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ABSTRACT
Sophisticated machine models are increasingly used for high-stakes

decisions in everyday life. There is an urgent need to develop ef-

fective explanation techniques for such automated decisions. Rule-

Based Explanations have been proposed for high-stake decisions

like loan applications, because they increase the users’ trust in the

decision. However, rule-based explanations are very inefficient to

compute, and existing systems sacrifice their quality in order to

achieve reasonable performance. We propose a novel approach to

compute rule-based explanations, by using a different type of ex-

planation, Counterfactual Explanations, for which several efficient

systems have already been developed. We prove a Duality Theorem,

showing that rule-based and counterfactual-based explanations are

dual to each other, then use this observation to develop an efficient

algorithm for computing rule-based explanations, which uses the

counterfactual-based explanation as an oracle. We conduct exten-

sive experiments showing that our system computes rule-based

explanations of higher quality, and with the same or better perfor-

mance, than two previous systems, MinSetCover and Anchor.
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1 INTRODUCTION
We are witnessing an increased adoption of sophisticated machine

learning models in high-stakes decisions. This leads to an urgent

need for us to find some ways to make the models more explainable

and debuggable, so that we can not only ensure the fairness of

machine learning models, but also increase the public trust from

human users of these models. Due to this need, explainable machine

learning has become an important research topic.

The literature on explanation techniques is vast (e.g., [13, 20–

23, 25, 26]). We refer to the excellent book on interpretable machine

learning for an overview of these techniques [14]. At a high level,

there are two levels of explanations depending on the scope. One
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is the local explanation [2], which explains the model based on the

decision on a single instance. The other one is the global explanation

[27], which explains the model as a whole; in this paper we focus

on local explanations.

One type of local explanation is the Counterfactual Explanation

model, or Actionable Recourse, which generates a counterfactual

or a “desired” instance based on an “undesired” instance. Given

an instance 𝑥 , on which the machine learning model predicts a

negative, “bad” outcome, the counterfactual explanation says what

needs to change in order to get the positive, “good” outcome. For

example, a customer applies for a loan with a bank, the bank denies

the loan application, and the customer asks for an explanation;

the system responds by indicating what features need to change

in order for the loan to be approved, for example, the response

may be Increase the Income from 500 to 700 and decrease the Open
Accounts from 4 to 3. The semantics is that, if these features are

changed accordingly, then the machine learning model will change

its prediction from “bad” to “good”. The counterfactual provides

the user with some recommendation for what they should do in

order to change the outcome in the future.

However, in high-stakes applications like financial decisions,

counterfactual explanations may actually be misleading customers.

For example, a different customer may have an income of 500 and

4 open accounts yet her loan application was approved. The reason

is that the two customers differ in other features used by the sys-

tem, but customers unfamiliar with the internals of the model will

instead perceive the decision as unfair, because they are asked to

change features that appeared to be no problem for other customers.

Counterfactual explanations appear to be insufficient for high-

stakes applications of machine learning. For that reason, Rudin

et al. [3, 22] argue in favor of a new kind of explanation, called

rule-based explanation. A rule is a conjunction of predicates on the

features for which the machine learning model always generates

the bad outcome. For example a rule could be all customers who
had an Income ≤ 500 and an Employment-history of ≤ 10 years
were denied the load application. While this does not immediately

tell the customer how to intervene to change the outcome, it nev-

ertheless assures her of the fairness of the decision, because all

customers with these features had been denied. Instead of trying to

be prescriptive and instruct the customer on what to do, rule-based

explanations are descriptive in that they provide fundamental rea-

sons for the decision. Rule-based explanations are similar to the

anchors, introduced by Ribeiro et al. [21], and are highly desired by

financial institutions.

Black-box explanation systems compute the explanations by re-

peatedly probing the black-box classifier with inputs derived from

instance to be explained, and from the domain of some large dataset
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of instances, which can be the data used to train the classifier, or

some historical data of past decisions. This leads to distinct compu-

tational challenges for both counterfactual and rule-based explana-

tions. A counterfactual explanation consists of some, ideally small,

set of features, and new values for these features that lead to a pos-

itive outcome. A rule-based explanation consists of some, ideally

small, set of features, where the current values the instance always

lead to a negative outcome, for any values of the other features. In

other words, a counterfactual explanation requires answering an ex-

istentially quantified query, while a rule-based explanation requires

answering a universally quantified query. Finding counterfactual

explanations is relatively easier, and several counterfactual expla-

nation systems have already been developed, such as Mace [8],

Geco [23], Dice [15] and others, and are capable of finding effi-

ciently counterfactual explanations of high quality. In contrast,

finding rule-based explanations is much harder. For example, the

approach described by Rudin et al. [22] converts the problem to a

minimum set-cover problem, whose size depends on the size of the

database, then solves it using Integer Programming.

In this paper we propose a novel approach to compute rule-based

explanations, by reducing the problem to computing counterfac-

tual explanations, then using an existing counterfactual system to

develop a highly efficient rule-based explanation system. We start

by proving formally that counterfactual and rule-based explana-

tions are duals to each other. This means that, if a counterfactual

explanation consists of some set of features, then every rule-based

explanation must include at least one of these features. Otherwise,

if the counterfactual and rule-based explanations use disjoint sets

of features, then we are lead to a contradiction, since one expla-

nation asserts that by changing the values of only the first set of

features the outcome will be positive, while the other asserts that

if we keep unchanged the values of the second set of features then

the outcome will always be negative.

Using the duality theorem, we develop a new approach for com-

puting rule-based explanations, by using a counterfactual expla-

nation algorithm as a black box. We start from a baseline consist-

ing of a simple algorithm for computing rule-based explanations,

called GeneticRule, which, given an instance 𝑥 with a bad outcome,

searches candidate rules using a genetic algorithm. Then, we de-

scribe two extensions. The first extension, called Genetic Rule with

Counterfactual (GeneticRuleCF), uses a counterfactual system to

create new candidate rules. More precisely, if a candidate rule fails

to be globally consistent, then the algorithm asks for a counterfac-

tual explanation to the bad outcome for 𝑥 , but under the constraint

that none of the features already included in the rule be modified.

Each feature changed by the counterfactual is then added to the

candidate rule, and the search continues. The second extension,

called Greedy Algorithm with Counterfactual (GreedyRuleCF), also
uses the counterfactual explanation algorithm to extend the rule,

but only applies it to the best current candidate rule.

In order to validate a rule-based explanation one has to check

whether for all possible values of the other attributes, the outcome

of the classifier remains negative. The property is called global
consistency, and is very expensive to check. A critical step in these

algorithms is the global consistency test. To reduce its cost, the set-

cover method in [22] restricts the test to instances in the database.

In our approach, we not only check instances in the database, but

we also perform the check for all combinations of values in the

domain. For example, suppose Alice is denied her application, and

happens to have 10 open accounts. In order to check the consistency

of the rule “10 open accounts always lead to a denial”, the set-

cover method checks only the customers in the database: if all

customerswith 10 open accountswere denied, then it deems the rule

consistent. However, the database may contain only a tiny sample of

customers with 10 open accounts. In contrast, our system checks for

all combinations of all attributes, e.g. age, income, credit-score, etc,

and declares the rule consistent only if all such combinations lead

to a negative outcome. This test is potentially very expensive, and

here is where we use the counterfactual explanation system. More

precisely, we ask it to find a counterfactual explanation where the

features in rule are fixed, and the others can be modified arbitrarily.

For example, we ask it to find a counterfactual by keeping the

number of open accounts equal to 10: the rule “10 open accounts”

is globally consistent only if no such counterfactual exists.

Finally, we conduct an extensive experimental evaluation, by

evaluating our three algorithms and comparing them to both Min-

SetCover [22] and Anchor [21]. We found that both MinSetCover

and Anchor returned rules that are not globally consistent. For

example, MinSetCover checks consistency only on the instances in

the database and 97.4% of the rules generated for Adult dataset are

not globally consistent, while Anchor almost always returns rules

with redundant predicates and also about 87.0% of the rules are

not globally consistent. A redundant predicate is one that can be

removed from the rule and still keep it globally consistent; Anchor

uses an multi-armed bandit approach to find rules, which often

leads to the inclusion of redundant predicates. In contrast, our Ge-
neticRuleCF algorithm always generates globally consistent rules

with only 12.4% of the rules have redundant predicates, and our

GreedyRuleCF algorithm only generates globally consistent rules,

without redundant predicates.

We note that an orthogonal approach to explanations is the

development of interpretable machine learning models. In general,

simple ML models such as linear regression or rule-based models

are considered to be interpretable. One should not confused the rule-

based models, as discussed e.g. in [10], with rule-based explanations

considered in our paper. The purpose of the rule-based model is

serve as decision mechanism, while that of a rule-based explanation

is to provide an explanation for a decision made by some other,

usually uninterpretable model.

Contributions. In summary, in this paper we make the follow-

ing contributions.

(1) We prove the Duality Theorem between counterfactual and

rule based explanations. Section 3.1.

(2) We show how to use the Duality Theorem in order to com-

pute rule-based explanations by using a counterfactual-

based explanation system. Section 3.2.

(3) We describe three algorithms: GeneticRule, GeneticRuleCF,
and GreedyRuleCF for generating the rule-based explana-

tions. Section 4.

(4) We conduct an extensive experimental evaluation of Geneti-
cRule, GeneticRuleCF, and GreedyRuleCF algorithms, and

compare them with Anchor and MinSetCover. Section 5.
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2 DEFINITIONS
Let 𝐹1, . . . , 𝐹𝑛 be 𝑛 features, with domains 𝑑𝑜𝑚(𝐹1), . . . , 𝑑𝑜𝑚(𝐹𝑛),
which we assume to be ordered, and let Inst

def

= 𝑑𝑜𝑚(𝐹1) × · · · ×
𝑑𝑜𝑚(𝐹𝑛). We call an element 𝑥 ∈ Inst an instance. We are given

a black box classifier 𝐶 that, on any instance 𝑥 ∈ Inst, returns a

prediction𝐶 (𝑥) within the range [0, 1]. We assume that𝐶 (𝑥) ≤ 0.5

is an “undesired” or “bad” outcome, while𝐶 (𝑥) > 0.5 is “desired” or

“good”. For the binary classifier, we replace its outcomes with values

{0, 1}, where 0 is for “undesired” and 1 is for “desired”. Furthermore,

we assume a database 𝐷 = {𝑥1, . . . , 𝑥𝑚} of𝑚 instances, which can

be a training set, or a test set, or historical data of past customers

for which the system has performed predictions. For each instance

in the database we write its feature values as 𝑥𝑖 = (𝑓𝑖1, . . . , 𝑓𝑖𝑛).

2.1 Rule-based Explanation
Fix an instance 𝑥𝑖 = (𝑓𝑖1, . . . , 𝑓𝑖𝑛) ∈ 𝐷 . A rule component, 𝑅𝐶 ,
relevant to 𝑥𝑖 , is a predicate of the form 𝐹 𝑗 ≤ 𝑓𝑖 𝑗 or 𝐹 𝑗 ≥ 𝑓𝑖 𝑗 ,

for some feature 𝐹 𝑗 . For an instance 𝑥 ∈ Inst, we write 𝑅𝐶 (𝑥) for
the predicate defined by 𝑅𝐶 . In other words, if 𝑥 = (𝑓1, . . . , 𝑓𝑛), then
𝑅𝐶 (𝑥) asserts 𝑓𝑗 ≤ 𝑓𝑖 𝑗 or 𝑓𝑗 ≥ 𝑓𝑖 𝑗 respectively.

A rule relevant to 𝑥𝑖 is a set of rule components, 𝑅 = {𝑅𝐶1, . . . ,-

𝑅𝐶𝑐 }. We write 𝑅(𝑥) for the predicate that is the conjunction of

all rule components. The cardinality of the rule is 𝑐 . Notice that,

in order to assert equality for some feature, 𝐹 𝑗 = 𝑓𝑖 𝑗 , we need two

rule components, namely both ≤ and ≥, therefore 0 ≤ 𝑐 ≤ 2𝑛. We

denote by Inst𝑅 the set of all instances that satisfy 𝑅:

Inst𝑅 = {𝑥 |𝑥 ∈ Inst, 𝑅(𝑥) = 1}
Consider an instance 𝑥𝑖 that is classified as “undesired”,𝐶 (𝑥𝑖 ) ≤

0.5, and let 𝑅 be some rule. Rudin and Shaposhnik [22] propose

three simple properties that, when satisfied, can be used to offer 𝑅

as explanation for the bad outcome on the instance 𝑥𝑖 :

(1) Relevance: the input instance 𝑥𝑖 satisfies 𝑅, in other words

𝑥𝑖 ∈ Inst𝑅 .

(2) Global Consistency: all instances 𝑥 in Inst that satisfy

the rule 𝑅 are “undesired”: ∀𝑥 ∈ Inst𝑅 , 𝐶 (𝑥) ≤ 0.5.

(3) Interpretability: the rule should be as simple as possible,

in other words it should have a small cardinality.

In this paper we consider only rules that are relevant to the

instance 𝑥𝑖 , hence the first property is satisfied by definition. Our

goal is: given 𝑥𝑖 with a bad outcome, compute one (or several)

globally consistent, interpretable rule 𝑅.

The trivial rule relevant to the instance 𝑥𝑖 is the rule 𝑅𝑡𝑟𝑖𝑣 that

contains all 2𝑛 rule components relevant to 𝑥𝑖 ; 𝑅𝑡𝑟𝑖𝑣 = {𝐹1 ≤
𝑓𝑖1, 𝐹1 ≥ 𝑓𝑖1, . . . , 𝐹𝑛 ≤ 𝑓𝑖𝑛, 𝐹𝑛 ≥ 𝑓𝑖𝑛}. In other words, 𝑅𝑡𝑟𝑖𝑣 (𝑥) as-
serts that the instance𝑥 has exactly the same features as the instance

𝑥𝑖 . Since 𝑥𝑖 is undesired, 𝑅𝑡𝑟𝑖𝑣 is globally consistent. However, its

cardinality is very large, 2𝑛, and we say that the trivial rule is not

“interpretable”. Instead, we seek a minimal set of rule components

that are still globally consistent.

In general, checking global consistency is computationally hard.

The number of possible instances, |Inst|, is exponentially large

in the number of features, and checking all of them is intractable.

For that purpose, the authors in [22] relax the global consistency

requirement, and check consistency only relative to the database

𝐷 = {𝑥1, . . . , 𝑥𝑚}. We call this property Data Consistency: ∀𝑥𝑘 ∈

𝐷 ∩ Inst𝑅 , 𝐶 (𝑥𝑘 ) ≤ 0.5. Anchor [21] does consider global consis-

tency, but only aims to enforce it “with high probability”, in other

words
| {𝑥 ∈Inst𝑅 |𝐶 (𝑥) ≤0.5} |

|Inst𝑅 | should be close to 1. As we will see in

Section 5, explanations returned by both MinSetCover [22] and

Anchor [21] often fail to satisfy global consistency.

2.2 Counterfactual Explanation
While a rule-based explanation identifies a set of features whose

values necessarily lead to an undesired outcome, a counterfactual

explanation identifies some features whose values, when updated,

could possibly lead to a desired outcome. Formally, we fix an in-

stance 𝑥𝑖 with a “bad” outcome, and define a counterfactual explana-
tion to be some other instance 𝑥𝑐 𝑓 ∈ Inst with a “good” outcome,

𝐶 (𝑥𝑖 ) > 0.5. We often represent 𝑥𝑐 𝑓 by listing only the set of fea-

tures where it differs from 𝑥𝑖 .

A counterfactual 𝑥𝑐 𝑓 is required to satisfy two properties. First,

𝑥𝑐 𝑓 must be feasible and plausible w.r.t. 𝑥𝑖 . Feasibility imposes con-

straints on the new values, e.g. income cannot exceed (say) $1M,

while plausibility imposes constraints on how the new values in

𝑥𝑐 𝑓 may differ from the old values in 𝑥𝑖 , e.g. gender cannot change,
or age can only increase, etc. We refer to these predicates as PLAF

(plausibility/feasibility) predicates, and denote the conjunction of

all PLAF predicates by 𝑃 (𝑥𝑐 𝑓 ). Formally, a PLAF predicate is a

formula of the form Φ1 ∧ · · · ∧ Φ𝑚 ⇒ Φ0, where Φ𝑖 is a pred-

icate over the features of 𝑥𝑖 and 𝑥𝑐 𝑓 . One example from [23] is

gender𝐶𝐹 = gender𝑖 , which asserts that gender cannot change; an-
other example is education𝐶𝐹 > education𝑖 ⇒ age𝐶𝐹 ≥ age𝑖+4,
which asserts that, if we ask the customer to get a higher education

degree, then we should also increase the age by at least 4 years.

Second, we score counterfactuals by how many changes they re-

quire over 𝑥𝑖 . Given a distance function 𝑑𝑖𝑠𝑡 (𝑥, 𝑥 ′) on Inst, the

counterfactuals that satisfy the PLAF constraints are ranked by

their distance from 𝑥𝑖 .

A counterfactual explanation system takes as input an instance

𝑥𝑖 with a “bad” outcome, a PLAF constraint 𝑃 (𝑥), and a distance

function 𝑑𝑖𝑠𝑡 (𝑥, 𝑥 ′), then returns a rank list of counterfactuals that

satisfy 𝑃 and are closed to 𝑥𝑖 .

2.3 Discussion
Different types of explanations provide the users with very different

kinds of information. For an intuition into their differences, consider

a user Bob who has applied for life insurance, and was denied.

The SHAP score [13], a popular form of explanation, assigns a

fraction to each feature, for example: AGE = 35%, BLOOD-PRESSURE
= 20%, SMOKING = 10%, . . .. This defines a clear ranking of the

features, but it has limited value for the end user Bob who was

denied. We do not consider the SHAP score in this paper.

An example of a counterfactual explanation is: “change SMOKING
from true to false”. This has a clear meaning: if Bob quits smoking,

he will get approved for life insurance. However, if Bob’s friend

Charlie also smokes, yet was approved, then Bob will feel that he

was treated unfairly.

A rule based explanation looks like this: “everybody who has

SMOKING = true and BLOOD-PRESSURE ≥ 140 will be denied”. This

does not provide Bob with any actionable advice, but it assures him

of the fairness of the decision.
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3 DUALITY
A rule-based explanation and a counterfactual explanation pro-

vide quite different information to the end user. In both cases, a

good explanation is small: a rule relevant to 𝑥𝑖 should have only

a few rule components, while a counterfactual should change the

instance 𝑥𝑖 with only a small number of features. Several efficient

counterfactual explanation systems exist [8, 15, 23], but the ex-

isting rule-based explanation systems sacrifice global consistency

for performance [21, 22]. In this section we prove that the two

kinds of explanations are duals, and use this property to propose a

method for computing rule-based explanations by using an oracle

to counterfactual explanations.

Before we begin, we will briefly explain why the two types of

explanations have such different complexities. Fix a small set of

features F ⊆ {𝐹1, . . . , 𝐹𝑛}. These are the features changed by the

counterfactual explanation, or defining the rule components of

a rule-based explanation. In either case, we want F to be small,

|F | = 𝑘 ≪ 𝑛. For an illustration, in the Yelp dataset in Sec. 5

there are 𝑛 = 34 features, and typical explanations involve 𝑘 = 10

features. Suppose we want to check whether we can construct a

counterfactual 𝑥𝑐 𝑓 from 𝑥𝑖 by changing only features in F . An

exhaustive search requires 𝑁𝑘
calls to the oracle 𝐶 (𝑥𝑐 𝑓 ), assuming

all domains have size 𝑁 . In practice systems like Geco [23] sample

only a few values from each domain 𝑑𝑜𝑚(𝐹 𝑗 ); if a counterfactual is
found then it returns it, otherwise it tries a different set of featuresF .

Now suppose we want to check if the rule 𝑅 whose rule components

are given by the features in F is globally consistent. Assume for

simplicity that, for each 𝐹 𝑗 ∈ F , we include both 𝐹 𝑗 ≤ 𝑓𝑖 𝑗 and

𝐹 𝑗 ≥ 𝑓𝑖 𝑗 in 𝑅. Checking global consistency requires 𝑁𝑛−𝑘
calls to

the classifier, becausewe need to try all values of all𝑛−𝑘 features not
in F . Sampling is no longer sufficient.Worse,𝑘 is much smaller than

𝑛, which means that the expression 𝑁𝑛−𝑘
is really large. Referring

again to the Yelp dataset, the naive complexity of a counterfactual

explanation is 𝑁 10
, and of a rule-based explanation is 𝑁 24

. Instead,

we show here how to compute rule-based explanations by using a

counterfactual explanation system as a black box. This is possible

due to a duality that holds between the two kinds of explanation.

3.1 The Duality Theorem
We start with a simple lemma.

Lemma 3.1. If 𝑅 is a globally consistent rule, and 𝑥𝑐 𝑓 is any coun-
terfactual, then 𝑅(𝑥𝑐 𝑓 ) is false.

Proof. By definition, if 𝑅 is globally consistent, then for all 𝑥 ′:
if 𝑅(𝑥 ′) is true then the classifier returns the “bad” outcome on

𝑥 ′, i.e. 𝐶 (𝑥 ′) ≤ 0.5. Also by definition, if 𝑥𝑐 𝑓 is a counterfactual,

then the classifier returns the “good” outcome, i.e. 𝐶 (𝑥𝑐 𝑓 ) > 0.5. It

follows immediately that 𝑅(𝑥𝑐 𝑓 ) must be false. □

Fix an instance 𝑥𝑖 = (𝑓𝑖1, . . . , 𝑓𝑖𝑛) with a bad outcome. For any

other instance 𝑥 = (𝑓1, . . . , 𝑓𝑛) ∈ Inst, we will construct a dual rule
𝑅𝑥 consisting of all rule components relevant to 𝑥𝑖 that are false
on 𝑥 , as follows. If 𝑓𝑗 > 𝑓𝑖 𝑗 then we say that the rule component

𝐹 𝑗 ≤ 𝑓𝑖 𝑗 conflicts with 𝑥 ; if 𝑓𝑗 < 𝑓𝑖 𝑗 then the rule component

𝐹 𝑗 ≥ 𝑓𝑖 𝑗 conflicts with 𝑥 . In other words, an 𝑅𝐶 conflicts with 𝑥

iff it is relevant to 𝑥𝑖 and 𝑅𝐶 (𝑥) is false. The dual of 𝑥 is the rule

𝑅𝑥 consisting of all components that conflict with 𝑥 . We combine

the rule components in the duals with ∨ instead of ∧. For a simple

example, if 𝑥𝑖 = (𝐹1 = 10, 𝐹2 = 20, 𝐹3 = 30) and 𝑥 = (𝐹1 = 5, 𝐹2 =

90, 𝐹3 = 30) then 𝑅𝑥 = (𝐹1 ≥ 10 ∨ 𝐹2 ≤ 20). We prove:

Theorem 3.2 (Duality). Fix a globally consistent rule 𝑅 rele-
vant to 𝑥𝑖 , let 𝑥𝑐 𝑓 ,1, . . . , 𝑥𝑐 𝑓 ,𝑘 be counterfactual instances, and let
𝑅𝑥𝑐𝑓 ,1 , . . . , 𝑅𝑥𝑐𝑓 ,𝑘 be their duals. Then 𝑅 is a set cover of {𝑅𝑥𝑐𝑓 ,1 , . . . ,-
𝑅𝑥𝑐𝑓 ,𝑘 }. In other words, for every counterfactual 𝑥𝑐 𝑓 ,𝑚 the rule 𝑅
contains at least one rule component that conflicts with 𝑥𝑐 𝑓 ,𝑚 . Con-
versely, fix any counterfactual 𝑥𝑐 𝑓 , and let 𝑅1, . . . , 𝑅𝑘 be globally
consistent rules. Then the dual 𝑅𝑥𝑐𝑓 is a set cover of {𝑅1, . . . , 𝑅𝑘 }.

Proof. Assume the contrary, that 𝑅 and 𝑅𝑥𝑐𝑓 ,𝑚 do not have any

common rule component. Then 𝑅(𝑥𝑐 𝑓 ,𝑚) is true, which contradicts

Lemma 3.1. The converse is shown similarly: if 𝑅𝑥𝑐𝑓 is disjoint

from some rule, say 𝑅 𝑗 , then 𝑥𝑐 𝑓 satisfies the rule 𝑅 𝑗 , contradicting

Lemma 3.1. □

The theorem says that globally consistent rules and counter-

factuals are duals to each other. We will exploit the first direction

of the duality, and show how to use counterfactuals to compute

efficiently globally consistent rules.

3.2 Using the Duality Theorem
We now describe how to use a counterfactual explanation system to

compute a relevant, globally consistent, and informative rule 𝑅 for

an instance 𝑥𝑖 . This is the key part of the algorithms we proposed

in Section 4.2 and 4.3.

Theorem 3.2 already implies a naive algorithm for this pur-

pose. Use a counterfactual system to compute all counterfactuals

𝑥𝑐 𝑓 ,1, . . . , 𝑥𝑐 𝑓 ,𝑚 for 𝑥𝑖 , construct 𝑆
def

= {𝑅𝑥𝑐𝑓 ,1 , . . . , 𝑅𝑥𝑐𝑓 ,𝑚 } the set
of all their duals, and output all minimal set covers 𝑅 of 𝑆 . Each

set covering 𝑅 of 𝑆 is a globally consistent rule, because, other-

wise there exists an instance 𝑥 such that 𝑅(𝑥) = 1 and 𝐶 (𝑥) > 0.5.

This implies that 𝑥 is a counterfactual for 𝑥𝑖 , but is not among

𝑥𝑐 𝑓 ,1, . . . , 𝑥𝑐 𝑓 ,𝑚 (because it disagrees with each 𝑥𝑐 𝑓 , 𝑗 on at least one

feature), contradicting the assumption that the list of counterfac-

tuals was complete. However, we cannot use this naive algorithm,

because counterfactual systems rarely return the complete list of

counterfactuals.

Our solution is based on computing the rule 𝑅 incrementally.

Starting with 𝑅 = ∅, we increase 𝑅 with one rule component at a

time, until it becomes globally consistent, as follows. Assume 𝑅 is

any rule relevant to 𝑥𝑖 , and suppose that 𝑅 is not globally consistent.

We proceed as follows.

Step 1 Construct the predicate 𝑅(𝑥 ′) associated with the rule 𝑅;

we will use it as a PLAF predicate in the next step.

Step 2 Using the counterfactual explanation system, find a list

of counterfactuals 𝑥𝑐 𝑓 ,1, . . . , 𝑥𝑐 𝑓 ,𝑘 for 𝑥𝑖 that satisfy the PLAF pred-

icate, i.e. 𝑅(𝑥𝑐 𝑓 , 𝑗 ) = 1 for all 𝑗 = 1, 𝑘 . The number 𝑘 is usually

configurable, e.g. 𝑘 = 10. If no such counterfactual is found, then 𝑅

is globally consistent.

Step 3 For each 𝑗 = 1, 𝑘 , compute the dual 𝑅𝑥𝑐𝑓 ,𝑗 of each coun-

terfactual 𝑥𝑐 𝑓 , 𝑗 , i.e. the set of all rule components that conflict with

𝑥𝑐 𝑓 , 𝑗 . We notice that 𝑅𝑥𝑐𝑓 ,𝑗 is disjoint from 𝑅, because 𝑥𝑐 𝑓 , 𝑗 satisfies

the PLAF 𝑅(𝑥). Let 𝑆 = {𝑅𝑥𝑐𝑓 ,1 , . . . , 𝑅𝑥𝑐𝑓 ,𝑘 } be the set of all the dual
rules.
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Step 4 For each minimal set that covers 𝑅0 of 𝑆 , construct the

extended rule 𝑅 ∪ 𝑅0, and repeat the process from Step 1.

We note that our use of PLAF rules differs from their original

intent. Rather than constraining the counterfactual, we use them

to check if the rule candidate 𝑅 is globally consistent, and, if not,

then to extend it.

Example 3.3. We illustrate with a simple example. Consider a

customer 𝑥𝑖 with the following features:

𝑥𝑖 =(Age = 50, AccNum = 4, Income = 500, Debt = 10𝑘)

Suppose the customer was denied the loan application, and we are

computing a rule-based explanation for the denial. Our current

candidate rule 𝑅 is:

𝑅 =(Age ≤ 50) ∧ (AccNum ≥ 4)

However, the rule is not globally consistent. We ask the counterfac-

tual explanation system for counterfactuals that satisfy the PLAF

defined by the rule 𝑅, and obtain these two results. We highlight in

red the features where they differ from 𝑥𝑖 :

𝑥𝑐 𝑓 ,1 =(Age = 50, AccNum = 5, Income = 900, Debt = 10𝑘)
𝑥𝑐 𝑓 ,2 =(Age = 50, AccNum = 4, Income = 600, Debt = 2𝑘)

The first counterfactual says that if the customer increased her

income to 900, then she would be approved, even if she had 5

accounts open. The second counterfactual says that if she increases

her income to 600 and decreases her debt to 2k then she would be

approved. The dual sets are:

𝑅𝑥𝑐𝑓 ,1 =(AccNum ≤ 4) ∨ (Income ≤ 500)
𝑅𝑥𝑐𝑓 ,2 =(Income ≤ 500) ∨ (Debt ≥ 10𝑘)

There are two minimal set covers, namely Income ≤ 500 and

(AccNum ≤ 4) ∧ (Debt ≥ 10𝑘). We expand 𝑅 with each of them and

continue recursively. More precisely, the algorithm continues with:

𝑅1 =(Age ≤ 50) ∧ (AccNum ≥ 4) ∧ (Income ≤ 500)
𝑅2 =(Age ≤ 50) ∧ (AccNum = 4) ∧ (Debt ≥ 10𝑘)

Suppose both are globally consistent. Then we will choose 𝑅1 as

an explanation, because it is more informative: its cardinality is 3,

while the cardinality of 𝑅2 is 4 (because AccNum = 4 represents two

rule components). We tell the customer: “everybody 50 years old or
younger, with 4 or more open accounts, and with income 500 or lower
is denied the loan application”.

4 ALGORITHMS
We have shown in the previous section that the Duality Theorem

leads to a method for computing rule-based explanations by using

a counterfactual-based explanation as an oracle. In this section we

apply this method to derive a concrete algorithm. More precisely,

we describe three algorithms:

GeneticRule: This is a base-line algorithm, which explores

the space of rule-based explanations using a genetic algo-

rithm. It does not use counterfactuals;
GeneticRuleCF: This algorithm extendsGeneticRule by using

an oracle call to a counterfactual explanation system in

order to generate and validate the rule-based explanations;

Algorithm 1: Pseudo-code of GeneticRule:
explain(instance 𝑥 , classifier 𝐶 , dataset 𝐷)
POP = [ {𝐹1 ≤ 𝑓𝑖1 }, {𝐹1 ≥ 𝑓𝑖1 } . . . {𝐹𝑛 ≤ 𝑓𝑖𝑛 }, {𝐹𝑛 ≤ 𝑓𝑖𝑛 }]
do

CAND = crossover(POP, 𝑐) ∪mutate(POP,𝑚)
POP = selectFittest(𝑥, POP ∪ CAND,𝐶, 𝐷,𝑞, 𝑠)
TOPK = POP[1 : 𝑘 ]

while (∃𝑅 ∈ TOPK : !consistent(𝑅,𝐷, 𝑠)) ∨ (TOPK∩CAND ≠ ∅) ;
return TOPK

GreedyRuleCF This algorithm replaces the genetic search

with a greedy search: we greedily expand only the rule

with the smallest cardinality in the population, using the

counterfactual explanation system as an oracle.

For GeneticRule and GeneticRuleCF we have chosen a genetic

algorithm, which is a meta-heuristics for constraint optimization

based on the process of natural selection. First, it defines an ini-

tial population of candidates. Then, it repeatedly selects the fittest

candidate in the population and generates new candidates by chang-

ing and combining the selected candidates (called mutation and

crossover). It stops when a certain criteria is met, e.g. it finds a spec-

ified number of solutions. We chose a genetic algorithm because (1)

it is easily customizable to our problem of finding rule explanations,

(2) it seamlessly integrates counterfactual explanations to generate

and verify rules, (3) it does not require any restrictions on the un-

derlying classifier and data, and thus is able to provide black-box

explanations, and (4) it returns a diverse set of explanations, which

may provide different rules that can give user more information.

Both GeneticRuleCF and GreedyRuleCF are based on the ideas

in Section 3.2: use a counterfactual explanation oracle to build up

the globally consistent rules efficiently and to verify whether the

generated rules are consistent or not.

In the remainder of this section we describe the algorithms

in detail: GeneticRule in Section 4.1, GeneticRuleCF in Section 4.2,

GreedyRuleCF Section 4.3. Finally, in Section 4.4 we describe the

fitness scoring function that we used for the candidate selection.

4.1 GeneticRule
GeneticRule is our “naive” algorithm which generates rules using a

genetic algorithm. The pseudo-code is shown in Algorithm 1. The

inputs are an instance 𝑥 , the classifier𝐶 , and a dataset𝐷 . The output

is a set of rules that explain instance 𝑥 for classifier 𝐶 . In addition,

there are five integer hyperparameters:𝑞 > 0 represents the number

of rules kept after each iteration, 𝑘 ≤ 𝑞 is the number of rules that

the algorithm returns to the user, 𝑠 is the number of samples taken

from Inst to check for global consistency, 𝑚 and 𝑐 specify the

number of new candidates that are generated during mutation and

respectively crossover. For instance, we use the following settings

in most of the experiments: 𝑞 = 50, 𝑘 = 5, 𝑠 = 1000,𝑚 = 3, 𝑐 = 2.

We refer to Sec. 5 for an explanation why we chose these settings.

GeneticRule first computes the initial population of rule candi-

dates. We define the initial population to be all possible rule candi-

dates with exactly one rule component. The initial candidates are

likely not valid and consistent rules. Thus, GeneticRule repeatedly
appliesmutate and crossover to generate new candidates, com-

putes the fitness score (via selectFittest) for each candidate, and
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Algorithm 2: Pseudo-code of GeneticRuleCF:
explain(instance 𝑥 , classifier 𝐶 , dataset 𝐷)
POP = [{𝐹1 ≤ 𝑓𝑖1}, {𝐹1 ≥ 𝑓𝑖1} . . . {𝐹𝑛 ≤ 𝑓𝑖𝑛}, {𝐹𝑛 ≤ 𝑓𝑖𝑛}]
POP = POP ∪ CFRules([{ }], 𝑥,𝐶, 𝐷)
do

CAND = crossover(POP, 𝑐) ∪mutate(POP,𝑚)
CAND = CAND ∪ CFRules(POP, 𝑥, 𝑀, 𝐷)
POP = selectFittest(𝑥, POP ∪ CAND,𝐶, 𝐷, 𝑞, 𝑠)
TOPK = POP[1 : 𝑘]
topk_consistent = (∀𝑅 ∈ TOPK :

consistent(𝑅, 𝐷, 𝑠) ∧ consistentCF(𝑅, 𝑥,𝐶, 𝐷))
while !topk_consistent ∨ (TOPK ∩ CAND ≠ ∅);
return TOPK

then selects the 𝑞 fittest candidates for the next generation. This

process is repeated until we find 𝑘 candidates that are consistent

on both the dataset 𝐷 as well as 𝑠 samples from the more general

Inst space. We further check that the top-𝑘 candidates are not in

the set of new generated candidates CAND, which means that they

were stable for at least one generation of the algorithm.

The mutate operator generates𝑚 new rule candidates for each

candidate 𝑅 ∈ POP. First, the operator finds the set 𝑆 of all rule

components that are not part of 𝑅. Then, it generates each new

candidate by sampling (without replacement) a single component

from 𝑆 and adding it to 𝑅. Adding a single component at a time

keeps the cardinality of the rules low and makes it less likely to

introduce redundant rule components.

The operator crossover generates 𝑐 new candidates for each pair

of candidates, 𝑅𝑖 and 𝑅 𝑗 . First, we compute the set 𝑆 = 𝑅𝑖 ∪𝑅 𝑗 of all

rule components in 𝑅𝑖 and 𝑅 𝑗 . Then, we randomly sample 𝑡 compo-

nents from 𝑆 to form a new candidate.We use 𝑡 =𝑚𝑎𝑥 ( |𝑅𝑖 |, |𝑅 𝑗 |)+1,
in order to keep the cardinality of the new candidate low. We repeat

this sampling process 𝑐 times to generate 𝑐 new candidates for every

pair of candidates in the population.

After generate new candidates via mutation and crossover, the

selectFittest operator calculates the fitness score of each candidate

in POP, sorts the candidates by in descending order of their fitness

scores, and returns the top 𝑞 candidates. We give more details on

the fitness scores in Sec. 4.4.

We note that GeneticRule cannot guarantee that the returned
rules are globally consistent. Since we are only able to check global

consistency for a sample of Inst, we can only guarantee that the

rules are data consistent and are likely to be globally consistent.

4.2 GeneticRuleCF
We next explain GeneticRuleCF, which extends GeneticRule with
a counterfactual explanation model to generate and verify rule

candidates. The pseudocode is provided in Algorithm 2.

The main extension to GeneticRule is the CFRules function. It
takes as input a set of rule candidates and generates new candidates

by computing the counterfactual explanations for each input candi-

date. As outlined in Sec. 3.2, this process involves multiple steps:

it computes the PLAF predicates for a given input candidate, then

it computes the counterfactual explanation for this candidate, and

finally returns the dual of the counterfactual explanation as a new

Algorithm 3: Pseudo-code of GreedyRuleCF:
explain (instance 𝑥 , classifier 𝐶 , dataset 𝐷)

POP = CFRules([{ }], 𝑥,𝐶, 𝐷)
POP = sortByCardinality(POP)
while (!consistentCF(POP[1], 𝑥,𝐶, 𝐷)) do

// get and remove the top candidate from POP
top_cand = pop(POP)
// generate new candidates only for top_cand
CAND = CFRules( [top_cand], 𝑥,𝐶, 𝐷)
POP = sortByCardinality(POP ∪ CAND)
POP = POP[1 : q]

end
return POP[1]

candidate. We use CFRules to extend both the initial population as

well as the candidate pool in the main loop of the genetic algorithm.

We further use the counterfactual model in the consistentCF
function, which verifies that the top rule candidates are globally

consistent. For a given candidate, the function runs the counter-

factual model to generate a counterfactual example. If no such

counterfactual example can be found, we conclude that the rule

is globally consistent. As a consequence, GeneticRuleCF provides

higher global consistency guarantees than GeneticRule.
Performance optimizations. Since calling the counterfactual ex-

planation model is expensive, we only run CFRules once for every
three iteration or when all top-k candidates are marked as data con-

sistent. This setting gave us the best performance improvements

with minimal effects on the generated rules in our experiments.

We further cache whether or not we were able to generate coun-

terfactuals for each rule candidate. This ensures that we only need

to run the counterfactual model once per candidate, and not multi-

ple times for CFRules and consistentCF.
The algorithm has an optional post process stage (not shown

in the pseudo code), to ensure that the returned rules have no

redundant components. For each returned rule, we remove one rule

component at a time, and check if the rule without this component

is still verified by consistentCF. If so, the removed component is

redundant and can be removed from the rule. We repeat this process

until the returned rules do not have any redundant component.

4.3 GreedyRuleCF
GreedyRuleCF does not use a genetic algorithm, but instead repeat-

edly utilizes the underlying counterfactual explanation model to

greedily find rule candidates with small cardinality. The pseudocode

is provided in Algorithm 3.

GreedyRuleCF generates the initial population by running the

CFRules on the empty rule candidate, andmaintains the population

sorted in increasing order with respect to the cardinality of the rule

candidates. Then, the algorithm repeatedly takes the candidate with

the smallest cardinality, generated new candidates by CFRules on
this candidate, removes the considered candidate from and adds

the new candidates to the population. The algorithm stops when

the candidate with the smallest cardinality is found to be consistent

by consistentCF.
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Credit Adult Fico Yelp

Number of Instances 30K 45K 10.5K 22.4M

Features 14 12 23 34

Classifier Type

Decision

Tree

Decision

Tree

Neural

Network

Neural

Network

Table 1: Key Characteristics for each Real Dataset.

In each iteration, GreedyRuleCF removes the inconsistent rule

candidate with the smallest cardinality, and adds candidates which

have cardinalities strictly larger than the removed one. Therefore,

the cardinality of the rules in the population are monotonically

increasing. The algorithm is guaranteed to terminate with an con-

sistent rule, since candidates can have at most 2𝑛 rule components,

where 𝑛 is the number of variables in 𝐷 .

4.4 Fitness Score Function
We describe the fitness score that is used to rank the rule candidates

in the selectFittest function. For a given rule, the fitness score is

based on its degree of consistency and its cardinality (a proxy of

interpretability). We define three degrees of consistency:

(1) The rule failed data consistency (𝐹𝐷𝐶): it violates instances

in the database 𝐷 ;

(2) The rule failed global consistency(𝐹𝐺𝐶): it is data consistent

(satisfies all instances in the dataset 𝐷), but fails for some

instances in Inst;

(3) The rule is globally consistent (𝐺𝐶): The rule is consistent

for both the dataset 𝐷 as well as the instances from Inst.

The fitness score of a rule 𝑅 is defined as follows. Suppose the

database has 𝑚
def

= |𝐷 | instances, each with 𝑛 features. Let 𝑉𝐷

denote the number of instances in 𝐷 that violate 𝑅. If𝑉𝐷 = 0, then

we sample 𝑠 instances from Inst and denote by 𝑉𝑆 the number of

samples that violate 𝑅. The fitness score 𝑠𝑐𝑜𝑟𝑒 (𝑅) is:

𝑠𝑐𝑜𝑟𝑒 (𝑅) =


0.25 × (1 − |𝑅 |

2·𝑛 ) + 0.25 × (1 − 𝑉𝐷
𝑚 ), 𝐹𝐷𝐶

0.25 × (1 − |𝑅 |
2·𝑛 ) + 0.25 × (1 − 𝑉𝑆

𝑠 ) + 0.25, 𝐹𝐺𝐶

0.25 × (1 − |𝑅 |
2·𝑛 ) + 0.75. 𝐺𝐶

The expressions (including the coefficients 0.25, 0.75) were cho-

sen to ensure that the score function always ranks candidates in a

given level higher than the candidates in the levels below. For in-

stance, the score of a global consistent rule candidate, GC, is always

higher than those of levels FDC and FGC. If two candidates are in

the same level, the one with smaller cardinality is ranked higher.

This ranking ensures that we prioritize candidates that have better

consistency guarantees.

5 EXPERIMENTS
We evaluate the three algorithms GeneticRule, GeneticRuleCF, and
GreedyRuleCF from Section 4, and address the following questions:

(1) Do our algorithms find the correct rules, when these rules

are known (the ground truth is known)?

(2) Do our algorithms find rules for real datasets and machine

learning models, and are they globally consistent?

(3) How does the quality of the generated rules as well as the

runtime of our algorithms compare to those generated by

the state of art systems Anchor [21] and MinSetCover [22]?

(4) How effective is the integration of counterfactual explana-

tions in the generation of the rules?

5.1 Experiment Setup
In this section, we introduce the datasets, systems, and the setup

for all our experiments.

Datasets and Classifiers.We consider four real datasets:

(1) Credit Dataset [28]: used to predict the default of the cus-

tomers on credit card payments in Taiwan;

(2) Adult Dataset [9]: used to predict whether the income of

adults exceeds $50K/year using US census data from 1994;

(3) FICODataset [6]: used to predict the credit risk assessments.

(4) Yelp Dataset [29]: used to predict review ratings that users

give to businesses.

Table 1 presents key statistics for each dataset and the corre-

sponding classifiers we used. Credit and Adult are from the UCI

repository [5] and are commonly used in the machine learning

explanation fields. We utilize the Decision Tree classifiers for them.

FICO is from the public FICO challenge, which is an Explainable

Machine Learning Challenge that inspires a lot of research in this

field. For the FICO dataset, we use the two-layer neural network

classifier, where each layer is defined by logistic regression mod-

els. Yelp is the largest dataset we consider, and we use complex

MLPClassifier with 10 layers as classifier.

In order to demonstrate whether the systems can recover the

rules when these are known (ground truth is known), we create

synthetic classifiers for the Credit dataset. The classifier is defined

by a rule, with a number of rule components, and in the experiments

we check whether the explanation algorithm can recover the rule

that defines the classifier. As usual, our algorithms do not know

the classifier, but access it as a black box. We expect real rule-

based explanations to consists of a relatively small number of rule

components (under 10; otherwise they are not interpretable by a

typical user), so in this synthetic experiment we created classifiers

with 2, 4, 6, and 8 rule components respectively. We repeated our

experiments for 1000 randomly generated synthetic classifiers.

In order to ensure that our evaluation is fair, we apply the same

preprocessing for all the systems.

Underlying Counterfactual Explanation Model. To identify

the best counterfactual explanation model for our algorithm, we

benchmarked thirteen different counterfactual explanation models

(GeCo [23], Actionable Recourse [25], CCHVAE [17], CEM [4],

CLUE[1], CRUDS [18], Dice [15], FACE [19], Growing Spheres [11],

FeatureTweak [24], FOCUS [12], REVISE[7],Wachter [26]) using the

Carla benchmark [16].We report the results of this evaluation in our

public GitHub repository: https://github.com/GibbsG/GeneticCF.

We find that GeCo is only one among all of these thirteen coun-

terfactual explanation models that can robustly generate counter-

factual explanations with flexible PLAF constraints and without

redundant feature changes. Therefore, we decided to choose GeCo

as the counterfactual explanation model for GeneticRuleCF and

GreedyRuleCF and to help verify the globally consistency for the

rules returned by all of the considered algorithms.
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Cardinality of Classifiers = 2 Cardinality of Classifiers = 4 Cardinality of Classifiers = 6 Cardinality of Classifiers = 8

Figure 1: The break down of the percentage of rules that are consistent and minimal, consistent with redundant components,
and inconsistent for GeneticRule (Gen), GeneticRuleCF (GenCF), GreedyRuleCF (Greedy), Anchor, and MinSetCover over 1000
synthetic classifiers with 2, 4, 6, and 8 rule components for the Credit Dataset.

Considered Algorithms. We benchmark our three algorithms,

GeneticRule, GeneticRuleCF, and GreedyRuleCF, against two existing
systems: Anchor [21] and MinSetCover [22].

Anchor [21] generates rule-based explanations (i.e. anchors) by

the beam-searched version of pure-exploration multi-armed bandit

problem. It starts with an empty rule. In each iteration, for each

rule, Anchor (1) randomly selects𝑚 possible rule components and

add each of the possible components to the rule to create𝑚 new

rules, (2) evaluates all the rules, (3) and then selects top 𝑛 rule to

keep for the next iteration. It stops when reaching a convergence

for the rules. When evaluating whether a rule is consistent, Anchor

samples 𝑘 instances in the whole space that are specified by the

rule and considers the rule as consistent if all of those 𝑘 instances

are “undesired”.

MinSetCover [22] generates rule-based explanations using the

minimum set cover problem. They consider the𝑚 instances in the

database as elements and the binary predicates (≤ 𝐹𝑖 or ≥ 𝐹𝑖 ) as

sets. Then, finding a minimum rule with data consistency is reduced

to finding the minimum number of binary predicates that covers

all those “undesired” instances. Therefore, MinSetCover reduces

the rule-based explanations problem to finding a minimum set

cover problem and solves it by Linear Programming. Note that this

approach can only be applied on the historical database 𝐷 and does

not consider instances outside this database.

Parameter Choice. As discussed in Section 4.1, there are five

hyperparameters in our systems: the number 𝑘 of rules that the

algorithm returns to the user, the number 𝑞 of rules kept in each

iteration, the number of new candidates that are generated dur-

ing mutation (𝑚) and crossover (𝑐), the number 𝑠 of samples from

Instduring evaluation. While 𝑘 depends on the user’s requirements,

the other parameters determine the tradeoff between the quality of

the returned rules and the time it takes to return them. For instance,

if we increase the number 𝑞 of rules kept in each iteration, it is

possible that we find rule with higher quality, but we also need to

evaluate and verify a larger number of candidates in each iteration

of the algorithm. We performed several pilot experiments to find

the combination of hyperparameters in order to ensure that the

rules are returned in a reseanonble time with acceptable quality.

We found 𝑞 = 50, 𝑠 = 1000,𝑚 = 3, 𝑐 = 2 to be best settings for the

experiments with the Adult, Credit and FICO datasets. For the Yelp

dataset, we use 𝑞 = 20, 𝑠 = 5000,𝑚 = 3, 𝑐 = 2.

For GeneticRuleCF, we enable the optional post reduction stage,

but limit it to reduce only the top rule to limit the overhead.

Experimental pipeline. The data is pre-processed as required

by the classifiers: all categorical variables in the Credit and Yelp

dataset are integer encoded, while those in the Adult are one-hot

encoded. We use decision tree classifer for the Credit and Adult

dataset, and multi-layer neuron network for Fico and Yelp datasets.

This way we explore different types of variable encodings and

classifiers. The post-processed datasets retain the same number of

instances (tuples) as the original data, as shown in Table 1. Recall

that one explanation is for one single user, yet in order to provide

explanation to one instance, the system needs to examine at least

the entire dataset 𝐷 , or, better, the entire space of instance Inst.

If a system returns more than one explanation for the user, then

we retained the top explanation. In short, for one user (instance)

we run each system to find rule-based explanations, and retain

the top-ranked rule. We measure the run time needed to find the

explanation, then evaluate its quality. We then repeat this process

for 10,000 users (i.e. we compute 10,000 explanations), to get a better

sense of the variance of our findings, for all systems. Thus, in our

experiments each system returns 10,000 rules, i.e. one explanation

for each user.

EvaluationMetrics.Weutilize the following twometrics, which

are adapted from our principles of rules, to evaluate the quality of

the generated rules: (1) Global Consistency: we can not find any

instance that is specified by the rule and is classified as “desired”

by the classifier; (2) Interpretability: the cardinality of the rule (i.e.

the number of rule components). To be specific, we check whether

there are redundant components from the return rules and whether

the rule returned is minimal. While GeneticRule and GeneticRuleCF
generate multiple rule-based explanations for each instance, we

only consider the top one rule-based explanation in our evaluation.

Setup.We implementGeneticRule,GeneticRuleCF andGreedyRuleCF
algorithms in Julia 1.5.2. All experiments are run on an Intel Core i7

CPU Quad-Core/2.90GHz/64bit with 16GB RAM running on macOS

Big Sur 11.6.

5.2 Quality in terms of Consistency and
Interpretability

We compare all considered algorithms in terms of the quality of gen-

erated rules on the datasets. First, we consider synthetic classifiers

and then we evaluate the considered systems on real classifiers.
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Credit Dataset Adult Dataset Fico Dataset Yelp Dataset

Figure 2: The break down of the percentage of rules that are not global consistency (Failed GC), not data consistency (Failed
DC), consistent with redundant components, consistent with redundant components but not minimal (consist not minimal),
and consistent and minimal for GeneticRule (Gen), GeneticRuleCF (GenCF), GreedyRuleCF (Greedy), Anchor, and MinSetCover.
We explain 10000 instances for the Credit, Adult, and Fico dataset, and 100 instances for the Yelp dataset.

Synthetic Classifiers. Recall that here the classifier is a rule
itself, and the task of the system is to find an explanation that

is precisely that rule. We categorize the rule-based explanation

into three categories: (1) the rule exactly matches the classifier

(consistent andminimal); (2) the rule is consistent but has redundant

components, i.e. it is a strict superset of the classifier; or (3) the

rule is inconsistent with the classifier, i.e. it misses at least one rule

component of the classifier. We report the percentage of rules that

fall into the three categories for each considered algorithm.

Figure 1 presents the results of our evaluation on the five al-

gorithms over 1000 synthetic classifiers with of 2, 4, 6, and 8 rule

components respectively for the Credit dataset.

GeneticRuleCF and GreedyRuleCF can always find the consistent

and minimal rules (100%) regardless of the cardinality of the rule.

GeneticRule can always find the consistent and minimal rules when

the cardinality of the classifiers is small, but it generates some

inconsistent rules (11%) for classifiers with 8 rule components. This

exemplifies the benefits of including a counterfactual explanation

system in the rule generation algorithm.

Both Anchor and MinSetCover do not always find the consistent

rules even with redundancy when the cardinality of the classifers

is 2 (61.7% and 44.6%). For larger cardinalities, they rarely gener-

ate consistent rules: only 7.8% of the rules in Anchor and 1.3% of

the rules in MinSetCover are consistent when the cardinality of

the rules bebind the classifiers are 6. Anchor is more likely to find

consistent rules than MinSetCover, but the rules generated from

Anchor are mostly redundant. MinSetCover limits the cardinality

of the generated rules and does not return any rules with redundant

components. As a result, however, it often returns rules with fewer

components than expected. In conclusion, our algorithm outper-

forms both Anchor and MinSetCover in terms of consistency and

interpretability for the considered synthetic classifiers.

Real Classifiers. For the real classifiers, we categorize each rule

𝑅 in one of the following five categories:

(1) Failed data consistency (𝐹𝐷𝐶): there is an instance in the

dataset 𝐷 where the rule fails.

(2) Failed global consistency (𝐹𝐺𝐶): all instances in 𝐷 satisfy

the rule, but it fails on some an instance in Inst.

(3) Globally Consistent (𝐺𝐶) but redundant: the rule holds on

all instances in Inst, but has some redundant rule compo-

nents;

(4) Globally Consistent (𝐺𝐶), non-redundant, but not minimal:

the rule is globally consistent and non-redundant, but is

not of minimum size: there exists a strictly smaller globally

consistent rule.

(5) Globally Consistent (𝐺𝐶) and minimal: has the smallest

number of rule components.

In contrast to synthetic classifiers, we do not know the correct

rules for real classifiers. We can, nevertheless, check whether a rule

has redundant components by removing one of its rule components

and checking if it is still consistent. If so, the rule component is

redundant as the removed feature is not required. When checking

the cardinalty of the miniml rules, we check all possible rule sorted

by the cardinalty until finding a consistent one. Then, all consistent

rules with that cardinality are considered as minimal.

Recall that our test for global consistency consists of running the

counterfactual explanations model (in our case GeCo) as a proxy:

we run GeCo subject to the constraints provided by the rule and, if

GeCo can not find a counterfactual explanation, then we conclude

that the rule is globally consistent.

Figure 2 shows our evaluation results for the Credit dataset

with a decision tree classifier, the Adult dataset with a decision

tree classifier, the Fico dataset with a multi-layer neural network

classifier, and the Yelp Dataset with a MLP classifier, respectively.

GeneticRuleCF and GreedyRuleCF can always find globally con-

sistent rules without redundancy for the Credit and Adult datasets,

while they sometimes return inconsistent rules for Fico (9% and

1%) and Yelp (16% and 23%). This is because GeCo is unstable for

these algorithms, and does not always find counterfactual examples.

If the underlying counterfactual system is stable, GeneticRuleCF
and GreedyRuleCF always find globally consistent rules. Further,

GreedyRuleCF is always able to find consistent rules that are min-

imal. In contrast, GeneticRuleCF finds rules without redundancy,

but the rules are not always minimal (the returned rule often have

one or two additional rule components than the minimal rule). This

shows that GreedyRuleCF is the only algorithm that is able to find

consistent, non-redundant, and minimal rules.

GeneticRule is not guaranteed to find the globally consistent

rules. For instance, for the Credit dataset 37.6% of the generated
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rules by GeneticRule are not globally consistent. Unlike the syn-

thetic classifiers, the real classifiers are more complex. And Geneti-
cRule only uses a sample from Instto verify for global consistency.

Since the real classifiers are complex, it is possible that it finds rules

that are consistent on the sample but not on the entire instance

space. This further demonstrates the necessity of the counterfactual

system to verify rules, as it helps to explore the instance space more

broadly.

In GeneticRule algorithm, we use a heuristic random selection

to choose the rule components, which makes rules less likely to

include redundant components compared with Anchor (Rules from

Anchor usually have 3 or 4 redundant components, while those

fromGeneticRule have 1 or 2).When using GeCo in the rule-building

stage, we assure that the new added rule component is necessary

and not redundant. This explains the decreasing pattern in the

average cardinality of the rules from Anchor and GeneticRule, to
GeneticRuleCF, and GreedyRuleCF. For MinSetCover, it always finds

rule-based explanations that are only data consistent, but rarely

globally consistent. Thus, most of the rules returned by MinSet-

Cover have small cardinality but are not globally consistent. This

further demonstrates that our algorithms can find both consistent

and interpretable rules and beat Anchor and MinSetCover on the

real dataset and classifiers.

5.3 Runtime Comparison
We measure the runtime of all considered algorithms for the syn-

thetic and real classifiers. In particular, we investigate how the

runtime is affected by the cardinality of the synthetic classifiers, as

well as the sizes of the the different datasets.

Synthetic classifiers. Figure 3 shows the runtime of algorithms

in synthetic classifiers with 2, 4, 6, and 8 rule components.

GeneticRule, GeneticRuleCF, and GreedyRuleCF usually consume

less time than Anchor and MinSetCover, regardless of the cardinal-

ity of rules behind the classifier. In particular, for the classifier with 8

rule componentsGeneticRule andGreedyRuleCF are about 5× faster

than Anchor and 1.8× faster than MinSetCover; GeneticRuleCF is

about 3.9× faster than Anchor and 1.3× faster than MinSetCover.

We find that the larger the cardinality of the classifier rules, the

longer the algorithms take to return a result. This is expected, since

it takes more effort to build more complex rules. When the cardi-

nality of classifier rules increases from 2 to 6, GeneticRule is more

than 3× slower, GeneticRuleCF is 2.8× slower, and GreedyRuleCF
is only 1.7× slower. GreedyRuleCF is less affected by the increase

in the cardinality. For instance, it takes almost the same time for

classifiers with 4 and 6 rule components. This is because the al-

gorithms can add several required rule components to a rule in

every iteration with the counterfactual explanations, while in the

traditional approach we can only add one more rule component to

a rule in each iteration.

Real Classifiers. Figure 4 compares the runtime with real clas-

sifiers for each considered algorithm and dataset.

For the Credit dataset, the runtimes for all algorithms are simi-

lar, while GeneticRule is the fastest and MinSetCover is the slow-

est. Credit has 14 variables and thus the decision tree classifier

is relatively small. This demonstrates that our GeneticRuleCF and

GreedyRuleCF algorithms can efficiently generate consistent rule-

based explanations without extra cost for a moderately complex

datasets and classifiers.

For Adult, GeneticRule, GeneticRuleCF, and GreedyRuleCF are all

significantly faster than Anchor and MinSetCover. For instance,

GeneticRule is more than 6× faster than Anchor and MinSetCover,

whereas GreedyRuleCF is more than 2× faster. This performance

difference can be explained by the fact that the dataset contains

many variables that were one-hot encoded during preprocessing,

which significantly increases the number features. Whereas An-

chor and MinSetCover scale poorly in the number of features, our

algorithms can treat one-hot encoded features as one feature. As

a consequence, our algorithms can significantly outperform the

existing systems in the presence of one-hot encoded variables.

For Fico and Yelp, GeneticRuleCF and in particular GreedyRuleCF
take much more time. This mainly because we use a strong verifica-

tion mechanism in the two algorithms. The verification mechanism

prevents the algorithms from stopping until they find a consistent

rule, whereas the other algorithms might stop early and return

inconsistent rules (c.f., Figure 2).

Another reason for the slower performance is the performance

of the underlying classifier, which is particularly apparent for the

Fico dataset. Since our algorithms use a counterfactual explana-

tion system, GeneticRuleCF and GreedyRuleCF call the classifier

significantly more often than Anchor and MinSetCover. Thus if the

underlying classifier is slower, GeneticRuleCF and GreedyRuleCF
are also much slower. Table 2 presents the runtime for classifiers

and GeCo on each dataset. For the Fico dataset, the classifier is more

than 25× slower than that of the Credit dataset and 13× slower than

that of the Adult dataset. This led to GeCo taking 22.2× and 14.7×
more time with the classifier of the Fico dataset compared to that

of the Credit dataset and the Adult dataset. The increase of runtime

in GeCo significantly increases the runtime of GeneticRuleCF and

GreedyRuleCFas they rely on the GeCo to verify the rules. We will

discuss more details in the microbenmarks in Sec 5.4.

The Yelp dataset contains millions of instances and we use a

significantly more complex classifier. For this reason, it is much

harder for the algorithms to generate and verify rules. This is visible

for our algorithms but also for MinSetCover, whose runtime is

highly depend on the number of instances in the dataset. However,

even for the slow classifier as on Fico Dataset, and large dataset as

Yelp dataset, our GeneticRuleCFcan always generate rules in time

that is at least comparable, and at times significantly faster, than

Anchor and MinSetCover. This shows the power of using a genetic

algorithm to build the rules with less run time.

In summary, GeneticRuleCF can always finish in reasonable run-

time to generate high quality rules regardless of the classifier speed

or the size of the dataset. GreedyRuleCF typically generates rules

with the highest quality, and it is fast when the classifier and dataset

have moderate size. For complex classifiers over large datasets, how-

ever, GeneticRuleCF is more efficient than GreedyRuleCF.

5.4 Microbenchmarks
In this section, we present the results for the microbenchmarks.

We compare the runtime break down for each main operators for

GeneticRuleCF, the number of rule components explored for Geneti-
cRuleCF, GreedyRuleCF and GeneticRule, and the number of rule

components explored by the counterfactual explanation systems
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Cardinality of Classifier = 2 Cardinality of Classifier = 4 Cardinality of Classifier = 6 Cardinality of Classifier = 8

Figure 3: Comparison of runtime for GeneticRule (Gen), GeneticRuleCF (GenCF), GreedyRuleCF (Greedy), Anchor, and MinSet-
Cover over 1000 synthetic classifiers with 2, 4, 6, and 8 rule components for the Credit dataset

.

Credit Dataset Adult Dataset Fico Dataset Yelp Dataset

Figure 4: Comparison of the average runtime (in seconds) of rules for GeneticRule, GeneticRuleCF, GreedyRuleCF, Anchor, and
MinSetCover. We explain 10000 instances for the Credit, Adult, and Fico dataset, and 100 instances for the Yelp dataset.

Runtime Breakdown

Figure 5: The break down of average run time
into the main operators for GeneticRuleCF al-
gorithm.

Adult Dataset

Figure 6: The number of rule candi-
dates explored for GeneticRuleCF , Ge-
neticRule and GreedyRuleCF.

Fico Dataset

Figure 7: The number of rule candi-
dates explored by GeCo for Geneti-
cRuleCFand GreedyRuleCF.

Credit Adult Fico Yelp

Classifier Runtime 0.0041 0.0079 0.1079 0.02081

GeCo Runtime 0.0854 0.1294 1.9050 2.0793

Table 2: Run time of the classifiers to predict 10,000 instances,
and for GeCo to explain a single instance on each dataset.

for GeneticRuleCF and GreedyRuleCF. We evaluate our algorithms

by explaining 100 instances on Adult Dataset, Credit Dataset, Fico

Dataset and 20 instances on Yelp Dataset with corresponding clas-

sifiers.

Breakdown of Runtime. Figure 5 presents the results for the
runtime breakdown. We choose to not include GreedyRuleCF since

almost all of its runtime is from the counterfactual system. This is

because GreedyRuleCF only uses the counterfactual system, GeCo,

to build and verify rules. Prep (i.e. Preparation) captures the runtime

to compute the rule space and to build the initial population. Reduc-

tion captures the timed used to removed the redundant components
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from the returned rules using the counterfactual explanation sys-

tems. The runtime for selectFittest (Selection), Crossover, Mutate,

and CFRules is accumulated over all iterations.

As discussed in Section 4.2, we only run the counterfactual ex-

planation once in the function CFRules for each rule candidate to

optimize the performance. This also gives us the information we

need for function consistentCF which used in selectFittest. There-

fore, we do not run counterfactual explanations in the selectFittest

and the time used by function CFRules captures the time used

by the counterfactual system in building the rules. And the total

time used by the counterfactual system is the sum of the runtime

in CFRules and Reduction.

The results show that the CFRules and Reduction are the most

time-consuming operations. This is not surprising since these two

operations rely on the counterfactual system, which is costly. And

thus, the majority of the runtime is consumed by the counterfactual

system. If we can reduce the runtime for the underlying counter-

factual system, we would like to see a huge gain in the runtime of

our algorithms.

Number of Candidate Rules Explored. Figure 6 shows the
number of candidates explored for each of the algorithms. The result

shows that our optimizations in GeneticRuleCF and GreedyRuleCF
effectively limit the total number of rules explored in the Credit

and Adult datasets when the classifier is moderately complex and

guide GeneticRuleCF and GreedyRuleCF to search candidates that

are more likely to be consistent. When the classifier is complex as in

the Fico and Yelp datasets, our optimizations prevent GeneticRuleCF
and GreedyRuleCF from stopping early with inconsistent rules

and push the algorithms to explore more rules until finding a real

consistent one.

TheNumber of GeCoRuns. Figure 7 presents howmany times

we use GeCo in each of the algorithms in the four datasets. For

moderate dataset and classifiers, like Adult and Credit, the number

if rules explored by GeneticRuleCF and GreedyRuleCF are similar.

However, when the datasets and classifiers become large and com-

plex, like Fico and Yelp, the genetic algorithm in GeneticRuleCF
significantly reduces the number of runs using the counterfactual

systems (6 times fewer in the Fico dataset and 35 times fewer in the

Yelp dataset). This explains why the GeneticRuleCF is more efficient

than GreedyRuleCF for large datasets with complex classifiers.

6 LIMITATIONS AND FUTUREWORK
We have illustrated the effectiveness and efficiency of using the

underlying counterfactual explanationmodel to generate rule-based

explanations and compared it with other state-of-the-art algorithms.

Now we come to its limitations and opportunities for future work.

Bound of Rule Components. In our algorithms, to reduce

the search space of the rules, we limit our rules to strictly related

to the values of the input instance, and the bound of any rule

components must be the corresponding feature value. That is, our

rule components can only be larger, smaller, or equal to the feature

value. However, the range of the rules can be broader. For example,

there is an input instance 𝑥 = {𝐹1 = 3} and the classifier 𝐶 has a

rule 𝐹1 < 10. Since we use the feature value 𝐹1 as the bound of the

rule component, we output the rule as 𝐹1 < 3, which is narrower

than the real rule. Currently, we want to analyze the behavior

of the classifier with respect to the input instance, so this strict

bound satisfies our expectations. In the future, we may want to

take advantage of this strict bound to make the rule more general.

Realistic Feature Value Distributions. In GeCo and the sam-

pling process of our algorithms (and many other state-of-the-art

Counterfactual Explanation models), we assume the perturbation

distributions as the instance search space. This is sufficient to lever-

age the behavior of the model which generates interpretable ex-

planations. However, how to estimate such distributions is still a

questionable and challenging problem, such as how to represent the

causal dependency between different features. Designing ways to

find such distributions will benefit multiple explanation methods.

Underlying Counterfactual Explanation System. In the ex-

periments, we find that stability and run time of our algorithm

is highly depend on the underlying counterfactual system. In our

implementation, we use GeCo as our underlying Counterfactual

Explanation System, which is currently the best counterfactual

explanation system we found. However, we observed that GeCo

can still be costy and unstable in extreme cases, which negatively

affects the run time and stability of our systems. If there is a more

efficient and stable counterfactual explanation system, we would

expect a huge gain in our systems.

Better Counterfactual Explanation Model. In this paper, we

use the counterfactual explanation model to generate rule-based

explanations. Similarly, we can also use the rule-based explanation

to help identify which features needed to be changed for coun-

terfactual explanations. If there is a well-established rule-based

explanation model, we can apply the idea to facilitate the counter-

factual explanation model.

Static Data and Classifier. Currently, our rule-based explana-

tion algorithms assume the underlying data and classifier to be

static. Therefore, our algorithms are subject to changes in the data

and classifier. We plan to explore howwe can generate explanations

that are robust to small changes in the data distribution or classi-

fier. This is related to the more general problem of robust machine

learning.

7 CONCLUSION
Rule-based explanations are highly desirable for automated, high

stakes decisions, yet they are computationally intractable. In this

paper we have described a new approach for computing rule-based

explanations, which uses counterfactual explanation system as an

oracle. We also use the counterfactual explanation system to ro-

bustly verify the global consistency of the rules. We have described

a base genetic algorithm (GeneticRule) and two extended algorithms

(GeneticRuleCF and GreedyRuleCF ) that integrate the results from
the counterfactual explanations in order to build globally consistent,

informative rule-based explanations. We conducted an extensive

experimental evaluation, proving that the rule-based explanations

returned by our system are globally consistent, and have fewer rule

components, i.e. are more informative, than those returned by other

systems described in the literature.
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