
Flexible Resource Allocation for Relational Database-as-a-Service
Pankaj Arora

1
, Surajit Chaudhuri

1
, Sudipto Das

3∗
, Junfeng Dong

1
, Cyril George

1
, Ajay Kalhan

1
,

Arnd Christian König
1
, Willis Lang

1
, Changsong Li

1
, Feng Li

4∗
, Jiaqi Liu

1
, Lukas M. Maas

1
,

Akshay Mata
1
, Ishai Menache

1
, Justin Moeller

1
, Vivek Narasayya

1
, Matthaios Olma

1
,

Morgan Oslake
1
, Elnaz Rezai

2∗
, Yi Shan

1
, Manoj Syamala

1
, Shize Xu

5∗
,Vasileios Zois

1

(Authors are ordered alphabetically)

1
Microsoft Corporation

2
Amazon

3
Amazon Web Services

4
Meta Platforms Inc.

5
Stripe Inc.

fra-project@microsoft.com

ABSTRACT
Oversubscription is an essential cost management strategy for cloud

database providers, and its importance is magnified by the emerg-

ing paradigm of serverless databases. In contrast to general purpose

techniques used for oversubscription in hypervisors, operating sys-

tems and cluster managers, we develop techniques that leverage our

understanding of how DBMSs use resources and how resource allo-

cations impact database performance. Our techniques are designed

to flexibly redistribute resources across database tenants at the

node and cluster levels with low overhead. We have implemented

our techniques in a commercial cloud database service: Azure SQL

Database. Experiments using microbenchmarks, industry-standard

benchmarks and real-world resource usage traces show that using

our approach, it is possible to tightly control the impact on database

performance even with a relatively high degree of oversubscription.

PVLDB Reference Format:
Pankaj Arora, Surajit Chaudhuri, Sudipto Das, Junfeng Dong, Cyril George,

Ajay Kalhan, Arnd Christian König, Willis Lang, Changsong Li, Feng Li,

Jiaqi Liu, Lukas M. Maas, Akshay Mata, Ishai Menache, Justin Moeller,

Vivek Narasayya, Matthaios Olma, Morgan Oslake, Elnaz Rezai, Yi Shan,

Manoj Syamala, Shize Xu and Vasileios Zois. Flexible Resource Allocation

for Relational Database-as-a-Service. PVLDB, 16(13): 4202 - 4215, 2023.

doi:10.14778/3625054.3625058

1 INTRODUCTION
The last decade has seen widespread enterprise adoption of re-

lational Database-as-a-Service (DBaaS) [41]. A few examples of

relational DBaaS include Amazon Aurora [2], Microsoft Azure SQL

Database [14] and Google Cloud SQL [30]. These cloud services pre-

dominantly cater to Online Transaction Processing (OLTP) and Hy-

brid Transaction/Analytical Processing (HTAP) workloads. Cloud

database services are typically multi-tenant, i.e., multiple databases

from different customers share physical data center resources.

The dominant consumption model for relational DBaaS today is

provisioned, where the customer pays for a fixed set of resources

such as CPU, memory, and I/O, regardless of the actual resource

consumption of their workload. Meanwhile, in the past few years,

∗
Work done while at Microsoft Corporation.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.

doi:10.14778/3625054.3625058

there has been an increasing interest in, and adoption of, server-
less DBaaS, e.g., Amazon Aurora Serverless [1] and Azure SQL DB

Serverless [15]. Like provisioned databases, serverless databases

are allowed to utilize resources up to a pre-specified maximum.

However, in contrast to provisioned DBaaS, serverless DBaaS offer

a pay-per-use consumption model, i.e., customers only pay for re-

sources actually used by their workload. Serverless databases are

a good fit for scenarios where it is difficult or impossible to deter-

mine the right amount of resources to provision in advance, such

as workloads with intermittent and unpredictable usage patterns,

bursty workloads with low average utilization but large spikes, or

databases for which expert DBAs are not available.

DBaaS poses a significant challenge to cloud service providers in

terms of cost-of-goods-sold (COGS). The straightforward approach

of statically reserving capacity for the maximum resources allowed

for each database tenant guarantees that resource requests can

always be met, but is not cost-effective, since it incurs the cost of

reserving significant unused capacity in the data center even when

average resources utilization is low [41]. Thus, oversubscription
of resources – where the sum of maximum resources promised

to each tenant exceeds the physically available capacity – is im-

perative for the service provider to allow packing more databases

per node, thereby reducing COGS. Although increasing the degree

of oversubscription reduces costs for the service provider, it also

increases the likelihood that the service is unable to satisfy the

resource demands of tenant workloads due to resource shortage,

thereby impacting performance and ability to adhere to service-

level-objectives (SLOs). Oversubscription is feasible because the

average resource utilization in cloud DBaaS tends to be low, and it

is statistically unlikely that a large number of tenants on the same

node or cluster simultaneously experience high resource demands.

Therefore, a cloud DBaaS infrastructure that possesses the ability

to flexibly redistribute resources from tenants with low resource

demands to tenants with higher resource demands, and can do so

quickly and with low overheads, has the potential to significantly

reduce the likelihood of resource shortages and minimize impact

on performance in this setting.

The need for flexible resource management leads to a few essen-

tial requirements. First, within a node, low-overhead mechanisms

for quickly redistributing resources, such as CPU and memory,

across tenants are needed, so that active tenants are able to acquire

the resources required for their workload without a significant de-

lay. Second, an effective oversubscribed DBaaS must decide how

to co-locate databases on nodes so as to reduce the likelihood of

resource shortages. These decisions need to be made when new

4202

https://doi.org/10.14778/3625054.3625058
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3625054.3625058

databases arrive into the cluster and when balancing load by mov-

ing existing databases across nodes in the cluster. Finally, moving a

database to a different node can significantly impact performance

due to the loss of cached state. Therefore mitigating the impact of

such moves is important.

Prior work has developed techniques that allow the oversub-

scription of resources on a single node for arbitrary applications

running in virtual machines (VMs) or as operating system pro-

cesses (e.g., [17, 45, 55]). However, such generic techniques for

multi-tenant memory and CPU management are insufficient when

applied to DBMSs, since they are unable to take into account how

these key resources impact database performance [51]. Similarly,

cluster managers (e.g., Kubernetes [29] or Service Fabric [32]) are

able to place newly arriving tenants on nodes and balance load by

moving tenants between nodes. However, in contrast to VMs in

the cloud, which tend to be short-lived (e.g., with a 90
th

percentile

lifetime of 1 day [23] in Azure), cloud DBaaS have much longer life-

times (e.g., a 90
th
percentile of 88 days - see Section 2.2). As a result,

generic placement and load-balancing techniques available in clus-

ter managers today can result in too many unnecessary moves for

DBaaS (see Section 8.3, [35]). Lastly, techniques for live migration

of VMs or databases [11, 27] are too heavyweight for our scenario,

since they do not model the performance impact of migrated state,

and move excessive amounts of memory and storage state.

Contributions. In this paper, we present a novel architecture using
which a relational DBaaS can effectively oversubscribe resources

while retaining control on database performance. By exploiting our

understanding of how DBMSs use resources over their lifetime, we

design database-specific techniques at the node and cluster levels,

and orchestrate their interplay. This achieves significantly better

control on DBMS performance, and thus the ability to meet the

desired SLOs, when compared to generic techniques.

Our key contributions are as follows. First, we develop a cooper-

ative white-box technique for multi-tenant memory redistribution

across databases within a node that takes into account howmemory

is used by the DBMS. We show that this technique significantly re-

duces the impact on database performance due tomemory shortages

(Section 4) when compared to state-of-the-art multi-tenant memory

management mechanisms in the hypervisor and OS. Second, we

present an algorithm for dynamically re-balancing databases across

cores within the node to minimize the likelihood of CPU shortage

for tenants sharing a core (Section 5). Third, we develop techniques

for modeling how database resource usage changes over time and

for quantifying the potential disruption of moving a database by

taking into account database activity and the amount of database

state that needs to be moved. We use these models to influence

how the cluster manager places tenants in the cluster and which

databases are moved in response to resource pressure (Section 6).

Our techniques significantly reduce both the number of moves and

the disruption on performance. Finally, we describe techniques for

mitigating the impact of unavoidable database moves within in

the cluster, by identifying and migrating any non-persistent DBMS

state that significantly affects workload performance (Section 7).

The mechanisms described in this paper have been implemented

and evaluated in the codebase of a commercial cloud database ser-

vice: Microsoft’s Azure SQL Database [14]. Our techniques apply to

both provisioned and serverless databases. We perform extensive

experiments (Section 8) using microbenchmarks, industry-standard

benchmark workloads, and resource traces of production database

workloads. We demonstrate that, for a given degree of oversubscrip-

tion, our techniques result in significantly fewer resource short-

ages than state-of-the-art techniques in research and industry, and,

hence, lead to smaller performance impact on tenant workloads.

This paper does not focus on what degree of oversubscription is

appropriate for use in a particular setting and which tenants should

be oversubscribed, which are decisions primarily driven by the

business needs of customers and the cloud service provider.

2 BACKGROUND AND MOTIVATION
We first describe the major infrastructure components of a rela-

tional cloud database service [41] using the example of the Azure

SQLDatabase service. Azure SQLDatabase [14] is a highly available,

multi-tenant, relational cloud database service based on Microsoft

SQL Server, targeted at OLTP and HTAP workloads. It is a managed

service that automates several essential administration tasks in-

cluding provisioning, upgrades, backups, ensuring high availability,

managing security and offers auto-tuning capabilities [25].

Client

Service Layer
Control Plane and Gateway

Cluster 1

Resource Manager
(Node-Level)

Cluster Manager
(Distributed)

DBMS 1 DBMS N

Remote Storage Service

…

Node

DBMS 2

Node 1

Node M

≈

Cluster 2

…

Node 2

Region

Figure 1: Architecture overview of Azure SQL Database [35]

2.1 Azure SQL Database
Database tenants are hosted on shared nodes in multiple clusters,
as shown in Figure 1. Each tenant may have one or more replicas

distributed across these nodes to achieve high availability. Multi-

ple tenants can share the same physical node while being isolated

into separate containers (e.g., using VMs or separate OS processes

running their own private DBMS instance). A node-level resource

manager controls how resources are shared across all tenants on

that node. Multiple nodes are grouped together into logical clus-

ters, each managed by a distributed cluster manager. SQL Database

uses the Azure Service Fabric (SF) cluster manager [32], which is

responsible for the placement of tenants onto nodes and for han-

dling database moves, aka failovers, i.e., situations in which a tenant

replica needs to be moved to a different physical machine, or where

primary/secondary replicas swap roles. Such moves can be disrup-

tive to database performance since the cached state of the primary

is not preserved. All data and log files for a tenant are either stored

in Azure Storage or on local SSD (and replicated within the cluster),

depending on the tenant’s service tier [13]. Each region is comprised

4203

0%

5%

10%

15%

20%

25%

0% 50% 100%

C
P
U
U
ti
liz
at
io
n

Percentage of Nodes

95th Percentile
Average

(a) CPU Utilization

0%

20%

40%

60%

80%

100%

0% 50% 100%

M
e
m
o
ry

U
ti
liz
at
io
n

Percentage of Nodes

95th Percentile
Average

(b) Memory Utilization

Figure 2: CDF of resource utilization in a cluster

of a set of such clusters. A region-level control plane is responsible
for directing newly created databases to one of the clusters, as well

as client connection routing.

Provisioned vs. Serverless Billing Models. Azure SQL DB sup-

ports both provisioned and serverless compute models. In the pro-

visioned model, tenants pay for a fixed amount of resources, re-

gardless of how much of those resources is actually consumed by

the workload. In contrast, the pay-per-use serverless model bills

for compute usage per second. Tenants are categorized into tenant
classes, which are defined by the combinations of a tenant’s service

tier, the maximum resources available to the tenant and the tenant’s

compute model (e.g., provisioned vs. serverless). Finally, while the

average resource utilization can be low in both provisioned and

serverless models, serverless tenants put an even greater pressure

on the service provider to improve resource utilization and reduce

cost, since serverless DB customers only pay for resources used.

2.2 Resource Usage Patterns
To motivate the need for resource oversubscription and to illustrate

the resulting challenges, we analyzed the resource consumption

on Azure SQL Database production clusters. The collected data

captures a one-week trace from a representative 40 node cluster.

CPU Utilization. On each node, we collected CPU and memory

utilization readings as the average over 15 second intervals. Subse-

quently, we computed aggregates over those readings, including

average and 95
th
percentile for the entire week observed. Figure 2(a)

shows the CDF of average and 95
th
percentile CPU usage across

nodes in the cluster. On almost all nodes, the average CPU utiliza-

tion is below 5% of capacity, with even the 95
th
percentile usage

being below 20%. Even though the average CPU utilization on nodes

is generally low in production, we observe cases where at least one

CPU core on a node is hot, i.e., that has CPU utilization above 70%

for at least one metering interval. In particular, in a representative

oversubscribed production cluster, over a period of one week, each

node saw on average 13 times per day where at least one CPU

core was hot, with a median of 3, and 90/99/99.9th percentiles of

33/164/303 occurrences per node per day, respectively.

Memory Utilization. Figure 2(b) shows cluster-wide main mem-

ory utilization, which is significantly higher than CPU utilization.

The differences between the average and 95
th

percentile utilization

are much less pronounced, indicating that, in aggregate, memory

utilization is much more stable. However, memory consumption

does exhibit significant changes during a tenant’s lifetime. Database

systems tend to grow their memory consumption over time, as the

0% 20% 40% 60% 80% 100%

5 minutes

15 minutes

30 minutes

60 minutes

8 hours

16 hours

Percent of Pages not accessed within Timeframe

Ti
m
e
fr
am

e

Figure 3: Access frequency of buffer pool pages in cluster

DBMS accumulates state from caches, especially at the beginning

of a tenant’s lifetime, when memory often grows rapidly.

Although the memory utilization of the cluster is much higher

than CPU utilization, a significant fraction of cache memory tends

to be “cold”. To quantify this, we took a random sample of the last

access times of pages in the page buffer pool (which is the dominant

consumer of cluster memory in Azure SQL DB) across all database

tenants in the cluster. As shown in Figure 3, almost 80% of the pages

in the buffer pools across the cluster had not been accessed in over

60 minutes, and over 40% of the pages had not been accessed in

over 8 hours, indicating a large fraction of cold buffer pool memory.

Database Lifetimes. We measured the lifetimes of all databases

created in Azure SQL DB within a two week window. We found

these databases to have a median lifetime of 56 days and the 90
th

percentile of 88 days. In comparison, for VMs in Azure IaaS, which

run a wide variety of applications, the 90
th

percentile lifetime is

only about 1 day, and the median lifetime is below 12 hours [23].

This long-lived nature of databases brings additional challenges for

how databases should be co-located onto nodes in a cluster.

3 ARCHITECTURE OVERVIEW
Resource competition among tenants in oversubscribed DBaaS clus-

ters can lead to resource shortages. The key challenges of handling

such shortages are: (a) Detecting impending or actual resource short-

ages; (b) Proactively reducing the likelihood of resource shortages;

(c) Minimizing the impact resource shortages have on database

performance. Our white-box design relies on exploiting our un-

derstanding of how DBMSs use resources over their lifetime and

how resource allocations impact database performance. We develop

database-specific resource allocation techniques, which allow us to

achieve significantly better control over performance compared to

generic oversubscription techniques designed for arbitrary applica-

tions [9], e.g., VM/OS level oversubscription [17, 45, 55], traditional

approaches to load-balancing in clusters based on current utiliza-

tion [29, 32], and techniques for VM and database live migration.

Figure 4 shows how our techniques fit into the software architec-

ture of a cloudDBaaS.We develop new techniqueswithin the DBMS,

in the node-level resource manager which serves as the control

plane for the node, as well as in the cluster manager. We describe

a system that oversubscribes each resource by a resource-specific

oversubscription ratio. The oversubscription ratio of a resource refers
to the ratio of the total amount of the resource promised to tenants

on a node or cluster (i.e., the sum of the maximum amount each

tenant can consume) divided by the physical capacity of the re-

source on the node or cluster, respectively. A cloud service provider

4204

Cluster

Cluster Manager

Node1

Node-Level Resource Manager

DBMS1 DBMSN

NodeM

Placement & Load Balancing

Memory Brokering CPU RebalancingViolation Detection

Node-Level Resource
Manager

DBMS
Resource Monitoring

• Cache distribution
• Per-core CPU utilization
• Access statistics

1 32

DBMS… …

…
Resource
Assignments

Resource Utilization
Statistics

Resource Management

• Reclaim memory
• Schedule tasks and

limit CPU usage

Cache State

…

Buffer Pool

Plan Cache

4

Failover Request

Per-Database
Resource
Utilization

Cache State

…

Buffer Pool

Plan Cache
Cache Migration 5

Failover Manager

Figure 4: Overview of flexible resource allocation mechanisms in cloud DBaaS

can control the oversubscription ratio by limiting how many data-

bases are admitted into the cluster. This paper focuses on describing

effective techniques for managing resources in a DBaaS for any

given oversubscription ratio, i.e., our goal is to minimize resource

shortages, and thereby minimize the impact on performance of

active databases.

To manage oversubscribed resources, whenever a database re-

quests additional resources, the local resource manager first at-

tempts to draw from unused resources on the node. If the available

resources on the node fall below a threshold, node-local mecha-

nisms attempt to free up the required resources by acquiring unuti-

lized resources (such as “cold” cache memory or unused cores) from

other database tenants on the node. Such resource acquisition is

done in a low-overhead manner that minimizes disruption. If these

node-level mechanisms do not alleviate the resource shortage, the

cluster manager is invoked to free resources by moving (i.e., failing

over) one or more databases to other nodes within the cluster. We

observe that, although developed in the context of Azure SQL DB,

this architecture is broadly applicable to any relational DBaaS. Our

techniques only assume standard capabilities of operating systems

(resource isolation and limiting, and process affinitization), and the

extensions we propose to DBMSs and cluster managers are applica-

ble to most modern DBMSs or cluster managers (e.g., Kubernetes

and Service Fabric). In this paper, due to lack of space, we focus on

CPU and memory resources, and are unable to cover techniques

related to local disk space and I/O. Below, we provide an overview

of the key techniques described in the remainder of this paper.

Detecting Resource Violations. In order to trigger the various

techniques described in this paper, we need to be able to detect

impending resource shortages. We use resource violations for this
purpose, which we define as a node’s usage of a resource exceed-

ing a predefined threshold. To capture violations, the node-level

resource manager monitors the resource usage at the level of both,

the individual databases and the overall node, and periodically re-

ports them to the cluster manager (1). Tracked resources include

CPU utilization, memory consumption, local disk storage, and disk

and network I/O utilization. For each resource, when the resource

demand surpasses a predetermined threshold for a specified pe-

riod of time, a resource violation is recorded. The exact thresholds

are set based on historical data and reflect the speed at which the

resources can grow, how disruptive a resource shortage for a par-

ticular resource would be, and what node-level mechanisms are in

place to mitigate the violation without causing database failovers.

Mitigating Resource Shortages on a Node. Long-term resource

shortage on a node can only be relieved by moving one or more

databases to other nodes in the cluster. However, given the rela-

tively low resource utilization in practice (see Section 2.2), the fact

that resource demands of different databases on a node tend to be

spread out over time, and the burstiness of many database work-

loads, temporary spikes in resource demand can often be directly

handled by node-level mechanisms. To govern the memory distribu-

tion among tenants on the node, we develop multi-tenant memory
brokering (2), a new technique which selectively redistributes

memory across tenants with the goal of maintaining a buffer of free

memory on the node while minimizing the total performance im-

pact on databases. It is instrumental in addressing short-term spikes

in memory demand, and in many cases can avoid the need to move

databases to other nodes (Section 4). When multiple DBMSs share

CPUs and are affinitized to overlapping CPU sets, there is potential

for a resource violation on a core even when the the overall CPU uti-

lization of the node is relatively small (see Section 2.2). We develop a

dynamic node-wide core re-balancing algorithm (3) that prevents

such resource violations by re-affinitizing DBMSs to different cores

based on observed utilization on each core (Section 5).

Tenant Placement. We proactively optimize the placement of

database tenants on nodes in the cluster to reduce the longer term

likelihood of resource shortages on each node (4). Since databases

are typically long-lived (see Section 2.2 and [47]), and their resource

usage can vary significantly over time [35], our technique aims to

place databases such that the likelihood of resource violations is

minimized. We make tenant placement decisions when a new data-

base arrives, or existing databases are moved within the cluster.

4205

Placing tenants in a way that minimizes service disruption requires

non-trivial extensions to the cluster manager. Due to space limita-

tions, we focus on the novel aspects of our approach in Section 6;

the remaining details appeared previously in [35] and [32].

Mitigating Failover Impact. After a database failover, the cached
state of the original primary database is not available on the new

cluster node (e.g., buffer pool and plan cache). To mitigate the per-

formance impact of failovers due to oversubscription, we develop

low-overhead techniques in the DBMS that can selectively migrate

the subset of the cached state that has the most impact on perfor-

mance (Section 7, 5).

4 MULTI-TENANT MEMORY BROKERING
Oversubscribing memory in a multi-tenant DBaaS means the total

memory promised to databases on the node can exceed the amount

of physical memory available on the node. Therefore, multiple data-

bases actually demanding memory at the same time can potentially

result in memory shortage. In practice the memory footprint of

each database tends to grow over its lifetime, even when their in-

memory caches are cold (e.g., see Azure SQL DB memory usage

patterns in Section 2.2). The above behavior of DBMSs is problem-

atic since we can run out of memory on the node and, therefore,

active databases may be unable to satisfy their demand, even when

most of the memory on the node is cold; requiring moves of tenants

to other nodes in the cluster, which can be disruptive. It is therefore

crucial for an oversubscribed cloud DBaaS to have the ability to

redistribute memory across tenants while taking into account how

memory usage affects the performance of a database, which we

refer to as multi-tenant memory brokering. For the common case

where there is a relatively short-lived memory demand from a sin-

gle or a handful of active databases, such redistribution of memory

is often sufficient to tide over the spike with minimal impact on

any database’s performance, thereby avoiding tenant moves.

Figure 5 shows the different levels of memory governance tech-

niques that we employ depending on the amount of remaining

node memory. To address short-term memory pressure, when the

resource manager registers memory consumption above a defined

limit, multi-tenant memory brokering is invoked to attempt to re-

duce the consumed memory on the node by freeing up cold cache

objects across all tenants. If, despite that, memory usage grows

and increases above a second Failover Threshold, tenant moves are

initiated. If memory usage becomes too high before the tenant

moves are completed, we use OS-level memory throttling as a a last

resort to avoid the entire node becoming unresponsive. This can be

achieved using memory limits in Linux cgroups [45] or Windows

Job Objects [17], and max memory settings in VMs [55]. Since this

technique is agnostic to the impact of memory on database perfor-

mance, it can cause significant performance impact when invoked.

Therefore, the combination of multi-tenant memory brokering and

tenant moves are designed to make this situation very unlikely.

4.1 Problem Formulation
Any technique for redistributing memory across tenants must ad-

dress a few key challenges. First, it must be able to model the impact

of memory on each database’s performance; taking into account

the various use cases of memory within a DBMS, including various

Total Available Memory on Node

Redistribute Memory using Multi-
Tenant Memory Brokering

Initiate Tenant Moves

Memory Throttling using OS-Level
GovernanceThrottling

Threshold
Failover
Threshold

Brokering
Threshold

No Action Needed

0%

100%

Figure 5: Node-level memory mechanisms and thresholds

types of caches. Second, we need a common currency across tenants
for reasoning about how memory impacts performance, and we

must be able to handle cases where tenants have different priorities

(i.e., importance). Finally, to be a viable solution for production,

the technique must be efficient, i.e., it must have low overheads

imposed on each DBMS and should be able to respond to memory

pressure quickly, usually in a matter of seconds.

Value ofMemory. At the core of our design is the concept of Value
of Memory (VoM). We use cached objects to define VoM, although

this definition can be extended to other use cases of memory in

databases, such as working memory. The VoM of a cache object

tracks how much system time we expect to save by caching that

object as compared to not caching it. We base the VoM on the

notion of system time saved (STS) from [52], which refers to the

amount of time required to create the cached object in memory;

this normalizes costs across objects that mainly consume CPU to be

created (e.g., query plans) and objects that require I/O to be issued

(e.g., buffer pages). Concretely, the VoM of an object 𝑖 is defined as

𝑉𝑜𝑀𝑖 = 𝑆𝑇𝑆𝑖 × 𝜆𝑖 ,

where 𝜆𝑖 corresponds to the expected number of accesses per unit

of time. In essence, the VoM of an object represents the expected
time saved by caching the object. Finally, we note that the VoM

metric can be used as a common currency to reason about memory

across different tenants since the 𝑆𝑇𝑆 is a measure of time.

Referring to Figure 5, multi-tenant memory brokering is trig-

gered when the memory usage on the node exceeds the memory
brokering threshold. If current memory usage is 𝛼 units higher than

the memory brokering threshold, our goal is to reduce the aggre-

gate memory consumption of all tenants to a lower reclamation
target by reclaiming a total of

𝑀 = 𝛼 + (MemoryBrokeringThreshold − ReclamationTarget)

units of memory from one or more databases on the node such that

the aggregate performance impact over all tenants (captured by

the VoM metric) is minimized. In turn, this task can be formulated

as selecting a set of memory objects to retain such that their total

memory requirements are below the reclamation target and their

aggregate VoM is maximized. This corresponds to an instance of

the 0-1 Knapsack Problem [56], with the item values correspond-
ing to the VoM of the cache objects and the item weights being
the respective object sizes in memory. From the solution to this

Knapsack instance, we can – by tracking which objects belong to

which tenant – compute the amount of memory𝑚𝑖 to be released

by 𝑡𝑒𝑛𝑎𝑛𝑡𝑖 .

4206

Node
Resource Manager

Buffer
Pool

Column
Segments

Plan
Cache

VoM

M
em

or
y
Si
ze

…

DBMS1 DBMSN

…

VoM

M
em

or
y
Si
ze

Target
Memory
Size m1

Target
Memory
Size mnValue-of-Memory

Histogram H1

Value-of-Memory
Histogram HN

Buffer
Pool

Column
Segments

Plan
Cache

…

Figure 6: Multi-tenant memory brokering architecture

Tenant Prioritization: In addition, to handle cases where the cloud

provider wants to provide differential priorities across tenants (e.g.,

third-party vs. first party tenants, expensive vs. inexpensive SLOs,

etc.), each tenant 𝑡𝑒𝑛𝑎𝑛𝑡𝑖 can be assigned a tenant weight𝑤𝑖 . In that

case the optimization objective is to optimize the weighted sum of

VoM over all retained objects.

4.2 Implementation in Azure SQL DB
Figure 6 shows the high-level architecture of our multi-tenant mem-

ory brokering approach. When the resource manager registers

increased memory utilization, it requests from every tenant infor-

mation about its VoM distribution and uses this information to

calculate a new target memory size for each tenant. The tenant is

then notified of its newmemory limit𝑚𝑖 and its SQL engine reduces

its memory footprint by reclaiming cached objects to meet its new

target size. To allow memory reclamation inside each DBMS to take

effect and to detect consistent memory pressure that needs to be

resolved through a failover, we add a 1 minute cooldown period

between two successive invocations of the memory broker.

Since databases can contain very large numbers of cached mem-

ory objects of different sizes, we use a compact equi-depth his-

togram to reduce communication and computation overheads by

summarizing each tenant’s VoM distribution across its memory

consumers, such as buffer pool, column store cache, plan cache etc.

Each histogram bucket summarizes a range of VoM values, and

tracks the total number and the aggregate size of all objects within

that VoM range. We describe the details of the histogram computa-

tion below. Given the histograms, the node-level resource manager

can solve the optimization problem at the level of histogram buckets

instead of individual objects. Because the 0-1 knapsack problem is

NP-hard, we use a greedy heuristic that proceeds to select the next

bucket with the lowest VoM interval endpoint across all tenants

until we have reclaimed at least 𝑀 units overall. This heuristic

is computationally efficient with a time complexity of O(𝑛 log𝑛),
where 𝑛 is the number of tenants. In practice, histogram computa-

tion is non-intrusive and occurs only in the presence of memory

pressure and at most once per tenant per minute. Space and com-

munication overheads scale linearly with the number of tenants at

a bounded maximum histogram size of ≈ 11 KB per tenant.

VoM Histogram Computation. To generate its histogram, each

tenant iterates over the objects in its various caches as well as

its free list [21]. We note that in Microsoft SQL Server working

memory (e.g., for sorting or hashing) is not reclaimable during
query execution, and hence actively used working memory is not

included in VoM distribution computation. However, once query

execution completes, the working memory is returned to the free

page list and included in the histogram.

The exact approach to adding to the VoM histogram varies by

the type of the respective cache, as follows:

Buffer Pool: The VoM distribution of the buffer pool is computed

by sampling a small number of pages (i.e., a few hundred) uniformly

at random, and computing their VoM using the existing per-page

STS value (i.e., the latency of a disk read). Based on this, we scale the

number of objects of a specific VoM by the inverse sampling fraction.

Sampling is a crucial performance optimization since scanning all

pages in the buffer pool would increase latency and adds non-trivial

CPU overheads. 𝜆𝑖 is estimated from the last page references, which

are retained by the (modified) LRU-K [44] page eviction scheme.

Other System Caches: SQL Server maintains separate caches for

larger objects such as column segments [20] and cached query exe-

cution plans. While these caches usually contain significantly fewer

elements than the buffer pool, their contents can differ significantly

in size and STS. Because of this, instead of sampling, the VoM distri-

bution of such caches is computed by a sweep over the entire cache.

Like for the buffer pool, STS is already stored for each cached object

using type-specific cost-models (e.g., time to compile a query plan)

and 𝜆𝑖 is estimated from the last references stored.

Free Pages: The free page list contains pages that the database

system process keeps pre-allocated to assign to various memory

consumers when requested. Free page list sizes can be significant

since, for example, working memory used by memory-consuming

operators, such as Sort, is returned to the free list upon completion

of the operator. Free pages are reported with a VoM reflecting the

cost of an OS page allocation, which is typically much cheaper than

the VoM of any cached objects. This ensures that the DBMS will at

first try to release free pages before other cached objects.

5 UTILIZATION-BASED CPU REBALANCING
In a multi-tenant DBaaS with oversubscribed CPU resources, multi-

ple database tenants may need to share the same physical CPU core.

When two or more of those tenants simultaneously experience high

CPU demand, a core can become overutilized and the tenants might

not be granted their assigned share of CPU cycles. As noted in

Section 2.2, such core-level CPU shortages can occur even when the

node-wide CPU utilization is relatively low. It is, therefore, impor-

tant that database tenants can be dynamically re-balanced across

the available physical CPU cores. If the high core utilization cannot

be resolved by re-balancing, CPU-consumption is throttled until

CPU cycles can be freed up by moving tenants to different nodes.

Constraints. Most modern database systems use custom thread

management to control the parallelism and priority of internal

tasks, to reduce the overhead of context-switches, and to guarantee

cache and data locality, including NUMA-awareness
1
. Furthermore,

each tenant’s SLO comes with an allocation of a certain number of

1
In Microsoft SQL Server, this explicit thread management is implemented in the SQL
Operating System [34], a platform abstraction layer providing custom facilities for

thread-scheduling, memory management, asynchronous IO and synchronization.

4207

NUMA Node 1

CPU 6

DB 1 (2 cores) – 1 NUMA node
DB 2 (4 cores) – 2 NUMA nodes
DB 3 (8 cores) – 2 NUMA nodes

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

100%

Rebalancing
threshold

A
gg
.C
P
U
U
ti
liz
at
io
n

16 assigned cores
12 physical cores

Oversubscription Ratio: 1.3

0 %

NUMA Node 2

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6

Figure 7: Example of a rebalancing operation to avoid high
CPU utilization on an oversubscribed core

vCores. This number is significant for a DBMSs since it controls the

maximum degree-of-parallelism for a query. Therefore, a technique

like ”slicing” a 1 vCore database across 2 physical cores and rate

limiting its utilization to 50% on each core is not practical.

Affinization and CPU Rebalancing. The above constraints lead
us to manage CPU resources proactively, rather than relying ex-

clusively on the OS to load-balance threads using work-stealing

capabilities [57]. We control core assignments by explicitly affini-

tizing each database tenant to a set of cores. On a given core, for

the common case, where typically at most one database is active

at any point in time, the active database achieves good data and

instruction cache locality. Affinitization also allows us to satisfy

soft-constraints such as NUMA-awareness. For tenants with a small

number of vCores it is preferable to ensure that all vCores are as-

signed to the same NUMA node to avoid NUMA effects. However,

for large tenants where using multiple NUMA nodes is unavoidable,

it is preferable to have their vCores assigned roughly equally to each

NUMA node to allow for better utilization of memory bandwidth.

To avoid CPU shortages on any individual core when databases

are affinitized directly to physical cores, we use a utilization-based
re-affinitization algorithm. For this the node-level resource manager

monitors the per-core CPU utilization to ensure all over-subscribed

cores have sufficient headroom to accommodate the assigned ten-

ants. If at any time an over-subscribed physical core is considered

highly-utilized (i.e., their utilization crosses a predefined threshold

for a window of time), the node-level resource manager re-balances

one or more active tenants by re-affinitizing the associated data-

base processes to different subsets of cores (Figure 7) using a greedy

rebalancing algorithm. We omit algorithmic details due to lack of

space. In practice, we consider CPU rebalancing every 15 seconds,

which provides a good trade-off between accommodating imbal-

ances caused by changes in the average CPU utilization of tenants,

and the overheads of re-affinitizing database processes.

CPU Throttling. In the unlikely case that the high core utilization

cannot be resolved by re-balancing, including when the average

CPU utilization across all cores increases above the high-utilization
threshold, the node is marked as hot and the cluster manager is

triggered to move tenants off the node. During this process, OS-

level CPU rate-limiting 2
provides a last line of defense to ensure

a fair distribution of CPU resources and to protect the host from

overload while the system resolves the CPU violation.

2
In Windows and Linux operating systems, this functionality is captured through Job
Object [17] and Control Group (cgroup) [45] abstractions, respectively.

6 TENANT PLACEMENT
In an oversubscribed DBaaS, the assignment of tenants to nodes

in the cluster becomes critical for achieving a balance between re-

source availability and effective resource utilization. Tenant place-

ment decisions are challenging since database tenants are long-

lived [47], accumulate large state [41] and exhibit significant changes

in resource demand over time [35]. As a result, basing placement

decisions on snapshots of current resource usage, as in prior work

(e.g., [10, 31, 46, 48]) as well as industrial cluster managers, is likely

to incur unnecessary resource violations. In contrast, our tenant

placement approach leverages resource demands seen in previous

tenants to compute future demand distributions (as well as their un-

certainty) and incorporates these estimates into tenant placement.

The resulting technique is implemented in a modified version of the

Placement and Load Balancer (PLB) component of Service Fabric.

Background (PLB). The placement of tenant replicas within a

cluster is an online optimization problem, with a number of inter-

acting constraints such as affinity and anti-affinity between replicas,
constraints on resource usage, etc. [3, 4, 6]. We refer to an assign-

ment of tenants to nodes in the cluster as a configuration. When new

tenants are placed, or existing tenants are moved, PLB considers a

space of candidate configurations, each of which is associated with a

score. Among all candidates satisfying the constraints, the candidate

configuration with the minimal score is selected. Our tenant place-

ment approach can be characterized by (a) the search algorithm used

to enumerate candidate configurations and (b) the scoring function
used to select among them. We describe these components next.

Enumerating the Space of Configurations. PLB generates can-

didate configurations by first identifying, for each replica to be

placed/moved, all target nodes which can host this replica without

generating a constraint violation, and placing the replica at a target

node chosen at random. Subsequently, the configuration with the

largest number of placed replicas is chosen as the initial seed con-
figuration. After this, the overall cluster score is optimized using

Simulated Annealing (SA) [33]. SA explores the configuration space

by generating random moves (e.g., moving a replica) and comput-

ing the score for each resulting configuration. Depending on this

score, the new configuration is adopted with a certain probability

and subsequently used as the seed for further SA iterations. This

process continues until a timeout expires. Details of this algorithm

can be found in [32].

Scoring Candidate Configurations. The scoring function we use

to place tenants (see [12]) minimizes the product of (a) the weighted

sum of the standard deviations over all metrics
3
[19] across all nodes

and (b) the weighted [7] sum of failovers of all replicas being moved

to reach the target configuration and any future expected failovers
due to resource violations

4
. The expected failover term is computed

based on the distribution of resource demands of previous tenants.

Next, we will describe the key components of this score in more

detail, describing (a) the computation of the expected number of

future failovers, (b) how weights are assigned to different tenants

3
Metrics typically correspond to individual resource demand.

4
The scoring function includes additional terms such as penalties associated with

insufficient free nodes and the total replica count, which we omit for clarity.

4208

to minimize service disruption and (c) a mechanism used to avoid

resource violations for new tenants.

Estimating Expected Failovers. To compute the expected num-

ber of future failovers for a candidate configuration, we first esti-

mate – for a set of tenants co-located on a node – the probability

of a future resource violation. Accurate point estimates of future

tenant resource demands are inherently difficult, especially for new

tenants, for which only the tenant class (see Section 2.1), but no us-

age information is known. Consequently, we model the distribution

of possible resource demand curves over time.

For this, we perform a Monte-Carlo (MC) simulation that uses

resource demand traces from previous tenants and, in each MC

iteration, replays the traces to obtain a possible outcome of re-

source demand on a node. The estimated probability of violation

then corresponds to the fraction of MC iterations with at least one

violation. We observe that the expected number of resource violations
computed above is a lower bound on the expected number of future
failovers, since each resource violation requires at least one failover

to resolve. Therefore, we add this lower bound to the failover term
of PLB’s scoring function, effectively summing up the required

and the expected failovers resulting from a new configuration. The

details of the MC simulation are described in [35].

Assigning Weights to Tenants. To minimize the amount of ser-

vice disruption due to tenant failovers, the scoring function also

needs to account for the differences in resource usage between

replicas: For example, replicas that use large local disk space re-

quire longer for a failover to complete, as the local state needs to be

copied to the new node. Similarly, replicas using more cache mem-

ory require either more cache state to be transferred (see Section 7)

or may experience a more pronounced (temporary) performance

degradation as a result of a failover. Finally, the activity level of a

tenant is a key factor – failing over tenants that are inactive masks

much of the impact of the failover: No running queries are canceled,

there are no lost connections, and the failover may complete before

tenant becomes active again.

Therefore, we need to take these factors into account when

selecting tenants to fail over in response to violations. The PLB

mechanism we use is move costs, which assigns weights to the fail-

over of each replica (with PLB minimizing the product of the move

costs and the resource imbalance in its scoring function). Obviously,

tenant (in)activity needs to be traded off against the resource usage

of the moved tenants. We found the following equation to perform

well in practice, with disk and memory usage specified in MB, and

Activity ∈ {0, 1} denoting whether a tenant is active:

MoveCost = 𝛼 log
2
(DiskUsage) + 𝛽 log

2
(MemUsage) + 𝛾 · Activity

Here, the constants 𝛼, 𝛽,𝛾 are calibrated offline to minimize aggre-

gate service disruption. Tenants are considered to be inactive if they

have no active workers, no active sessions and no active requests for

a sufficient period of time (with the time-period varying between

Provisioned and Serverless tenant classes). Because Service Fabric
only supports a limited number of distinct move cost settings, the

resulting move costs are bucketized into 3 buckets of Low, Medium

and High move costs. We evaluate the effects of move costs on

overall service disruption in Section 8.3.

Handling New Tenants. The approach described above, which

estimates future failovers, optimizes for the expected resource us-

age of tenants. However, newly placed tenants present a specific

challenge: Such tenants tend to grow very quickly early in their

lifetime
5
and tend to be highly active; in fact, a significant fraction

of tenants are placed, do some continuous computation and then

are deleted within a few hours. As this type of tenant is both highly

active and common, we introduce a technique to ensure that, for

newly placed tenants, the available resources on a node correspond

not only to the expected usage of all tenants on the node, but also

that free resource capacity exists for new tenants to “grow into”.

For this purpose, we first record, for every tenant class, the

90
th

percentile of resource consumption that members of this class

achieve within the first 24 hours of their lifetime, based on his-

torical traces of previously seen tenants and broken down by pri-

mary/secondary replicas. When initially placing a tenant, we report

this 90
th
percentile to PLB as the initial resource demand for the new

tenant. Implicitly, this ensures that the corresponding replicas are

only placed on nodes that likely can accommodate the correspond-

ing resource growth. As we show experimentally in Section 8.3,

this approach reduces the incidence of resource violations further

than the use of the probability of violation estimates are able to,

without a noticeable reduction in overall cluster capacity.

7 MITIGATING FAILOVER IMPACT
Failing over a tenant involves aborting all its currently running

transactions, forwarding all client connections to a new physical

target node and attaching the database files to a new database

engine process hosted on that node. Unfortunately, this also voids

any non-persistent state of the failed-over database process, such as

in-memory caches that can have a substantial performance impact.

To address this issue, we deploy low-overhead mechanisms that

preserve the contents of important caches across failovers. Our

mechanisms are customizable to selectively migrate only the por-

tions of the cache with large impact on database performance,

thereby limiting the cost of migration. Due to space constraints,

this section focuses on migrating the state of the buffer pool. Migrat-

ing caches such as the query plan and the column segment caches

follows similar ideas, but requires the inclusion of cache-specific

metadata to ensure cache entries can be efficiently reconstructed.

Buffer Pool. Because a network transfer within a cluster is signif-

icantly faster than reading from remote storage in the cloud, the

buffer pool can be efficiently re-hydrated by directly copying the

buffer pool content from the source node to the target node of the

failover. To that end, we employ a push-based iterative pre-copy
live migration scheme that copies a snapshot of the buffer pool to

the target node, while continuing normal query execution on the

source node. During the migration, the contents of the buffer pool

are iteratively transferred to the target node using a background

task until either the rate of newly modified pages stabilizes or the

the transfer takes longer than a safe timeout, at which point the

ownership of the connection is transferred to the target node.

During the ownership transfer, all existing write transactions are

first paused, after which the remaining modified pages are migrated

5
In fact, the vast majority of tenants achieve 95% of their maximal resource consump-

tion within the first 5% of their lifetime, for both disk and memory usage.

4209

to the target node. Once the target node is considered caught up, the

source node cancels all open transactions and releases its handle on

the database files. The target node then opens the database files and

resolves any potential inconsistencies in the migrated buffer pool.

Because our implementation allows partial copies of the buffer pool,

at the time connections are switched to the target database process,

some migrated pages could be stale or contain dirty changes that

were rolled back after the respective page was copied. However, in

databases that rely on a no-force/steal recovery strategy (such as

ARIES [40]), any inconsistencies in the migrated buffer pool can

be corrected at recovery time, provided that only consistent pages

were copied and recovery is started from an LSN that is older than

the oldest dirty page LSN at the time the transfer begins.

8 EXPERIMENTAL EVALUATION
This section presents an empirical evaluation of the multi-tenant

resource allocation techniques described in this paper. Our experi-

ments use either a variation of the standard TPC-C benchmark [54]

or Microsoft’s Cloud Database Benchmark (CDB) [16]. We note

that due to the sensitive nature of customer workloads running

in Azure SQL DB production clusters, no controlled end-to-end

experiments on production clusters are possible. However, where

appropriate, we use resource traces obtained from production clus-

ters to drive our experiments. The experiments were conducted on

a local cluster made up of nodes with dual-socket AMD EPYC 7352

processors (24 cores each) and 256 GB of DRAM, with all data and

log files stored on a remote SSD hosted in the same cluster; provid-

ing similar performance characteristics to SQL Database’s General
Purpose service tier. We limit the available IOPS for each database

according to their equivalent Azure SQL Database SKU [22].

8.1 Multi-Tenant Memory Brokering
Multi-tenant memory brokering (Section 4) aims to reduce the num-

ber of memory-capacity violations without significantly impacting

performance. Below, we evaluate the effectiveness of our VoM-

based, database-aware multi-tenant memory brokering technique

against three database-agnostic brokering policies, which represent

some of the ways in which users can configure memory sharing

across tenants using VM- or OS-level memory governance.

We compare with two intuitive process-level brokering schemes

that reclaim the required 𝑀 units of memory either uniformly

across all tenants (Eqal) or proportionally to each tenant’s current

memory consumption (Proportional). In addition, we use a black-

box memory reclamation approach inspired by memory ballooning

(Balloon) [55] that reclaims the required memory by creating

system-wide memory pressure. For this, we use a balloon driver

that allocates and pins enough physical node memory to create

memory pressure equivalent to the required 𝑀 units of memory,

which causes each SQL instance to independently release memory

until the OS-level memory pressure has been relieved.

We create a test setup with two 8-core databases, DB1 and DB2 ,
which differ in their degree of activity and, therefore, in the recency

of their buffer pool contents. Together, both databases share 26 GB

of main memory and are running the identical workload (TPC-C).

Each database is guaranteed a minimum of 3 GB of main memory.

To highlight the impact of both recency and relative database size,

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

Tr
an

sa
ct
io
n
s
/
Se
co
n
d

Time (s)

Equal
Proportional
Balloon
VOM

Figure 8: TPC-C transaction throughput for different mem-
ory reclamation policies (2-minute moving average)

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

D
at
ab

as
e
M
e
m
o
ry

(G
B
)

Time (s)

Equal
Proportional
Balloon
VoM

Figure 9: Memory consumption of an actively growing data-
base instance using different memory reclamation policies

we focus on a common case that sees a warm database grow mem-

ory by reclaimingmemory from a colder, inactive database. Memory

brokering is triggered whenever the aggregate memory consump-

tion on the node crosses a threshold of 25 GB, but at most once

per minute. If memory consumption reaches the node maximum

of 26 GB in between two consecutive invocations of the memory

broker, memory throttling caps each database at its current memory

consumption. The reclamation target is set to 24 GB, resulting in a

reclamation of 1–2 GB per memory-broker invocation.

We run a high-contention variation of TPC-C with 500 ware-

houses (~50GB of data), 1 worker thread per warehouse and no

keying time and think time. Both database instances are warmed

up to ensure they fully utilize their minimum memory. To create an

environment with a large but cold database, we start the main phase

of the experiment by running DB1 in isolation until it reaches stable

performance and consumes most of the node’s memory; followed

by 30 minutes of inactivity to let its buffer pool pages become cold.

At this point DB1 (cold) and DB2 (warm) consume 22 GB and 3

GB of main memory, respectively. We now start the workload on

DB2 , which, given the limited memory size of the node, will only

be able to grow its memory footprint by reclaiming memory from

DB1, which highlights the performance impact of each policy for

different database sizes,

Results. Figure 8 shows the 2-minute moving average of transac-

tions per second (TPS) of DB2 as it ramps up execution after the

workload on DB1 stops. Note that it is during the first 10 minutes

of this ramp up phase where the database needs access to addi-

tional memory at a high rate, and hence where the impact of the

multi-tenant brokering policy on performance is felt the most. We

observe that all policies perform significantly worse compared to

4210

VoM. During this ramp up period, compared to the next best policy,

Balloon, the median TPS improvement for VoM is 14% and the

95
th

percentile TPS improvement is 26%. The other two policies,

Proportional and Eqal suffer even more significantly in TPS.

To explain the differences in performance between the policies,

we compare the memory consumption of DB2 for the same time

period (shown in Figure 9). As expected, because DB1’s memory

is largely cold, using VoM heavily skews memory reclamation to-

wards DB1, allowing DB2 to grow quickly. In particular, most of

DB1’s buffer pool pages have a considerably lower VoM than new

pages accessed by DB2 . Accordingly, DB2 grows primarily by re-

claiming globally cold memory from DB1. While using a memory

Balloon allows DB2 to grow quickly, it performs badly during

the most critical phase of the initial ramp up. This happens be-

cause memory pressure is observed by all DBMS processes at the

same time and, since there is no coordination between tenants, all

databases, regardless of their activity, must respond by releasing

memory. In particular, in response to this pressure DB2 gives up a

substantial amount of memory even though its pages are actively

being used, thereby significantly impacting performance.

The Proportional and Eqal strategies demonstrate important

shortcomings. Because DB2 starts execution while only consum-

ing 12% of the node’s memory, Proportional reclamation quickly

assigns new memory to DB2 by reducing DB1’s memory budget.

However, as the memory consumption of the new database in-

creases, proportional reclamation becomes less and less effective,

even though DB1 consists only of cold memory. In contrast, Eqal

reclamation outperforms Proportional reclamation when the

active database is comparatively large, but cannot match Propor-

tional or VoM-based reclamation during initial ramp-up.

Cluster Deployment. To highlight the importance of database-

aware memory brokering in real-world DBaaS environments, we

measured the impact of deploying multi-tenant memory broker-

ing on a representative 200-node production cluster with multiple

databases on each node. After introducing multi-tenant memory

brokering, we observed a 68% decrease in the number of memory-

capacity induced failovers, without a noticeable change in database

performance characteristics such as throughput and latency.

8.2 Utilization-based CPU Rebalancing
To highlight the importance of dynamically rebalancing database

CPU assignments across cores, we compare the dynamic utilization-

based rebalancing technique described in Section 5 with a static
utilization-based core assignment scheme where no rebalancing

occurs after the initial core assignment of a database. We show that

rebalancing is necessary to reduce the number of hot oversubscribed

cores, and verify that not re-assessing core assignments periodically

can have a substantial impact of workload performance.

To this end, we create a set of eight 8-core databases that share 32

physical cores at an oversubscription ratio of 2× and vary their CPU

utilization over time. To create a CPU-heavy workload distribution,

we run CDB (SF=2) with a workload consisting 100% of CPU-Heavy
transactions and vary the activity level of each database between a

High-CPU and a Low-CPU variation, with 48 and 16 active con-

nections per database, respectively. We create a bursty workload

pattern with shifting CPU demand by creating 20-minute phases

in which we randomly select a database to boost to the High-CPU

state for 15 minutes, followed by a 5 minute pause. All remaining

databases during a burst run the Low-CPU workload. To account

for the inherent randomness of the workload and core allocation,

we execute 5 distinct 3-hour runs for each configuration and report

averages and standard deviation. We measure the physical core

utilization of the host as the average in discrete 15-second intervals.

Lastly, because initial core allocation is based on currently observed

core utilizations, we allow each database 5 minutes for initial warm

up, before placing the next database on the node. This prevents

fluctuations in CPU utilization, which occur early in the database’s

lifetime, from influencing the core assignment. To ensure stable

results we made sure all databases are fully warmed up before

starting any measurements.

7.40

2,642.80

1

10

100

1000

10000

100000

H
ot
O
ve
rs
ub
sc
ri
be
d
CP
U

Co
re
V
io
la
ti
on
s

Utilization-Based Rebalancing
Static Allocation

1.12

6.05

0

2

4

6

8

A
vg
.H

ot
O
ve
rs
ub
sc
ri
be
d

Co
re
s
pe
r
In
te
rv
al

Utilization-Based Rebalancing
Static Allocation

Figure 10: Number of hot oversubscribed CPU cores during a
bursty CDB workload, in distinct 15-second intervals

Hot Oversubscribed CPU Cores. We define a core as hot if its
average utilization during the measurement interval is ≥ 95%, and

as over-subscribed if it hosts at least 2 active databases at any point

in the interval. We first show that, for a workload with shifting CPU

utilization, rebalancing is necessary to reduce the number of hot

oversubscribed CPU cores. Hot CPU cores are problematic, because

they can stall the execution of co-located database cores of other

tenants. Figure 10 shows the average number of hot oversubscribed

CPU cores per experiment run. We count an average of 2642.8

(SD=141.4) hot oversubscribed cores occurring in 436.8 (SD=2.2)

distinct 15-secondmeasurement intervals. During each interval that

saw at least one hot core, we observed an average of 6.0 (SD=0.3) hot

cores belonging to on average 4 co-located tenants. With utilization-

based rebalancing enabled, the number of hot oversubscribed cores

drops significantly, to an average of 7.4 (SD=4.5) in 6.4 (SD=3.5)

distinct measuring intervals, with an average of 1.1 (SD=0.1) hot

cores per interval and affecting on average 2.1 co-located tenants.

Workload Performance. Hot CPU cores can have a significant

impact on the overall performance of co-located tenants. Spiking

CPU utilization of co-located tenants can cause an increase in query

latencies even when the physical node has sufficient resources avail-

able to accommodate all active tenants. To demonstrate this point,

we create heavy CPU-skew by actively running CDB on only 4 of

the 8 database tenants and intentionally creating a core allocation

scenario where the active tenants are completely overlapping; leav-

ing half the cores inactive. We ran CDB at a level such that each

database utilizes at least 50% of each core. This ensures that any

two active databases co-located on a core will interfere with each

other’s performance. Figure 11 shows the average CPU-utilization

4211

Utilization-Based Rebalancing

23%59%45%38%

62%57%48%54%

14%51%55%59%

54%54%49%55%

56%54%71%51%

53%65%39%37%

18%61%58%57%

42%59%59%62%

Static Allocation

100%100%100%100%

100%100%100%100%

3%6%4%2%

2%2%2%2%

100%100%100%100%

100%100%100%100%

4%3%3%2%

4%2%3%4%

100%

0%

A
ve
ra
ge

C
P
U
C
o
re

U
ti
liz
at
io
n

Figure 11: Average CPU utilization of all database cores on a
node while executing CPU-heavy CDB, with heavy skew

for each database core on the test node during the execution of a

single burst. We can see that, given the unfavorable initial place-

ment of tenants, not re-balancing CPU assignments among tenants

results in multiple shared host CPU cores reaching an average uti-

lization of 100%, even though the machine itself has sufficient CPU

resources available to accommodate the active databases. Mean-

while utilization-based rebalancing visibly spreads out the core

assignment by co-locating the active database tenants with the 4

idle database tenants. In this experiment, not rebalancing database

tenants results in a transaction throughput drop of 20% on all active

databases (from an average 335 TPS to 280 TPS), as well as an in-

crease in query latency from 0.016/0.032/0.047 to 0.141/0.250/0.297

seconds for 50/95/99th percentile, respectively.

8.3 Tenant Placement
We evaluate the tenant placement technique of Section 6 by com-

paring the performance of our modified PLB to the unmodified

version. More details, as well as experiments comparing to other

approaches, such as [31, 46, 48], can be found in [35]. We conduct

the experiments using a high-fidelity cluster-level PLB simulator

developed for Service Fabric [32], which tracks resource violations

and tenant moves in simulated clusters. To simulate tenant resource

usage, we use 7-day resource demand traces for a set of Azure SQL

Database production tenants sampled uniformly at random from

two different geographical regions with significantly different re-

source usage profiles. Each trace contains CPU, memory and local

disk usage at 10-minute granularity. We evaluate the techniques

on a 40 node cluster. Nodes are divided into 10 upgrade domains

and 5 fault domains (selected using the logic described in [4]).

39
100.5

417.5

651

24 53.5

178

466

0

200

400

600

800

1.8 2 2.2 2.4

N
o
d
e
s
in
V
io
la
ti
o
n

Oversubscription Ratio

Service Fabric PLB

Modified PLB with PrV

57
138

510

906.5

35.5
94.5

253.5

610.5

0

200

400

600

800

1000

1.8 2 2.2 2.4

Fa
ilo

ve
rs

Oversubscription Ratio

Service Fabric PLB

Modified PLB with PrV

Figure 12: Average violations and failovers for tenants from
different Azure regions using PLB simulator

Figure 12 shows the average number of violations and failovers

across both regions at multiple oversubscription ratios. The unmod-

ified Service Fabric exhibits, on average, 1.83× as many violations,

and 1.67× as many failovers as our proposed technique. This high-

lights the importance of accounting for resource demand changes

over time when making placement and load-balancing decisions.

Real Cluster Deployment. To show that the observed gains hold

when deploying to a real cluster, we repeat the above experiment

on a real 40-node cluster within Microsoft Azure [5].

To obtain realistic resource demand profiles without executing

real customer SQL workloads (which is not possible, as workloads

constitute customer IP), each application reports to PLB resource

usage corresponding to real customer traces, selected at random.

Because of the time required, we repeat the experiment for only

one region; each experiment covers a week of time.

251 279

410

1097

83 95

281

502

0

200

400

600

800

1000

1200

1.5 1.6 1.7 1.8

To
ta
lV

io
la
ti
o
n
s

Oversubscription Ratio

Service Fabric PLB

Modified PLB with PrV

Figure 13: Violations seen
for real cluster deployment

0.00

-0.16

-0.31

-0.26

-0.35

0.00

-0.26

-0.33

-0.24

-0.33

-0.4

-0.3

-0.2

-0.1

0.0

PLB PrV PrV
+ ARU

PrV
+ MC

PrV
+ ARU
+ MC

R
e
la
ti
ve

C
h
an

ge

Disruption Time

#Failover

Figure 14: Service quality im-
provements for different algo-
rithm combinations

The results are shown in Figure 13. The observed reduction

in violations is similar to the simulation-based experiments, with

the unmodified Service Fabric seeing, on average, 2.4× as many

violations as PLB with probability of violation estimates.

Evaluating the Effects of Move Costs and ARU. To evaluate the
effect of the specific techniques used to (a) assign weights to differ-

ent tenants and (b) prevent failovers for new tenants, we conducted

additional experiments where we evaluate different combinations

of algorithms and measure (1) the total number of failovers, and

(2) the aggregate disruption time experienced by active tenants (i.e.,
the time during which one or more replicas are being failed over).

The experimental setup is similar to the previous simulator-based

experiment. We executed this experiment using traces from a single

region at an over-subscription ratio of 1.8. We measure the perfor-

mance of the unmodified PLB code (PLB), the technique to estimate

the probability of future violations (PrV) and combine these with

(a) move costs to assign weights to different failovers (MC) and (b)

the approach to reserve resources on nodes hosting new tenants

based on previously observed aggregate resource usage (ARU).
The results are shown in Figure 14. The use of MC consistently

reduces the overall disruption time by a significant percentage,

when compared to the same algorithm(s) withoutMC. The same

holds for ARU with respect to the number of failovers. Moreover,

addingMC and ARU does not lead to any degradation of the metric

they are not targeting.

8.4 Failover Performance
To assess the performance impact of preserving database caches

across failovers, we ran an experiment that fails over an active

16-core database to a new node in the cluster. Figure 15 shows the

4212

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500

A
vg
.T
P
C
-C

(D
e
liv
e
ry
)
R
T
(s
)

0 500 1000 1500

Baseline

Migration

Fa
ilo

ve
r

c+

Figure 15: Failover impact on average query response time on
TPC-C’s delivery transaction, with (Migration) and without
(Baseline) preserved buffer pool content (500 WH)

average response time for delivery transactions of an active TPC-

C workload with 500 Warehouses (~50GB of data), 1 worker per

warehouse and no keying/think time. Because the transfer time of

the buffer pool depends on the cluster’s network topology, we omit

the exact time consumed by the network transfer. We observe that,

when a new database process is provisioned with a cold buffer pool,

the average latency of the workload spikes significantly as query

execution becomes bottle-necked by the high number of remote

storage reads from re-hydrating the buffer pool. In our specific

setup it took the workload more than 15 minutes to fully revert to

pre-failover latencies. In contrast, when buffer pool contents are

migrated asynchronously using a direct network connection we

only see a short increase in average latency, which is a result of

active transactions being aborted and restarted on the target node.

9 RELATEDWORK
Cloud providers use oversubscription for different resources to

control costs. For instance, power oversubscription and power cap-

ping [28, 38, 49] are used to reduce data-center costs by keeping

the power consumption in data-centers below circuit breaker lim-

its, while increasing the number of machines hosted on the same

infrastructure. Similarly, virtualization technology used by cloud

providers, such as VMs or containers, allows oversubscription of

CPU, memory and I/O resources using mechanisms in the hypervi-

sor or OS [8, 18, 45]. These black-box techniques were developed

to work with arbitrary applications. In contrast, our white-box

approach exploits our knowledge of how DBMSs use resources

internally to ensure minimal impact on performance, thereby en-

abling much higher degrees of oversubscription.

There is a body of work related to multi-tenant resource man-

agement for databases. SQLVM [26, 42, 43] studies multi-tenant

buffer pool and CPU sharing across databases within a single DBMS

instance. In contrast, our architecture is designed for databases in

separate containers (i.e., each DBMS is a different process) thereby

raising the need for a common currency across tenants. In addition,

our multi-tenant memory brokering technique extends to multiple

kinds of DBMS caches beyond the buffer pool. [36] studies the ben-

efit and cost of shutting down idle databases and resuming them

on-demand. Our approach is complementary and applies to any set

of currently executing databases by dynamically redistributing re-

sources across databases. In [39], the authors describe infrastructure

in Azure SQLDB to benchmark the impact on database performance

due to resource contention across tenants. Such an infrastructure

is useful in quantifying the impact of oversubscription.

The problem of efficient tenant placement and consolidation on

a cluster of nodes has been investigated in the context of arbitrary

workloads (for example, [10, 31, 46, 48]), where tenant placement

decisions are based on a snapshot of resource usage in the cluster. In

comparison, our approach also factors in the change in resource us-

age over time. For databases, which tend to be long-lived, we show

that this approach can lead to better placement that significantly

reduces resource shortages. [37] proposes a system for resource

optimization of cloud database services, with resources allocated

statically to replicas (while in our scenario they are shared dynam-

ically among co-located replicas), including a variant of the Best
Fit heuristic with logic to avoid skew/fragmentation. In [50] the

authors study a the problem of minimizing the number of servers

needed to place a given set of databases subject to constraints on

node load and quality of service. In contrast, in our scenario, the

cluster size is fixed and minimizing the incidence of resource vi-

olations is the optimization criterion. There is work on modeling

database resource usage for the purpose of database consolidation,

e.g., [24, 53]. These techniques observe the demand of each tenant,

use these observations to predict future usage, and subsequently

consolidate tenants on fewer nodes. However, the consolidation

itself requires failing over new tenants at least once, making the

approach impractical, as we seek to avoid failovers altogether.

Finally, live migration of VMs and databases has been studied be-

fore e.g., [11, 27]. However, these techniques are too heavyweight

for our scenario, since they can move large amounts of database

memory and storage state, and can take a long time to converge.

Meanwhile, the buffer pool migration scheme described in this

paper enables time-bound transfers that move only the most im-

portant pages in the buffer pool. However, because our technique

relies on aborting running transactions on the source node, it can

create visible impact on query latencies. This is acceptable in our

setting where most failovers affect relatively inactive tenants and

single tenants are unlikely to be affected twice in a row.

10 CONCLUSION
Reducing COGS is a major challenge for DBaaS providers, in partic-

ular in light of the growing trend of serverless databases. Resource

oversubscription is a valuable tool to achieve this goal by improving

the resource utilization of database clusters. We have developed

flexible resource allocation techniques for multi-tenant DBaaS ar-

chitectures that leverage our understanding of how database per-

formance is affected when server resources are constrained. This

enables a higher packing density of databases than otherwise pos-

sible, while providing the ability to control the impact on database

performance. Our evaluation, performed in the Azure SQL Database

service, shows significantly better performance for databases using

our approach compared to generic oversubscription techniques

that are not database-aware. This paper lays the groundwork for

future research on resource allocation in multi-tenant DBaaS, e.g.,

improving efficiency by controlling the decision on how databases

are assigned to clusters within a data center, and enabling trade-offs

between performance and cost in serverless databases.

4213

REFERENCES
[1] AWS. 2021. Amazon Aurora Serverless. https://aws.amazon.com/rds/aurora/

serverless/ Last accessed on Sep 27, 2023.

[2] AWS. 2023. Amazon Aurora. http://aws.amazon.com/rds/aurora/ Last accessed

on September 27, 2023.

[3] Microsoft Azure. 2020. Configuring and using Service Affinity in Service

Fabric. https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-

cluster-resource-manager-advanced-placement-rules-affinity Last accessed on

September 27, 2023.

[4] Microsoft Azure. 2021. Service Fabric Cluster Resource Manager.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-

resource-manager-cluster-description Last accessed on September 27, 2023.

[5] Microsoft Azure. 2022. Create a Service Fabric Cluster. https:

//docs.microsoft.com/en-us/azure/service-fabric/scripts/service-fabric-

powershell-create-secure-cluster-cert Last accessed on September 27, 2023.

[6] Microsoft Azure. 2022. Describe a Service Fabric cluster by using Cluster Resource

Manager. https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-

cluster-resource-manager-cluster-description#node-properties-and-placement-

constraints. Last accessed on September 27, 2023.

[7] Microsoft Azure. 2022. Service Fabric Movement Cost. https:

//docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-

resource-manager-movement-cost Last accessed on September 27, 2023.

[8] Ishan Banerjee, Fei Guo, K. Tati, and R. Venkatasubramanian. 2014. Memory

Overcommitment in the ESX Server.

[9] Salman Abdul Baset, Long Wang, and Chunqiang Tang. 2012. Towards an

Understanding of Oversubscription in Cloud.. In Hot-ICE.
[10] Sebastian Berndt, Klaus Jansen, and Kim-Manuel Klein. 2020. Fully Dynamic Bin

Packing Revisited. Mathematical Programming (2020). https://link.springer.com/

article/10.1007/s10107-018-1325-x, Last accessed: September 27, 2023.

[11] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual

machines. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2. 273–286.

[12] Microsoft Corporation. 2018. Service Fabric. https://github.com/Microsoft/

service-fabric/ Last accessed on Last accessed on September 27, 2023.

[13] Microsoft Corporation. 2021. Azure SQL Database and Azure SQL Man-

aged Instance Service Tiers. https://docs.microsoft.com/en-us/azure/azure-

sql/database/service-tiers-general-purpose-business-critical Last accessed on

September 27, 2023.

[14] Microsoft Corporation. 2021. Azure SQL DB. https://docs.microsoft.com/en-

us/azure/sql-database/ Last accessed on September 27, 2023.

[15] Microsoft Corporation. 2021. Azure SQL DB Serverless. https://docs.microsoft.

com/en-us/azure/sql-database/sql-database-serverless/ Last accessed on Sep-

tember 27, 2023.

[16] Microsoft Corporation. 2021. DTU Benchmark. https://docs.microsoft.com/en-

us/azure/azure-sql/database/service-tiers-dtu#dtu-benchmark Last accessed on

September 27, 2023.

[17] Microsoft Corporation. 2021. Job Objects —Win32 apps | Microsoft Docs. https://

docs.microsoft.com/en-us/windows/win32/procthread/job-objects Last accessed

on September 27, 2023.

[18] Microsoft Corporation. 2021. JOBOBJECT_CPU_RATE_CONTROL_INFORMA-

TION structure (winnt.h) | Microsoft Docs. https://docs.microsoft.com/en-us/

windows/win32/api/winnt/ns-winnt-jobobject_cpu_rate_control_information

Last accessed on September 27, 2023.

[19] Microsoft Corporation. 2021. Managing Resource Consumption and Load in

Service Fabric with Metrics. https://docs.microsoft.com/en-us/azure/service-

fabric/service-fabric-cluster-resource-manager-metrics Last accessed on Sep-

tember 27, 2023.

[20] Microsoft Corporation. 2021. SQL Server Columnstore indexes: Overview. https:

//docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-

indexes-overview?view=sql-server-ver15 Last accessed on September 27, 2023.

[21] Microsoft Corporation. 2022. SQL Server, Buffer Manager object.

https://learn.microsoft.com/en-us/sql/relational-databases/performance-

monitor/sql-server-buffer-manager-object?view=sql-server-ver16 Last

accessed on September 27, 2023.

[22] Microsoft Corporation. 2023. Single database vCore resource limits - Azure SQL

Database. https://learn.microsoft.com/en-us/azure/azure-sql/database/resource-

limits-vcore-single-databases?view=azuresql Last accessed on September 27,

2023.

[23] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,

and Ricardo Bianchini. 2017. Resource central: Understanding and predicting

workloads for improved resource management in large cloud platforms. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles. 153–167.

[24] Carlo Curino, Evan PC Jones, Samuel Madden, and Hari Balakrishnan. 2011.

Workload-aware database monitoring and consolidation. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of data. ACM, 313–

324.

[25] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic,

Vivek R Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit

Chaudhuri. 2019. Automatically indexing millions of databases in microsoft azure

sql database. In Proceedings of the 2019 International Conference on Management
of Data. 666–679.

[26] Sudipto Das, Vivek R. Narasayya, Feng Li, andManoj Syamala. 2013. CPU Sharing

Techniques for Performance Isolation in Multi-tenant Relational Database-as-a-

service. Proc. VLDB Endow. 7, 1 (Sept. 2013).
[27] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.

Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud

Using Live Data Migration. Proc. VLDB Endow. 4, 8 (may 2011), 494–505. https:

//doi.org/10.14778/2002974.2002977

[28] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power Provi-

sioning for a Warehouse-Sized Computer. SIGARCH Comput. Archit. News 35, 2
(June 2007), 13–23. https://doi.org/10.1145/1273440.1250665

[29] The Linux Foundation. 2021. Kubernetes Scheduler. https://kubernetes.io/docs/

concepts/scheduling/kube-scheduler/ Last accessed on September 27, 2023.

[30] Google. 2021. Google Cloud SQL. https://cloud.google.com/sql/. Last accessed

on September 27, 2023.

[31] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and

Aditya Akella. 2014. Multi-Resource Packing for Cluster Schedulers. SIGCOMM
Comput. Commun. Rev. 44, 4 (Aug. 2014), 455–466. https://doi.org/10.1145/

2740070.2626334

[32] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd Pfleiger,

Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi, Mansoor

Mohsin, Ray Kong, Anmol Ahuja, Oana Platon, Alex Wun, Matthew Snider,

Chacko Daniel, Dan Mastrian, Yang Li, Aprameya Rao, Vaishnav Kidambi,

Randy Wang, Abhishek Ram, Sumukh Shivaprakash, Rajeet Nair, Alan War-

wick, Bharat S. Narasimman, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre,

Preetha Subbarayalu, Mert Coskun, and Indranil Gupta. 2018. Service Fabric: A

Distributed Platform for Building Microservices in the Cloud. In Proceedings of
the Thirteenth EuroSys Conference (EuroSys ’18).

[33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by Simulated

Annealing. Science 220, 4598 (1983), 671–680.
[34] Scott Konersmann, Slava Oks, and Tobias Ternstrom. 2016. SQL Server on Linux:

How? Introduction. https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-

server-on-linux-how-introduction Last accessed on September 27, 2023.

[35] Arnd Christian König, Yi Shan, Tobias Ziegler, Willis Lang Aarati Kakaraparthy,

Justin Moeller, Ajay Kalhan, and Vivek Narasayya. 2022. Tenant Placement in

Over-subscribed Database-as-a-Service Clusters. PVLDB 15, 1 (2022), 2559–2571.

[36] Willis Lang, Karthik Ramachandra, David J DeWitt, Shize Xu, Qun Guo, Ajay

Kalhan, and Peter Carlin. 2016. Not for the Timid: On the Impact of Aggressive

Over-booking in the Cloud. Proceedings of the VLDB Endowment 9, 13 (2016),
1245–1256.

[37] Ji You Li, Jiachi Zhang, Wenchao Zhou, Yuhang Liu, Shuai Zhang, Zhuoming

Xue, Ding Xu, Hua Fan, Fangyuan Zhou, and Feifei Li. 2023. Eigen: End-to-End

Resource Optimization for Large-Scale Databases on the Cloud. Proc. VLDB
Endow. 16, 12 (Sep 2023), 3795–3807.

[38] Sulav Malla and Ken Christensen. 2019. A Survey on Power Management Tech-

niques for Oversubscription of Multi-Tenant Data Centers. ACM Comput. Surv.
52, 1, Article 1 (Feb. 2019), 31 pages. https://doi.org/10.1145/3291049

[39] Justin Moeller, Zi Ye, Katherine Lin, and Willis Lang. 2021. Toto - Benchmarking

the Efficiency of a Cloud Service. In SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021. ACM, 2543–2556.

https://doi.org/10.1145/3448016.3457555

[40] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.

1992. ARIES: A Transaction Recovery Method Supporting Fine-Granularity

Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans. Database
Syst. 17, 1 (mar 1992), 94–162. https://doi.org/10.1145/128765.128770

[41] Vivek Narasayya and Surajit Chaudhuri. 2021. Cloud Data Services: Workloads,

Architectures and Multi-Tenancy. Foundations and Trends in Databases 1 (2021),
1–107. https://doi.org/10.1561/1900000060

[42] Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and

Surajit Chaudhuri. 2013. Sqlvm: Performance isolation in multi-tenant relational

database-as-a-service. (2013).

[43] Vivek Narasayya, Ishai Menache, Mohit Singh, Feng Li, Manoj Syamala, and

Surajit Chaudhuri. 2015. Sharing buffer pool memory in multi-tenant relational

database-as-a-service. Proceedings of the VLDB Endowment 8, 7 (2015), 726–737.
[44] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K

Page Replacement Algorithm for Database Disk Buffering (SIGMOD).
[45] Linux Kernel Organization. 2021. Control Group v2—The Linux Kernel documen-

tation. https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html.

Last accessed on September 27, 2023.

[46] Rina Panigrahy, Vijayan Prabhakaran, Kunal Talwar, Udi Wieder, and Rama

Ramasubramanian. 2011. Validating Heuristics for Virtual Machines Consolidation.
Technical Report MSR-TR-2011-9. https://www.microsoft.com/en-us/research/

publication/validating-heuristics-for-virtual-machines-consolidation/

4214

https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
http://aws.amazon.com/rds/aurora/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-cluster-description
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-cluster-description
https://docs.microsoft.com/en-us/azure/service-fabric/scripts/service-fabric-powershell-create-secure-cluster-cert
https://docs.microsoft.com/en-us/azure/service-fabric/scripts/service-fabric-powershell-create-secure-cluster-cert
https://docs.microsoft.com/en-us/azure/service-fabric/scripts/service-fabric-powershell-create-secure-cluster-cert
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-movement-cost
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-movement-cost
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-movement-cost
https://link.springer.com/article/10.1007/s10107-018-1325-x
https://link.springer.com/article/10.1007/s10107-018-1325-x
https://github.com/Microsoft/service-fabric/
https://github.com/Microsoft/service-fabric/
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/sql-database/
https://docs.microsoft.com/en-us/azure/sql-database/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-serverless/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-serverless/
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-dtu#dtu-benchmark
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-dtu#dtu-benchmark
https://docs.microsoft.com/en-us/windows/win32/procthread/job-objects
https://docs.microsoft.com/en-us/windows/win32/procthread/job-objects
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-jobobject_cpu_rate_control_information
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-jobobject_cpu_rate_control_information
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-metrics
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-metrics
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-buffer-manager-object?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-buffer-manager-object?view=sql-server-ver16
https://learn.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases?view=azuresql
https://doi.org/10.14778/2002974.2002977
https://doi.org/10.14778/2002974.2002977
https://doi.org/10.1145/1273440.1250665
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://doi.org/10.1145/2740070.2626334
https://doi.org/10.1145/2740070.2626334
https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction
https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction
https://doi.org/10.1145/3291049
https://doi.org/10.1145/3448016.3457555
https://doi.org/10.1145/128765.128770
https://doi.org/10.1561/1900000060
https://www.microsoft.com/en-us/research/publication/validating-heuristics-for-virtual-machines-consolidation/
https://www.microsoft.com/en-us/research/publication/validating-heuristics-for-virtual-machines-consolidation/

[47] Jose Picado, Willis Lang, and Edward C. Thayer. 2018. Survivability of Cloud

Databases - Factors and Prediction. In ACM SIGMOD. 811–823.
[48] Kamali S. 2015. Efficient Bin Packing Algorithms for Resource Provisioning in

the Cloud. ALGOCLOUD (2015).

[49] Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li, Darren

De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy, Christopher Mal-

one, Jimmy Clidaras, and Parthasarathy Ranganathan. 2020. Data Center Power

Oversubscription with a Medium Voltage Power Plane and Priority-Aware Cap-

ping. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA,

497–511. https://doi.org/10.1145/3373376.3378533

[50] Jan Schaffner, Tim Januschowski, Megan Kercher, Tim Kraska, Hasso Plattner,

Michael J. Franklin, and Dean Jacobs. 2013. RTP: Robust Tenant Placement

for Elastic in-Memory Database Clusters. In Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data (New York, New York,

USA) (SIGMOD ’13). Association for Computing Machinery, New York, NY, USA,

773–784. https://doi.org/10.1145/2463676.2465302

[51] Michael Stonebraker. 1981. Operating system support for database management.

Commun. ACM 24, 7 (1981), 412–418.

[52] Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao, and M.

Surendra. 2006. Adaptive Self-tuning Memory in DB2 (VLDB).
[53] Rebecca Taft, Willis Lang, Jennie Duggan, Aaron J. Elmore, Michael Stonebraker,

andDavidDeWitt. 2016. STeP: Scalable Tenant Placement forManagingDatabase-

as-a-Service Deployments. In Proceedings of the Seventh ACM Symposium on
Cloud Computing (Santa Clara, CA, USA) (SoCC ’16). Association for Comput-

ing Machinery, New York, NY, USA, 388–400. https://doi.org/10.1145/2987550.

2987575

[54] TPC. 1992. TPC-C Benchmark. http://www.tpc.org/tpcc/ Last accessed on

September 27, 2023.

[55] Carl AWaldspurger. 2002. Memory resource management in VMware ESX server.

ACM SIGOPS Operating Systems Review 36, SI (2002), 181–194.

[56] Wikipedia. 2021. Knapsack Problem. https://en.wikipedia.org/wiki/Knapsack_

problem Last accessed on September 27, 2023.

[57] Pavel Yosifovich, Mark E. Russinovich, David A. Solomon, and Alex Ionescu.

2017. Windows Internals, Part 1: System Architecture, Processes, Threads, Memory
Management, and More (7th Edition) (7th ed.). Microsoft Press, USA.

,

4215

https://doi.org/10.1145/3373376.3378533
https://doi.org/10.1145/2463676.2465302
https://doi.org/10.1145/2987550.2987575
https://doi.org/10.1145/2987550.2987575
http://www.tpc.org/tpcc/
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Knapsack_problem

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Azure SQL Database
	2.2 Resource Usage Patterns

	3 Architecture Overview
	4 Multi-Tenant Memory Brokering
	4.1 Problem Formulation
	4.2 Implementation in Azure SQL DB

	5 Utilization-Based CPU Rebalancing
	6 Tenant Placement
	7 Mitigating Failover Impact
	8 Experimental Evaluation
	8.1 Multi-Tenant Memory Brokering
	8.2 Utilization-based CPU Rebalancing
	8.3 Tenant Placement
	8.4 Failover Performance

	9 Related Work
	10 Conclusion
	References

