
VOCALExplore: Pay-as-You-Go
Video Data Exploration and Model Building

Maureen Daum

University of Washington

mdaum@cs.washington.edu

Enhao Zhang

University of Washington

enhaoz@cs.washington.edu

Dong He

University of Washington

donghe@cs.washington.edu

Stephen Mussmann

University of Washington

mussmann@cs.washington.edu

Brandon Haynes

Microsoft Gray Systems

Lab

brandon.haynes@microsoft.com

Ranjay Krishna

University of Washington

ranjay@cs.washington.edu

Magdalena Balazinska

University of Washington

magda@cs.washington.edu

ABSTRACT

We introduce VOCALExplore, a system designed to support users

in building domain-specific models over video datasets. VOCALEx-

plore supports interactive labeling sessions and trains models using

user-supplied labels. VOCALExplore maximizes model quality by

automatically deciding how to select samples based on observed

skew in the collected labels. It also selects the optimal video repre-

sentations to use when training models by casting feature selection

as a rising bandit problem. Finally, VOCALExplore implements

optimizations to achieve low latency without sacrificing model per-

formance. We demonstrate that VOCALExplore achieves close to

the best possible model quality given candidate acquisition func-

tions and feature extractors, and it does so with low visible latency

(∼1 second per iteration) and no expensive preprocessing.

PVLDB Reference Format:

Maureen Daum, Enhao Zhang, Dong He, Stephen Mussmann, Brandon

Haynes, Ranjay Krishna, and Magdalena Balazinska. VOCALExplore:

Pay-as-You-Go Video Data Exploration and Model Building. PVLDB, 16(13):

4188 - 4201, 2023.

doi:10.14778/3625054.3625057

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/uwdb/vocalexplore.

1 INTRODUCTION

Increasingly many scientific domains rely on video data, which

is information dense and relatively easy to collect. Powerful li-

braries [5, 9, 16, 32] and data management systems [6, 7, 24, 33]

exist to support users in storing and querying this video data. A key

problem, however, is that those systems assume the user is already

familiar with their data and, typically, already has one or more

machine learning (ML) models to extract the desired information.

In speaking with scientists at the University of Washington, we find

that this is frequently not the case. Instead, scientists collect data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.

doi:10.14778/3625054.3625057

en masse, but then struggle to explore it, understand it, build ML

models for it, and finally use it to answer their scientific questions.

Consider, for example, a scientist who wishes to understand the

behavior of animals in the wild using collars outfitted with cameras

(we expand this example in Section 2.1). These cameras may easily

produce terabytes of data. Because scientists mainlywant to identify

activities (as opposed to species, a well-understood problem [8]),

there exists no off-the-shelf, pretrained model that can be used to

extract meaningful data from this dataset. To develop a domain-

specific model, scientists first need to familiarize themselves with

their data and develop a vocabulary of activities within.

Existing tools do not adequately aid users in early data explo-
ration—especially users who are not experts in ML—despite this be-

ing a critically-important piece of end-to-end data management. Ex-

isting video browsing systems [22, 39] focus on known-item search,
which presumes the user already knows what they are looking for

and do not support building a domain-specific model. Lancet [52]

proposes to support users in building models over unstructured

data by combining active learning with embedding training. How-

ever, their technique requires knowledge of ML tuning to achieve

good performance on an arbitrary dataset, and it requires repeated,

expensive processing over the dataset as the embedding is updated.

In this paper, we present the design, implementation, and evalu-

ation of VOCALExplore, a system that fills this gap and supports

users with early video data exploration, labeling, and model build-

ing. It is a part of our larger VOCAL system [13]. In our example,

the user only needs to point VOCALExplore at their data and they

can immediately begin exploration. Immediate interactivity is a key

goal of VOCALExplore. The user only invests more effort as they

see results, which is important for new domains when the user may

be uncertain about the labels they wish to use and whether a good

model is even possible for their data and desired labels. A key contri-

bution of VOCALExplore is to support such initial exploration with

a “pay-as-you-go” design, which avoids expensive preprocessing

phases. Instead, VOCALExplore processes data incrementally as the

user explores it and provides increasingly accurate results as users

put more effort towards exploration and labeling. VOCALExplore

enables an iterative workflow: At each step, the user either specifies

which video segments they want to view or lets the system select

video segments. As they watch videos, they can choose to annotate

them with new or existing labels. When VOCALExplore chooses

video segments for the user to view and label, it samples them in

a way that yields good model quality, while avoiding extra costs

4188

https://doi.org/10.14778/3625054.3625057
https://github.com/uwdb/vocalexplore
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3625054.3625057
https://www.acm.org/publications/policies/artifact-review-and-badging-current

when not necessary. VOCALExplore also decides which feature

representation to use for the given data. Finally, VOCALExplore

does the above while hiding all significant sources of user-visible

latency, providing fast response times to data exploration requests.

There are several challenges in designing a system like VOCAL-

Explore. First, VOCALExplore brings together techniques from

across the ML community that are required to support end-to-end

video data exploration and model building—from video sampling to

feature extraction to building models on video data. VOCALExplore

combines these into a system wrapped behind a data exploration

interface, which does not require any ML knowledge or tuning

from the user, nor any expensive preprocessing steps.

Second, we design VOCALExplore as a pay-as-you-go system: it

receives user input incrementally and must produce results incre-

mentally as well, all without long preprocessing phases, to support

low-latency data exploration. At each iteration, VOCALExplore

must decide which video segments the user should label next and

how to train the best model on top of these labels. While the ML

community has proposed many active learning acquisition func-

tions [42], there is evidence that no one technique is the best, and

they often perform no better than random sampling as shown

in [25] as well as in our evaluation (Figure 4). Further, active learn-

ing functions are more expensive than random sampling because

they require preprocessing the dataset. To address this challenge,

our system dynamically selects either random sampling or an active

learning function based on observed class imbalance in the dataset.

VOCALExplore always starts with random sampling because it is

expected to perform well over uniform datasets, and it requires no

preprocessing. It then switches to more expensive active learning if

it observes sufficient skew in the labels. When it switches to active

learning, VOCALExplore incrementally processes videos to build a

candidate set over which the active learning algorithm can execute,

again avoiding an expensive preprocessing step.

While it is common today to train video models using pretrained

models as feature extractors, there is a lack of research exploring

how to choose the best one for a new dataset. Therefore, before

we begin to train a domain-specific model using the user provided

labels, we are faced with the technical challenge of deciding which

pretrained feature extractor to use. We show that the accuracy of

domain-specific models depends on the chosen feature extractor.

To address this challenge, VOCALExplore starts with a set of candi-

date pretrained models to be used as feature extractors. It frames

feature selection as a rising bandit [28] problem to dynamically con-

verge on the best features for a given dataset during early labeling

iterations—again avoiding a separate feature selection phase—and

instead integrating feature selection into the data exploration pro-

cess. Note that we use the term “feature selection” to denote picking

a feature extractor, rather than selecting a subset of a feature vector.

The third challenge is supporting the described functionality

with low user-visible latency to make the system interactive. VO-

CALExplore relies on many tasks that have non-trivial latency (e.g.,

extracting feature embeddings from encoded videos), and naive

strategies to minimize latency risk hurting model performance (e.g.,

eliminating model training latency by making predictions using

a model trained many iterations ago). VOCALExplore addresses

this challenge by using idle time to perform tasks while the user is

occupied labeling videos. While the idea of leveraging background

processing is not new, the key contribution of this paper lies in

identifying which tasks to execute in the background and when to

launch them in order to achieve a model quality that is as similar

as possible to a serial execution of all tasks, all while maximally

reducing user-visible latency.

In summary, VOCALExplore makes the following contributions:

We design a video data exploration and labeling system that brings

together state-of-the-art MLmethods and wraps themwith a simple

data exploration interface that does not require any ML knowledge

from users (Section 2). We develop an Active Learning Manager

(ALM) that produces high-quality models by dynamically selecting

the appropriate acquisition function and best feature extractor for

each dataset (Section 3). We develop a Task Scheduler to ensure

VOCALExplore produces high-quality models without significant

user-visible latency (Section 4).

We evaluate VOCALExplore on standard and domain-specific

datasets (Table 1). Our experiments show that VOCALExplore can

achieve model performance that matches the best combination

of acquisition function and feature with no preprocessing, and a

user-visible latency of less than one second per labeling iteration.

VOCALExplore does this while automatically deciding what fea-

tures to use and how to sample video segments to be labeled.

2 SYSTEM OVERVIEW

In this section, we present the API of VOCALExplore, user workflow,

and overall system architecture.

2.1 Motivating example

We first motivate VOCALExplore by describing the use case of the

ecologists we partnered with who study the behavior of deer in

the wild [15]. The scientists seek to understand how much time

the deer spend on different activities (e.g., eating or traveling). To

study these questions, the ecologists attached GoPro-style cameras

to collars on the deer. These cameras collected video data for two

weeks before the collars automatically fell off the deer.

Once the ecologists collected the cameras, they had access to a

large quantity of video data (1.4 TB across 800𝑘 video files) that,

were it labeled, would enable them to analyze their research ques-

tions. An ideal solution for these scientists would be to automati-

cally label the videos using a machine learning model. However, no

pretrained model exists for this domain-specific task. Therefore, the

ecologists manually labeled a sample of the videos by temporally

sampling video clips from the morning, midday, and evening, and

performed their analysis on top of these labeled samples [15].

Thismanual labeling process is tedious, and analyzing the labeled

samples is limiting, especially when the fraction of labeled data is

small. As an alternative, the scientists could havemanually trained a

domain-specificmodel. This is, however, challenging for the reasons

already enumerated, and because the scientists are not experts in

ML. Next, we describe how VOCALExplore supports scientists to

easily train a model over their videos.

2.2 API and user workflow

Workflow. Here we describe the high-level workflow users follow

when using VOCALExplore. Users load their video data by speci-

fying a set of video paths. Users can immediately start exploring

4189

and labeling their data because VOCALExplore performs no pre-

processing. During this exploration, VOCALExplore samples video

segments for the user to label. Initially, it randomly returns videos

for the user to explore. Once the user has provided some initial

labels (in the prototype, ≥5 labels), VOCALExplore additionally

returns the predicted labels for each produced video segment. At

any time, the user can view any subset of the video data together

with VOCALExplore’s predictions for those videos. The user can

provide corrected labels for any errors they notice.

API. The API of VOCALExplore is shown at the top of Figure 1.

Watch enables a user to view a video stream within a specified

time window. VOCALExplore returns a sequence of consecutive

video segments labeled with the activities that the system detects.

Initially, labels are null. Explore enables system-directed explo-

ration to efficiently build a high-quality domain-specific model.

VOCALExplore returns videos (along with their predictions) that

when labeled will most improve model performance. Explore op-

tionally takes a specific label that causes VOCALExplore to return

videos that will most improve its predictions for the specified class.

When a user views video segments they can add labels using the

AddLabel method.

2.3 System architecture

To enable the above workflow, VOCALExplore must support the

following functionalities: sample selection to produce video seg-

ments needing labels; model training and inference to produce

predictions for unlabeled videos; and feature extraction to produce

inputs to models. Figure 1 shows the architecture of VOCALExplore

that supports these functionalities. The Active Learning Manager
(ALM) performs sample selection, the Model Manager performs

model training and inference, and the Feature Manager performs

feature extraction. Additionally, VOCALExplore includes a Storage
Manager to manage metadata and intermediate results, and a Task
Scheduler (TS) to coordinate these components.

The ALM (Section 3) and TS (Section 4) are the the core contri-

butions of this paper. We defer a detailed discussion on them to the

following sections; here we outline how the components interact.

Storage Manager (SM). The SM stores and retrieves all persisted

data, which includes video metadata (e.g., path, duration, start time),

labels, features, and models. The SM uses off-the-shelf components.

Feature Manager (FM). The FM returns feature representations

of video segments. These features are used by the ALM for sample

selection as well as by theModel Manager for training and inference.

Features are represented by 𝑑-dimensional vectors in R𝑑 , and each

is associated with some time period (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) within a video.

Model Manager (MM). The MM trains models using the user-

specified labels and performs inference on these models to return

predictions. Given a video (vid), and time-interval [𝑡1, 𝑡2], the MM

outputs a probability distribution across possible labels for that

video segment. Our prototype MMmaintains one model per feature

extractor. The MM trains a new model whenever requested to do so

by the ALM and is non-blocking: while a new model is training, the

MM serves requests for labels using the previously trained model.

ALM. For each call to Explore, the ALM picks 𝐵 video segments,

each of duration 𝑡 , that the user should label next. The ALM in-

vokes the MM to provide predictions for the video segments being

returned. We further describe the ALM in Section 3.

TS. The TS coordinates the activities of the various managers to

ensure low-latency responses to user-initiated API calls while main-

taining high prediction quality. We describe the associated chal-

lenges and how the TS addresses them in Section 4.

3 ACTIVE LEARNING MANAGER

The Active Learning Manager (ALM) is a central component of

our system responsible for selecting the video segments that the

user should label. Recall that our system focuses on tasks where a

user wishes to label a small number of video segments to build a

model that can serve to label the rest of the video. The ALM must

address several challenges. Most importantly, our system’s goal is

to provide pay-as-you-go results: i.e., for each new batch of user

labels, the ALM strives to maximize model quality given the labels

collected so far. The ALM cannot rely on a long preprocessing phase

to accumulate a large number of labels or optimally select features

for a new domain. Instead, the ALM generalizes the problem of

active learning to not just choosing which video segments to la-

bel (and what method to use to perform that selection), but also

simultaneously choosing which features to use for a new domain.

The first subproblem of selecting segments to label is an active

learning problem. There are many proposed acquisition functions

in the active learning literature (e.g., [42]). Our goal is not to design

a new active learning algorithm, but to determine when the extra

cost is worthwhile in a data exploration system. Because random

sampling can achieve the best model quality in some settings [25]

and is less expensive, the first challenge the ALM addresses is

distinguishing between when random sampling is sufficient and

when an active learning acquisition function should be used for a

given dataset. The key idea behind our approach is for the ALM to

start with Random, observe the label distribution, and dynamically

switch to other acquisition functions if the evidence suggests that

active learning will outperform Random. Section 3.1 describes how

the ALM chooses between these functions.

The second subproblem is feature selection. Video models use

pretrained features as a starting point for new tasks. However,

choosing the appropriate pretrained model from which to extract

features is an open research question. We propose to dynamically

select features to use for a given dataset. The key idea of our ap-

proach is to use a rising bandit method to comparatively evaluate

feature quality during active learning as we describe further in Sec-

tion 3.2. In contrast with feature engineering approaches [26, 46, 50],

our problem is to produce a useful feature representation for the

unstructured video data in the user’s new domain rather than ma-

nipulating features to improve model performance.

Finally, the ALM solves both subproblems simultaneously. At

each step, it makes the best decision for each independently. How-

ever, the samples selected by the acquisition function affect model

performance (and therefore feature selection), and features affect

the performance of active learning sampling. The ALM handles this

interference by using decision methods that are tolerant to noise.

3.1 Acquisition function selection

We first discuss how the ALM solves the problem of acquisition

function selection, where the acquisition function determines which

video segments are selected to be labeled at any given iteration.

4190

Figure 1: VOCALExplore architecture. The Task Scheduler coordinates the activities of the various managers.

Problem. The ALM is given a set of video segments, 𝑣∈𝑉 . The
video segments depict various activities 𝑎∈𝐴, and these activities

may be skewed, meaning that some appear more frequently than

others. It is possible for a single video segment to contain multiple

activities, or no activities. We are also given a labeling budget, 𝐵,

which designates the number of video segments a user is willing to

label. This budget is incremental and is not fixed. For example, a

user may initially set 𝐵=20 and then give VOCALExplore another

𝐵=10 if they are willing to label more. The ALM uses the labels to

train a model𝑀 , which in the prototype is a linear model.

The ALM balances the two goals of maximizing model quality,

(G1), and producing pay-as-you-go results, (G2). ForG1, we consider

the average model quality across all classes the user has applied to

video segments. The prototype maximizes the macro F1 score of

the model, though other metrics could be used. For G2, the ALM

strives for interactivity and low latency in response to API calls by

avoiding expensive preprocessing steps that block user interactions.

3.1.1 Baselines. We consider the use of individual acquisition func-

tions as baselines. The relative performance of any acquisition

function depends on the dataset, but the cost of each function is

partially determined by the inputs the function requires (the other

component of cost is the processing done on top of the inputs).

The most naive strategy is Random, which randomly selects

the 𝐵 video segments. This is cheap because its inputs are video

metadata (e.g., duration) rather than features extracted from the

video frames. However, if the activities in the dataset are highly

skewed, then random sampling will not find many examples from

activities that rarely occur, which hurts G1 because the model will

perform poorly on these rare classes. Additionally, as we observe

experimentally, random sampling over skewed data causes the user

to label large amounts of the same activity type and very few rare

activities. We posit that having the user label more diverse activity

types is more in line with supporting users in early data exploration.

More sophisticated baselines use active learning techniques that

take as inputs features, and possibly model outputs. These strate-

gies require an expensive, one-time preprocessing step to extract

features from all of the video segments 𝑉 . Uncertainty-based tech-

niques additionally require performing inference over all 𝑣∈𝑉 . This

preprocessing hurts G2 because it results in a large amount of ini-

tial latency, even if the user only makes a small number of API

calls, and the feature extraction and inference tasks over all of the

videos result in high latency for API calls. However, active learn-

ing acquisition functions can improve model performance over

naive random sampling [41], especially for skewed datasets where

random sampling will have low label diversity.

3.1.2 Our approach (VE-sample). The ALM resolves these trade-

offs by casting acquisition function selection as a binary decision

between Random or an active learning-based acquisition function.

It dynamically switches to a more expensive active learning func-

tion only when it is expected to improve model performance and

label diversity. The ALM strategy, which we call VE-sample, ini-

tially uses random sampling to select the 𝐵 video segments to be

labeled because it is fast and requires no preprocessing (G2), and it

performs well for uniform datasets (G1). VE-sample dynamically

switches to active learning if it observes skew in the labels it col-

lects. This results in better label diversity for the user and, more

importantly, improves model performance on rare classes (G1).

When our prototype switches to active learning it uses cluster-

margin sampling [12] which combines uncertainty and diversity

sampling. Our prototype also implements the greedy coresets algo-

rithm [41] (Coreset), which is a density-based acquisition function

that has been shown to work well in a batch-labeling setting and

is designed to find diverse examples. By default the ALM uses

Cluster-Margin sampling for active learning because in our ex-

periments it always performs at least as well as Coreset.

To decide whether the labels are sufficiently skewed to switch

to active learning, VE-sample uses the k-sample Anderson-Darling

test [40] which is a statistical test for comparing discrete distribu-

tions. VE-sample compares the label distribution observed so far

to a baseline uniform distribution and switches to active learning

when 𝑝≤0.001. We use this small p-value because the label distri-

bution is initially noisy when there are a small number of labels.

We want to switch away from random sampling only when we are

highly confident that the distribution is in fact skewed.

Other statistical tests are possible. For example, we could also

say that a dataset is skewed if the imbalance ratio [34] (i.e., the

ratio between the frequency of the majority and minority classes)

is large. If there are 𝑘 classes, and the multinomial distribution

has parameters 𝑝 ∈ Δ𝑘 = {𝑝 ∈ R𝑘+ :

∑︁𝑘
𝑖=1 𝑝𝑖 = 1}, we can say a

distribution 𝑝 is skewed if min𝑖 𝑝𝑖 <
1

𝑚𝑘
for some multiplicative

threshold𝑚.𝑚 is a lower bound on the imbalance ratio because the

majority class must have frequency ≥ 1/𝑘 . For this frequency-based

4191

approach we set the p-value to be equal to an upper bound on the

probability of incorrectly classifying a dataset as skewed. Details of

how this bound is derived are described in our extended technical

report [14]. The benefit of using the frequency test is that its p-

value will not grow smaller solely based on an increasing number

of data points if the dataset is not perfectly balanced. Whereas

the Anderson-Darling test will return a small p-value for slight

class imbalances (e.g., 51% class A and 49% class B) given sufficient

labels, the frequency test with high probability will not detect this

as skewed even in the limit of infinite labels. We show in Section 5.2

that this frequency-based test matches the F1 scores achieved when

we use the Anderson-Darling test.

Interestingly, we empirically find that the VE-sample approach

has the additional effect of producing a more diverse set of video

segments for the user to label, compared with using random sam-

pling alone. A diverse labeled set benefits model performance, but

it also makes the labeling task more interesting for the user. Given

𝑛𝑎, 𝑎 ∈ 𝐴, the number of labels for each activity type, we measure

label diversity as 𝑆𝑚𝑎𝑥=
max𝑎∈𝐴 𝑛𝑎∑︁

𝑎∈𝐴 𝑛𝑎
, which represents the fraction

of labels that come from the most-seen activity. A lower 𝑆𝑚𝑎𝑥 indi-

cates a higher diversity of labels. Other measures are possible.

Finally, the ALM addresses G2 by incrementally processing

videos. The ALM extracts features from labeled videos to train mod-

els, and from sampled videos to make predictions, so the amount

of processing is proportional to the amount of user interaction. For

Random, this requires only processing the videos that contain the 𝐵

video segments returned from Explore. However, whenVE-sample

switches to active learning, the active learning algorithm requires a

set of candidate features. The ALM balances active learning quality

and visible latency through a hyperparameter,𝑋 . When VE-sample

is using active learning and the user requests 𝐵 video segments

from Explore, VE-sample ensures this set contains features from

𝑋 additional videos. We evaluate the impact of the choice of 𝑋

on both latency and model quality in Section 5. As described in

Section 4, the Task Scheduler hides the latency of this incremental

processing so it does not affect interactivity.

3.2 Feature extractor selection

As discussed, VOCALExplore uses pretrained image and video mod-

els as feature extractors because they have a favorable cost/quality

tradeoff (model inference is highly optimized on GPUs), and pre-

trained models are commonly used to initialize domain-specific

models [18]. The MM trains one model per candidate feature.

3.2.1 Problem. We observe that the performance of feature extrac-

tors varies depending on the dataset and task. As shown in Figure 5,

some feature extractors perform much better than others on a given

dataset, and the best feature varies across datasets.

The ALM is responsible for finding a feature extractor that leads

to high-quality models when trained over the user-provided labels.

Each feature extractor takes as input one or more frames and out-

puts a feature vector. The problem that the ALM solves is as follows:

when starting with pixel data and multiple candidate feature ex-

tractors, how should it pick the extractor whose outputs lead to

the highest model quality for the given domain. This is in contrast

to traditional feature engineering techniques [26, 46, 50] that take

as input features applicable to the domain and attempt improve

model quality by transforming these input features. By default,

VOCALExplore uses a pool of video and image pretrained models

as candidate feature extractors (Table 2) with differing architectures

and pretraining, making some models better suited for adapting to

a new domain than others. For example, CLIP is an image classifica-

tion model, and we observe its features perform better on datasets

where activities can be determined by looking at individual frames

(e.g., K20 in Table 1). To extract features for a particular video, the

FM performs inference on sampled clips or frames (for video or

image models, respectively) to extract feature vectors. Each feature

vector is associated with a feature ID, video ID, and some time span

corresponding to the input frame(s): (𝑓 𝑖𝑑, 𝑣𝑖𝑑, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑣𝑒𝑐𝑡𝑜𝑟).
The ALM must pick a feature to use at each step when it returns

predictions for video clips because the feature determines which

model is used tomake predictions. The ALMmust also pick a feature

to use if VE-sample uses active learning (see Section 3.1). Picking a

feature that performs poorly leads to incorrect predictions, and, in

the case of active learning, suboptimal clip sampling. Therefore, the

ALM dynamically selects the features to use based on the empirical

performance on each dataset.

3.2.2 Naive strategies. A first naive strategy is to concatenate all

of the possible features into a single feature vector. However, this

requires a large amount of compute resources to extract all features

from all videos (as shown by the latency of the VE-lazy (PP) strat-

egy in Figure 8). Further, we do not observe an improvement in

performance over the best single feature, as shown in Figure 5.

A second naive strategy would be at each step to use the feature

that is performing best. At each step, the ALM could extract all pos-
sible features from all labeled video clips, and then train a different

model for each feature. It would pick the feature that empirically

performs best. This second strategy is also inefficient because it

requires extraction, training, and evaluation for every feature.

3.2.3 Bandit strategies. While the ALM initially must explore all

possible feature extractors as in the second naive strategy, we want

to quickly converge on one of the best ones. Once a feature is

picked, all compute resources can be dedicated to extracting just

that feature from the remaining video segments, and models are

only trained using that feature. The problem then becomes how to

converge on one of the best features. On the surface, this appears

to be a problem that can be solved by Multi-Armed Bandit (MAB)

approaches: each feature extractor is an arm, model performance is

the reward, and we want to exploit the feature extractors that lead

to the best model performance. However, MAB techniques assume

stationary reward distributions (i.e., the reward for pulling an arm

is independent of the number of times that arm is pulled). This is

not true for our use case because model performance is expected

to improve as the amount of training data increases. If a feature

performs poorly in early rounds, we do not want to eliminate it

solely based on early performance values because it is possible that

it will improve once there are more labels.

Our setting is that of Rising Bandits [28]. Rising Bandits do not

assume that the rewards for each arm are stationary; rather, they

are assumed to be increasing in a concave manner as the arm is

pulled. Under these assumptions, the expected performance of each

arm after some number of examples can be bounded, and arms can

4192

be eliminated when the upper bound on their expected reward is

lower than the lower bound for some other arm.

The original Rising Bandit algorithm [28] that the ALM adapts

works as follows: The algorithm proceeds in a series of rounds. At

each step, it computes the current model quality for each candidate

feature. Then, it computes lower (𝑙𝑓) and upper (𝑢𝑓) bounds for the

expected performance after 𝑇 timesteps. The lower bound is taken

to be the current value because we assume the quality increases

over time. The upper bound (𝑢𝑓 = 𝑙𝑓 +𝜔 𝑓 ×(𝑇 −𝑡)) is taken to be the
lower bound plus some delta computed as slope (𝜔 𝑓) multiplied by

the number of remaining timesteps (𝑇 − 𝑡), which is a linearization

at the current time 𝑡 step evaluated at 𝑇 . Because of the concavity

assumption, the linearization is an upper bound on the true reward.

Finally, features are eliminated when their upper bounds are below

the lower bound of any other feature. Note that the algorithm from

[28] was proposed in a different setting from ours and thus the

guarantees do not directly transfer. In particular, the “reward” in

our setting is the performance of the chosen arm with 𝑇 points,

while the “reward” in [28] is the performance of the chosen arm

with however many points were allocated to that arm.

3.2.4 VOCALExplore adaptations to Rising Bandits. The ALMmust

resolve three challenges before applying the Rising Bandit frame-

work. First, measured model performance is noisy. While it is ex-

pected to increase on average over time, individual time steps may

have a decrease in performance if the added labels temporarily

make it more challenging for the model to distinguish classes. Sec-

ond, measured model performance is not guaranteed to increase

in a concave manner because the training set grows over time and

because the ALM may switch to active learning from random sam-

pling. Finally, the user does not initially have a labeled validation

set, but the ALM still must reliably estimate model performance.

To resolve the first challenge of noisy performance data, the

ALM performs smoothing on top of the measured values. The goal

is to capture the trends in performance but avoid any temporary

spikes or dips. The prototype uses exponential weighted moving

average (EWMA) smoothing, but other techniques are possible. The

prototype also waits 10 iterations before beginning feature selection

because model performance is particularly noisy in early iterations

when there are a small number of labels.

To resolve the second challenge of non-concave performance

increases, the ALM uses the proposed solution from the Rising Ban-

dits algorithm [28]. Recall that the algorithm computes the upper

bound using the slope to estimate the value after some number

of steps into the future. Rather than computing the upper bound

using a slope over the current and immediately previous timesteps

𝑡 and 𝑡−1, the ALM computes a smooth growth rate over a larger

window of size 𝐶: 𝑡 and 𝑡−𝐶 .
To resolve the final challenge of the lack of a validation set, the

ALM estimates the performance of features using cross-validation.

The ALM creates three train/test splits over the labels it has col-

lected so far and averages the performance across these splits.While

training and evaluating multiple models is more expensive than

evaluating a single model over a held out validation set, the ALM

only does this at the start of exploration when there are a small

number of labels until it picks the best feature (which usually re-

quires fewer than 150 labels in our experiments). Training linear

models with a small number of examples is fast, so the additional

overhead is limited. The prototype only evaluates k-fold validation

over classes with at least three labeled instances to ensure each

class is present in each training and test split.

While the original algorithm in [28] evaluates one arm at each

time step, our modified algorithm evaluates all candidate features

at each time step because the new labels provided by the user can

be used to update the model for all features.

3.2.5 Hyperparameter setting. The hyperparameters the ALM uses

for feature selection are: 𝐶 (slope smoothing window), 𝑇 (timestep

used to compute the upper bound), and 𝑤 (smoothing span for

EWMA; 𝛼=2/(𝑤+1)). As discussed in Section 5.3, the sensitivity of

𝐶 and 𝑤 is low; a range of values provide similarly good perfor-

mance. This agrees with the findings of [28] that the performance

of their algorithm is not sensitive to 𝐶 . Therefore, the ALM uses a

“moderate” amount of smoothing and sets𝑤=5 and 𝐶=5.

𝑇 is the time point at which the upper bound is computed. Larger

𝑇 values lead to higher upper bound estimates, therefore features

are eliminated more slowly. Using a larger 𝑇 value is more robust

against non-concave performance curves because when the slope is

small at early steps, the upper bound will still be high enough to not

eliminate the feature before its slope later increases. However, larger

𝑇 values require more compute power because a larger number of

features will be extracted and evaluated for more steps. Therefore,

our approach is to set 𝑇 to a small value (e.g., 𝑇≤50) in resource-

constrained settings. This may not lead to selection of the optimal

feature, but our evaluation shows that one of the best features is

still selected with high probability. In settings where resources

are not constrained, 𝑇 can be set to a larger value (e.g., 𝑇=100)

because there are sufficient resources to evaluate more features

for additional steps, and therefore allow the ALM more time to

attempt find the single best feature (though, using a larger𝑇 doesn’t

guarantee finding the best feature).

4 TASK SCHEDULER

The Task Scheduler is a priority scheduler that runs in the back-

ground and schedules VOCALExplore’s tasks on the available com-

pute resources. We consider a setting where there are limited re-

sources, so only a subset of submitted tasks can execute at once.

From Section 3.1, goal G2 states that VOCALExplore should ensure

interactivity and low latency in response to API calls. VOCALEx-

plore is intended to support data exploration, so it needs tominimize

any user-perceived latency because increased latency is known to

decrease user interaction [30]. Naive and lazy scheduling of VO-

CALExplore’s tasks results in substantial latency as we discuss in

this section (and show in Section 5). The goal of the Task Scheduler

is to optimize that latency without compromising the model quality

seen by the user whenever they make API calls.

The Task Scheduler achieves this by making non-critical tasks

asynchronous and performing just-in-time model training (Sec-

tion 4.1), and by eagerly performing feature extraction while the

user is occupied labeling (Section 4.2). These optimizations system-

atically target the principal sources of user-perceived latency.

Background. VOCALExplore has five types of tasks: feature ex-

traction (T𝑓), model training (T𝑚), model inference (T𝑖), feature

4193

Figure 2: Median task latency for early Explore steps. The

error bars show the interquartile range.

evaluation (T𝑒), and sample selection (T𝑠). Each Explore call cor-

responds to multiple tasks of multiple types: VOCALExplore must

first select a batch of video segments for labeling (this represents

one task T𝑠 per sample); extract features from the sampled segments

if not already available (one task T𝑓 per sampled video segment);

perform inference with the latest model (one task T𝑖 per sampled

video segment); collect the labels from the user; train a new model

(T𝑚); and evaluate feature quality for remaining features (one task

T𝑒 per feature; see Section 3.2). Additionally, if VOCALExplore

needs to sample video segments using active learning instead of

random sampling, it needs to sample more video segments than the

user-requested number and extract features from the extra samples

before selecting segments to return to the user for labeling, requir-

ing a larger number of T𝑓 tasks. T𝑓 and T𝑒 are the most expensive

tasks as shown in Figure 2, which illustrates the latency each task

contributes to a serial schedule when using random sampling. We

performed a sequence of Explore steps with 𝐵=5 and 𝑡=1 on the

Deer dataset (Table 1) and measured latency across steps 5-10.

Baseline. Let𝑇𝑠𝑒𝑟𝑖𝑎𝑙 be the API latency of a call to Explore with a

serial schedule, 𝑘 the number of features still under consideration,

and 𝐵 the number of video segments labeled each iteration. With

some abuse of notation, let’s consider each 𝑇𝑥 to represent not

just the type of task but also the time to execute one such task.

We then have: 𝑇 𝑟𝑎𝑛𝑑𝑜𝑚
𝑠𝑒𝑟𝑖𝑎𝑙

= 𝐵(𝑇𝑠 + 𝑇𝑓 + 𝑇𝑖) + 𝑇𝑚 + 𝑘𝑇𝑒 for random

sampling and 𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑠𝑒𝑟𝑖𝑎𝑙

= (𝐵 + 𝑋)𝑇𝑓 + 𝐵(𝑇𝑠 + 𝑇𝑖) + 𝑇𝑚 + 𝑘𝑇𝑒 when

using active learning, where 𝑋 is the number of extra samples that

the ALM uses for active learning (Section 3.1). There are still only

𝐵 𝑇𝑠 tasks because we only must select 𝐵 samples (e.g., in Coreset,

we perform 𝐵 max-distance calculations).

The Task Scheduler does not minimize 𝑇𝑠𝑒𝑟𝑖𝑎𝑙 directly. Rather,

we observe that the user spends a non-negligible amount of time,

𝐵𝑇𝑢𝑠𝑒𝑟 , labeling video segments after each call to Explore. The

Task Scheduler exploits that time to do useful work.

Problem statement. Let 𝑇𝑡𝑜𝑡𝑎𝑙 be the time needed for VOCAL-

Explore to return video segments to a user in response to a call to

Explore plus the time for the user to label the returned 𝐵 video

segments, so it represents the total time elapsed during a label-

ing session. The user returns labels 𝐿1, . . . , 𝐿𝐵 . Given a sequence

of calls to Explore, the goal of the Task Scheduler is to mini-

mize, at each iteration 𝑢, the user-perceived latency defined as:

𝑇𝑢
𝑣𝑖𝑠𝑖𝑏𝑙𝑒

= 𝑇𝑢
𝑡𝑜𝑡𝑎𝑙
−𝐵𝑇𝑢𝑠𝑒𝑟 , subject to maintaining good model qual-

ity. For the latter, given 𝑄𝑢
𝑠𝑒𝑟𝑖𝑎𝑙

the model quality (measured by

any metric; we use macro F1 score) seen by the user for a serial

schedule at iteration 𝑢, and 𝑄𝑢
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

the model quality with the

optimized schedule at the same iteration 𝑢, the Task Schedule seeks

to ensure that 𝑄𝑢
𝑠𝑒𝑟𝑖𝑎𝑙

−𝑄𝑢
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

< 𝜖 . In our system, we do not

start with a fixed 𝜖 but rather develop task scheduling approaches

that empirically yield a small 𝜖 value.

4.1 VE-partial strategy

Our first step towards an optimized strategy, VE-partial, uses

the insight that not all tasks are equally critical for providing a

response to API calls. Only selecting video segments,𝑇𝑠 , extracting

features from them if not already available, 𝑇𝑓 , and performing

model inference, 𝑇𝑖 , are required to return from Explore. VOCAL-

Explore hides model training latency by performing inference over

the most recent model that has already been trained. Similarly,

feature evaluation tasks do not block Explore; VOCALExplore up-

dates the set of candidate features in the background as 𝑇𝑒 tasks

complete. The VE-partial strategy makes model training (𝑇𝑚)

and feature evaluation (𝑇𝑒) asynchronous tasks, which reduces the

user-perceived API latency to 𝑇 𝑟𝑎𝑛𝑑𝑜𝑚
𝑉𝐸−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = 𝐵(𝑇𝑠 +𝑇𝑓 +𝑇𝑖), and

𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑉𝐸−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = (𝐵 + 𝑋)𝑇𝑓 + 𝐵(𝑇𝑠 +𝑇𝑖). The quality of predictions is

𝑄𝑢−𝛿
𝑉𝐸−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , where 𝛿 indicates how stale the model is.

The challenge the Task Scheduler addresses is to ensure that

𝑄𝑢−𝛿
𝑉𝐸−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 is close to the quality achieved with the serial schedule.

Using a model trained many iterations ago (𝛿≫0) will not suffice

because its quality is too low. Scheduling a new model training

task after each new label is also not desirable. While this approach

ensures that 𝛿≈0, it results in a factor of 𝐵 more model training

tasks, which causes congestion in the task queue. This approach

also wastes resources because many models will never be used;

when 𝑇𝑚 < (𝐵 − 1)𝑇𝑢𝑠𝑒𝑟 , multiple model training tasks will be

queued and finish during a single iteration, but the ALM will make

predictions using just the latest one.

The Task Scheduler addresses this challenge using “just-in-time”

model training to minimize 𝛿 while still avoiding user-visible la-

tency due to model training. The ALM tracks user labeling time

(𝑇𝑢𝑠𝑒𝑟) andmodel training latency (𝑇𝑚). The ALM schedules amodel

training task after receivingmax(0, 𝐵 − ⌈𝑇𝑚/𝑇𝑢𝑠𝑒𝑟 ⌉) labels because
this ensures the model will be ready for inference by iteration

𝑢+1. When 𝑇𝑚<𝑇𝑢𝑠𝑒𝑟 , the ALM schedules a training task while

the user labels the last example (i.e., after receiving 𝐿𝐵−1), so it

makes predictions using a model trained with all but one label. If

model training takes longer than an entire exploration iteration

(𝐵− ⌈𝑇𝑚/𝑇𝑢𝑠𝑒𝑟 ⌉ < 0), then the ALM schedules a model training task

while the user labels the first sample. This model will not be ready

for inference by 𝑢+1, but it will be ready by 𝑢+⌈𝑇𝑚/(𝐵𝑇𝑢𝑠𝑒𝑟)⌉.
TheVE-partial strategy reduces latency bymaking low-priority

tasks asynchronous, and it maximizes model quality by scheduling

“just in time” model training based on observed latencies.

4.2 VE-full strategy

The VE-partial strategy still has non-negligible latency due to

feature extraction. 𝑇𝑓≫𝑇𝑖 because feature extraction operates over

encoded videos, which requires expensive preprocessing, while

inference operates over already-extracted feature vectors.

This leads to the Task Scheduler’s second optimization: eager

feature extraction. Strategy VE-full eagerly schedules feature ex-

traction tasks (𝑇𝑓 −) for unlabeled videos whenever the task queue

is empty. These tasks have the lowest priority, so if any other task

is scheduled while𝑇𝑓 − is still queued, it will execute first.𝑇𝑓 − tasks

perform the same work as 𝑇𝑓 , just at a lower priority. Initially,

4194

Table 1: Datasets

Dataset # classes Skew Train videos Eval videos

Deer 9 Skewed 896 225

K20 20 Uniform 13326 976

K20 (skew) 20 Skewed 1050 976

Charades 33 Skewed 7985 1863

Bears 2 Uniform 2410 722

BDD 6 Skewed 800 200

there are no unlabeled video segments from 𝑉 with features ex-

tracted: 𝑆=∅. The ALM randomly samples a set 𝑠 of unlabeled video

segments and schedules feature extraction tasks for all current can-

didate features, which results in a total of 𝑘 ·𝑠 𝑇𝑓 − tasks. When these

tasks complete, 𝑆 ← 𝑆∪𝑠 . The prototype sets |𝑠 |=10 to amortize the

cost of setting up a feature extraction pipeline across multiple video

segments while still completing the task within a few seconds.

The VE-full strategy has user-visible latency𝑇𝑉𝐸−𝑓 𝑢𝑙𝑙 = 𝐵(𝑇𝑠 +
𝑇𝑖) for both random sampling and active learning because the ALM

uses 𝑆 for both to eliminate feature extraction latency 𝑇𝑓 .

Quickly converging to a single feature (Section 3.2) enables the

most efficient growth of 𝑆 because the number of 𝑇𝑓 − tasks is

proportional to the number of candidate features. Growing 𝑆 is

desirable because it enables better active learning performance

(shown in Section 5) and reduces prediction latency. It still is in the

spirit of “pay-as-you-go” because the extra processing only happens

while the user is interacting with the system.

5 EVALUATION

We perform an evaluation of VOCALExplore. First, we show that

compared to baselines, VOCALExplore achieves a high F1 score

with the lowest latency, even while automatically performing fea-

ture and acquisition function selection (Section 5.1). Second, we

demonstrate the effectiveness of the ALM’s acquisition function se-

lection process (Section 5.2). Then we demonstrate that the ALM’s

feature selection algorithm picks one of the best features within a

small number of steps (Section 5.3). Finally, we evaluate the effec-

tiveness of the Task Scheduler to show that it ensures low latency

without hurting the F1 score (Section 5.4).

Implementation details. The prototype is built using Python

3.8.10. The storage manager stores video metadata, labels, and

model metadata in DuckDB 0.5.1 [36]. It stores feature vectors

in Parquet files, and it uses PyTorch [35] to train models. It uses

the filesystem to store and retrieve encoded video files. Videos are

stored on hard drives, while all other data is stored on the local

SSD. The feature manager uses NVIDIA DALI [5] to accelerate

feature extraction when a GPU is available, otherwise it uses Py-

TorchVideo [16]. In the evaluation we perform feature extraction

on the GPU, and the model manager trains linear models.

Evaluation setup. We conduct all experiments on a compute clus-

ter. Whenmeasuring runtimes, we request one node with eight Intel

Xeon Gold 6230R CPUs@ 2.10GHz, 61GB of RAM, and one NVIDIA

A40 GPU. This setup was chosen to approximate the memory, CPU,

and GPU setup of a “p3.2xlarge” EC2 instance on AWS.

Datasets. We evaluate VOCALExplore on the datasets shown in

Table 1. First, we evaluate on the Deer dataset which contains 10-

second video clips captured from a camera attached to a collar on

Table 2: Features used by VOCALExplore.

Feature Type Architecture Pretrained

R3D [45] Video Conv. net Kinetics400

MViT [17] Video Transformer Kinetics400

CLIP [37] Image Transformer Internet images

CLIP (Pooled) [37] Image Transformer Internet images

Random Video Transformer None

a deer [15]. We use a subset of the full dataset that we manually

labeled, which covers one day for a single deer. These clips show

six activities that occasionally co-occur: bedded, chewing, foraging,

grooming, looking around, and traveling. The activities are highly

skewed towards the “bedded” activity. We create 5 train/eval splits

by ordering the video clips temporally and taking every fifth one

to be in the test set. Results are averaged across these splits.

We also evaluate on subsets of Kinetics700 [44], which is a stan-

dard video dataset comprising 700 human action classes. K20 con-

tains 10-second video clips showing activities from 20 classes taken

from the Kinetics700 dataset. We pick classes that do not appear

in Kinetics400 to avoid overestimating performance for features

that are extracted from models pretrained on Kinetics400. K20 is

not skewed, however we introduce skew to create K20 (skew). The

classes in the skewed dataset follow a Zipfian distribution with

𝑠=2. The most common activity has 650 videos and the least com-

mon activity has 3 videos. We create 10 training instances of K20

(skew) by permuting the classes. Results are averaged across these

10 instances. We use videos from the Kinetics validation set for

evaluation, which is not skewed (even for K20 (skew)).

Charades [43] consists of 30-second videos showing 157 distinct

activities. For our experiments, we simplify the task to identifying

which of the 33 verb categories appear in each video.

The Bears dataset consists of 5-second video clips captured

from 19 camera traps in Alaska, primarily at night. The task is to

determine whether or not each video clip contains a bear.

Finally, the BDD dataset [51] consists of 40-second video clips

captured from moving cars. We extracted object detections from 1

fps using a Faster R-CNN model [29], and the task is to determine

which objects (car, truck, person, bus, bicycle, and/or motorcycle)

the 1.5 seconds covered by each feature vector contains.

Feature extractors. We initialize VOCALExplore with five can-

didate feature extractors shown in Table 2. We pick these feature

extractors to cover image- and video-based models with a variety

of architectures. For all of the features with input type “video”, we

use a sequence length of 16 (number of frames fed into the model),

a stride of 2 (gap between frames in the sequence), and a step of

32 (gap between sequences). For the CLIP feature, we sample the

middle frame out of every 32 frames so the feature aligns with the

middle of the video feature windows. For the CLIP (Pooled) feature,

we apply the CLIP model to every other frame from a window of 32

frames and perform max-pooling over the frame-level features. All

of the features have 512 dimensions, except for MViT and Random

which have 768 dimensions. We include the Random feature (which

uses the same architecture as MViT but with randomized weights)

to show that VOCALExplore handles low-signal features correctly.

Metrics. We evaluate model performance using macro F1 score

because it is a standard evaluation metric. The F1 score is computed

4195

Figure 3: Average F1 and cumulative visible latency (shown

with a log-scale) after 100 Explore steps. Coreset-PP in-

cludes the preprocessing time to extract each feature, and

each point for Coreset-PP and Random represents a single

feature. VE-full provides nearly the best model quality with

the lowest visible latency.

over the held out evaluation set after training a model on the labels

collected so far at each step. We initialize VOCALExplore with the

entire vocabulary that exists in the evaluation set so that it trains

models that predict all evaluation classes, even when some classes

don’t have labels yet. We evaluate latency by measuring the wall

clock time taken for VOCALExplore’s API calls to return.

For the experiments below, we simulate a labeling task by creat-

ing an oracle “user” that labels video segments with their ground-

truth labels. Labeling proceeds in a sequence of steps where we add

five 1-second labels (which corresponds to Explore(𝐵=5, 𝑡=1)).

5.1 End-to-end performance

We first demonstrate that VOCALExplore achieves the best balance

between visible latency and F1, as shown in Figure 3 (note that

latency is shown with a log-scale). This experiment executes 100

calls to Explore as described above, and wemeasure the cumulative

visible latency. Random and Coreset-PP use the serial scheduler.

Random performs random sampling over the videos, and we in-

clude a point for each candidate feature. All of Random’s latency

comes from making predictions over the video clips returned from

Explore because its sampling latency is negligible. Coreset-PP

uses Coreset sampling to select videos, and we include a point for

each candidate feature. The cumulative latency includes the time it

takes to extract each feature from all of the videos as a preprocessing

step. VE-lazy performs acquisition function and feature selection

as described in Section 3, but without the scheduling optimizations

described in Section 4. VE-lazy incrementally extracts features

from 𝑋 additional videos if needed for active learning, as described

in Section 4. The graphs show a point for each of 𝑋∈[10, 50, 100].
VE-full includes all of the scheduling optimizations described in

Section 4. This experiment simulates the user taking 10 seconds

to label each video clip, which is time VE-full uses to perform

feature evaluation, train models, and eagerly extract features from

videos. VE-full does not specify 𝑋 ; when the ALM switches to

active learning it uses the features that have been eagerly extracted.

VE-full’s model performance matches or exceeds VE-lazy with

a fraction of the visible latency, and its performance is close to the

performance achieved by the best combination of acquisition func-

tion and feature. VE-full beats the model performance of VE-lazy

on K20 (skew) because VE-lazy performs Coreset over a small

sample of videos (𝑋∈[10, 50, 100]), while VE-full extracts features

from more videos in the background, and Coreset performs better

over this larger sample. On the uniform K20 dataset, VE-lazy has

more latency than Random because it performs feature evaluation.

We discuss why the model quality of VE-full is lower than the best

Random point for K20 in Section 5.3. While Coreset-PP has higher

visible latency than Random, the difference is less on Deer and

K20 (skew) than K20 for two main reasons. First, there are fewer

total videos, so there is a smaller difference between the number of

videos processed during the 100 Explore steps and the number of

videos processed during preprocessing. Second, there is overhead to

creating each DALI feature extraction pipeline, so preprocessing all

videos at once is more efficient because it can use a single pipeline.

The optimizations from Section 4 could be applied to Random

andCoreset-PP to reduce their latency, however that does not solve

the problem of how to pick the correct combination of acquisition

function and feature for an arbitrary dataset. As shown in Figure 3,

model quality differs significantly across combinations.

5.2 Acquisition function selection

We now focus on the effectiveness of the ALM’s acquisition func-

tion selection, as discussed in Section 3.1. We compare against

baselines of using a fixed function: either always performing Ran-

dom, Coreset [41], or Cluster-Margin [12] sampling. VE-sample

picks between Random and Coreset at each iteration as described

in Section 3.1, while VE-sample (CM) picks between Random and

Cluster-Margin. Freq. also picks between Random and Cluster-

Margin but uses the frequency-based test described in Section 3.1.

For this experiment, we show results only for the best feature (Fig-

ure 5). We evaluate with R3D for Deer,MViT for K20 (skew) and

Charades, and CLIP (Pooled) for K20, Bears, and BDD.

We measure performance by both the macro F1 score of the

model, as well as a diversity metric 𝑆𝑚𝑎𝑥 , which computes the

fraction of labels that come from the single most-seen activity

(see Section 3.1). A smaller 𝑆𝑚𝑎𝑥 indicates that the user sees more

diverse examples, which makes the labeling task more interesting.

First, Figure 4 shows that Cluster-Margin (and therefore VE-

sample (CM)) always perform at least as well as Coreset and VE-

sample. Therefore, we limit the rest of our discussion to Random,

Cluster-Margin, and VE-sample (CM).

Looking at the uniform datasets of K20 and Bears, we observe

that Random produces models with the same F1 score as Cluster-

Margin. Therefore, it is unnecessary to sample these datasets

with the more expensive active learning technique. Looking at the

skewed datasets, we observe that using active learning boosts the

F1 score above Random for K20 (skew). We also see improved (i.e.,

lower) 𝑆𝑚𝑎𝑥 metrics for the skewed datasets when using Cluster-

Margin. Therefore, it is useful to use active learning on skewed

data because it is possible the model performance will be improved,

and the user is likely to see a more diverse set of examples to label.

We observe that VE-sample (CM) matches the performance of the

best technique on each dataset by detecting whether the labels are

skewed and switching to active learning if appropriate.

Finally, we observe that using the frequency-based method for

determining whether a dataset is skewed leads to similar results

as the Anderson-Darling k-sample test, though it is slightly more

conservative and takes longer to switch to an active learning sam-

pling method. This can be modified by adjusting𝑚; we don’t show

4196

(a) Deer F1 (b) Deer 𝑆𝑚𝑎𝑥

(c) K20 F1 (d) K20 𝑆𝑚𝑎𝑥

(e) K20 (skew) F1 (f) K20 (skew) 𝑆𝑚𝑎𝑥

(g) Bears F1 (h) Bears 𝑆𝑚𝑎𝑥

(i) BDD F1 (j) BDD 𝑆𝑚𝑎𝑥

(k) Charades F1 (l) Charades 𝑆𝑚𝑎𝑥

Figure 4: VOCALExplore’s data sampling method yields mod-

els with the highest F1 scores and samples from a diverse set

of classes (𝑆𝑚𝑎𝑥 , lower is better) across datasets.

Table 3: Feature selection correctness.

Deer K20 K20 (skew) Bears BDD Charades

𝑇 = 20 1.00 1.00 0.98 0.97 0.50 0.87

𝑇 = 50 0.99 1.00 1.00 0.95 0.69 0.92

the results to avoid crowding the graphs, but using𝑚=1.5 leads to

curves that more closely match VE-sample (CM).

5.3 Feature selection

We now evaluate the effectiveness of the ALM’s feature selection

algorithm. We measure the correctness (i.e., how frequently do we

pick one of the best features) and the efficiency of the selection (i.e.,

how quickly do we pick a feature). We initialize VOCALExplore

with the five candidate feature extractors from Table 2.

We first evaluate the correctness of feature selection. To measure

the quality of each feature, in Figure 5, we compute the macro

(a) Deer (b) K20

(c) K20 (skew) (d) Bears

(e) BDD (f) Charades

Figure 5: Macro F1 score when using the VE-sample (CM)

sampling method, which shows that the best feature varies

across datasets. “Concat” refers to concatenating all of the

features into a single feature vector.

Figure 6: Median feature selection step when 𝐶=5 and 𝑤=5.

Error bars show the IQR.VOCALExplore converges to a single

feature within a reasonable number of steps.

F1 score for each feature across 100 labeling iterations (using VE-

sample (CM) to pick video segments). It includes Concat to show

that concatenating all of the potential features does not improve

performance over the best single feature. Based on these results,

we use the following rules when determining the correctness of

feature selection. For the Deer dataset, we consider selecting either

R3D or MViT to be a correct decision. For K20 and Bears, we

consider any of MViT, CLIP, or CLIP (Pooled) to be a correct

decision. For K20 (skew) and Charades we consider only MViT

to be correct. For BDD we consider CLIP or CLIP (Pooled) to be

correct. In this experiment we use𝐶=5,𝑤=5. We discuss sensitivity

to hyperparameter values at the end of this section.

Table 3 shows that the ALM picks a correct feature at least 92%

of the time (excluding BDD) when the time horizon is long enough

(𝑇=50). When the algorithm picks incorrectly, it primarily picks the

next-best feature (e.g., one of the CLIP features for Deer or K20

(skew)). The algorithm selects incorrect features for BDD some of

the time because all features perform similarly until later iterations

when CLIP and CLIP (Pooled) start to perform better. Therefore,

despite the correctness measure being low, the F1 score achieved

is close to the best as shown in Figure 7e. The algorithm struggles

with Charades due to the noise introduced by evaluating with

k-fold over the large number of classes; correctness is ≥95% when

evaluatingwith the full test set as described at the end of this section.

4197

(a) Deer (b) K20

(c) K20 (skew) (d) Bears

(e) BDD (f) Charades

Figure 7: Macro F1 score when performing feature selection

compared to the empirically best- andworst-performing sam-

pling methods and features (excluding the Random feature).

We also compare against VE-sample and VE-sample (CM)

sampling methods on the best feature. VOCALExplore ini-

tially has poor F1 performance as it explores suboptimal

features but catches up to the best strategies within 30 steps.

The shaded region shows the IQR.

The performance over Charades with k-fold can be improved to

98% correct by using stronger smoothing (𝑤=7,𝐶=7).

Figure 6 shows that the ALM picks a single feature within a

small number of iterations. Convergence is faster when 𝑇=20 than

𝑇=50 because the upper bounds on the expected performance have

lower values, so features are eliminated more quickly. Even at𝑇=50,

features are selected within about 30 steps. We use𝑇=50 in the rest

of the experiments.

We also evaluate the model quality as the ALM performs feature

selection (VE-select). Figure 7 shows that while VOCALExplore

initially has sub-optimal quality as it explores features, it catches

up to the best-performing strategies within approximately 30 steps.

We compare against Best and Worst, which correspond to the

empirically best- and worst-performing combinations of sampling

methods and features (excluding the Random feature) to show

the range of expected values. We also compare against VE-sample

and VE-sample (CM) on the best feature (VE-sample-Best and

VE-sample (CM)-Best, respectively). We observe that initially VE-

select’s performance is close to the worst strategy because it has

poor-performing features as candidates which produce models with

low F1 scores. The VE-select curve exhibits an “S” shape, where

once it converges to a single feature, performance catches up to

the best strategies. While K20 does not converge to a single feature

until 30 steps, the model quality improves before then because bad

features are eliminated early. K20’s final model quality is slightly

lower than the best because it picks MViT 98% of the time, and

MViT has the highest quality when there are few labels but not

when there are a larger number of labels (as shown in Figure 5b).

Because we use a small 𝑇 value to encourage quick convergence to

(a) Deer

(b) K20

(c) K20 (skew)

Figure 8: Model quality and latency for VE-variants. VE-full

matches the best model performance of VE-lazy with less

cumulative visible latency (shown with a log-scale).

one feature, the ALM’s feature selection algorithm is biased towards

features that perform well in early iterations.

Finally, we evaluate the sensitivity of the hyperparameters. We

perform this analysis when measuring quality using the evaluation

set rather than performing 3-fold validation over the labeled set

in order to evaluate the behavior of feature selection under more

ideal settings. We find that the quality is ≥95% for all datasets

except BDD across a reasonable range of hyperparameter values

(𝑤 ∈ [3, 5, 7],𝐶 ∈ [5, 7],𝑇 ∈ [20, 50]). BDD’s selection correctness

ranges from 0.68 to 0.88 for all settings. The evaluation set gives a

more reliable estimate of feature quality, so the correct feature is

picked even with less smoothing and a shorter time horizon.

5.4 Task scheduler

Finally, we evaluate the effectiveness of the optimizations described

in Section 4 and show they enable VOCALExplore to match or

exceed the model quality of VE-lazy but at a fraction of the visible

latency. Figure 8 showsmodel quality and cumulative visible latency

across 100 Explore steps (note that latency is shown with a log-

scale). As in Section 5.1, we assume the user takes 10 seconds to

watch and label each video clip. The VE-lazy variants perform

feature and acquisition function selection as described in Section 3,

but without the optimizations from Section 4.VE-lazy (PP) includes

the preprocessing time to extract all candidate features from all

videos, which is necessary because the ALM does not initially know

the best feature. VE-lazy (X) variants perform incremental feature

extraction as needed when the ALM switches to Coreset sampling.

𝑋 indicates the number of unlabeled videos that have features

4198

extracted to serve as the candidates for Coreset. Larger 𝑋 values

have higher F1 onK20 (skew), and to a lesser extent onDeer, but the

additional feature extraction tasks increase visible latency. Finally,

VE-full, which uses all of the optimizations described in Section 4

matches or exceeds the F1 score achieved by the lazy variants but at

much smaller visible latency (∼1 second/step). VE-full exceeds the
performance of the incremental variants on K20 (skew) because

it extracts features from more videos in the background than the

values of 𝑋 we evaluated, so Coreset sampling performs better.

6 RELATEDWORK

Video querying systems. Current video querying systems such

as EVA [49], VIVA [38], and others [6, 10, 11, 24, 31] focus on

efficient execution of queries over the outputs of pretrained models.

Panorama [54] supports queries over novel labels using embedding

similarity, but it focuses on recognition and verification rather than

exploration and domain-specific model building.

Cloud vendor offerings. The large cloud computing vendors

offer video analysis services [1, 2, 4] that automatically index videos

with common objects, scenes, or activities. However, they do not

support users in finding examples to label to train custom models.

Data exploration. Current video browsing systems [21, 39] are

optimized for known-item search rather than exploration. Lancet [52]

combines active learning and semi-supervised learning. While VO-

CALExplore uses pretrained models to extract embeddings for unla-

beled data, Lancet jointly learns an embedding model and classifier.

This is expensive because embeddings must be updated when the

model is retrained. VQL [47] enables video exploration using the

outputs of pretrained models, however it assumes the model is from

the same domain as the target exploration. Forager [3] enables effi-

cient exploration and domain-specific model training over images

or individual video frames rather than video clips.

Zero-shot ML and unsupervised learning. Image-language

models capable of zero-shot inference over images and text have

recently proliferated, such as CLIP [37]. However, as we show in

Section 5.3, embeddings from video models outperform CLIP on

datasets where the labels cannot be determined by looking at a

single frame, such as deer activity classification. Thus far there

has been limited work to develop video-language models. Video-

CLIP [48] is capable of zero-shot inference over videos, however it

performs poorly on the datasets we evaluate on, achieving a macro

F1 score of 0.04 for Deer and 0.33 for K20. Given the low zero-shot

accuracy of current video-language models, it is necessary to imple-

ment domain-specific models. VOCALExplore could be extended

to incorporate unsupervised learning to leverage the entire dataset,

however current techniques for videos [19] require training a large

model and repeatedly extracting updated feature representations

from videos, which is too slow for our goal of an interactive system.

AutoML. VOCALExplore shares similarities with AutoML sys-

tems [20] as it supports training models by automatically selecting

a feature extractor and sampling data. VOCALExplore, however,

does not attempt to maximize model quality via techniques that

traditionally fall under the umbrella of AutoML such as feature

engineering [26, 46, 50], data augmentation [53], hyperparame-

ter optimization [23], or model selection [27]. Instead, it rapidly

produces an initial model with minimal user-perceived latency.

7 LIMITATIONS

VOCALExplore currently does not try to detect inconsistent labels

that could arise from differences between users. However, we ob-

serve that even when randomly changing up to 20% of the labels,

VOCALExplore achieves an F1 score similar to when all labels are

correct. We include these results in our technical report [14]. This

indicates that our techniques are robust to reasonable amounts of

noise and still pick good feature representations.

While VOCALExplore is designed for activity classification tasks,

it could be extended to support additional tasks like object detection.

To do so, it would have to solve two ML tasks: region proposal and

region classification. To obtain region proposals, VOCALExplore

would have to decide between using a pretrained model vs. training

its own with supervised data. Pretrained region proposal models

will not work well if the objects in the video frames exhibit different

“objectness” properties from what the model was trained on (e.g.,

objects in histopathology images have different properties than

objects in wildlife images). Therefore, VOCALExplore would need

to detect when regions proposed by a pretrained model are not of

sufficient quality and in these case train a domain-specific region

proposal model in addition to a domain-specific classificationmodel.

Once VOCALExplore can identify regions in frames that likely

contain objects, then it becomes a classification task again. Instead

of extracting features from entire frames, VOCALExplore would

extract features from just the regions of interest.

While adding additional feature extractors would not be required,

it may be beneficial to add models pretrained on object detection.

The task scheduler would not need to be tuned because it dynami-

cally schedules tasks based on observed latencies. Model training

and user labeling latencies will likely change, but the TS will adapt

by scheduling tasks more- or less-eagerly.

8 CONCLUSION

This paper presents VOCALExplore, a system that supports building

domain-specific models over videos. VOCALExplore automatically

determines how to select samples to be labeled and picks the best

feature extractor for a given dataset. It implements optimizations

to enable low-latency API calls while maintaining model quality.

ACKNOWLEDGMENTS

This work was supported in part by the NSF through awards CCF-

1703051 and IIS-2211133 as well as a grant from CISCO. Thank

you to A. Craig and A.J. Wirsing for providing the deer video

data. Deer video data collection was carried out with permission,

guidance, and logistical support from the Colville Tribes Fish and

Wildlife Department, with special thanks to E. Krausz and R. Whit-

ney, and under National Science Foundation grants DEB1145902

to A.J. Wirsing and DEB1145522 to M.R. Heithaus as well as UW

IACUC Protocol #4226-01. Additional funding was provided by the

Safari Club International Foundation, Conservation Northwest, the

Washington Department of Fish and Wildlife (Aquatic Lands En-

hancement Account (ALEA)), and the University of Washington

Student Technology Fee (STF) program.

4199

REFERENCES

[1] 2022. Amazon Rekognition. https://aws.amazon.com/rekognition/.

[2] 2022. Azure Video Indexer. https://learn.microsoft.com/en-us/azure/azure-video-

indexer/video-indexer-overview.

[3] 2022. Forager: Rapid Data Exploration and Model Development. https://cs.

stanford.edu/~fpoms/.

[4] 2022. Google Cloud Video Intelligence API. https://cloud.google.com/video-

intelligence.

[5] 2023. NVIDIA DALI. https://developer.nvidia.com/dali.

[6] Michael R. Anderson, Michael J. Cafarella, Germán Ros, and Thomas F. Wenisch.

2019. Physical Representation-Based Predicate Optimization for a Visual Analyt-

ics Database. In IEEE. IEEE, 1466–1477.
[7] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-

hammad Alizadeh, Hari Balakrishnan, Michael J. Cafarella, Tim Kraska, and

Sam Madden. 2020. MIRIS: Fast Object Track Queries in Video. In SIGMOD.
1907–1921.

[8] Sara Beery, Guanhang Wu, Vivek Rathod, Ronny Votel, and Jonathan Huang.

2020. Context R-CNN: Long Term Temporal Context for Per-Camera Object

Detection. In CVPR. Computer Vision Foundation / IEEE, 13072–13082.

[9] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[10] Jiashen Cao, Karan Sarkar, Ramyad Hadidi, Joy Arulraj, and Hyesoon Kim. 2022.

FiGO: Fine-Grained Query Optimization in Video Analytics. In SIGMOD, Zachary
Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 559–572.

[11] Yueting Chen, Xiaohui Yu, and Nick Koudas. 2022. Ranked Window Query

Retrieval over Video Repositories. In ICDE. IEEE, 2776–2791.
[12] Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Ra-

jagopalan, Afshin Rostamizadeh, and Sanjiv Kumar. 2021. Batch Active Learning

at Scale. In NeurIPS. 11933–11944.
[13] MaureenDaum, Enhao Zhang, DongHe,Magdalena Balazinska, BrandonHaynes,

Ranjay Krishna, Apryle Craig, and Aaron Wirsing. 2022. VOCAL: Video Organi-

zation and Interactive Compositional AnaLytics. In CIDR.
[14] Maureen Daum, Enhao Zhang, Dong He, Stephen Mussmann, Brandon Haynes,

Ranjay Krishna, and Magdalena Balazinska. 2023. VOCALExplore: Pay-as-You-

Go Video Data Exploration and Model Building. CoRR abs/2303.04068 (2023).

[15] Justin Dellinger, Carolyn Shores, Apryle Craig, Shannon Kachel, Michael Hei-

thaus, William Ripple, and Aaron Wirsing. 2021. Predators reduce niche overlap

between sympatric prey. Oikos (12 2021). https://doi.org/10.1111/oik.08628

[16] Haoqi Fan, Tullie Murrell, Heng Wang, Kalyan Vasudev Alwala, Yanghao Li,

Yilei Li, Bo Xiong, Nikhila Ravi, Meng Li, Haichuan Yang, Jitendra Malik, Ross

Girshick, Matt Feiszli, Aaron Adcock, Wan-Yen Lo, and Christoph Feichtenhofer.

2021. PyTorchVideo: A Deep Learning Library for Video Understanding. In

Proceedings of the 29th ACM International Conference on Multimedia. https:

//pytorchvideo.org/.

[17] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra

Malik, and Christoph Feichtenhofer. 2021. Multiscale Vision Transformers. In

ICCV. IEEE, 6804–6815.
[18] Li Fei-Fei and Ranjay Krishna. 2022. Searching for computer vision north stars.

Daedalus 151, 2 (2022), 85–99.
[19] Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross B. Girshick, and Kaiming

He. 2021. A Large-Scale Study on Unsupervised Spatiotemporal Representation

Learning. In CVPR. Computer Vision Foundation / IEEE, 3299–3309.

[20] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the

state-of-the-art. Knowl. Based Syst. 212 (2021), 106622.
[21] Silvan Heller, Mahnaz Parian, Maurizio Pasquinelli, and Heiko Schuldt. 2020.

Vitrivr-Explore: Guided Multimedia Collection Exploration for Ad-hoc Video

Search. In SISAP (Lecture Notes in Computer Science), Vol. 12440. Springer, 379–
386.

[22] Silvan Heller, Loris Sauter, Heiko Schuldt, and Luca Rossetto. 2020. Multi-Stage

Queries and Temporal Scoring in Vitrivr. In ICME. IEEE, 1–5.
[23] Kevin G. Jamieson and Ameet Talwalkar. 2016. Non-stochastic Best Arm Identi-

fication and Hyperparameter Optimization. In AISTATS (JMLR), Arthur Gretton
and Christian C. Robert (Eds.), Vol. 51. 240–248.

[24] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declara-

tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.

PVLDB 13, 4 (2019), 533–546.

[25] Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei, and Christopher D. Manning.

2021. Mind Your Outliers! Investigating the Negative Impact of Outliers on Active

Learning for Visual Question Answering. In Annual Meeting of the Association
for Computational Linguistics.

[26] Ambika Kaul, SaketMaheshwary, and Vikram Pudi. 2017. AutoLearn - Automated

Feature Generation and Selection. In ICDM. IEEE Computer Society, 217–226.

[27] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-

Brown. 2017. Auto-WEKA 2.0: Automatic model selection and hyperparameter

optimization in WEKA. JMLR 18 (2017), 25:1–25:5.

[28] Yang Li, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. 2020.

Efficient Automatic CASH via Rising Bandits. In AAAI. AAAI Press, 4763–4771.

[29] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollár, Kaiming He, and Ross B.

Girshick. 2021. Benchmarking Detection Transfer Learning with Vision Trans-

formers. CoRR abs/2111.11429 (2021).

[30] Zhicheng Liu and Jeffrey Heer. 2014. The Effects of Interactive Latency on

Exploratory Visual Analysis. IEEE Trans. Vis. Comput. Graph. 20, 12 (2014),

2122–2131.

[31] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.

Accelerating Machine Learning Inference with Probabilistic Predicates. In SIG-
MOD, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.).

ACM, 1493–1508.

[32] TorchVision maintainers and contributors. 2016. TorchVision: PyTorch’s Computer
Vision library. https://github.com/pytorch/vision

[33] Oscar R. Moll, Favyen Bastani, Sam Madden, Mike Stonebraker, Vijay Gadepally,

and Tim Kraska. 2022. ExSample: Efficient Searches on Video Repositories

through Adaptive Sampling. In ICDE. IEEE, 2956–2968.
[34] Albert Orriols-Puig and Ester Bernadó-Mansilla. 2009. Evolutionary rule-based

systems for imbalanced data sets. Soft Comput. 13, 3 (2009), 213–225.
[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett

(Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[36] Mark Raasveldt and Hannes Muehleisen. [n.d.]. DuckDB. https://github.com/

duckdb/duckdb

[37] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models

From Natural Language Supervision. In ICML, Vol. 139. PMLR, 8748–8763.

[38] Francisco Romero, Johann Hauswald, Aditi Partap, Daniel Kang, Matei Zaharia,

and Christos Kozyrakis. 2022. Optimizing Video Analytics with Declarative

Model Relationships. PVLDB 16, 3 (2022), 447–460.

[39] Luca Rossetto, Ivan Giangreco, and Heiko Schuldt. 2014. Cineast: A Multi-feature

Sketch-Based Video Retrieval Engine. In ISM. IEEE, 18–23.

[40] Fritz W Scholz and Michael A Stephens. 1987. K-sample Anderson–Darling tests.

J. Amer. Statist. Assoc. 82, 399 (1987), 918–924.
[41] Ozan Sener and Silvio Savarese. 2018. Active Learning for Convolutional Neural

Networks: A Core-Set Approach. In ICLR.
[42] Burr Settles. 2009. Active Learning Literature Survey.

[43] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and

Abhinav Gupta. 2016. Hollywood in Homes: Crowdsourcing Data Collection for

Activity Understanding. In ECCV (Lecture Notes in Computer Science), Vol. 9905.
Springer, 510–526.

[44] Lucas Smaira, João Carreira, Eric Noland, Ellen Clancy, Amy Wu, and Andrew

Zisserman. 2020. A Short Note on the Kinetics-700-2020 Human Action Dataset.

CoRR abs/2010.10864 (2020).

[45] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar

Paluri. 2018. A Closer Look at Spatiotemporal Convolutions for Action Recogni-

tion. In CVPR. IEEE, 6450–6459.
[46] Jonathan Waring, Charlotta Lindvall, and Renato Umeton. 2020. Automated

machine learning: Review of the state-of-the-art and opportunities for healthcare.

Artif. Intell. Medicine 104 (2020), 101822.
[47] YifanWu, StevenMark Drucker, Matthai Philipose, and Lenin Ravindranath. 2018.

Querying Videos Using DNN Generated Labels. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics, HILDA@SIGMOD, Carsten Binnig, Juliana

Freire, and Eugene Wu (Eds.). ACM, 6:1–6:6.

[48] Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan,

Florian Metze, Luke Zettlemoyer, and Christoph Feichtenhofer. 2021. VideoCLIP:

Contrastive Pre-training for Zero-shot Video-Text Understanding. In EMNLP.
6787–6800.

[49] Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore Ramachan-

dran. 2022. EVA: A Symbolic Approach to Accelerating Exploratory Video

Analytics with Materialized Views. In SIGMOD. ACM, 602–616.

[50] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li,

Wei-Wei Tu, Qiang Yang, and Yang Yu. 2018. Taking human out of learning

applications: A survey on automated machine learning. arXiv:1810.13306 (2018).
[51] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen

Liu, Vashisht Madhavan, and Trevor Darrell. 2020. BDD100K: A Diverse Driv-

ing Dataset for Heterogeneous Multitask Learning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[52] Huayi Zhang, Lei Cao, Samuel Madden, and Elke A. Rundensteiner. 2021.

LANCET: Labeling Complex Data at Scale. PVLDB 14, 11 (2021), 2154–2166.

[53] Weihang Zhang, Yuma Kinoshita, and Hitoshi Kiya. 2020. Image-Enhancement-

Based Data Augmentation for Improving Deep Learning in Image Classification

Problem. In ICCE-TW. IEEE, 1–2.

4200

https://aws.amazon.com/rekognition/
https://learn.microsoft.com/en-us/azure/azure-video-indexer/video-indexer-overview
https://learn.microsoft.com/en-us/azure/azure-video-indexer/video-indexer-overview
https://cs.stanford.edu/~fpoms/
https://cs.stanford.edu/~fpoms/
https://cloud.google.com/video-intelligence
https://cloud.google.com/video-intelligence
https://developer.nvidia.com/dali
https://doi.org/10.1111/oik.08628
https://pytorchvideo.org/
https://pytorchvideo.org/
https://github.com/pytorch/vision
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/duckdb/duckdb
https://github.com/duckdb/duckdb

[54] Yuhao Zhang and Arun Kumar. 2019. Panorama: A Data System for Unbounded

Vocabulary Querying over Video. PVLDB 13, 4 (2019), 477–491.

4201

	Abstract
	1 Introduction
	2 System Overview
	2.1 Motivating example
	2.2 API and user workflow
	2.3 System architecture

	3 Active Learning Manager
	3.1 Acquisition function selection
	3.2 Feature extractor selection

	4 Task Scheduler
	4.1 VE-partial strategy
	4.2 VE-full strategy

	5 Evaluation
	5.1 End-to-end performance
	5.2 Acquisition function selection
	5.3 Feature selection
	5.4 Task scheduler

	6 Related work
	7 Limitations
	8 Conclusion
	Acknowledgments
	References

