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ABSTRACT

Data pipelines (i.e., converting raw data to features) are critical for
machine learning (ML) models, yet their development and manage-
ment is time-consuming. Feature stores have recently emerged as a
new “DBMS-for-ML” with the premise of enabling data scientists
and engineers to define and manage their data pipelines. While
current feature stores fulfill their promise from a functionality per-
spective, they are resource-hungry—with ample opportunities for
implementing database-style optimizations to enhance their per-
formance. In this paper, we propose a novel set of optimizations
specifically targeted for point-in-time join, which is a critical op-
eration in data pipelines. We implement these optimizations on
top of Feathr: a widely-used feature store, and evaluate them on
use cases from both the TPCx-Al benchmark and real-world online
retail scenarios. Our thorough experimental analysis shows that
our optimizations can accelerate data pipelines by up to 3X over
state-of-the-art baselines.
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1 INTRODUCTION

Nowadays, it is common that organizations deploy hundreds if
not thousands of machine learning (ML) models to power impor-
tant applications such as search, recommendation systems, or ads
placement [27]. Data pipelines for ML, which usually involve data
ingestion, feature engineering, and other preprocessing steps to
convert raw source data into a format that can be used for training
ML models, are critical in building these ML applications. Improp-
erly implemented pipelines can result in correctness issues that
decrease the accuracy of the ML models being deployed. One of
the most common, non-obvious, and destructive issues is data leak-
age [47], which occurs when a form of the target variable, also
known as a label, is involved in the feature set used for training but
is unavailable during the inference stage. Unfortunately, as more
applications are developed over time, and thus more features need
to be extracted, the complexity of developing and managing the ML

Work done while Rui, Kwanghyun, and Konstantinos were at Microsoft.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.
doi:10.14778/3625054.3625060

4230

pipeline jungles [52] that compute these features increases rapidly,
and with it the possibility of encountering these pitfalls.

In this context, feature stores (FSs) have been proposed to provide
a common interface to compute, store, and access ML features
across an organization—hiding the complexity of managing such
pipelines from end users [48]. For instance, FSs allow end users (e.g.,
data engineers or scientists) to create features with user-defined
pipelines and guarantee no data leakage via a point-in-time join
operation [9, 19, 20, 22, 42]. Thus, FSs have emerged as ML-specific
database management systems (DBMS) that (a) run pipelines that
transform raw data into features, (b) store and manage the features,
and (c) serve features for training and inference purposes.

Although FSs offer the functionality mentioned earlier, there
is still potential to improve their efficiency from a database sys-
tems perspective. One example is ML training, which is an iterative
process that involves generating different training datasets with
features and labels to train and test an ML model. By recogniz-
ing overlap in feature computation across iterations, previously
computed features can be reused to generate new features. This
can reduce the computational overhead and accelerate the data
pipeline for machine learning. Furthermore, by observing users’
access patterns, we can propose data source layouts that offer better
performance for feature computation pipelines.

We exploit these opportunities in FeathrPO, which is designed
to optimize data pipelines for machine learning through the appli-
cation of optimization techniques rooted in database research [32,
34, 44]. FeathrPO is implemented as an extension to Feathr [13],
a state-of-the-art open-source FS widely used in production at
LinkedIn that provides native integration with Azure, making it
easy to deploy on cloud infrastructure.

Contributions. The goal of this work is to explore some of the
untapped opportunities in FSs to enable more effective and efficient
data management processes. Our contributions include:

A characterization of optimization opportunities overlooked in
most FS implementations (§3).

An effective, data layout-aware cost model, primarily designed
for pipelines involving point-in-time joins (§4).

Novel reuse-based optimization techniques for these pipelines (§5).
e A Binary Integer Linear Programming-based data layout selec-
tor for determining the optimal global configuration using the
proposed cost model (§6).

Integration of the proposed techniques into FeathrPO, an exten-
sion module for Feathr, a popular open-source FS (§7).
Comprehensive evaluation of the proposed techniques against
state-of-the-art baseline FSs, showing significant (up to 3.0x) per-
formance gains on important TPCxAI and Kaggle use cases (§8).
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Figure 1: Feature store common architecture, including rep-
resentative examples for its components.

2 BACKGROUND ON FEATURE STORES

FSs allow users to create sophisticated computation pipelines, typi-
cally composed of multiple stages, for transforming raw data into
relevant features. They are primarily designed to handle time se-
ries data and offer dedicated APIs and operations that streamline
the processing of such data, guaranteeing both point-in-time accu-
racy and correctness. In this section, we provide a brief overview
of the architecture of FSs in §2.1, then describe the widely-used
point-in-time join operation in §2.2.

2.1 TFeature Store Architecture

Figure 1 depicts the architecture of a FS, including the components
that can be commonly found in most existing implementations.
Data engineers rely on an SDK library provided by the FS to create
pipelines that extract features from raw data by applying opera-
tions such as joins or aggregations. These pipelines are executed
using a compute engine that provides high throughput and flexible
behavior, including ingestion from different types of data sources,
such as batch or streaming systems. Since ML training and inference
have different data access requirements, the resulting features are
written to two different stores: An offline store which is optimized
for throughput since training often requires reading large amounts
of data; and an online store which is optimized for low-latency reads
since inference often involves reading a small subset of the data
with stringent response time requirements. Data scientists access
the features using the FS APIs. Feature definitions are registered
into the feature catalog, which plays a key role in feature discov-
ery and reuse across users. Finally, FSs often provide additional
capabilities such as feature observability, model monitoring, and
fine-grained access control.

2.2 Point-In-Time Join

FSs provide a multitude of data transformations and aggregations.
However, the point-in-time join (also referred to as PIT or ASOF
join) [9, 19, 20, 22, 42] stands out as the most crucial operation for
generating training datasets. This operation is consistently present
in FSs and guarantees that the combined data accurately represents
the state of the sources at the specified point in time.

PIT Join Example. Consider an e-commerce site that wants to pre-
dict whether a customer will buy a certain item during Labor Week
2022 (see Figure 2). One possible option is to make this prediction
based on what a customer bought before and during Labor Week
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Figure 2: Handling of time series data to predict customer’s
potential purchases during Labor Week 2022.
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Figure 3: Example of Point-In-Time join used to compute a
window aggregate feature.

in previous years (e.g., 2020 and 2021). Assume we have two data
sources, the label source dataset containing whether a user bought
item a in Labor Week 2020 and 2021, and the feature source dataset
with the purchase amount by each user on a given day, both shown
in Figure 3 with sample data. This will be our label (or expected
prediction) and feature data, respectively. These sources need to be
combined according to a specific point-in-time (or cutoff point) [39].
In addition, window aggregates need to be computed over the com-
bined sources according to some provided time window (e.g., the
amount that a customer spent over the 30 days previous to La-
bor Week). In this context, ensuring point-in-time correctness and
avoiding data leakage [47] are critical; failing to do so could result in
significant differences in accuracy between training and inference.

The FSs SDKs simplify the process of creating complex feature
computation pipelines significantly. For instance, the following
code snippet, using the Feathr Python SDK, demonstrates how to
create a pipeline for the previous example:

# define PIT join key

join_id = TypedKey(key_column="user_id", key_type="ValueType.INT32")

# define window aggregated feature

agg = WindowAggTransformation(expr="purchase_amt", agg_func="SUM", window="30d")
feature = Feature(name="amt_30d", key=join_id, transform=agg)

# define label source dataset

1sd = HDFSSource(data_path=label_src_dataset, timestamp_column="ts")

# define feature source dataset

fsd = HDFSSource(data_path=feature_src_dataset, timestamp_column="purchase_date")
# define feature based on PIT join

feature = FeatureAnchor("training_dataset_30d", [lsd, fsd], [featurel)

PIT Join Definition. Next, we use the familiar SQL semantics
to define PIT joins. Continuing with the previous example, the
PIT join and subsequent window aggregate can be expressed as a
correlated subquery, as it is shown in Figure 4a.



SELECT user_id, ts, purchase_item_a, amt_30d
FROM Tabel_src_dataset 1_ds
LEFT JOIN LATERAL (
SELECT SUM (purchase_amt)
OVER (ORDER BY purchase_date ASC) AS amt_30d
FROM feature_src_dataset f_ds
WHERE f_ds.user_id = 1_ds.user_id
AND f_ds.purchase_date >= 1_ds.ts - 30
AND f_ds.purchase_date <= 1_ds.ts
ORDER BY purchase_date DESC LIMIT 1) subq ON TRUE;

(a) PIT join workflow g; with 30 days window
aggregate used to compute training_dataset_30d.

WHEN amt_30d IS NULL AND amt IS NULL THEN NULL
ELSE COALESCE(amt_30d, 0) + COALESCE(amt, 0)

END AS amt_40d

SELECT user_id, ts, purchase_item_a, amt_30d, amt

FROM training_dataset_30d
LEFT JOIN LATERAL (

SELECT user_id, ts, purchase_item_a, amt_40d
FROM Tabel_src_dataset 1_ds
LEFT JOIN LATERAL (
SELECT SUM (purchase_amt)
OVER (ORDER BY purchase_date ASC) AS amt_40d
FROM feature_src_dataset f_ds
WHERE f_ds.user_id = 1_ds.user_id
AND f_ds.purchase_date >= 1_ds.ts - 40
AND f_ds.purchase_date <= 1_ds.ts
ORDER BY purchase_date DESC LIMIT 1) subq ON TRUE;

(b) PIT join workflow g, with 40 days window
aggregate.

) o_subq;

»

SELECT user_id, ts, purchase_item_a,
CASE

t_ds

SELECT SUM (purchase_amt)
OVER (ORDER BY purchase_date ASC) AS amt
FROM feature_src_dataset f_ds
WHERE f_ds.user_id = t_ds.user_id
AND f_ds.purchase_date >= t_ds.ts - 40
AND f_ds.purchase_date < t_ds.ts - 30

(c) Reuse-based optimized workflow g', using
training_dataset_30d computed by q;.

WITH agg_t_ds AS (
SELECT MIN (ts) AS min_ts, MAX (ts) AS max_ts
FROM training_dataset_30d

)
SELECT user_id, ts, purchase_item_a,
CASE
WHEN amt_30d IS NULL AND amt IS NULL THEN NULL
ELSE COALESCE(amt_30d, 0) + COALESCE(amt, 0)
END AS amt_40d
FROM (
SELECT user_id, ts, purchase_item_a, amt_30d, amt
FROM training_dataset_30d t_ds
LEFT JOIN LATERAL (
SELECT SUM (purchase_amt)
OVER (ORDER BY purchase_date ASC) AS amt
FROM _(
SELECT f_ds.”* FROM feature_src_dataset f_ds, agg_t_ds
WHERE f_ds.purchase_date >= agg_t_ds.min_ts - 40
AND f_ds.purchase_date < agg_t_ds.max_ts - 30
) f_ds
WHERE f_ds.user_id = t_ds.user_id
AND f_ds.purchase_date >= t_ds.ts - 40
AND f_ds.purchase_date < t_ds.ts - 30
ORDER BY purchase_date DESC LIMIT 1) subg ON TRUE
) o_subg;

(d) Optimized workflow g", after introducing
semijoin reduction on g',.

[

»

Figure 4: Example illustrating the rewritings used to compute queries efficiently from previously materialized feature data.

For each record in label_src_dataset, the PIT join matches
records in feature_src_dataset according to the correlated con-
ditions in the WHERE clause, and produces a single record per match
corresponding to the greatest purchase_date that is less than or
equal to ts. Note that the query preserves all records in the label
source dataset in the output even if there are no matches in the
feature source dataset (e.g., user_id=3 in Figure 3). In addition, this
PIT join computes a window aggregate feature amt_30d contain-
ing the sum of purchase amounts over a 30 days window for each
user. Observe that the condition purchase_date<ts guarantees PIT
correctness, while purchase_date>ts-30 is relevant for the window
aggregate. Further, it is worth noting that in this particular example,
the inner query containing the aggregate could have been defined
using a GROUP BY clause. However, we opted to use a SELECT and
ORDER BY/LIMIT combination to generalize the PIT join definition
because FS pipelines can compute non-aggregate features based on
the PIT join result, e.g., through built-in or user-defined functions.

The semantics outlined above pertain to the left variant of the
PIT join; similar to other SQL joins, the definition can be extended
to inner, right, and full variants. Throughout this work, we concen-
trate on the left PIT join, as it is the most frequently utilized in FS
implementations. This is due to the fact that non-matching rows can
still hold significance during model training, as they may indicate
that a selected feature cannot be employed for label prediction.
PIT Join Implementation. The efficient execution of the PIT join
can be challenging, and thus, various specialized implementations
have been proposed [3]. These implementations often include other
operations, such as window aggregation, within a single operator
to decrease the number of passes over the same data. An in-depth
analysis of PIT join algorithms is beyond the scope of this work;
however, a detailed comparison of multiple state-of-the-art algo-
rithms can be found in [49]. In our experimental evaluation (§8.2),
we demonstrate that our optimizations are effective and have a
substantial impact regardless of the PIT join algorithm selected.

3 OPPORTUNITIES

While FSs are considered a cornerstone to address many of the chal-
lenges present in data pipelines for ML, there still exist untapped
optimization opportunities for FSs. Next, we discuss a few of them,
based on our so-far experience with FSs, and conclude with the
scope of this paper:
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(O1) Feature computation reuse. Feature preparation is an itera-
tive process that involves creating training datasets, evaluating the
model’s performance, and repeating these steps until desired results
are achieved. It is frequent to have overlap computation between
the features in each iteration, as well as across features used to
train the same or different models. Although FSs provide a unified
catalog to register features, it is still left to data engineers to man-
ually identify reutilization opportunities and modify their feature
definitions accordingly. Not only is this process error-prone, but it
is also not scalable even for a limited number of features—leading
to missed opportunities both individually and across organizations.
(02) Data sources layout. FSs create complex pipelines to compute
features that frequently involve filtering the original data sources
on dimensions such as time. However, they do not optimize the
data layout of these sources, which could help to avoid scanning
data that is not relevant for certain pipelines execution, and thus,
accelerate feature computation and reduce resource consumption.
(O3) Incremental feature refresh. Features that have been registered
in the FS need to be refreshed as new data is appended to the existing
datasets. Even when only a small fraction of the underlying data has
changed, FSs recompute features from scratch rather than doing
it incrementally, i.e., utilizing their outdated contents and the new
data changes to compute an up-to-date version. This is inefficient,
leading to longer computation times and higher operational costs.
(O4) Scheduling of feature maintenance. Currently, feature refresh is
often scheduled based on user-specified time intervals or rather sim-
ple policies, neglecting important factors such as feature freshness,
refresh schedule of dataset dependencies, and available compute
resources. Considering these factors could result in more timely
feature updates and more efficient resource utilization.
(O5) Compute engine selection. FSs often support multiple engines
for computing and writing feature data to both offline and online
stores. Although each engine has its own strengths and limitations,
including support for different data sources and store connectors,
a given deployment typically relies on a single engine for feature
computation. Alternatively, the selection of the engine is left to the
data engineers on a per-case basis. Automating this selection could
improve both performance and overall FS usability.

While some of these opportunities could be tackled within the
FS compute engine, we believe that doing it in the FS layer has
several advantages. First, FSs may support multiple interchangeable



engines, and, using this approach, our techniques can be applicable
independent of the engines being used. Second, implementing these
techniques within the engine may not be possible, particularly if
the FS relies on a non-open source engine. Finally, the FS layer
has additional context information (e.g., common plan execution
patterns), which allows us to better tailor our optimizations in
comparison to a general context approach.

Scope of this paper. In this work, we focus on the offline store
of FSs for model training and explore two of the opportunities
discussed above in the context of point-in-time join. In particular,
we focus on (O1) identifying and automatically reusing features
computed previously to accelerate the computation of new features
(§5), and (02) choosing an efficient data layout for sources taking
into account the characteristics of the storage system (§6). We plan
to explore other optimization opportunities in the future.

4 COST MODEL FOR DATA PIPELINES

Prior to proposing a cost model for PIT joins, it is important to
understand the common operational patterns and recognize the
significant impact of data layout on performance. PIT joins primar-
ily operate on time-series data, with both feature source dataset
and label source dataset growing over time, and new data arriving
naturally in a time (or semi-time) order. The label source dataset is
joined with the feature source dataset on non-time columns, but the
join result is heavily filtered by predicates on the time dimension,
with window aggregation applied afterward. Consequently, the
feature data required for the PIT join result is only a subset of the
feature source dataset along the time dimension. In addition, the
feature data is typically much larger than the label data.

Given these operational patterns, it is evident that the layout

of the source datasets on the storage system (e.g., HDFS, object
stores, and data warehouses) significantly affects the performance
of PIT joins. In particular, partitioning horizontally on the time
dimension allows the compute engine to skip reading large portions
of data, making it a highly effective strategy for feature source
dataset layout. Other strategies such as sharding (or bucketing in
HDFS and object stores [55]) both label and feature source datasets
could also be used; however, their implementation would require
modifying the PIT join implementation. Although the cost model
and techniques we present in this paper could be extended to other
layouts, we concentrate on horizontal partitioning as it offers the
most significant impact for the effort required, leaving exploration
of other strategies for future work.
Cost Model. Next, we introduce a cost model for data pipelines in
FSs. This model serves two key purposes in our work: (a) facilitating
the selection of the best execution plan among alternatives, and
(b) guiding the decision on the layout of source datasets.

Assuming a pipeline g, we denote by Sg the set of source datasets
read by g. Further, given a source dataset s, we denote by Dy its
size, while we use s;, to represent the partition strategy p for s. In
our work, we decide to focus on minimizing the data scanned by a
pipeline as a proxy to minimize its cost and, thus, define the cost
as Cq = Zsesq Ds - (ngo . We denote by 11;; the benefit brought
by s, to the execution of g. In our case, the benefit is calculated as
a weighted sum of three terms, in decreasing order of significance:
(a) the size of data in partitions in s that will not be read by q if the
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partition strategy p is used, (b) the size of data filtered by g once
read from the selected partitions, and (c) the #partitions read, i.e.,
extra partitions add overhead on query planning and scheduling.
The weighting coefficients are selected such that less significant
terms only have relevance when more significant terms are equal.

Next, we provide details on how we compute the size of these
partitions and the selectivity of the filter operations in g. To per-
form the cardinality estimation while avoiding the excess costs of
histogram constructions, we rely on sketch-based quantile estima-
tion. In particular, in this work, we rely on the popular KLL [46]
sketches for quantile estimation (i.e., the selectivity of the filter
on time is computed using the PDF over the rank domain of the
time attribute that KLL encodes). Note that, in our context, we
assume append-only datasets—hence, KLL sketches are sufficient.
Datasets with updates/deletions and scenarios when we require
better error guarantees on the two ends of the underlying rank
domain are beyond the scope of this work. However, we note that
both concerns, from a sketching perspective, have recently been
addressed through REQ [35] and KLL+ [61] sketches, respectively.

5 REUSE-BASED FEATURE COMPUTATION

In this section, we extend the FS to automatically reuse existing
features to compute newly defined ones. It is important to note
that users explicitly specify the features they want to compute and
materialize. Thus, our main objective is not to determine which
features to materialize ourselves but rather to modify incoming
pipelines to leverage previously computed features. Our techniques
focus on time series data and compute plans containing PIT joins.
In addition, we aim at reusing feature results both when there is
an exact match between them and when the new features can be
incrementally computed using existing ones, e.g., time window
overlap between multiple features.

Architecture. Figure 5 depicts our high-level architecture to opti-
mize the feature computation pipelines in FSs; the newly introduced
components are shown in green. When data engineers define a new
feature using the FS SDK, the feature definition is intercepted by
the Matcher. This module has access to the FS catalog containing
the definitions of already computed features, which we refer to as
materializations. To guarantee correctness, the Matcher needs to
evaluate the validity of each materialization definition by checking
whether the source datasets used to compute the materialization
have been updated since its last computation. Then, for each valid
materialization, it evaluates whether the results of the new feature
are fully or partially contained in it. For each positive response,
the Rewriter is invoked with the given pair and the type of match,
and it tries to produce an alternative definition to compute the new
feature by relying on materialization results. More details about the
supported rewritings are provided below. Then, the Cost Estimator
receives the original feature definition along with any definition
produced by the Rewriter and chooses the best execution alternative
according to the cost function of §4. Finally, the selected alternative



is passed on to the compute engine and, after completion, the FS
SDK registers the new feature into the catalog.

Reuse-based Computation of Training Datasets. Given a pipeline

q1, our optimization algorithm applies a rewrite rule g; — g2 to
transform ¢q; into a semantically equivalent pipeline g2. However,
q2 will use any of the previously materialized training datasets. Our
algorithm produces rewritings for multiple cases of query equiv-
alence and containment, following the principles of other classic
query rewriting algorithms [37, 38, 51, 59].

One particularly interesting scenario appears when one needs to
create multiple training datasets through PIT join pipelines using
different time windows to tune a model. For instance, assume we
want to extend the example shown in Figure 4a, and we would
like to explore the ML model accuracy by training it with a time
window of 40 days instead of 30 days (Figure 4b). Our algorithm
matches g2 definition with ¢q; and produces the rewriting shown
in Figure 4c. As it is shown in the SQL fragment F1, the rewriting
contains two important modifications to the PIT join: (i) the outer
table is training_dataset_3ed, the training set generated by ¢;, and
(ii) the filter in the inner subquery is altered to only compute the join
over the remaining delta that had not been previously processed.
The rewriting also introduces additional expressions applied to the
result of o_subq to handle NULL values correctly. Note that if the
time window of the second pipeline were narrower than the first
one, such as 10 days, a slightly more complex rewriting adapting
well-known incremental view maintenance ideas [40, 41] could
be generated. It is also important to emphasize that the proposed
rewriting is only valid for the left variant of the PIT joins; the
exploration of alternative rewritings for other variants of the PIT
join is a direction for future research.

After generating the reuse-based optimized plan, we implement
further optimizations to enhance the performance of the new plan.
Specifically, note that the extent of the speedup is greatly influenced
by the acceleration in the inner subquery by computing only the
delta over the existing feature. Hence, reducing the amount of data
processed in the inner query can improve performance. To that
end, as shown in the SQL fragment F2 in Figure 4d, we compute the
minimum and maximum timestamp values in the training dataset,
and use those values to filter the scan over the feature_src_dataset,
which is akin to semi-join reduction [54]. As it will become clear
in the following sections, combining these filters with an appropri-
ate partitioning strategy, can result in substantial execution time
savings via partition elimination. It is important to note that this
semi-join optimization can be applied over the original PIT join
plans regardless of the use of the reuse-based optimizations.

6 AUTOMATIC LAYOUT SELECTION

In addition to feature computation reuse, we also introduce a mech-
anism to optimize the layout of source datasets in FSs. As already
discussed in §4, time series data is prevalent in FSs, and it is com-
mon that feature computation pipelines filter them based on their
time dimension. As a result, our proposal focuses on strategies to
partition the data horizontally based on their timestamp values.
We state our problem as follows. Given a workload consisting of
pipelines that were executed to compute features in the FS, the collec-
tion of source datasets that are read by those pipelines, and the current
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layout of those source datasets, find a partitioning strategy for each
source dataset containing a time dimension such that the overall cost
of the workload is minimized subject to a bound on the size of the data
that can be rewritten. To avoid maintaining new copies of the same
data and thus increasing the complexity of the ingestion pipelines,
throughout this section, we assume that only a single partitioning
strategy can be selected for each source dataset. However, note that
our solution can be extended to support multiple strategies for the
same source, which could bring additional performance benefits
to the feature computation process. Additionally, for deploying
our solution in a production environment, ensuring data integrity
during concurrent writes and data partitioning changes is critical.
While we currently use a simple locking scheme, we plan to explore
advanced versioning capabilities provided by formats like Delta
Lake [1] to simplify our workflow.

Architecture. Figure 6 shows the new modules responsible for
automatic layout selection (in yellow color) and their interaction
with other FS components. Similar to previous works on index se-
lection [28, 31], configuration refers to a certain physical design, i.e.,
the layouts of a set of source datasets. Currently, our optimization
is triggered periodically at a set time interval, which is sufficient
with relatively stable workload access patterns. In the future, we
may explore automated interval selection or reactive approaches
for further optimization. The configuration selector requires two
inputs: the candidate layouts based on the pipelines executed to
compute the features in the FS, and the current configuration of
the source datasets read by the pipelines. For the former, we rely
on a layout generator that retrieves the feature definitions from the
FS catalog and use them to generate multiple candidates. Based on
its inputs, the configuration selector executes a cost-benefit analysis
and chooses the best configuration. Finally, the configuration selec-
tor output consists of a list of actions to apply to the source datasets,
which are executed by the controller. To prevent the reconfiguration
process from becoming a straggler or blocking training and infer-
ence jobs for an extended period of time, we place an upper bound
on the time spent reconfiguring each data source. The controller is
also responsible for registering the new data layouts in the catalog.
Details about the candidate generation process and configuration
selection algorithm are provided next.

Candidate Generation. We retrieve feature definitions from the
catalog and extract the source datasets that (i) contain a time dimen-
sion ¢, and (ii) are filtered by the value in ¢ in the feature definition.
Then, for each source dataset, we propose partitioning strategies
based on the expression f(¢,e): f is a flooring function by granu-
larity e applied on values of ¢, and e takes a different value (year,
month, day, or hour) for each candidate strategy.

Configuration Selection. To formulate our problem, we rely on
the notation introduced for our cost function in §4 along with the
following notation. Given a workload W, we denote by Sy, the
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Figure 7: BIP reduction of the selection problem.

set of source datasets read by pipelines in W, which encompasses
training sources materialized and read by our optimized pipelines.
Further, given a source dataset s, we denote by P the set of partition
strategies generated for s by the candidate layout generator. For
each strategy sp, we introduce a variable x;,, denoting whether or
not s is part of the selected configuration. In addition, we use X, Stp_l
to refer to whether sp is part of the current configuration; this is
required to know whether s will actually need to be rewritten if s,
is selected. Finally, 8 is our upper bound on the size of the data that
can be rewritten. This bound is set depending on several factors,
such as the time window for repartitioning and the performance of
the compute engine.

We use Binary Integer Programming (BIP), a well-established
field of mathematical optimization, to solve the problem of finding
the minimum-cost configuration. BIP has been successfully applied
to various optimization problems in the field of databases [30, 43,
45, 57]. In a linear programming problem, we aim to minimize
the value of an objective function by assigning values to variables,
subject to linear inequality constraints. Our problem is stated in BIP
terms in Figure 7. Constraint (1) states that each variable x;,, takes
values in {0, 1}. (2) ensures that exactly one partitioning strategy is
chosen for a given source (no partitioning is a possible strategy), and
(3) specifies that the size of the source datasets to be repartitioned
cannot exceed the bound 5.

Extensive research and development over the years have led to
the successful implementation of highly efficient BIP solvers [16, 17].
Our empirical validation using OR-Tools [15] confirms that our solu-
tion performs well, with the end-to-end runtime for 10, 000 queries
and 1, 000 source datasets ranging from 6-7s. This includes instan-
tiating the BIP program, which involves loading and proving the
data sketches to compute the benefit of each partitioning strategy,
as well as solving the BIP itself.

7 IMPLEMENTATION

We have implemented our optimization techniques in FeathrPO,
an extension to Feathr [13], a widely-used FS originally created
by LinkedIn and recently open-sourced. It provides seamless in-
tegration with Azure and other cloud services. Feathr provides a
Python interface for accessing all its components, including feature
definition and cloud services interaction; the Python client can be
easily installed using pip. It leverages Spark for feature computation,
and provides integration with managed offerings such as Azure
Synapse Spark [4] and Databricks Spark [23]. It has its own PIT join
implementation [12], and provides a diverse range of connectors
for both offline and online stores.

Figure 8 shows FeathrPO’s components (reuse-based optimizer
and data layout selector) and their integration with Feathr (gray
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Figure 8: FeathrPO new modules and their integration with
other Feathr components (colored in gray).

components) on Azure. Below we present the additions and modifi-
cations made to integrate FeathrPO within Feathr.

Pipelines Rewriting. The Feathr Python client enables users to
create complex feature computation pipelines that can consist of
multiple steps, i.e., features that are derived from other features [21].
A feature definition example was shown in §2.2. After the user
defines a feature, they can choose to materialize it with an API
call, and at that time, the Python client generates multiple files that
define the data pipeline to execute, such as label and feature source
datasets (Listing 1), feature definitions (Listing 2), etc.

"jobName": "training_dataset_3ed", {

"labelSource": "label_src_dataset" "featureName": "amt_30d",

"featureSource": [{ "featureDef": "purchase_amount",
"sourceName": "feature_src_dataset", "aggregation": "SUM",
"timestampColumn": "purchase_date" "aggWindow": "30d"

"timestampFormat": "yyyy-MM-dd" "key": ["user_id"] '

bl

Listing 1: Job Config. Listing 2: Feature Definition.

Subsequently, a Spark program containing references to these
files is submitted to the engine. Upon execution, the program instan-
tiates the Feathr client component, which reads the specified files
and generates the feature definition instances. Then, the reuse-based
optimizer in FeathrPO is triggered and, if a new optimized plan that
computes a feature based on an existing materialization is selected,
it instantiates updated definitions incorporating the details of the
optimized plan. Feathr then creates a pipeline to compute these fea-
tures, optimizes it, and executes the operations within. To support
the new feature extraction pipelines introduced in §5, modifica-
tions were made to the Feathr logical planner and the component
responsible for generating execution plans. Finally, the computed
results will be stored in either the offline or online store.
Scheduled Layout Selection. As discussed, Feathr offers integra-
tion with managed Spark cloud platforms that support scheduling
Spark jobs based on temporal triggers [8, 25]. The data layout se-
lector in FeathrPO is executed as a recurring Spark job, with the
frequency being configurable. The integer program in the selector
is implemented in Java, leveraging the glop solver in OR-Tools [15].
Extensions to Catalog. We extended the catalog to store state
information for the operation of FeathrPO. Extensions include
(a) registering materialized feature definitions and their data storage
path, (b) retrieving feature definitions for reuse-based optimization,
(c) registering changes to the layout configuration for a source
dataset, (d) retrieving partitioning strategies and source datasets
configuration, and (e) collecting and retrieving statistics for a given
source dataset.

8 EVALUATION

In this section, we evaluate the benefits of the optimizations in
FeathrPO on PIT join pipelines. Our key results are as follows:



Table 1: Summary of dataset statistics (# of rows / size)

Use Case Label Source (L) | Feature Source (F) Additional (A)
TPCxAI-UC7 (SF10) | 789,225/ 27MB | 27,987,766 / 1.5GB 358,818 / 39MB
TPCxAI-UC10 (SF10) | 37,696 / 725KB | 55,975,921/ 2.1GB 358,818 / 39MB

Favorita 379 / 7.3KB 125,497,041 / 3.9GB 55/ 1.4KB

eCommerce 44,415/ 941KB | 104,335,510/ 3.4GB | 104,335,510 / 4.1GB

FeathrPO outperforms the baseline Feathr by up to 3.0x, and
FeathrPO optimizations potentially deliver speedups of 1.4-2.5x
against the other state-of-the-art PIT join implementations.

e FeathrPO scales better than the baseline Feathr.

Thanks to our KLL-based cost model, FeathrPO prevents perfor-
mance regressions across all of our experiments.

Datasets. In PIT join, there are two necessary datasets—feature
source dataset (F) and label source dataset (L). The results of PIT
join are often joined with other datasets to generate final datasets
for model training. Thus, we have an additional dataset (A) in the
evaluation to simulate this pipeline. For our evaluation, we use
two real-world datasets from Kaggle (i.e., Favorita [7] and eCom-
merce [10]) and TPCxAI [29, 56] benchmark datasets with different
scale factors to form the datasets F, L, A.

Usecase 7 (UC7) in TPCxAL This use case recommends products to

customers based on their shopping history and rating of historically
purchased products. L is created by adding an event-timestamp
column to the product rating table in TPCx-AI benchmark. F is
created by joining the order and lineitem tables. A is the customer
table. These three tables are joined on the user ID column.

Usecase 10 (UC10) in TPCxAL This use case aims to detect fraudu-
lent financial transactions. L is created by adding an event-timestamp
column to the fraud table. F is created by extracting relevant columns
from the financial transactions table. A is the customer table. These
three tables are joined on the user ID column.

Favorita in Kaggle. This dataset is used to predict the unit sales of

items sold at different stores during specific holidays. L is created
by joining the holidays events and train datasets. F is created by
extracting relevant columns from the train dataset. A is the stores
dataset. These three tables are joined on the store ID column.

eCommerce in Kaggle. This use case predicts when an item will be

purchased according to the view events on this item in a large
online store. L is created by selecting purchase events. F is created
by collecting all the records of view events. Lastly, A is created by
extracting the products from purchase and view events. These three
tables are joined on the product ID column.

Point-in-time join queries. The PIT join queries that we use over
our datasets involve 3-way joins with Label source (L), Feature
source (F), and Additional dataset (A), summarized in Table 1.

System setup. For all FeathrPO experiments, we used a cloud setup.
We deployed Feathr v0.7.2 [13] on Azure Synapse [6] using Azure
Blob Storage [5] as an offline store and Apache Spark v3.1 cluster as
an ingestion/compute engine. The Spark cluster runs on YARN with
a driver node and 4 worker nodes, each of which has 8 vCores and
64 GB RAM. To demonstrate the applicability of the optimization
techniques, we also implemented two other PIT join algorithms.
Since there is no cloud deployment on these algorithms, we used a
local setup for experiments on them: a system (32GB of DRAM, 10
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Intel Xeon P family/Core i7 processors, 500GB SSD) running 64-bit
Ubuntu 20.04 and Spark v3.2 using local storage for the offline store.
Reported metrics. For each experiment, we report the mean of
the end-to-end execution time of three runs after removing the
lowest and highest query times.

8.1

In this section, we first evaluate the benefit of individual optimiza-
tion techniques proposed in FeathrPO. Selecting the right layout
for feature source data, particularly for rapid data skipping based
on desired date ranges, is crucial to ensure the effectiveness of our
rewriting techniques. Depending on the selectivities, we have ob-
served an order of magnitude speedup on the table scan empirically
(e.g., 8% selectivity leads to roughly 8.7x speedup on scanning the
feature source table with the right partitioning scheme). As a result,
all of our experimental results are on properly partitioned feature
source data based on the layout selection algorithm in §6.

Micro-experiments

Impact of reuse-based rewriting and semijoin reduction. Fig-
ure 9 depicts the impact of reuse-based rewriting and semijoin
reduction using TPCxAI UC7 (SF 10). Reuse-based rewriting itself
can harm the end-to-end query performance due to the poten-
tially inefficient shuffling introduced by FeathrPO. This tells us that
the optimizations used in FeathrPO are not always beneficial and
blindly applying them can give a significant performance regres-
sion compared to the baseline Feathr, thereby requiring a proper
cost model to prevent such regression. In addition, we empirically
observed that the rewritten query, along with semijoin reduction,
can increase the coverage of cases when rewritten queries will out-
perform the baseline due to the savings from data processing cost
with the additional filter on the feature source (F) dataset.

Impact of feature source (F) dataset selectivity. To further
illustrate the importance of cost-based optimization in choosing
between rewritten plans and default plans, Figure 10 demonstrates
that the performance of rewriting + semijoin reduction mainly
depends on the selectivity on the feature source (F) dataset. When
selectivity is high, it is better to use the default plan for computing
features. With cost-based optimization, FeathrPO is able to choose
the default plans for 80% and 100% selectivities in this experiment.

Table 2: Cardinality estimates for F’ after semijoin reduction
from Spark-default and KLL

[F| [F| Spark Default KLL Acc (Spark) | Acc (KLL)
1,460,497 1,314,540 1,506,628 90.01% 96.84%
2,981,515 2,700,783 3,016,420 90.58% 98.83%
27,987,765
5,288,699 4,875,750 5,303,170 92.19% 99.73%
10,054,824 9,010,578 10,094,827 89.61% 99.60%

Cardinality estimation with KLL sketches over Spark default.
As demonstrated above, the effectiveness of the cost-based opti-
mizer highly depends on the accuracy of cardinality estimates. In
FeathrPO, we rely on KLL sketches for cardinality estimation. As
Table 2 shows, the KLL sketches consistently outperform the default
estimates in Spark.

8.2 End-to-end Evaluation

For this experiment, we mimic the real-world workloads using
PIT join queries. Similar to what is described in Figure 4, we are



Figure 9: Performance of reuse-based
rewriting and semijoin reduction on
TPCxAI UC7 (SF10). (SF10).

simulating the scenarios when one needs to create multiple training
datasets through PIT join pipelines using different time windows to
tune an ML model—We extract feature datasets with a time window
of 40 days instead of 30 days for TPCxAI UC7, UC10, and Favorita
and a time window of 5 days instead of 3 days for eCommerce. We
materialize previously computed datasets and reuse them for the
follow-up training datasets.
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BN TPCx-Al UC10 (SF10)

BN Kaggke-Favorita
BN Kaggle-eCommerce

Factor of Improvement

0 Feathr(ZipPartition) Early-stop Sort Merge
[Cloud] [Local]

Point-in-time Join Implementations

Union Merge
[Local]l

Figure 12: Factor of improvement with FeathrPO on Spark
for different datasets and PIT join implementations.

Speedups in different PIT join implementations. We now
measure the end-to-end PIT join performance with and without
FeathrPO optimizations. Besides the PIT join in Feathr, we also
manually implemented FeathrPO optimizations in two other state-
of-the-art PIT join algorithms—Early stop sort-merge PIT join and
Union PIT join [11, 49]. The factor of improvements with FeathrPO
optimizations compared to the baseline (i.e., without FeathrPO opti-
mizations) across four different datasets and four different PIT join
algorithms are reported in Figure 12. Our experiments in Feathr are
executed in the cloud setup, whereas the other PIT join experiments
are performed in our local system setup. FeathrPO outperforms
the baseline Feathr across four different datasets by up to 3.0x.
FeathrPO optimizations are able to improve the end-to-end query
performance even with the other PIT join implementations by up
to 2.5x, which proves that FeathrPO optimizations are pluggable to
other Feature Stores using different PIT join implementations.
Data scalability. To study the scalability of FeathrPO with increas-
ing dataset size, we used different scale factors of TPCxAI UC7.
Figure 11 shows that FeathrPO outperforms the baseline Feathr
consistently across three different data scales by 1.3x-2.3x.

9 RELATED WORK

To the best of our knowledge, FeathrPO is the first attempt to
optimize feature stores from the perspective of resource efficiency.
Thus, we broadly review the related works and position our work.
Point-In-Time Join. The PIT join is fundamental in feature stores
but is also used in other data processing systems, such as time-series
databases [49]. Custom libraries to improve performance have been

Figure 10: Impact of selectivities on fea-
ture source (F) dataset with TPCxAIUC7
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Figure 11: Scalability of FeathrPO and
Feathr with increasing TPCxAI UC7
dataset size.

proposed [14, 24, 26]. Instead of focusing on improving the imple-
mentation of PIT join algorithms, this work applies optimizations
without altering the underlying execution engine and can be used
for various PIT join implementations, as shown in §8.2.

Feature Engineering Optimization. Previous works have fo-
cused on optimizing feature engineering, a vital step in a data
pipeline for ML. CoLumBus [60] is an early work that offers a library
of feature selection operations and optimizations. It also examined
the performance of its optimizations in the presence of feature over-
lapping. Additionally, UPLIFT [50] exploits the available parallelism
and cache-conscious runtime operations composing featurization
pipelines. Our work is complementary to these efforts and such
techniques could be adopted by FeathrPO to extend its capabilities.
FEDB [18, 33] proposes to use persistent memory to reduce the total
cost of ownership of online feature engineering. It adopts an opti-
mization technique called time window reuse, which scans the data
once for the largest time window and calculates the query result for
multiple time windows at the same time. However, three key dis-
tinctions between FEDB and our proposed system FeathrPO should
be highlighted: (a) FEDB optimizes for online inference with prior
knowledge of the windows that will be queried, whereas Feath-
rPO opportunistically rewrites pipelines without requiring upfront
knowledge; (b) FEDB does not support PIT join pipelines, unlike
our novel rewriting algorithm; and (c) FEDB focuses on achieving
an exact match once aggregate windows are computed, while our
techniques can still be used to compute a window incrementally.
Computation Reuse. Materialized views are widely used for com-
putation reuse in traditional databases and data warehouses [34, 38],
with various view selection algorithms proposed [2, 28, 44, 58]. Re-
cently, computation reuse has also been applied to data science
and machine learning workloads [36, 53]. In this paper, some of
our optimization techniques are based on the ideas borrowed from
the existing materialized view literature. But by narrowing down
the problem scope to the specific context of PIT join, the problem
becomes more optimizable than solving a general problem.

10 CONCLUSION

FeathrPO is a new instance of “DBMS for ML” designed to opti-
mize data pipelines for machine learning through the application of
techniques rooted in database research. It is implemented as an ex-
tension to Feathr, a state-of-the-art open-source feature store widely
used in production at LinkedIn. Our results show the optimizations
introduced in FeatherPO can provide up to 3X performance gains
on use cases such as TPCxAI and Kaggle. We believe that this is
just one step forward in the journey of optimizing data pipelines.
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