: <http://ex.org/> .

ex:spain ex:borders ex:france .

ex:france ex:borders ex:belgium .

ex:france ex:borders ex:germany .

ex:belgium ex:borders ex:germany .

ex:germany ex:borders ex:austria

Note that each triple describes two bordered countries in Europe.
Recall that ex is a prefix for the namespace http://ex.org/, mean-
ing, e.g., that ex:spain is the abbreviation of http://ex.org/spain.

A natural query could be asking for the countries than can be
visited by starting a trip in 𝑆𝑝𝑎𝑖𝑛. In other terms, we would like
the get the nodes (countries) reachable from the node representing
𝑆𝑝𝑎𝑖𝑛. Although the above query could be expressed by computing
the union of different fixed patterns (i.e. one-country trip, two-
country trip, etc.), the appropriate way is to use the SPARQL query
shown in Figure 3. The result of this query is the set {𝜇1, 𝜇2, 𝜇3, 𝜇4}
of mappings with 𝜇1 (?𝐵) = ex:france, 𝜇2 (?𝐵) = ex:germany, 𝜇3 (?𝐵)
= ex:austria, and 𝜇4 (?𝐵) = ex:belgium.

A property path pattern is a generalization of a triple pattern
(𝑠, 𝑝, 𝑜) where the predicate 𝑝 is extended to be a regular expres-
sion called a property path expression. Hence, the expression ?A

1 PREFIX ex: <http://ex.org/>

2 SELECT ?B

3 FROM <http://example.org/countries.rdf>

4 WHERE { ?A ex:borders+ ?B . FILTER (?A = ex:spain) }

Figure 3: Example of SPARQL property path query.

4244

1 // P1 = "{?A ex:borders+ ?B . FILTER (?A = ex:spain)}"

2 ans1(ID1,A,B,D) :- ans2(ID2,A,B,D),

3 X = "ex:spain", ID1 = [...].

4 // P2 = "?A ex:borders+ ?B"

5 ans2(ID2,X,Y,D) :- ans3(ID3,X,Y,D), ID2 = [...].

6 // PP3 = "ex:borders+"

7 ans3(ID3,X,Y,D) :- ans4(ID4,X,Y,D), ID4 = [].

8 ans3(ID3,X,Z,D) :- ans4(ID4,X,Y,D),

9 ans3(ID31,Y,Z,D), ID4 = [].

10 // PP4 = "ex:borders"

11 ans4(ID4,X,Y,D) :- triple(X,"ex:borders",Y,D),

12 D = "default", ID4 = [...].

13 @output("ans1").

Figure 4: Datalog± rules obtained after translating the

SPARQL property path pattern shown in Figure 3.

ex:borders+ ?B shown in Figure 3 is a property path pattern, where
the property path expression ex:borders+ allows to return all the
nodes ?B reachable from node ?A by following one or more matches
of edges with ex:borders label. The FILTER condition restricts the
solution mappings to those where variable ?𝐴 is bound to ex:spain,
i.e. pairs of nodes where the source node is 𝑠𝑝𝑎𝑖𝑛. Finally, the SELECT
clause projects the result to variable ?B, i.e., the target nodes.

In Figure 4, we show the Datalog± rules obtained by translating
the graph pattern shown in Figure 3. The rule in line 2 corresponds
to the translation of the filter graph pattern. The rule in line 5 is
the translation of the property path pattern ?A ex:borders+ ?B.
The rules shown in lines 8 and 9 demonstrate the use of recursion
to emulate the property path expression ex:borders+. The rule
in line 11 is the translation of ex:borders which is called a link
property path expression. The general principles of the translation
of property paths will be discussed in Section 5.2.

4.3 Coverage of SPARQL 1.1 Features

In order to develop a realistic integration framework between
SPARQL and Vadalog, we conduct a prioritisation of SPARQL fea-
tures. We first lay our focus on basic features, such as terms and
graph patterns. Next, we prepare a more detailed prioritisation by
considering the results of Bonifati et al. [13], who examined the
real-world adoption of SPARQL features by analysing a massive
amount of real-world query-logs from different well-established
Semantic Web sources. Additionally, we study further interesting
properties of SPARQL, for instance SPARQL’s approach to support
partial recursion (through the addition of property paths) or inter-
esting edge cases (such as the combination of Filter and Optional

features) for which a łspecialž treatment is required.
The outcome of our prioritisation step is shown in Table 1. For

each feature, we present its real-world usage according to [13] and
its current implementation status in our SparqLog system. The
table represents the real-world usage by a percentage value (drawn
from [13]) in the feature usage field, if [13] covers the feature, łUn-
knownž if [13] does not cover it, and łBasic Featurež if we consider
the feature as fundamental to SPARQL. Note that some features are
supported by SparqLog with minor restrictions, such as ORDER
BY for which we did not re-implement the sorting strategy de-
fined by the SPARQL standard, but directly use the sorting strategy

employed by the Vadalog system. Table 1 reveals that our Spar-
qLog engine covers all features that are used in more than 5% of
the queries in practice and are deemed therefore to be of highest
relevance to SPARQL users. Some of these features have a rather
low usage in practice (< 1%), however are still supported by our
engine. These features include property paths and GROUP BY. We
have chosen to add property paths to our engine, as they are not
only interesting for being SPARQL’s approach to support partial
recursion but, according to [13], there are datasets that make ex-
tensive use of them. Moreover, we have chosen to add GROUP BY

and some aggregates (e.g. COUNT), as they are very important in
traditional database settings, and thus are important to establish a
bridge between the Semantic Web and Database communities.

In addition to these most widely used features, we have covered
all features occurring in critical benchmarks (see Section 6.1 for a
detailed discussion). Specifically, as used in the FEASIBLE bench-
mark, we cover the following features: ORDER BY with complex
arguments (such as ORDER BY with BOUND conditions), functions
on strings such as UCASE, the DATATYPE function, LIMIT, and
OFFSET. For the gMark benchmark, we cover the łexactly n occur-
rencesž property path, łn or more occurrencesž property path, and
the łbetween 0 and n occurrencesž property path.

Among our contributions, concerning the translation of SPARQL
to Datalog, are: the available translation methods have been com-
bined into a uniform and practical framework for translating RDF
datasets and SPARQL queries to Warded Datalog± programs; we
have developed simpler translations forMINUS andOPT, compared
with [28]; we provide translations for both bag and set semantics,
thus covering queries with and without the DISTINCT keyword; we
have enhanced current translations by adding partial support for
data types and language tags; we have developed a novel duplicate
preservation model based on the abstract theories of ID generation
(this was required because plain existential ID generation turned
out to be problematic due to some peculiarities of the Vadalog sys-
tem); and we propose a complete method for translating property
paths, including zero-or-one and zero-or-more property paths.

There are also a few features that have a real-world usage of
slightly above one percent andwhich are currently not supported by
SparqLog. Among these features areCONSTRUCT,DESCRIBE, and
FILTER NOT EXISTS. We do not support features CONSTRUCT
and DESCRIBE, as these solution modifiers do not yield any inter-
esting theoretical or practical challenges and they did not occur in
any of the benchmarks chosen for our experimental evaluation. The
features for query federation are out of the considered the scope,
as our translation engine demands RDF datasets to be translated
to the Vadalog system for query answering. Furthermore, SPARQL
query federation is used in less than 1% of SPARQL queries [13].

5 SPARQL TO DATALOG± TRANSLATION

In this section, we present some general principles of our translation
from SPARQL queries into Datalog± programs. We thus first discuss
the translation of graph patterns (Section 5.1), and then treat the
translation of a property paths separately (Section 5.2). We conclude
this section with a discussion of the correctness of our translation
(Section 5.3). Full details of the translation and its correctness proof
are given in the full version of the paper [1].

4245

Table 1: Selected SPARQL features, including their real-world

usage according to [13] and the current status in SparqLog.

General Feature Specific Feature Feature Usage Status

Terms IRIs, Literals, Blank nodes Basic Feature ✓

Semantics Sets, Bags Basic Feature ✓

Graph patterns

Triple pattern Basic Feature ✓

AND / JOIN 28.25% ✓

OPTIONAL 16.21% ✓

UNION 18.63% ✓

GROUP Graph Pattern < 1% ✗

Filter constraints

Equality / Inequality

All Constraints
40.15%

✓

Arithmetic Comparison ✓

bound, isIRI, isBlank, isLiteral ✓

Regex ✓

AND, OR, NOT ✓

Query forms

SELECT 87.97% ✓

ASK 4.97% ✓

CONSTRUCT 4.49% ✗

DESCRIBE 2.47% ✗

Solution modifiers

ORDER BY 2.06% ✓

DISTINCT 21.72% ✓

LIMIT 17.00% ✓

OFFSET 6.15% ✓

RDF datasets
GRAPH ?x { . . . } 2.71% ✓

FROM (NAMED) Unknown ✗

Negation MINUS 1.36% ✓

FILTER NOT EXISTS 1.65% ✗

Property paths LinkPath (X exp Y) < 1% ✓

InversePath (^exp) < 1% ✓

SequencePath (exp1 / exp2) < 1% ✓

AlternativePath (exp1 | exp2) < 1% ✓

ZeroOrMorePath (exp*) < 1% ✓

OneOrMorePath (exp+) < 1% ✓

ZeroOrOnePath (expr?) < 1% ✓

NegatedPropertySet (!expr) < 1% ✓

Assignment BIND < 1% ✗

VALUES < 1% ✗

Aggregates GROUP BY < 1% ✓

HAVING < 1% ✗

Sub-Queries Sub-Select Graph Pattern < 1% ✗

FILTER EXISTS < 1% ✗

Filter functions Coalesce Unknown ✗

IN / NOT IN Unknown ✗

5.1 Translation of Graph Patterns

Let 𝑃 be a SPARQL graph pattern and a 𝐷 be an RDF dataset 𝐷 =

⟨𝐺,𝐺𝑛𝑎𝑚𝑒𝑑 ⟩ where 𝐺 is the default graph and𝐺𝑛𝑎𝑚𝑒𝑑 is the set of
named graphs. The translation of graph patterns is realised by the
translation function 𝜏 (𝑃,𝑑𝑠𝑡, 𝐷,NodeIndex) where: 𝑃 is the graph
pattern that should be translated next; 𝑑𝑠𝑡 (short for łdistinctž) is
a Boolean value that describes whether the result should have set
semantics (𝑑𝑠𝑡 = 𝑡𝑟𝑢𝑒) or bag semantics (𝑑𝑠𝑡 = 𝑓 𝑎𝑙𝑠𝑒); 𝐷 is the
graph on which the pattern should be evaluated; NodeIndex is the
index of the pattern 𝑃 to be translated; and the output of function
𝜏 is a set of Datalog± rules.

The function 𝜏 for different types of graph patterns is presented
in Figure 5. In the sequel, we concentrate on bag semantics (i.e., dst
= false), since this is the more complex case. To improve readabil-
ity, we apply the simplified notation used in Figure 2 now also to
Figure 5. Additionally, we omit the explicit generation of IDs via
Skolem functions and simply put a fresh ID-variable in the first
position of the head atoms of the rules.

Triple pattern. Let 𝑃𝑖 be the i-th subpattern of P and let 𝑃𝑖 be a
triple pattern (𝑠, 𝑝, 𝑜). Then 𝜏 (𝑃𝑖 , false, 𝐷, 𝑖) is defined as:

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝐷) :- 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑠, 𝑝, 𝑜, 𝐷).

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝑔) :- 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑣𝑎𝑟 (𝑃1), 𝑔), 𝑛𝑎𝑚𝑒𝑑 (𝑔).
𝜏 (𝑃1, false, 𝑔, 2𝑖)

Join. Let 𝑃𝑖 be the i-th subpattern of P and let 𝑃𝑖 be of the form
(𝑃1 . 𝑃2). Then 𝜏 (𝑃𝑖 , false, 𝐷, 𝑖) is defined as:

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝐷) :- 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑣1 (𝑣𝑎𝑟 (𝑃1)), 𝐷),
𝑎𝑛𝑠2𝑖+1 (𝐼𝑑2, 𝑣2 (𝑣𝑎𝑟 (𝑃2)), 𝐷),
𝑐𝑜𝑚𝑝 (𝑣1 (𝑥1), 𝑣2 (𝑥1), 𝑥1), . . . , 𝑐𝑜𝑚𝑝 (𝑣1 (𝑥𝑛), 𝑣2 (𝑥𝑛), 𝑥𝑛).

𝜏 (𝑃1, false, 𝐷, 2𝑖).
𝜏 (𝑃2, false, 𝐷, 2𝑖 + 1).

Here we are using the following notation:

• 𝑣𝑎𝑟 (𝑃𝑖) = 𝑣𝑎𝑟 (𝑃1) ∪ 𝑣𝑎𝑟 (𝑃2)
• {𝑥1, . . . , 𝑥𝑛} = 𝑣𝑎𝑟 (𝑃1) ∩ 𝑣𝑎𝑟 (𝑃2)
• 𝑣1, 𝑣2 : 𝑣𝑎𝑟 (𝑃1) ∩ 𝑣𝑎𝑟 (𝑃2) → 𝑉 , such that

𝐼𝑚𝑎𝑔𝑒 (𝑣1) ∩ 𝐼𝑚𝑎𝑔𝑒 (𝑣2) = ∅

Filter. Let 𝑃𝑖 be the i-th subpattern of P and let 𝑃𝑖 be of the form
(𝑃1 FILTER𝐶). Then 𝜏 (𝑃𝑖 , false, 𝐷, 𝑖) is defined as:

𝑎𝑛𝑠𝑖 (𝑖𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝐷) :- 𝑎𝑛𝑠2𝑖 (𝑖𝑑1, 𝑣𝑎𝑟 (𝑃1), 𝐷),𝐶 .
𝜏 (𝑃1, false, 𝐷, 2𝑖)

Optional. Let 𝑃𝑖 be the i-th subpattern of 𝑃 and furthermore let 𝑃𝑖
be (𝑃1 OPT 𝑃2), then 𝜏 (𝑃𝑖 , false, 𝐷, 𝑖) is defined as:

𝑎𝑛𝑠𝑜𝑝𝑡−𝑖 (𝑣𝑎𝑟 (𝑃1), 𝐷) :- 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑣𝑎𝑟 (𝑃1), 𝐷),
𝑎𝑛𝑠2𝑖+1 (𝐼𝑑2, 𝑣2 (𝑣𝑎𝑟 (𝑃2)), 𝐷),
𝑐𝑜𝑚𝑝 (𝑥1, 𝑣2 (𝑥1), 𝑧1), . . . , 𝑐𝑜𝑚𝑝 (𝑥𝑛, 𝑣2 (𝑥𝑛), 𝑧𝑛).

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝐷) :- 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑣1 (𝑣𝑎𝑟 (𝑃1)), 𝐷),
𝑎𝑛𝑠2𝑖+1 (𝐼𝑑2, 𝑣2 (𝑣𝑎𝑟 (𝑃2)), 𝐷),
𝑐𝑜𝑚𝑝 (𝑣1 (𝑥1), 𝑣2 (𝑥1), 𝑥1), . . . , 𝑐𝑜𝑚𝑝 (𝑣1 (𝑥𝑛), 𝑣2 (𝑥𝑛), 𝑥𝑛).

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝐷) :- 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑣𝑎𝑟 (𝑃1), 𝐷),
not 𝑎𝑛𝑠𝑜𝑝𝑡−𝑖 (𝑣𝑎𝑟 (𝑃1), 𝐷),
null(𝑦1), . . . , null(𝑦𝑚).

𝜏 (𝑃1, false, 𝐷, 2𝑖).
𝜏 (𝑃2, false, 𝐷, 2𝑖 + 1).

Union. Let 𝑃𝑖 be the i-th subpattern of P and let 𝑃𝑖 be of the form
(𝑃1 UNION 𝑃2). Then 𝜏 (𝑃𝑖 , false, 𝐷, 𝑖) is defined as:

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝐷) :- 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑣𝑎𝑟 (𝑃1), 𝐷),
null(𝑥1), . . . null(𝑥𝑛).

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝐷) :- 𝑎𝑛𝑠2𝑖+1 (𝐼𝑑2, 𝑣𝑎𝑟 (𝑃2), 𝐷),
null(𝑦1), . . . null(𝑦𝑚).

𝜏 (𝑃1, false, 𝐷, 2𝑖)
𝜏 (𝑃2, false, 𝐷, 2𝑖 + 1)

Figure 5: Translation rules for SPARQL graph patterns.

General strategy of the translation. Analogously to [26, 28],
our translation proceeds by recursively traversing the parse tree
of a SPARQL 1.1 query and translating each subpattern into its
respective Datalog± rules. Subpatterns of the parse tree are indexed.
The root has index 1, the left child of the 𝑖-th node has index 2∗𝑖 , the
right child has index 2∗ 𝑖 +1. During the translation, bindings of the

4246

𝑖-th subpattern are represented by the predicate 𝑎𝑛𝑠𝑖 . In all answer
predicates 𝑎𝑛𝑠𝑖 , we have the current graph as last component. It
can be changed by the GRAPH construct; for all other SPARQL
constructs, it is transparently passed on from the children to the
parent in the parse tree. Since the order of variables in predicates
is relevant, some variable sets will need to be lexicographically
ordered, which we denote by 𝑥 as in [28]. We write 𝑣𝑎𝑟 (𝑃) to denote
the lexicographically ordered tuple of variables of 𝑃 . Moreover a
variable renaming function 𝑣 𝑗 : 𝑉 → 𝑉 is defined.

Auxiliary Predicates. The translation generates several auxiliary
predicates. Above all, we need a predicate comp for testing if two
mappings are compatible. The notion of compatible mappings is
fundamental for the evaluation of SPARQL graph patterns. Two
mappings 𝜇1 and 𝜇2 are compatible, denoted 𝜇1 ∼ 𝜇2, if for all
?𝑋 ∈ dom(𝜇1) ∩ dom(𝜇2) it is satisfied that 𝜇1 (?𝑋) = 𝜇2 (?𝑋). The
auxiliary predicate 𝑐𝑜𝑚𝑝 (𝑋1, 𝑋2, 𝑋3) checks if two values 𝑋1 and
𝑋2 are compatible. The third position 𝑋3 represents the value that
is used in the result tuple when joining over 𝑋1 and 𝑋2:

null("null").

comp(X,X,X) :- term(X).

comp(X,Z,X) :- term(X), null(Z).

comp(Z,X,X) :- term(X), null(Z).

comp(Z,Z,Z) :- null(Z).

Bag semantics. For bag semantics, (i.e., 𝑑𝑠𝑡 = 𝑓 𝑎𝑙𝑠𝑒) all answer
predicates contain a fresh existential variable when they occur
in the head of a rule. In this way, whenever such a rule fires, a
fresh tuple ID is generated. This is particularly important for the
translation of the UNION construct. In contrast to [28], we can thus
distinguish duplicates without the need to increase the arity of the
answer predicate.We have developed a novel duplicate preservation
model based on the abstract theories of ID generation of [12]. As
mentioned above, plain existential ID generation turned out to be
problematic due to peculiarities of the Vadalog system. Therefore,
our ID generation process is abstracted away by using a Skolem
function generator and representing nulls (that correspond to tuple
IDs) as specific Skolem terms.

Filter constraints. Note how we treat filter conditions in FILTER
constructs: building our translation engine on top of the Vadalog
system allows us to literally copy (possibly complex) filter condi-
tions into the rule body and let the Vadalog system evaluate them.
For instance, the regex functionality uses the corresponding Vada-
log function, which makes direct use of the Java regex library. For
evaluating filter functions isIRI, isURI, isBlank, isLiteral, isNumeric,
and bound expressions, our translation engine uses the correspond-
ing auxiliary predicates generated in our data translation method.

5.2 Translation of Property Paths

Property paths are an important feature, introduced in SPARQL 1.1.
A translation of property paths to Datalog was presented in [28] ś
but not fully compliant with the SPARQL 1.1 standard: the main
problem in [28] was the way how zero-or-one and zero-or-more prop-
erty paths were handled. In particular, the case that a path of zero
length from 𝑡 to 𝑡 also exists for those terms 𝑡 which occur in the
query but not in the current graph, was omitted in [28]. A property

path pattern is given in the form 𝑠, 𝑝, 𝑜 , where 𝑠, 𝑜 are the usual sub-
ject and object and 𝑝 is a property path expression. That is, 𝑝 is either

Property path. Let 𝑃𝑖 be the i-th subpattern of P and let 𝑃𝑖 be a
property path pattern of the form (𝑆, 𝑃1,𝑂) where 𝑃1 is a property
path expression. Then 𝜏 (𝑃𝑖 , false, 𝐷, 𝑖) is defined as:

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑣𝑎𝑟 (𝑃𝑖), 𝐷) :- 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑆,𝑂, 𝐷).
𝜏𝑃𝑃 (𝑃1, false, 𝑆,𝑂, 𝐷, 2𝑖).

Link property path. Let 𝑃𝑃𝑖 be the 𝑖-th subexpression of a
property path expression 𝑃𝑃 and let 𝑃𝑃𝑖 = 𝑝1 be a link property
path expression. Then 𝜏𝑃𝑃 (𝑃𝑃𝑖 , false, 𝑆,𝑂, 𝐷, 𝑖) is defined as:

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑋,𝑌, 𝐷) :- 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑋, 𝑝1, 𝑌 , 𝐷).

One-or-more path. Let 𝑃𝑃𝑖 be the 𝑖-th subexpression of a
property path 𝑃𝑃 and let 𝑃𝑃𝑖 = 𝑃𝑃1+ be a one-or-more property
path expression. Then 𝜏𝑃𝑃 (𝑃𝑃𝑖 , false, 𝑆,𝑂, 𝐷, 𝑖) is defined as:

Zero-or-one path. Let 𝑃𝑃𝑖 be the 𝑖-th subexpression of a property
path expression 𝑃𝑃 and let 𝑃𝑃𝑖 = 𝑃𝑃1? be a zero-or-one property
path expression. Then 𝜏𝑃𝑃 (𝑃𝑃𝑖 , false, 𝑆,𝑂, 𝐷, 𝑖) is defined as:

𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑋, 𝑋, 𝐷) :- 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑂𝑟𝑂𝑏 𝑗𝑒𝑐𝑡 (𝑋), 𝐼𝑑 = [].
𝑎𝑛𝑠𝑖 (𝐼𝑑, 𝑋,𝑌, 𝐷) :- 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑋,𝑌 , 𝐷), 𝐼𝑑 = [].
𝜏𝑃𝑃 (𝑃𝑃1, false, 𝑆,𝑂, 𝐷, 2𝑖)

Figure 6: Translation rules for SPARQL property paths.

an IRI (the base case) or composed from one or two other property
path expressions 𝑝1, 𝑝2 as: ˆ𝑝1 (inverse path expression), 𝑝1 | 𝑝2
(alternative path expression), 𝑝1/𝑝2 (sequence path expression), 𝑝1?
(zero-or-one path expression), 𝑝1+ (one-or-more path expression),
𝑝1∗ (zero-or-more path expression), or !𝑝1 (negated path expres-
sion). A property path pattern 𝑠, 𝑝, 𝑜 is translated by first translating
the property path expression 𝑝 into rules for each subexpression
of 𝑝 . The endpoints 𝑠 and 𝑜 of the overall path are only applied to
the top-level expression 𝑝 . Analogously to our translation function
𝜏 (𝑃,𝑑𝑠𝑡, 𝐷,NodeIndex) for graph patterns, we now also introduce
a translation function 𝜏𝑃𝑃 (𝑃𝑃,𝑑𝑠𝑡, 𝑆,𝑂, 𝐷,NodeIndex) for property
path expressions 𝑃𝑃 , where 𝑆,𝑂 , are the subject and object of the
top-level property path expression that have to be kept track of
during the entire evaluation as will become clear when we highlight
our translation in Figure 6.

Again we restrict ourselves to the more interesting case of bag
semantics. The translation of a property path pattern 𝑆, 𝑃1,𝑂 for
some property path expression 𝑃1 consists of two parts: the trans-
lation of 𝑃1 by the translation function 𝜏𝑃𝑃 and the translation 𝜏

of 𝑆, 𝑃1,𝑂 ś now applying the endpoints 𝑆 and 𝑂 to the top-level
property path expression 𝑃1. The base case of 𝜏𝑃𝑃 is a link property
path 𝑃𝑃𝑖 = 𝑝1 (i.e., simply an IRI), which returns all pairs (𝑋,𝑌)
that occur as subject and object in a triple with predicate 𝑝1. Equally
simple translations apply to inverse paths (which swap start point
and end point), alternative paths (which are treated similarly to
UNION in Figure 5), and sequence paths (which combine two paths
by identifying the end point of the first path with the start point of
the second path).

For zero-or-one paths (and likewise for zero-or-more paths), we
need to collect all terms that occur as subjects or objects in the
current graph by an auxiliary predicate subjectOrObject:

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑂𝑟𝑂𝑏 𝑗𝑒𝑐𝑡 (𝑋) :- 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑋, 𝑃,𝑌 , 𝐷).
𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑂𝑟𝑂𝑏 𝑗𝑒𝑐𝑡 (𝑌) :- 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑋, 𝑃,𝑌 , 𝐷).

4247

This is needed to produce paths of length zero (i.e., from 𝑋 to
𝑋) for all these terms occurring in the current graph. Moreover,
if exactly one of 𝑆 and 𝑂 is not a variable or if both are the same
non-variable, then also for these nodes we have to produce paths
of zero length. It is because of this special treatment of zero-length
paths that subject 𝑆 and object 𝑂 from the top-level property path
expression have to be propagated through all recursive calls of the
translation function 𝜏𝑃𝑃 . In addition to the zero-length paths, of
course, also paths of length one have to be produced by recursively
applying the translation 𝜏𝑃𝑃 to 𝑃𝑃1 if 𝑃𝑃𝑖 is of the form 𝑃𝑃𝑖 =

𝑃𝑃1?. Finally, one-or-more paths are realised in the usual style of
transitive closure programs in Datalog.

It should be noted that, according to the SPARQL semantics
of property paths10, zero-or-one, zero-or-more, and one-or-more
property paths always have set semantics. This is why the Datalog±

rules for these three path expressions contain a body literal 𝐼𝑑 = [].
By forcing the tuple ID to the same value whenever one of these
rules fires, multiply derived tuples are indistinguishable for our
system and will, therefore, never give rise to duplicates.

5.3 Correctness of our Translation

To ensure the correctness of our translation, we have applied a
two-way strategy ś consisting of an extensive empirical evaluation
and a formal analysis. For the empirical evaluation, we have run
SparqLog as well as Fuseki and Virtuoso on several benchmarks,
which provide a good coverage of SPARQL 1.1. The results are
summarized in Section 6.2. In a nutshell, SparqLog and Fuseki turn
out to fully comply with the SPARQL 1.1 standard, while Virtuoso
shows deviations from the standard on quite some queries.

For the formal analysis, we juxtapose our translation with the
formal semantics of the various language constructs of SPARQL 1.1.
Below we briefly outline our proof strategy: Following [2, 6, 28] for
SPARQL graph patterns and [24, 28] for property path expressions,
we first of all provide a formal definition of the semantics of the
various SPARQL 1.1 features.11Given a SPARQL graph pattern 𝑃

and a graph 𝐷 , we write ⟦𝑃⟧𝐷 to denote the result of evaluating 𝑃
over 𝐷 . The semantics ⟦𝑃𝑃⟧𝐷,𝑠,𝑜 of property path expressions 𝑃𝑃
is defined in a similar way, but now also taking the top level start
and end points 𝑠, 𝑜 of the property path into account.

Both ⟦𝑃⟧𝐷 and ⟦𝑃𝑃⟧𝐷,𝑠,𝑜 are defined inductively on the struc-
ture of the expression 𝑃 or 𝑃𝑃 , respectively, with triple patterns
𝑃 = (𝑠, 𝑝, 𝑜) and link property paths 𝑃𝑃 = 𝑝1 as base cases. For
instance, for a join pattern 𝑃𝑖 = (𝑃1 . 𝑃2) and optional pattern
𝑃 𝑗 = (𝑃1 OPT 𝑃2), the semantics is defined as follows:

⟦𝑃𝑖⟧𝐷 = {{𝜇1 ∪ 𝜇2 | 𝜇1 ∈ ⟦𝑃1⟧𝐷 and 𝜇2 ∈ ⟦𝑃2⟧𝐷 and 𝜇1 ∼ 𝜇2}}
⟦𝑃 𝑗⟧𝐷 = {{𝜇 | 𝜇 ∈ ⟦𝑃1 . 𝑃2⟧𝐷 and 𝜇 |= 𝐶}} ∪

{{𝜇1 | 𝜇1 ∈ ⟦𝑃1⟧𝐷 and for all 𝜇2 ∈ ⟦𝑃2⟧𝐷 : 𝜇1 ≁ 𝜇2}}

Now consider the Datalog± rules generated by our translation.
For a join pattern, the two body atoms 𝑎𝑛𝑠2𝑖 (𝐼𝑑1, 𝑣1 (𝑣𝑎𝑟 (𝑃1)), 𝐷)
and𝑎𝑛𝑠2𝑖+1 (𝐼𝑑2, 𝑣2 (𝑣𝑎𝑟 (𝑃2)), 𝐷) yield, by induction, the sets of map-
pings ⟦𝑃1⟧𝐷 and ⟦𝑃2⟧𝐷 . The variable renamings 𝑣1 and 𝑣2 make

10https://www.w3.org/TR/SPARQL11-query/#defn_PropertyPathExpr (last visited
09/25/2023)
11We note that the semantics definitions in all of these sources either only cover a
rather small subset of SPARQL 1.1 or contain erroneous definitions. The most complete
exposition is given in [28] with some inaccuracies in the treatment of Optional Filter
patterns and of zero-length property paths.

sure that there is no interference between the evaluation of ⟦𝑃1⟧𝐷
(by the first body atom) and the evaluation of ⟦𝑃2⟧𝐷 (by the second
body atom). The 𝑐𝑜𝑚𝑝-atoms in the body of the rule make sure
that 𝜇1 and 𝜇2 are compatible on all common variables. Moreover,
they bind the common variables {𝑥1, . . . , 𝑥𝑛} to the correct value
according to the definition of the 𝑐𝑜𝑚𝑝-predicate.

The result of evaluating an optional pattern consists of two kinds
of mappings: (1) the mappings 𝜇 in ⟦(𝑃1 . 𝑃2)⟧𝐷 and (2) the map-
pings 𝜇1 in ⟦𝑃1⟧𝐷 which are not compatible with any mapping 𝜇2
in ⟦𝑃2⟧𝐷 . Analogously to join patterns, the second rule generated
by our translation produces the mappings of type (1). The first rule
generated by our translation computes those mappings in ⟦𝑃1⟧𝐷
which are compatible with some mapping in ⟦𝑃2⟧𝐷 . Hence, the
third rule produces the mappings of type (2). Here the negated
second body literal removes all those mappings from ⟦𝑃1⟧𝐷 which
are compatible with some mapping in ⟦𝑃2⟧𝐷 .

Full details of the semantics definitions ⟦𝑃⟧𝐷 and ⟦𝑃𝑃⟧𝐷,𝑠,𝑜 and
of the juxtaposition with the rules generated by our translation are
provided in the full version of this paper [1].

6 EXPERIMENTAL EVALUATION

In this section, we report on the experimental evaluation of the
SparqLog system. We want to give a general understanding of the
behaviour of SparqLog in the following three areas: (1) we first anal-
yse various benchmarks available in the area to identify coverage

of SPARQL features and which benchmarks to use subsequently
in our evaluation, (2) we analyse the compliance of our system
with the SPARQL standard using the identified benchmarks, and
set this in context with the two state-of-the-art systems Virtuoso
and Fuseki, and, finally, (3) we evaluate the performance of query
execution of SparqLog and compare it with state-of-the-art sys-
tems for SPARQL query answering and reasoning over ontologies,
respectively. We thus put particular emphasis on property paths
and their combination with ontological reasoning. Further details
on our experimental evaluation ś in particular, how we set up the
analysis of different benchmarks and of the standard-compliance
of various systems ś are provided in the supplementary material.

6.1 Benchmark Analysis

In this subsection, we analyse current state-of-the-art benchmarks
for SPARQL engines. Table 2 is based on the analysis of [32] and
represents the result of our exploration of the SPARQL feature
coverage of the considered benchmarks. Furthermore, it was ad-
justed and extended with additional features by us. Particularly

heavily used SPARQL features are marked in blue , while missing

SPARQL features are marked in orange . The abbreviations of the

columns represent the following SPARQL features: DIST[INCT],
FILT[ER], REG[EX], OPT[IONAL], UN[ION], GRA[PH], P[roperty
Path] Seq[uential], P[roperty Path] Alt[ernative], GRO[UP BY].
Note that, in Table 2, we do not display explicitly basic features,
such as Join, Basic Graph pattern, etc., since these are of course
covered by every benchmark considered here. Morerover, we have
not included the SPARQL features MINUS and the inverted, zero-or-
one, zero-or-more, one-or-more, and negated property path in Table 2,
as none of the selected benchmarks covers any of these SPARQL
features.

4248

Table 2: Feature Coverage of SPARQL Benchmarks [32]

Benchmark DIST FILT REG OPT UN GRA PSeq PAlt GRO

S
y
n
th
e
ti
c

Bowlogna 5.9 41.2 11.8 0.0 0.0 0.0 0.0 0.0 76.5
TrainBench 0.0 41.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BSBM 25.0 37.5 0.0 54.2 8.3 0.0 0.0 0.0 0.0
SP2Bench 35.3 58.8 0.0 17.6 17.6 0.0 0.0 0.0 0.0
WatDiv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SNB-BI 0.0 66.7 0.0 45.8 20.8 0.0 16.7 0.0 100.0
SNB-INT 0.0 47.4 0.0 31.6 15.8 0.0 5.3 10.5 42.1

R
e
a
l

FEASIBLE (D) 56.0 58.0 14.0 28.0 40.0 0.0 0.0 0.0 0.0
FEASIBLE (S) 56.0 27.0 9.0 32.0 34.0 10.0 0.0 0.0 25.0
Fishmark 0.0 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.0
DBPSB 100.0 44.0 4.0 32.0 36.0 0.0 0.0 0.0 0.0
BioBench 39.3 32.1 14.3 10.7 17.9 0.0 0.0 0.0 10.7

Table 2 reveals that no benchmark covers all SPARQL features. Even
more, SNB-BI and SNB-INT are the only benchmarks that contain
property paths. Yet, they cover merely the sequential (PSeq) and
alternative property path (PAlt), which in principle correspond to the
JOIN and UNION operator. This means that no existing benchmark
covers recursive property paths (though we will talk about the
benchmark generator gMark [7] later), which are one of the most
significant extensions provided by SPARQL 1.1. Our analysis of
SPARQL benchmarks leads us to the following conclusions for
testing the compliance with the SPARQL standard and for planning
the performance tests with SparqLog and state-of-the-art systems.

Evaluating compliance with the SPARQL standard. Based on
the results of Table 2, we have chosen the following three bench-
marks to evaluate the compliance of our SparqLog system with
the SPARQL standard: (1) We have identified FEASIBLE (S) [31]
as the real-world benchmark of choice, as it produces the most
diverse test cases [32] and covers the highest amount of features;
(2) SP2Bench [33] is identified as the synthetic benchmark of choice,
since it produces synthetic datasets with themost realistic character-
istics [32]; (3) finally, since no benchmark that employs real-world
settings provides satisfactory coverage of property paths, we have
additionally chosen BeSEPPI [34] ś a simplistic, yet very exten-
sive benchmark specifically designed for testing the correct and
complete processing of property paths. We report on the results of
testing the compliance of our SparqLog system as well as Fuseki
and Virtuoso in Section 6.2.

Performance benchmarking. For the empirical evaluation of
query execution times reported in Section 6.3, we have identified
SP2Bench as the most suitable benchmark, as it contains hand-
crafted queries that were specifically designed to target query op-
timization. Since none of the existing benchmarks for SPARQL
performance measurements contains recursive property paths, we
have included instances generated by the benchmark generator
gMark [7], and report extensive results of this important aspect. In
order to include in our tests also the performance measurements for
the combination of property paths with ontologies, we have further
extended the SP2Bench with an ontology containing subPropertyOf
and subClassOf statements.

6.2 SPARQL Compliance

As discussed in the previous section, we have identified three bench-
marks (FEASIBLE(S), SP2Bench, BeSEPPI) for the evaluation of the

standard compliance of our SparqLog system and two state-of-the-
art SPARQL engines. More details on the compliance evaluation as
well as some challenges encountered by this evaluation (such as the
comparison of results in the presence of null nodes) are discussed
in the supplementary material. Below, we summarize the results:

The FEASIBLE(S) benchmark contains 77 queries that we used for
testing the standard-conformant behaviour. It turned out that both
SparqLog and Fuseki fully comply to the standard on each of the 77
queries, whereas Virtuoso does not. More specifically, for 14 queries,
Virtuoso returned an erroneous result by either wrongly outputting
duplicates (e.g., ignoring DISTINCTs) or omitting duplicates (e.g.,
by handling UNIONs incorrectly). Moreover, in 18 cases, Virtuoso
was unable to evaluate the query and produced an error.

The SP2Bench benchmark contains 17 queries, specifically de-
signed to test the scalability of SPARQL engines. All 3 considered
systems produce the correct result for all 17 queries.

The BeSEPPI benchmark contains 236 queries, specifically de-
signed to evaluate the correct and complete support of property
path features. Table 3 shows the detailed results of the experimen-
tal evaluation of the 3 considered systems on this benchmark. We
distinguish 4 types of erroneous behaviour: correct but incomplete
results (i.e., the mappings returned are correct but there are further
correct mappings missing), complete but incorrect (i.e., no correct
mapping is missing but the answer falsely contains additional map-
pings), incomplete and incorrect, or failing to evaluate the query
and returning an error instead. The entries in the table indicate
the number of cases for each of the error types. We see that Fuseki
and SparqLog produce the correct result in all 236 cases. Virtuoso
only handles the queries with inverse, sequence and negated path
expressions 100% correctly. For queries containing alternative, zero-
or-one, one-or-more, or zero-or-more path expressions, Virtuoso is
not guaranteed to produce the correct result. The precise number

of queries handled erroneously is shown in the cells marked red .

Table 3: Compliance Test Results with BeSEPPI

Stores Virtuoso Jena Fuseki Our Solution

T
ot
al
#Q

u
er
ie
s

Expressions In
co
m
p.
&
C
or
re
ct

C
om

pl
et
e
&
In
co
r.

In
co
m
p.
&
In
co
r.

E
rr
or

In
co
m
p.
&
C
or
re
ct

C
om

pl
et
e
&
In
co
r.

In
co
m
p.
&
In
co
r.

E
rr
or

In
co
m
p.
&
C
or
re
ct

C
om

pl
et
e
&
In
co
r.

In
co
m
p.
&
In
co
r.

E
rr
or

Inverse 0 0 0 0 0 0 0 0 0 0 0 0 20
Sequence 0 0 0 0 0 0 0 0 0 0 0 0 24
Alternative 3 0 0 0 0 0 0 0 0 0 0 0 23
Zero or One 0 0 0 3 0 0 0 0 0 0 0 0 24
One or More 10 0 0 8 0 0 0 0 0 0 0 0 34
Zero or More 0 0 0 7 0 0 0 0 0 0 0 0 38

Negated 0 0 0 0 0 0 0 0 0 0 0 0 73

Total 13 0 0 18 0 0 0 0 0 0 0 0 236

To conclude, while SparqLog and Fuseki handle all considered
queries from the 3 chosen benchmarks correctly, Virtuoso produces
a significant number of errors.

6.3 Performance Measurements

Experimental Setup. Our benchmarks were executed on a system
running openSUSE Leap 15.2 with dual Intel(R) Xeon(R) Silver 4314

4249

16 core CPUs, clocked at 3.4 GHz, with 512GB RAM of which 256GB
reserved for the system under test, and 256GB for the operating
system. For each system we set a time-out of 900s. We start each
benchmark by repeating the same warm-up queries 5 times and by
5 times loading and deleting the graph instance. Furthermore, we
did 5 repetitions of each query (each time deleting and reloading
the dataset). For our experiments we use Apache Jena Fuseki 3.15.0,
Virtuoso Open Source Edition 7.2.5, and Stardog 7.7.1. Vadalog
loads and queries the database simultaneously. Hence, to perform
a fair comparison with competing systems, we compare their total
loading and querying time to the total time that SparqLog needs to
answer the query. Since, loading includes index building and many
more activities, we delete and reload the database each time, when
we run a query (independent of warm-up or benchmark queries).

Performance on general SPARQL queries. SP2Bench is a bench-
mark that particularly targets query optimization and computation-
intensive queries. We have visualized the result in Figure 7 and
found that SparqLog reaches highly competitive performance with
Virtuoso and significantly outperforms Fuseki on most queries.

gMark. Since current SPARQL benchmarks provide only rudimen-
tary coverage of property path expressions, we have evaluated
SparqLog, Fuseki, and Virtuoso using the gMark benchmark gen-
erator [7], a domain- and language-independent graph instance
and query workload generator which specifically focuses on path
queries, i.e., queries over property paths. We have evaluated Spar-
qLog’s, Fuseki’s, and Virtuoso’s path query performance on the
test12 and social13 demo scenarios. Each of these two demo sce-
narios provides 50 SPARQL queries and a graph instance. Further
details on the benchmarks that we used for evaluating a system’s
query execution time and on the experimental results that we ob-
tained are given in the full version of this paper [1]. In the following,
we compare the results of the three systems on gMark:

Virtuoso could not (correctly) answer 48 of the in total 100 queries
of the gMark Social and Test benchmark. Thus, it could not cor-
rectly answer almost half of the queries provided by both gMark
benchmarks, which empirically reveals its dramatic limitations in
answering complex property path queries. In 20 of these 48 cases,
Virtuoso returned an incomplete result. While in solely 3 incom-
plete result cases Virtuoso missed solely one tuple in the returned
result multi-set, in the remaining 17 incomplete result cases; Virtu-
oso produces either the result tuple null or an empty result multi-set
instead of the correct non-null/non-empty result multi-set. In the
other 28 cases Virtuoso failed either due to a time-, mem-out or
due to not supporting a property path with two variables. This
exemplifies severe problems with handling property path queries.

Fuseki suffered on 37 of the in total 100 queries of the gMark Social
and Test benchmark a time-out (i.e., took longer than 900𝑠 for
answering the queries). Thus, it timed-out on more than a third of
gMark queries, which empirically reveals its significant limitations
in answering complex property path queries.

SparqLog managed to answer 98 of gMark’s (in total 100) queries
within less than 200𝑠 and timed out on solely 2 queries. The results
on the gMark Social benchmark are shown in Figures 8; the results

12https://github.com/gbagan/gMark/tree/master/demo/test (last visited 09/25/2023)
13https://github.com/gbagan/gMark/tree/master/demo/social (last visited 09/25/2023)

on the gMark Test benchmark are given in full version of this paper
[1]. These results reveal the strong ability of our system in answer-
ing queries that contain complex property paths. Furthermore, each
time when both Fuseki and SparqLog returned a result, the results
were equal, even further empirically confirming the correctness of
our system (i.e., that our system follows the SPARQL standard).

In conclusion, these three benchmarks show that SparqLog (1) is
highly competitive with Virtuoso on regular queries with respect
to query execution time, (2) follows the SPARQL standard much
more accurately than Virtuoso and supports more property path
queries than Virtuoso, and (3) dramatically outperforms Fuseki on
query execution, while keeping its ability to follow the SPARQL
standard accurately.

Ontological reasoning. One of the main advantages of our Spar-
qLog system is that it provides a uniform and consistent frame-
work for reasoning and querying Knowledge Graphs. We therefore
wanted to measure the performance of query answering in the pres-
ence of an ontology. Since Fuseki and Virtuoso do not provide such
support, we compare SparqLog with Stardog, which is a commonly
accepted state-of-the-art system for reasoning and querying within
the Semantic Web. Furthermore, we have created a benchmark
based on SP2Bench’s dataset that contains property path queries
and ontological concepts such as subPropertyOf and subClassOf
and provide this benchmark in the supplementary material.

Full details of these experiments are provided in the full version
of this paper [1]. In summary, we note that SparqLog is faster than
Stardog on most queries. Particularly interesting are queries 4 and
5, which contain recursive property path queries with two variables.
Our engine needs on query 4 only about a fifth of the execution
time of Stardog and it can even answer query 5, on which Stardog
times outs (using a timeout of 900𝑠). On the other queries, Stardog
and SparqLog perform similarly.

To conclude, our new SparqLog system does not only follow the
SPARQL standard, but it also shows good performance. Even though
SparqLog is a full-fledged, general-purpose Knowledge Graph man-
agement system and neither a specialized SPARQL engine nor a
specialized ontological reasoner, it is highly competitive to state-of-
the-art SPARQL engines and reasoners and even outperforms them
on answering property path queries and particularly hard cases.

7 CONCLUSION

In this work we have taken a step towards bringing SPARQL-based
systems and Datalog±-based systems closer together. In particular,
we have provided (i) a uniform and fairly complete theoretical trans-
lation of SPARQL into Warded Datalog±, (ii) a practical translation
engine that covers most of the SPARQL 1.1 functionality, and (iii)
an extensive experimental evaluation.

We note that the SparqLog engine can be seen in two ways: (1) as
a stand-alone translation engine for SPARQL intoWarded Datalog±,
and (2) as a full Knowledge Graph engine by using our translation
engine together with the Vadalog system.

As next steps, we envisage of course 100% or close to 100%
SPARQL coverage. Possibly more (scientifically) interestingly, we
plan to expand on the finding that query plan optimization provides
a huge effect on performance, and investigate SPARQL-specific
query plan optimization in a unified SPARQL-Datalog± system.

4250

Figure 7: SP2Bench Benchmark (Log Scale)

Figure 8: gMark Social Benchmark (Log Scale)

Finally, we note that work on a unified benchmark covering all
or close to all of the SPARQL 1.1 features would be desirable. As
observed in Section 6.1, no such benchmark currently exists.

ACKNOWLEDGMENTS

This work has been funded by the Vienna Science and Technology
Fund (WWTF) [10.47379/VRG18013, 10.47379/NXT22018,

10.47379/ICT2201]; the Christian Doppler Research Association
(CDG) JRC LIVE; Renzo Angles was supported by ANID FONDE-
CYT Chile through grant 1221727. Georg Gottlob is a Royal Society
Research Professor and acknowledges support by the Royal Society
in this role through the łRAISON DATAž project (Reference No.
RP\R1\201074).

4251

REFERENCES
[1] Renzo Angles, Georg Gottlob, Aleksandar Pavlović, Reinhard Pichler, and

Emanuel Sallinger. 2023. SparqLog: A System for Efficient Evaluation of
SPARQL 1.1 Queries via Datalog. CoRR abs/2307.06119 (2023). https://arxiv.org/
abs/2307.06119

[2] Renzo Angles and Claudio Gutiérrez. 2008. The Expressive Power of SPARQL.
In The Semantic Web - ISWC 2008, 7th International Semantic Web Conference,
ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Proceedings (Lecture Notes in
Computer Science), Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci,
Diana Maynard, Timothy W. Finin, and Krishnaprasad Thirunarayan (Eds.),
Vol. 5318. Springer, Berlin, Heidelberg, 114ś129. https://doi.org/10.1007/978-3-
540-88564-1_8

[3] Renzo Angles and Claudio Gutiérrez. 2016. The Multiset Semantics of SPARQL
Patterns. In The Semantic Web - ISWC 2016 - 15th International Semantic Web
Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part I (Lecture Notes in
Computer Science), Paul Groth, Elena Simperl, Alasdair J. G. Gray, Marta Sabou,
Markus Krötzsch, Freddy Lécué, Fabian Flöck, and Yolanda Gil (Eds.), Vol. 9981.
Springer International Publishing, Cham, 20ś36. https://doi.org/10.1007/978-3-
319-46523-4_2

[4] Renzo Angles and Claudio Gutiérrez. 2016. Negation in SPARQL. In 10th Alberto
Mendelzon International Workshop on Foundations of Data Management (CEUR
Workshop Proceedings), Vol. 1644. CEUR-WS.org, Aachen.

[5] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2018. Expressive Languages
for Querying the Semantic Web. ACM Trans. Database Syst. 43 (2018), 13:1ś13:45.

[6] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. 2009. On the Semantics of
SPARQL. In Semantic Web Information Management - A Model-Based Perspective,
Roberto De Virgilio, Fausto Giunchiglia, and Letizia Tanca (Eds.). Springer, 281ś
307. https://doi.org/10.1007/978-3-642-04329-1_13

[7] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurélien
Lemay, and Nicky Advokaat. 2017. gMark: Schema-Driven Generation of Graphs
and Queries. In 33rd IEEE International Conference on Data Engineering, ICDE
2017, San Diego, CA, USA, April 19-22, 2017. IEEE Computer Society, 63ś64.
https://doi.org/10.1109/ICDE.2017.38

[8] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and
Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential
Rules. In Rule Technologies: Foundations, Tools, and Applications - 9th International
Symposium, RuleML 2015, Berlin, Germany, August 2-5, 2015, Proceedings (Lecture
Notes in Computer Science), Nick Bassiliades, Georg Gottlob, Fariba Sadri, Adrian
Paschke, and Dumitru Roman (Eds.), Vol. 9202. Springer International Publishing,
Cham, 328ś344. https://doi.org/10.1007/978-3-319-21542-6_21

[9] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2009.
Extending Decidable Cases for Rules with Existential Variables. In IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, Craig Boutilier (Ed.). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 677ś682.

[10] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2011.
On rules with existential variables: Walking the decidability line. Artif. Intell.
175, 9-10 (2011), 1620ś1654.

[11] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog
System: Datalog-based Reasoning for Knowledge Graphs. PVLDB 11 (2018),
975ś987.

[12] Leopoldo E. Bertossi, Georg Gottlob, and Reinhard Pichler. 2019. Datalog: Bag
Semantics via Set Semantics. In 22nd International Conference on Database Theory,
ICDT 2019, March 26-28, 2019, Lisbon, Portugal (LIPIcs), Pablo Barceló and Marco
Calautti (Eds.), Vol. 127. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Wadern, Germany, 16:1ś16:19. https://doi.org/10.4230/LIPIcs.ICDT.2019.16

[13] Angela Bonifati, Wim Martens, and Thomas Timm. 2019. An analytical study of
large SPARQL query logs. The VLDB Journal 29 (2019), 655 ś 679.

[14] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase:
Query Answering under Expressive Relational Constraints. J. Artif. Intell. Res.
48 (2013), 115ś174.

[15] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. Datalog± : a unified
approach to ontologies and integrity constraints. In Database Theory - ICDT
2009, 12th International Conference, St. Petersburg, Russia, March 23-25, 2009,
Proceedings (ACM International Conference Proceeding Series), Ronald Fagin (Ed.),
Vol. 361. Association for Computing Machinery, New York, NY, USA, 14ś30.
https://doi.org/10.1145/1514894.1514897

[16] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2010. Advanced Processing for
Ontological Queries. PVLDB 3, 1 (2010), 554ś565.

[17] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2010. Query Answering under
Non-guarded Rules in Datalog+/-. InWeb Reasoning and Rule Systems - Fourth
International Conference, RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010.
Proceedings (Lecture Notes in Computer Science), Pascal Hitzler and Thomas
Lukasiewicz (Eds.), Vol. 6333. Springer Berlin Heidelberg, Berlin, Heidelberg,
1ś17. https://doi.org/10.1007/978-3-642-15918-3_1

[18] David Carral, Irina Dragoste, Larry González, Ceriel J. H. Jacobs,Markus Krötzsch,
and Jacopo Urbani. 2019. VLog: A Rule Engine for Knowledge Graphs. In The

SemanticWeb - ISWC 2019 - 18th International SemanticWeb Conference, Auckland,
New Zealand, October 26-30, 2019, Proceedings, Part II (Lecture Notes in Computer
Science), Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isabel F.
Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.),
Vol. 11779. Springer International Publishing, Cham, 19ś35. https://doi.org/10.
1007/978-3-030-30796-7_2

[19] Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF 1.1 Concepts
and Abstract Syntax (W3C Recommendation). https://www.w3.org/TR/rdf11-
concepts/.

[20] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. 2013.
hex-Programs with Existential Quantification. In Declarative Programming and
Knowledge Management - Declarative Programming Days, KDPD 2013, Unifying
INAP, WFLP, and WLP, Kiel, Germany, September 11-13, 2013, Revised Selected
Papers (Lecture Notes in Computer Science), Michael Hanus and Ricardo Rocha
(Eds.), Vol. 8439. Springer International Publishing, Cham, 99ś117. https://doi.
org/10.1007/978-3-319-08909-6_7

[21] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data
exchange: semantics and query answering. Theor. Comput. Sci. 336, 1 (2005),
89ś124.

[22] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language (W3C
Recommendation). https://www.w3.org/TR/sparql11-query/.

[23] David S. Johnson and Anthony C. Klug. 1984. Testing Containment of Conjunc-
tive Queries under Functional and Inclusion Dependencies. J. Comput. Syst. Sci.
28, 1 (1984), 167ś189.

[24] Egor V. Kostylev, Juan L. Reutter, Miguel Romero, and Domagoj Vrgoc. 2015.
SPARQL with Property Paths. In The Semantic Web - ISWC 2015 - 14th Interna-
tional Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceed-

ings, Part I (Lecture Notes in Computer Science), Marcelo Arenas, Óscar Corcho,
Elena Simperl, Markus Strohmaier, Mathieu d’Aquin, Kavitha Srinivas, Paul
Groth, Michel Dumontier, Jeff Heflin, Krishnaprasad Thirunarayan, and Steffen
Staab (Eds.), Vol. 9366. Springer, 3ś18. https://doi.org/10.1007/978-3-319-25007-
6_1

[25] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee.
2015. RDFox: A Highly-Scalable RDF Store. In The Semantic Web - ISWC 2015 -
14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part II (Lecture Notes in Computer Science), Marcelo Arenas,
Óscar Corcho, Elena Simperl, Markus Strohmaier, Mathieu d’Aquin, Kavitha
Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin, Krishnaprasad Thirunarayan,
and Steffen Staab (Eds.), Vol. 9367. Springer International Publishing, Cham, 3ś20.
https://doi.org/10.1007/978-3-319-25010-6_1

[26] Axel Polleres. 2007. From SPARQL to rules (and back). In Proceedings of the 16th
International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8-12, 2007, Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider,
and Prashant J. Shenoy (Eds.). Association for Computing Machinery, New York,
NY, USA, 787ś796. https://doi.org/10.1145/1242572.1242679

[27] Axel Polleres and Roman Schindlauer. 2007. DLVHEX-SPARQL: A SPARQL Com-
pliant Query Engine Based on DLVHEX. In Proceedings of the ICLP’07 Workshop
on Applications of Logic Programming to the Web, Semantic Web and Semantic Web
Services, ALPSWS 2007, Porto, Portugal, September 13th, 2007 (CEUR Workshop
Proceedings), Axel Polleres, David Pearce, Stijn Heymans, and Edna Ruckhaus
(Eds.), Vol. 287. CEUR-WS.org, Aachen.

[28] Axel Polleres and Johannes Peter Wallner. 2013. On the relation between
SPARQL1.1 and Answer Set Programming. Journal of Applied Non-Classical
Logics 23 (2013), 159ś212.

[29] Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for
RDF (W3C Recommendation). https://www.w3.org/TR/rdf-sparql-query/.

[30] Piotr Przymus, Aleksandra Boniewicz, Marta Burzanska, and Krzysztof Stencel.
2010. Recursive Query Facilities in Relational Databases: A Survey. In Database
Theory and Application, Bio-Science and Bio-Technology - International Conferences,
DTA and BSBT 2010, Held as Part of the Future Generation Information Technol-
ogy Conference, FGIT 2010, Jeju Island, Korea, December 13-15, 2010. Proceedings
(Communications in Computer and Information Science), Yanchun Zhang, Alfredo
Cuzzocrea, Jianhua Ma, Kyo-Il Chung, Tughrul Arslan, and Xiaofeng Song (Eds.),
Vol. 118. Springer, 89ś99. https://doi.org/10.1007/978-3-642-17622-7_10

[31] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.
FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework. In
The Semantic Web - ISWC 2015 - 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I (Lecture Notes in Com-

puter Science), Marcelo Arenas, Óscar Corcho, Elena Simperl, Markus Strohmaier,
Mathieu d’Aquin, Kavitha Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin,
Krishnaprasad Thirunarayan, and Steffen Staab (Eds.), Vol. 9366. Springer, 52ś69.
https://doi.org/10.1007/978-3-319-25007-6_4

[32] Muhammad Saleem, Gábor Szárnyas, Felix Conrads, Syed Ahmad Chan Bukhari,
Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2019. How Representative
Is a SPARQL Benchmark? An Analysis of RDF Triplestore Benchmarks. In The
WorldWideWeb Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019,
Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley,

4252

Ricardo Baeza-Yates, and Leila Zia (Eds.). Association for Computing Machinery,
New York, NY, USA, 1623ś1633. https://doi.org/10.1145/3308558.3313556

[33] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel. 2008.
SP2Bench: A SPARQL Performance Benchmark. CoRR abs/0806.4627 (2008).
arXiv:0806.4627 http://arxiv.org/abs/0806.4627

[34] Adrian Skubella, Daniel Janke, and Steffen Staab. 2019. BeSEPPI: Semantic-Based
Benchmarking of Property Path Implementations. In The Semantic Web - 16th
International Conference, ESWC 2019, Portorož, Slovenia, June 2-6, 2019, Proceedings

(Lecture Notes in Computer Science), Pascal Hitzler, Miriam Fernández, Krzysztof
Janowicz, Amrapali Zaveri, Alasdair J. G. Gray, Vanessa López, Armin Haller,
and Karl Hammar (Eds.), Vol. 11503. Springer International Publishing, Cham,
475ś490. https://doi.org/10.1007/978-3-030-21348-0_31

[35] Victor Vianu. 2021. Datalog Unchained. In PODS’21: Proceedings of the 40th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Vir-
tual Event, China, June 20-25, 2021, Leonid Libkin, Reinhard Pichler, and Paolo
Guagliardo (Eds.). ACM, 57ś69. https://doi.org/10.1145/3452021.3458815

4253

	Abstract
	1 Introduction
	2 Related Approaches
	2.1 Theoretical Approaches
	2.2 Practical Approaches

	3 Preliminaries
	3.1 RDF and SPARQL
	3.2 Warded Datalog and the Vadalog System

	4 The SparqLog System
	4.1 Example of Graph Pattern Translation
	4.2 Example of Property Path Translation
	4.3 Coverage of SPARQL 1.1 Features

	5 SPARQL to Datalog± Translation
	5.1 Translation of Graph Patterns
	5.2 Translation of Property Paths
	5.3 Correctness of our Translation

	6 Experimental Evaluation
	6.1 Benchmark Analysis
	6.2 SPARQL Compliance
	6.3 Performance Measurements

	7 Conclusion
	Acknowledgments
	References

