
AMNES: Accelerating the computation of data correlation using FPGAs
Monica Chiosa

Systems Group, Dept. of Computer Science, ETH Zurich
monica.chiosa@inf.ethz.ch

Thomas B. Preußer
AMD Research and Advanced Development

thomas.preusser@amd.com

Michaela Blott
AMD Research and Advanced Development

michaela.blott@amd.com

Gustavo Alonso
Systems Group, Dept. of Computer Science, ETH Zurich

alonso@inf.ethz.ch

ABSTRACT
Awidely used approach to characterize input data in both databases
and ML is computing the correlation between attributes. The oper-
ation is supported by all major database engines and ML platforms.
However, it is an expensive operation as the number of attributes
involved grows. To address the issue, in this paper we introduce
AMNES, a stream analytics system offloading the correlation oper-
ator into an FPGA-based network interface card. AMNES processes
data at network line rate and the design can be used in combina-
tion with smart storage or SmartNICs to implement near data or
in-network data processing. AMNES design goes beyond matrix
multiplication and offers a customized solution for correlation com-
putation bypassing the CPU. Our experiments show that AMNES
can sustain streams arriving at 100 Gbps over an RDMA network,
while requiring only ten milliseconds to compute the correlation
coefficients among 64 streams, an order of magnitude better than
competing CPU or GPU designs.

PVLDB Reference Format:
Monica Chiosa, Thomas B. Preußer, Michaela Blott, and Gustavo Alonso.
AMNES: Accelerating the computation of data correlation using FPGAs.
PVLDB, 16(13): 4174 - 4187, 2023.
doi:10.14778/3625054.3625056

PVLDB Artifact Availability:
Source code available at https://github.com/fpgasystems/amnes.

1 INTRODUCTION
Correlation is a term frequently used in machine learning [27], data
mining [16], databases [35, 51], business analysis [52], and statis-
tics [70] to interchangeably represent different types of relations
(linear or non-linear), mutual dependencies, or causality, with the
ultimate goal of summarizing large amounts of data by observing
patterns between variables [8]. Correlation is important for data
processing and data management systems [11, 35, 66] and usually
finds its place in exploration, data cleaning, or data pre-processing
stages, all constituting a significant effort for a data scientist [45].
For example, knowing the correlation among data can affect the
scheduling decision of whether to offload the computation to a Gen-
eral Purpose GPU (GPGPU) or another accelerator that involves

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.
doi:10.14778/3625054.3625056

data movement [9]. Similarly, correlated data affects the error of
the selectivity estimators used by query optimizers [19], i.e., highly
correlated data leading to higher errors [28]. In machine learning,
knowing which features or dimensions are correlated serves in both
dimensionality reduction, by pointing at data that can be removed
as it does not provide additional information [81], and correlation
clustering since the correlation between data is a useful input to
clustering algorithms [40]. Finally, correlation computation can be
utilized by vector databases to find data vector similarity [57], or
in data privacy applications to detect when too much public data
leads to information leakage [84].

Finding the correlation between data sets (columns in a relational
table, two data streams, or dimensions in a set of vector data) is
typically an expensive operation. On the one hand, its computation
typically involves calculating several statistics over each data set
that feed into computing the correlation coefficient. This requires a
full pass over the data. On the other hand, in most cases, the corre-
lation has to be calculated across many data sets (e.g., wide tables
in databases, or high-dimensional vectors in ML applications). As a
reference, the widely used NumPy and Pandas Python libraries can
take up to 100ms to compute the correlation between just 16 vari-
ables with 200’000 elements each. Later in the paper, we show how
to compute the correlation for 64 streams and 2million elements per
variable in about 10ms, i.e., an order of magnitude less than these
established libraries. In databases, due to the cost of computing cor-
relation, it is often approximated, especially when used to optimize
the creation of indexes, as data correlations can significantly affect
their performance, particularly for clustered indexes [17, 39]. One
common approximation is to compare the number of distinct values
across attributes [39]. However, this measure is far less precise than
statistical correlation measures.

Relational engines such as Postgres, Oracle,MySQL, or Snowflake
and vector databases (Milvus) compute correlation between pairs
of attributes via either an intrinsic operator (Postgres, Oracle DB,
Snowflake, BigTable) or by combining data statistics (MySQL). For
more than two attributes, a manual query with the explicit pairs of
attributes has to be written. As the amount of data to be processed
grows, there is a need to understand how to efficiently correlate
many attributes in parallel and whether the computation can be
offloaded to an accelerator, e.g., without CPU involvement. In this
paper we explore this question by looking at how computing the
statistical correlation can be accelerated using an FPGA acting on
streams of data arriving from or being sent to the network.

The reason to explore such a design is based on the fact that stor-
age is nowadays often disaggregated with data processing involving
first reading the data from object storage and bringing it into the

4174

https://doi.org/10.14778/3625054.3625056
https://github.com/fpgasystems/amnes
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3625054.3625056
https://www.acm.org/publications/policies/artifact-review-and-badging-current

computing node. This opens up the possibility to offload computa-
tion to accelerators either on the storage nodes or on the network
path. Examples of such systems include: (1) Amazon AQUA, which
employs FPGAs together with SSDs to offload SQL operators (se-
lection, projection, LIKE predicates, etc.) to a network-attached
caching layer [7]; (2) Microsoft’s Catapult, which has an FPGA
along the network data path to accelerate a wide range of use cases
from key-value stores [47], network function virtualization [22],
search engines [53], to AI/ML applications [49]; and (3) Oracle Ex-
adata, a database engine with smart disaggregated storage where
data is kept in row format for online transaction processing (OLTP),
but is transformed on the fly into column-based as data is moved
from storage to in-memory to accommodate fast online analytical
processing (OLAP). In all these cases, our design enables offloading
the correlation operator to the accelerator or to the storage.

These are the scenarios targeted by AMNES although, as we
show in the paper, it can also be used in the conventional accelera-
tion model with data residing in the CPU’s memory. The benefit of
having the correlation assessed while data is moving through the
network, be it from one compute node to another or from storage
to a compute node, is that correlation becomes meta-data that can
be used by the subsequent processing tasks (e.g., machine learn-
ing pipelines, scheduling algorithms, or analytical jobs), once all
the transferred data has reached its destination. Since most of the
data to be processed in cloud-based systems has to travel through
the network, enhancing network cards with complex computation
capabilities reduces data movement, eliminates the need for inter-
mediate storage, and eventually reduces energy consumption.

To show the potential of these ideas, we have developed AMNES,
an open source [75] FPGA-based accelerator that computes the
Pearson correlation coefficient (PCC) among data streams. AMNES
can operate on data residing in host memory (i.e., as a conventional
accelerator due to its low-latency) or on data streams arriving
from the network. While the actual network transport protocol
used is not relevant for the computation, in our prototype, we
have focused on RDMA networks due to their higher throughout
challenges and significantly lower data access latency than TCP/IP.
AMNES operates specifically on the Converged Ethernet (RoCEv2)
protocol, which is already deployed by many cloud providers such
as Alibaba Cloud [24], Microsoft Azure [26], with 70% of Azure
traffic being RDMA-based [54], and Oracle Exadata [59]. RDMA has
also made its way into database design, with increasing systems
and prototypes demonstrating its advantages [55, 82].

Finally, we note that we focus on Pearson’s correlation as it
is the most widely used. Kendall and Spearman correlations can
be easily computed using a simplified variation of our design to
process sorted data (as these two correlation operators required
the data to be sorted). AMNES’s modular architecture allows to
use only part of the design (e.g., the ACC Engine), to derive a
variety of useful statistics such as correlation coefficients, cosine
similarity and cosine distance, standard deviation, as well as slope
and intercept of linear regression lines over the data. These are
all standard operators in relational engines these days and can be
supported by our design with minimal changes.

Through AMNES design we make the following contributions:
(1) the description of an FPGA-based accelerator computing Pearson

correlation coefficients for parallel data streams; (2) the demonstra-
tion of the concurrent computation of the correlation among up to
64 data streams and the analytical study of the capacity of the de-
sign, which is as high as several thousand concurrent data streams,
well beyond the I/O capabilities of modern devices or networks;
(3) the demonstration of the ability to embed the accelerator on an
RDMA-capable SmartNIC; and (4) the evaluation of the design prov-
ing that it offers several orders of magnitude performance gains in
both throughput and latency over CPU and GPU-based approaches.

2 BACKGROUND
In this section, we formally define the correlation between two
streams and introduce the FPGA. Furthermore, we explain the
statistical and mathematical background underlying the Pearson
correlation coefficient and present our motivation behind using
RDMA (Remote Direct Memory Access) at networking level.

2.1 The Correlation Coefficients
Correlation can be measured using different types of coefficients,
e.g., Pearson, Kendall, Spearman, or Point-Biserial. The latter em-
ploys the same formula as the Pearson correlation coefficient (PCC),
with one variable being binary. The Pearson correlation coefficient
is the normalized version of covariance [16]. In contrast to Pear-
son, which measures linear association, Kendall and Spearman
coefficients are non-parametric tests (e.g., do not depend on the un-
derlying data distribution) and measure an ordinal association [71]
between ranked data. These two coefficients assume ordered stream
values and are mainly used to assess a non-linear association [20].
Database engines often include several measures of correlation as
part of their statistical functions (e.g., Oracle includes support for
Pearson, Kendall, and Spearman correlation coefficients).

In this paper, we focus on the Pearson correlation coefficient,
which measures the strength of the linear association between two
data streams by taking into account the amount of variation present
in each stream and how the streams vary together. The coefficient is
a dimensionless quantity within the range [−1, +1]. Unlike covari-
ance, which can take infinite values, this well-confined range allows
for a straightforward assessment. A Pearson correlation coefficient
(𝜌) of value 0 indicates that no linear relationship exists between
two data streams, i.e., they are independent. A perfect linear rela-
tionship is indicated by a coefficient of magnitude 1. A negative sign
indicates that the increase in the values of one stream associates
with a decrease in the values of the other stream. A positive sign, on
the contrary, indicates that the increase in the values of one stream
associates with the increase in the values of the other. The stronger
the correlation, the closer the correlation coefficient gets to ±1. If
we consider |𝜌 |, the absolute value of the PCC, the strength of the
linear relationship can be assessed as follows: (1) weak correlation
for |𝜌 | ∈ [0.1, 0.3); (2) medium correlation for |𝜌 | ∈ [0.3, 0.5);
and (3) strong correlation for |𝜌 | ∈ [0.5, 1] [6, 72]. Nevertheless,
the relationship strength does not imply any causal relationship
between the two given streams [1].

The PCC is the most widely used among the correlation coeffi-
cients presented above [71]. Intuitively, if a line is drawn as a best
fit through the data points of two streams, the PCC indicates the

4175

amount of variation that exists around this line of best fit. Nev-
ertheless, PCC does not represent the slope of the line of best fit.
Its value in [−1, +1] indicates the variation around this line, with
values closer to 0 indicating a large variation.

Mathematically, the PCC (𝜌) for a bound population (e.g., max-
imum number of items for two analyzed streams is 𝑁) is shown
in Equation 1, where E is the expectation, 𝜇 and 𝜎 are the mean
and the standard deviation of each data stream. Developed further,
Equation 1 describes PCC as the centered and standardized sum of
the cross-product of two data streams [63].

𝜌𝑋𝑌 =
E[(𝑋 − 𝜇𝑋) (𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌

=

∑︁𝑁−1
𝑡=0 (𝑥𝑡 − 𝜇𝑋) (𝑦𝑡 − 𝜇𝑌)√︂∑︁𝑁−1

𝑡=0 (𝑥𝑡 − 𝜇𝑋)2
√︂∑︁𝑁−1

𝑡=0 (𝑦𝑡 − 𝜇𝑌)2

(1)

In Equation 2, we replace expectation and standard deviation by
their correspondingmathematical formulas and reduce the common
members to minimize the number of necessary divisions. Equation 2
leads to the core components around which our design centers: the
sum of elements (

∑︁𝑁−1
𝑡=0 𝑥𝑡 ,

∑︁𝑁−1
𝑡=0 𝑦𝑡), the sum of squares (

∑︁𝑁−1
𝑡=0 𝑥2𝑡 ,∑︁𝑁−1

𝑡=0 𝑦2𝑡), and the sum of products (
∑︁𝑁−1
𝑡=0 𝑥𝑡𝑦𝑡). For the remaining

of the paper, we are going to refer to them as the sufficient statistics.
A similar equation is derived for binary variables and used to find
the correlation between graphs [37], aiming at discovering the
dependencies within a graph database.

𝜌 =

∑︁𝑁−1
𝑡=0 𝑥𝑡 𝑦𝑡 −

∑︁𝑁−1
𝑡=0 𝑥𝑡

∑︁𝑁−1
𝑡=0 𝑦𝑡

𝑁√︃∑︁𝑁−1
𝑡=0 𝑥2𝑡 −

(∑︁𝑁−1
𝑡=0 𝑥𝑡)2
𝑁

√︃∑︁𝑁−1
𝑡=0 𝑦2𝑡 −

(∑︁𝑁−1
𝑡=0 𝑦𝑡)2
𝑁

=
𝑁

∑︁𝑁−1
𝑡=0 𝑥𝑡 𝑦𝑡 −

∑︁𝑁−1
𝑡=0 𝑥𝑡

∑︁𝑁−1
𝑡=0 𝑦𝑡√︂

𝑁
∑︁𝑁−1
𝑡=0 𝑥2𝑡 − (∑︁𝑁−1

𝑡=0 𝑥𝑡)2
√︂
𝑁

∑︁𝑁−1
𝑡=0 𝑦2𝑡 − (∑︁𝑁−1

𝑡=0 𝑦𝑡)2

(2)

In order for the PCC results to be interpretable and trusted, the
analyzed streams should satisfy the following assumptions [72]:
(1) no missing values and a continuous scale; (2) the stream values
should be normally distributed, have a linear relationship and same
variance around the regression line; and (3) the streams should
not have outliers, values that do not follow a similar pattern as
the rest of the data. Moreover, PCC is applicable only to numeric
values [8]. The correlation involving data of other types, such as
strings, requires their mapping to numeric values.

In realistic use cases, it is unavoidable for the data to not have
missing values, non-normal distribution or outliers. There are sev-
eral ways to overcome this and still have an interpretable PCC
value: (1) pairwise missing values - compute the correlation using
the non-missing streams’ values; this results in a partial correlation
coefficient [8]; (2) list-wise deletion - compute the correlation only
using observations with non-missing values for both streams [8, 21];
(3) replace the missing values by either means among the adjacent
values or by constants. Each of these approaches are easy to im-
plement on an FPGA, at the cost of one clock cycle increase in
latency. In the design we explore in this paper, we have not in-
cluded this feature as it has no impact on the overall result. To
assess the normality of stream value distribution, one can employ
either histograms [32] or the Jarque-Bera test [34], with the former

being successfully implemented on FPGAs [32]. Various techniques
exist for outlier detection, ranging from statistical methods such as
Z-score and Mahalanobis distance to machine learning approaches
such as clustering or support vector machines. However, for FPGA
implementations aiming to maintain 100Gbps rates, moving aver-
age or exponential smoothing techniques are more appropriate [33].

Related Work. In databases, correlation has been used inter-
changeably to capture three different concepts. The first is the se-
mantic relationship (e.g., a functional dependency) between columns.
Hermit [77], Correlation Maps [38], CORDS [30], BHUNT [10],
CORADD [39] use attributes’ semantic correlation to improve in-
dexing, query execution, and query optimization [51] performance.
The second concept uses the two attributes covariance to model
selectivity for query optimizers [14]. And the third models the rela-
tionship between pairs in time series analysis: BRAID [66] for lag
correlation; StatStream [85], Mueen et al. [56], and Li et al. [48] for
longest-lasting correlated subsequences; andWadjet [65] for outlier
identification. The last two concepts employ PCC in a CPU based
streaming context. As noted, correlation computation on the CPU is
expensive and is typically approximated or limited to specific data
segments (i.e., Xiong et al. [80] opt to focus on Zipfian distributed
datasets for large number of streams and compute PCC for only a
subset of pairs; the same applies for Zhang and Feigenbaum [83] to
find correlation among large datasets).

Correlation on Heterogeneous Architectures. FPGA-based
correlation implementations have been proposed for image pro-
cessing [41], OFDM (orthogonal frequency division multiplexing)
timing synchronization [60], and digital correlation processors [4].
Image correlation differs from PCC by evaluating pixel value and
energy differences between images, but shares similarities in its
use of additions and multiplications for computation. Nevertheless,
image processing correlation uses 11 × 11 window values, leading
to computations over 121 pixels, considerably smaller than our
target stream lengths. OFDM timing synchronization [60] aims
to reduce DSP utilization by replacing multiplication operations
with shift-and-adds, resulting in approximated results. In contrast,
our approach focuses on analyzing classic data types, providing
exact results, and preserving data representation. There are limited
customized GPU-based correlation implementations due to data
movement overhead and the GPU’s constrained memory capac-
ity. Chang et al. [12] achieved a significant speedup of 28× to 38×
in PCC computation for matrix sizes ranging from 4096 × 16 to
12288 × 64, utilizing floating-point representations for sequence
database search. Their assessment considered both computation
and data transfer time to and from the GPU memory. However, the
GPU’s memory limitations constrained the maximum analyzed size,
and the execution time was in the order of seconds, falling short of
the performance and architectural flexibility achieved with AMNES.

Conversely to this previous work, we focus on computing the
PCC on data streams at network line rate for direct deployed on the
network without CPU involvement. We show correlation computa-
tion for up to 64 parallel data streams (2016 PCC values) with several
orders of magnitude performance gains over existing solutions, and
how the design can be generalized for correlating thousands of
streams, if sufficient bandwidth is available. This demonstrates the
ongoing validity of our design as networks and CPU-accelerator
(e.g., Intel CXL interconnects) bandwidths improve.

4176

2.2 RDMA
In this work, we use RDMA over Converged Ethernet (RoCE v2),
with the entire network stack [73] being deployed on an FPGA-
based SmartNIC [43] that we test over a 100 GbpsHACC cluster [74].
On the FPGA-based SmartNIC, AMNES acts as a bump-in-the-wire
accelerator, being placed between the network stack module (en-
sures the communication of the FPGA with the RDMA network)
and the PCIe module (ensures the communication of the FPGA
with the host CPU). For testing purposes, we use the low-latency,
one-sided RDMA operations, namely the write primitive. The com-
putational kernel is placed at the receiving node, and the correlation
coefficients are computed as data is arriving through the network
from RDMA write requests. Although not explored in this paper,
the same could be done on the sending node to compute the corre-
lation near to the data source. The same behavior is expected from
AMNES if it is utilized together with the read primitive (computing
correlation while data is received over the network, after sending
an RDMA read request). By utilizing the read operation, the commu-
nication latency increases, since one more network trip is required
before data gets sent over the network. The concept remains the
same for the two one-sided RDMA operations, with the overhead
being completely independent of the correlation computation.

Related Work. RDMA has gained prominence in data centers,
finding applications in distributed systems, databases, cloud storage,
and in-network data analytics [2, 18, 24, 44, 46, 58, 62, 64, 67, 76, 82].
StRoM [67], a system leveraging SmartNICs with RDMA support,
pioneered the integration of compute capabilities into the RDMA
network stack, demonstrating the computation of the Hyperloglog
(HLL) cardinality approximation algorithm while data traverses the
network. Similarly, we illustrate how a correlation engine can be
placed on the SmartNIC without impacting network performance.
Unlike StRoM, which hashes input values to dissociate input data
representation from the algorithm’s internal structure, AMNES
retains the original data representation for processing. Farview,
another FPGA-based SmartNIC system, utilizes RDMA to offload
query operators to a network-attached DRAM module, achieving
performance comparable to local memory [42]. Farview serves as a
potential deployment example for AMNES in future data centers.

3 CORRELATION ENGINE
In this section, we present the AMNES design and focus on its
two main components (Figure 1): the accumulator engine (ACC En-
gine) and the coefficient engine (COEFF Engine). The pre- and post-
processing modules prepare the data either to enter the AMNES’s
compute engines (i.e., augment the data with a control signal mark-
ing the last element to be analyzed) or to be sent to the host CPU (i.e.,
combine the coefficient results to fit into a cacheline). The BRAM

pre
process

ACC
Engine

HBM

BRAM/
URAM

COEFF
Engine

post
process

Figure 1: AMNES block diagram.

Table 1: Symbols defining basic design parameters.

𝑁 Total number of elements of each stream.
𝑀 Number of streams in a cacheline (𝑀 ≥ 2).
𝐺𝑝 Number of unique pairs between M streams.
𝑠𝑖 Stream belonging to a cacheline, 𝑖 ∈ [0, 𝑀).
𝑠𝑖𝑡 Data items of the stream 𝑠𝑖 , 𝑡 ∈ [0, 𝑁).
𝐿𝐴𝐶𝐶 Latency of the ACC Engine [clock cycles].
𝐿𝐶𝑂𝐸𝐹𝐹 Latency of the COEFF Engine [clock cycles].
𝑊𝑖𝑑𝑡ℎ𝑑𝑎𝑡𝑎 Input data representation [B].
𝑊𝑖𝑑𝑡ℎ𝐴𝐶𝐶 Accumulator representation [B].

temporally stores the results generated by the ACC Engine before
being used by the COEFF Engine. The URAM and HBM (High Band-
width Memory) memories are considered for design generalization.

3.1 System Overview
We consider as a stream a continuous finite flow of fixed-size data
items entering AMNES’s compute engine. The compute granularity
of the design is at cacheline level (64 B - 512 bits) leading to multi-
ple streams to be analyzed in parallel, with each data item in the
cacheline being a value of a certain stream. The maximum number
of streams (M) analyzed in parallel depends on the data item rep-
resentation (𝑊𝑖𝑑𝑡ℎ𝑑𝑎𝑡𝑎), i.e., 64 streams for 8 bits, 32 streams for
16 bits and 16 streams for 32 bits data items, respectively. Table 1
summarizes the symbols used in describing the design.

AMNES computes the PCC from the sufficient statistics as re-
quired by Equation 2. These comprise, for each stream 𝑠𝑖 , the sum of
elements - 𝑆𝑒𝑖 =

∑︁𝑁−1
𝑡=0 𝑠𝑖𝑡 and the sum of squares - 𝑆𝑠𝑞𝑖 =

∑︁𝑁−1
𝑡=0 𝑠2

𝑖𝑡
,

as well as, for each unique pair of streams, the sum of products -
𝑆𝑝𝑧 =

∑︁𝑁−1
𝑡=0 𝑠𝑖𝑡 𝑠 𝑗𝑡 with 𝑖 < 𝑗, 𝑖, 𝑗 ∈ [0, 𝑀) and 𝑧 ∈

[︁
0,𝐺𝑝

)︁
. After

gathering all these statistics, the accumulated values are used to
obtain the PCC between each unique streams pair. AMNES’s design
takes as input 𝑀 streams with 𝑁 data items each, and produces
𝑀 (𝑀 −1)/2 correlation coefficients, one coefficient for each unique
pair of distinct streams. Note that the commuted pairs (𝑠𝑖 , 𝑠 𝑗) and
(𝑠 𝑗 , 𝑠𝑖) are not differentiated as they yield the same coefficient. As
depicted in Figure 1, the design splits into two parts: the backend
part (accumulators engine - ACC) and the frontend part (coefficients
engine - COEFF). The backend part gathers the sufficient statistics,
whereas the frontend computes the coefficient values. AMNES is
implemented in C++ as a customizable streaming Vitis HLS (High
Level Synthesis) kernel and deployed on FPGA as a compute kernel.

The challenge of the implementation is to obtain processing
pipelines for each of the engines that guarantee an initiation inter-
val of 1 (𝐼 𝐼 = 1), i.e., at every clock cycle, the compute engine is
capable of consuming one cacheline of data items from 𝑀 paral-
lel streams. An FPGA pipeline is similar in concept to a pipelined
processor architecture, with each stage of the pipeline executing a
different operation, thus enabling concurrent execution of tasks. On
the FPGA, the individual stages are separated by registers. While
a deeper pipeline with more stages implies a higher processing la-
tency in terms of clock cycles, its more fine-granular segmentation
into stages will typically reduce the most critical signal path and
lead to a higher operational clock frequency and throughput.

4177

Table 2: ACC resources characterization for M streams.

Data Width [bit] Streams Accumulators MAC Units AMNES Op. Freq. [MHz]
32 16 16 136 300
16 32 32 528 250
8 64 64 2080 190

3.2 The ACC Engine
The backend part gathers the sufficient statistics in parallel for M
streams through a network of accumulators andmultiply-accumulate
(MAC) units. For𝑀 streams, M accumulators are required for sum
of elements-𝑆𝑒 , and𝑀 (𝑀 + 1)/2MAC units are required for sum of
squares-𝑆𝑠𝑞 and sumof products-𝑆𝑝 (𝑀 units for 𝑆𝑠𝑞 and𝑀 (𝑀−1)/2
units for 𝑆𝑝). The number of MAC units has a quadratic dependency
on the number of streams that are analyzed in parallel. Table 2
shows the number of MAC units dependent on the data types (i.e.,
8-bits, 16-bits, 32-bits) we consider for our implementation. In C++,
each type of sum (𝑆𝑒 , 𝑆𝑠𝑞, 𝑆𝑝) is associated with a class that exposes
a set of functions that act upon the data sent to them. Since 𝑆𝑒
and 𝑆𝑠𝑞 can be computed independently for each stream in the
cacheline, AMNES associates objects from these two classes to each
of the streams of the cacheline. 𝑆𝑝 depends on the values coming
from all the streams, so only one object is associated from this
class to all the streams included in a cacheline. ACC Engine latency
lower bound (𝐿𝐴𝐶𝐶) is given by the latency of the multiply oper-
ator, e.g., 3 clock cycles. Vitis HLS might introduce a few more
cycles as latency on top of this lower bound for larger number of
streams (e.g., 64). The bit representation of the stream’s items is
customized via𝑊𝑖𝑑𝑡ℎ𝑑𝑎𝑡𝑎 parameter, whereas the bit representa-
tion for the accumulators associated with each sum is customized
via𝑊𝑖𝑑𝑡ℎ𝐴𝐶𝐶 parameters. In our implementation, the choice of
𝑊𝑖𝑑𝑡ℎ𝐴𝐶𝐶 = 2 ∗𝑊𝑖𝑑𝑡ℎ𝑑𝑎𝑡𝑎 accommodates stream lengths of up
to 2 millions items per stream, with the consideration that some
values are repeated. Since the FPGA offers customizable data width
representations, Table 3 analyzes maximum bit representations of
supported unsigned integer representations for accumulators when
no pre-processing is applied for corner cases.

FPGAs are known for their flexibility in terms of customizable
widths for different data types: from integer and fixed-point to
floating-point representations; with the latter being the most re-
source intense and slowest of the three (i.e., modules working with
floating-point values have a lower operating frequency than the
modules working with integer or fixed-point values). Since our fo-
cus is on relational data and potentially machine learning systems
that use fixed-point or low-precision representations, our design
centers on integer and fixed-point representations.

3.3 The COEFF Engine
The COEFF Engine takes all the sufficient statistics previously gath-
ered and generates 𝐺𝑝 floating-point values representing the Pear-
son correlation coefficient (𝑐𝑖 𝑗) between the unique stream pairs,
(𝑠𝑖 , 𝑠 𝑗), with 𝑖 < 𝑗 and 𝑖, 𝑗 ∈ [0, 𝑀). The frontend computation
is triggered once all the input data from the M streams has been
consumed by the ACC Engine. When multiple streams (attributes)
are correlated, a square matrix of correlation coefficients outputs
is usually presented as in Figure 2a. This matrix exhibits a diag-
onal line consisting of ’1’ values, representing the correlation of

Table 3:𝑊𝑖𝑑𝑡ℎ𝐴𝐶𝐶 analysis.

Data Width [bit] All values WidthACCfor 1 million [bit] WidthACC for 2 millions [bit]
32 1 21 22

232 − 1 85 86
16 1 21 22

216 − 1 52 53
8 1 21 22

28 − 1 28 29

each stream with itself. The remainder of the matrix is symmetrical
around this diagonal line, accounting for each pair of streams being
considered twice (e.g., (𝑠𝑖 , 𝑠 𝑗) and (𝑠 𝑗 , 𝑠𝑖)), resulting in identical
correlation coefficients (𝑐𝑖 𝑗 = 𝑐 𝑗𝑖). Consequently, only one half of
the matrix (either the upper or lower triangle) contains meaningful
results, while the other half comprises duplicates or ’1’ values.

The COEFF Engine computes only unique results using matrix
parsing techniques to achieve an II of 1. We parse the indeces of
𝐺𝑝 coefficients as if parsing the upper triangle of the square matrix
as pointed by the arrows in Figure 2b following the index values
from 0 to 5. Each index value is associated to two sub-indices 𝑖 and
𝑗 , where 𝑖 represents stream 𝑠𝑖 and acts as "parsing each row of
the matrix", and 𝑗 represents stream 𝑠 𝑗 and acts as "parsing each
column of the matrix". For each circle (𝑐𝑖 𝑗) in Figure 2b, we retrieve
from the temporally internal storage the sum of elements (𝑆𝑒𝑖 , 𝑆𝑒 𝑗)
and sum of squares (𝑆𝑠𝑞𝑖 , 𝑆𝑠𝑞 𝑗) associated with each stream, and
the sum of products associated with their pair 𝑆𝑝𝑖 𝑗 (located at an ad-
dress given by the index value) in order to compute the correlation
coefficient. This operation is sequential and employes floating-point
arithmetic to generate the correlation coefficients, which leads to
a long pipeline. COEFF Engine latency lower bound (𝐿𝐶𝑂𝐸𝐹𝐹) is
120 clock cycles. The difference in latency between the two engines
arises from their design particularities. The ACC Engine design
consists of parallel pipelines for low latency results, whereas the
COEFF Engine design features a single long pipeline, resulting in
higher latency as data traverses the entire pipeline.

3.4 Implementation
AMNES has been implemented in C++ as a Vitis HLS (v2022.1) com-
pute kernel and deployed on the FPGA together with Coyote [43],
an open source FPGA shell. Coyote establishes streaming interfaces
between both the DMA (Direct Memory Access)/Bridge Subsystem
for PCI Express® [78] or an RDMA network stack and the compute
kernel and implements the virtual memory management and the
synchronization with the host CPU. Besides the AXI4-Stream inter-
faces (hls::stream<ap_axiu<512,0,0,0>>) to stream data into
and out of the kernel, the compute kernel also exposes an AXI4-Lite
register interface (s_axilite) that allows software to access kernel

1𝑐32𝑐31𝑐30

𝑐231𝑐21𝑐20

𝑐13𝑐121𝑐10

𝑐03𝑐02𝑐011

(a) Correlation coefficient matrix.

1𝑐32𝑐31𝑐30

𝑐23
5

1𝑐21𝑐20

𝑐13
4

𝑐12
3

1𝑐10

𝑐03
2

𝑐02
1

𝑐01
0

1

(b) COEFF Engine - Index parsing.

Figure 2: Correlation matrix vs. COEFF Engine for 4 streams.

4178

s0

s1

s2

s3

pr
e-
pr
oc
es
s

last
ACC Engine

𝑆𝑒0 𝑆𝑠𝑞0

𝑆𝑒1 𝑆𝑠𝑞1

𝑆𝑒2 𝑆𝑠𝑞2

𝑆𝑒3 𝑆𝑠𝑞3

𝑆𝑝0 𝑆𝑝1

𝑆𝑝2 𝑆𝑝3

𝑆𝑝4 𝑆𝑝5

BRAM

Se

Ssq

Sp

Coeff Engine
row

column

index

index<Gp

Eq.2
cindex

Figure 3: AMNES implementation.

configuration and parameter data. We use these registers to pro-
gram the number of items and streams correlation is computed on.
Both the AMNES kernel and the Coyote shell offer versatility across
AMD Alveo’s portfolio of data center accelerator cards (i.e., U50,
U55C, U200, U250, U280). We have deployed AMNES together with
Coyote on three of these cards, U250, U280 and U55C, and achieved
a maximum operating frequency of 300MHz.

The flow of the implementation is illustrated in Figure 3. Even if
the cacheline accommodates from 16 to 64 streams for our engine,
we illustrate the implementation for only 4 streams (𝑠0, 𝑠1, 𝑠2, 𝑠3) for
simplicity. However, the insights apply to the number of streams
that fit into a cacheline for any data representation. When a new
cacheline arrives, the pre-processing stage augments it with an
asserted ’last’ signal if the cacheline contains the last elements of
the streams, otherwise the signal remains deasserted. This stage
is combinatorial and takes only one clock cycle. The function call
to the ACC Engine encapsulates through a lamba expression the
partitioning of the cacheline into individual stream values. These
values are used to simultaneously update the mesh of accumulators
and multiply-accumulate units of the ACC Engine (Figure 3). The 3-
stagemultiply-accumulate pipeline depth is projected onto the plain
accumulators (1 stage) to match operational latencies. The ACC
Engine’s accumulators’ state is kept in the FPGA’s fabric registers.

When an asserted ’last’ signal is encountered, all the obtained val-
ues in the ACC Engine are read and temporally moved to the inter-
nal memory of the FPGA (BRAM). This temporary storage enables
the instant reset of all accumulators to ’0’ such that new incoming
data can be processed immediately. The COEFF Engine reads the
BRAM addresses indicated by the row, column for Se, Ssq, respec-
tively, and thememory location indexed by Sp. For each 𝑖𝑛𝑑𝑒𝑥 < 𝐺𝑝 ,
five values are fetched and used to compute the floating-point PCC
associated to the index. The COEFF Engine leverages the power of
HLS to implement Equation 2 from a regular high-level floating-
point expression. Our method of index parsing ensures an 𝐼 𝐼 = 1,
guaranteeing no back pressure from the COEFF Engine on preced-
ing modules. Correlation coefficients are collected from the engine
and sent to the host CPU in the post-processing stage.

4 EVALUATION
4.1 Experimental Setting
We have evaluated AMNES on the AMD Heterogeneous Acceler-
ated Compute Cluster (HACC) at ETH Zurich using the U55C data
center accelerator card with the FPGA in two configurations: (1) as
a coprocessor - data to be correlated is produced by the host CPU
and resides in its memory, and (2) as a SmartNIC - data is produced

DDR CPU

DMA CTRL

PCIe

FPGA
AMNES Coyote

12

3

4

5
6

(a) Coprocessor setup

DDR CPU

DMA CTRL

PCIe

FPGA
AMNES Coyote RDMA

4

1

2’3

2

5

(b) SmartNIC setup

Figure 4: AMNES evaluation setup.

by a remote CPU and moved via RDMA-Write operations. The two
configurations are represented in Figure 4 and comprise the FPGA
and host CPU as compute units. The host CPU is also called the lo-
cal CPU. In both cases, the FPGA is connected to the CPU via a PCIe
Gen3x16 link. The SmartNIC configuration differs from the copro-
cessor one by enabling the RDMA stack in the Coyote framework
on the FPGA. For each of the configurations, we compare the FPGA
performance with the local CPU baseline performance in terms
of throughput and latency. Irrespective of the configuration, the
local CPU baseline reads the streams’ values from its DDR memory;
with the way the DDR memory gets populated being different for
each configuration: (1) the CPU populates the DDR memory before
executing the correlation computation, and (2) the DDR memory is
populated by a remote CPU via RDMA-Write transfers.

4.2 Baselines
We have developed two multi-threaded software baselines for the
backend computation. One baseline collects the sufficient statis-
tics in the same way as the FPGA implementation, and another
extracts them from a matrix-matrix multiplication operation. If the
first one is a standalone implementation, the second uses the Eigen
Library (v3.4.0) [25], a C++ template library highly optimized for
linear algebra, specifically for CPU-based matrix-matrix multipli-
cation operations. We will henceforth refer to them as noEigen
and Eigen, respectively. The Eigen Library offers explicit vector-
ization, compiler support (C++14), a straightforward integration
with C++ code, adaptable matrix sizes and numeric types. It expects
the stream values to be stored in column-major layout to optimize
data partitioning between the processing threads. Irrespective of
the baseline, each thread receives a data chunk size inversely pro-
portional to the number of threads used for computation. For the
noEigen baseline, the values are distributed to the corresponding
accumulators, whereas for the Eigen baseline, each thread maps the
received values to a matrix whose number of rows is the number
of streams plus one (M+1) and the number of columns corresponds
to the length of the stream segment associated with the thread, i.e.
𝑁 /thread_count. Each thread’s matrix has an additional padded
row of ’1’s to compute the sum of elements (Se) for each stream.
Figure 5 illustrates the matrix-matrix multiplication between the
padded streams matrix 𝐴 and its transpose 𝐵 when one thread is
allocated for 4 streams (𝑠0, 𝑠1, 𝑠2, 𝑠3) with 𝑁 items. The transposed
matrix is obtained using Eigen’s .transpose() function. Still, the
transpose is not materialized in memory, but returns a proxy object
without doing the actual transposition. For a single thread, the suf-
ficient statistics are directly extracted from the matrix product (i.e.,
the resulting matrix). For multiple threads, the matrix products

4179

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠00 𝑠01 · · · 𝑠0𝑁−1
𝑠10 𝑠11 · · · 𝑠1𝑁−1
𝑠20 𝑠21 · · · 𝑠2𝑁−1
𝑠30 𝑠31 · · · 𝑠3𝑁−1

1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑠00 𝑠10 𝑠20 𝑠30 1
𝑠01 𝑠11 𝑠21 𝑠31 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝑠0𝑁−1 𝑠1𝑁−1 𝑠2𝑁−1 𝑠3𝑁−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑆𝑠𝑞0 𝑆𝑝01 𝑆𝑝02 𝑆𝑝03 𝑆𝑒0
𝑆𝑝10 𝑆𝑠𝑞1 𝑆𝑝12 𝑆𝑝13 𝑆𝑒1
𝑆𝑝20 𝑆𝑝21 𝑆𝑠𝑞2 𝑆𝑝23 𝑆𝑒2
𝑆𝑝30 𝑆𝑝31 𝑆𝑝32 𝑆𝑠𝑞3 𝑆𝑒3
𝑆𝑒0 𝑆𝑒1 𝑆𝑒2 𝑆𝑒3 𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 5: Eigen matrix-matrix multiplication operation be-
tween the padded streams matrix (A) and its transpose (B).

of each thread undergo a subsequent summation process into a
single (𝑀 + 1) square matrix to obtain the sufficient statistics. Then
an upper module extracts them and computes the coefficients. We
deploy the multi-threaded C++ implementation on the AMD EPYC
7302P 16-Core Processor@ 3.0GHz base frequency, with each two
adjacent cores sharing 16MB of L3 Cache, and each core having
512 kB L2 Cache, and 32 kB of data and instruction L1 Cache.

4.3 Datasets
For evaluating AMNES, we use synthetic datasets with arbitrary pre-
cision (ap) integer data types representations: ap_uint_8, ap_uint_16
and ap_uint_32 [79], and vary the streams’ length from 1000 to
2 million items per stream. The parallel stream analysis depends on
the number of streams fitting into a cacheline (512 bits) for a given
data type (64 streams for ap_uint_8, 32 streams for ap_uint_16, and
16 streams for ap_uint_32). We opt for unsigned integer data repre-
sentations (ap_uint_x) as they stretch the FPGA resource utilization
the most out of the fixed-size data representations: fixed-point deci-
mal (ap_[u]fixed) and signed (ap_int). The data volume across PCIe
or RDMA networks stays constant (i.e., the bytes count) regardless
of data width representation. Even if we evaluate all the pipelines
with uniform data layout (same width and type), a practical choice
for vector DBs andML systems, AMNES is not restricted to this. The
FPGA can be programmed to associate a different data type (integer
or fixed-point decimal) and width to each pipeline (stream), e.g., for
a 512-bit cacheline, 4 streams could be associated to 32-bit signed
integer, 4 streams to 32-bit fixed-point decimal and 16 other streams
to be associated to 16-bit unsigned. However, if floating-point val-
ues are to be employed, they have to be converted to fixed-point
representation beforehand, using a dedicated AMD-Xilinx IP [5].

The evaluation setup for the two use cases (coprocessor, Smart-
NIC) is illustrated in Figure 4, with 1○ marking the source of the
data values when entering our heterogeneous compute node com-
posed of the host CPU and the FPGA. AMNES’s working frequency
depends on the chosen data width representation as it is stated
in column AMNES Operating Frequency [MHz] (Fop) in Table 2.
The degradation of the operational frequency is due to two fac-
tors. On the one hand, the number of MAC units required for the
sum of products grows quadratically with the number of analyzed
streams. On the other hand, the spatial architecture of the FPGA
has to ensure all the wiring that is required between the accumula-
tors, multiply accumulators and the rest of the system. Given the
working frequency and the fact that AMNES works at cacheline
granularity, we can compute the theoretical upper bound of the
throughput (𝑇ℎ𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 [𝐺𝐵/𝑠] = 𝐹𝑜𝑝 ∗ 64𝐵/1000). More specifi-
cally, 19.20GB/s for AMNES’s 32-bit data width and 300MHz Fop,
16.00GB/s for AMNES’s 16-bit data width and 250MHz Fop, and
finally, 12.16GB/s for AMNES’s 8-bit data width and 190MHz Fop.

1Ki 2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi

101

103

105

Items per Stream

Ti
m
e[
µs
]

FPGA CPU-Eigen CPU-noEigen GPU

Figure 6: Compute time (log scale) of PCC for 16 streams on
various platforms (32-bit integer data).

The normal data distribution condition is intrinsic to the PCC
algorithm to guarantee a reliable result. AMNES’s efficiency is not
impacted by the distribution as the system processes input data ev-
ery clock cycle and updates the underlying accumulators network.

CPUs and GPUs are software-programmable fixed architectures.
With the emerge of customized data types and reduced resolution
representations, their inherent architectural advantage becomes
debatable [31]. Data center vendors (Microsoft, Amazon, Baidu) are
now focusing on FPGA’s programmable data-width capability for
ML deployments in the detriment of fixed architectural paths [23].

In Figure 6, we depict the compute time required on 3 individ-
ual platforms (FPGA, CPU and GPU) to obtain the PCC for 16
streams while varying each stream’s length from 1 Ki to 2Mi 32-bit
integer items. For the GPU, the application utilizes the PyTorch
library (torch.corrcoef [61]) on a TITAN RTX Nvidia GPU, whereas
for the CPU, we utilize the two baselines and allocate only one
thread for compute. Although the FPGA operates at a lower clock
frequency (MHz range) compared to the CPU and GPU, its spatial
pipeline customization allows for parallel processing of multiple
items, providing it with an advantage. On the other hand, the GPU’s
clear advantage is hindered by the data movement costs.

2 4 8 16

101

102

103

104

Streams

Ti
m
e[
m
s] FPGA

Postgres
Snowflake
MySQL

(a) PCC for 2, 4, 8 and 16 streams (2 million 32-bit data items per
each attribute (stream).

1Ki 2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki256Ki512Ki 1Mi 2Mi

101

103

105

Items per Stream

Ti
m
e[
µs
]

FPGA
Postgres

(b) PCC for 2 streams and 32-bit data representation with Postgres.

Figure 7: PCC compute time (log scale) using Postgres,
Snowflake, and MySQL.

4180

4.4 Comparison with Relational Operators
To provide a performance reference for relational engines support-
ing PCC computation, we assess 3 engines: Postgres, Snowflake,
and MySQL. Postgres and Snowflake offer a corr(X,Y) aggregate
operator (X and Y -the two attributes), whereas MySQL queries for
all Equation 2 items in the SELECT statement. Since DBMSs offer
2-by-2 correlations, we examine their efficiency from 2 up to 16
attributes for 2 million 32-bit integers in Figure 7a. For Snowflake,
we use an X-Small deployment [68] and report only the execution
time out of the total time (compilation + execution), which is signif-
icantly smaller than the compilation time (2× to 30×). Irrespective
of the DBMS, the PCC compute time for two attributes is an or-
der of magnitude larger than AMNES’s for 2 million items and 16
streams (if we keep the system as-is, computing only 2 attributes,
leaving the other 14 unused). The FPGA compute time increase in
Figure 7b is due to the unused slots. The MySQL query complexity
does not compete with either the other two DBs or the FPGA. Since
Postgres has the fastest compute time for 2 attributes, we analyze
its behavior for down to 1Ki items per attribute (Figure 7b) and
observe that the compute time remains 5× larger than for AMNES.

4.5 Correlation on a Coprocessor
In Figure 4a, the values that are streamed from the host’s DDR to
AMNES (2○-> 3○) via DMA-Write transfers are augmented with a
’last’ signal before AMNES’s compute engine entry. The ’last’ signal
serves as a control signal accompanying the data in the compute
engine, indicating the last value of each stream. Once the FPGA

computes the PCC values, they are streamed back to the host’s
DDR (3○-> 4○) via DMA-Read transfers from where they can be
further used (5○). The performance measurements for the FPGA-
coprocessor include the 2○-> 3○-> 4○-> 5○ data links and are illus-
trated in Figure 8, where each sub-figure corresponds to a different
data width and parallel stream analysis for cacheline granularity:
32-bits (Figure 8a), 16-bits (Figure 8b) and 8-bits (Figure 8c), respec-
tively. For each sub-figure, the measurements encompass the clock
cycles for PCIe data transfer, as well as for collecting the sufficient
statistics and computing the PCC values for each pair of streams.

In Figure 8, the throughput saturates for 8-bit data around 12GB/s,
near AMNES’s theoretical upper bound of 12.16GB/s for this data.
For 16-bit and 32-bit data, the throughput saturates at values around
12.5GB/s, lower thanAMNES’s theoretical upper bounds of 16GB/s
and 19.2GB/s, respectively, but matching the bandwidth exposed
by the Coyote framework to the compute kernel. Coyote’s setup cost
dominates the measurement for small stream lengths and becomes
negligible for streams with more than 32K items, as it is illustrated
by the throughput graphs in Figure 8. The lower working frequency
of the compute kernel impacts latency measurements for 1Ki items
per stream. Among the three data representations, the compute
kernel operating at 300MHz exhibits the shortest compute time
(Figure 8a), while the one operating at 190MHz has the longest
time for the same data volume (Figure 8c).

Regardless of the data width representation, the FPGA imple-
mentation outperforms the multi-threaded C++ baselines (Eigen or
noEigen). The AMNES-like collection baseline (noEigen) performs

1Ki 4Ki 16Ki 128Ki 512Ki 2Mi
101
102
103
104

Items per Stream

Ti
m
e[
µs
]

2.5
5
7.5
10
12.5

Th
ro
ug

hp
ut

[G
B/
s]

(a) 16 streams [32-bit data].

1Ki 4Ki 16Ki 128Ki 512Ki 2Mi
101
102
103
104

Items per Stream

Ti
m
e[
µs
]

2.5
5
7.5
10
12.5

Th
ro
ug

hp
ut

[G
B/
s]FPGA Time Throughput

(b) 32 streams [16-bit data].

1Ki 4Ki 16Ki 128Ki 512Ki 2Mi
101
102
103
104

Items per Stream

Ti
m
e[
µs
]

2.5
5
7.5
10
12.5

Th
ro
ug

hp
ut

[G
B/
s]

(c) 64 streams [8-bit data].

Figure 8: Compute time (bar, left y-axis, log scale) and throughput (line, right y-axis, linear scale) for RAM-RAM experiments
for 16/32/64 streams analyzed in parallel on the FPGA; including collecting the sufficient statistics and computing pcc values.

CPU Compute Time-Eigen Throughput-Eigen Compute Time-noEigen Throughput-noEigen

1 2 4 8 16 24 32 64

105

#Threads

Ti
m
e
[µ
s]

2.5
5
7.5
10
12.5

Th
ro
ug

hp
ut

[G
B/
s]

(a) 16 streams [32-bit data].

1 2 4 8 16 24 32 64

105

106

#Threads

Ti
m
e
[µ
s]

2.5
5
7.5
10
12.5

Th
ro
ug

hp
ut

[G
B/
s]

(b) 32 streams [16-bit data].

1 2 4 8 16 24 32 64

106

#Threads

Ti
m
e
[µ
s]

2.5
5
7.5
10
12.5

Th
ro
ug

hp
ut

[G
B/
s]

(c) 64 streams [8-bit data].

Figure 9: Compute time (bars, left y-axis, log scale) and throughput (line, right y-axis, linear scale) measurements for RAM-RAM
experiments with 16/32/64 parallel streams analyzed on the CPU (2million items per stream).We differentiate the compute time
measurements between sufficient statistics collection by matrix multiplication (Eigen) and AMNES-like collection (noEigen).
Compute time includes collecting, merging partial values from each thread, and computing the PCC.

4181

better than the matrix collection one (Eigen) for single and dual
thread deployments, but the Eigen baseline has a better overall
performance due to dense matrix-matrix product optimizations,
saturating at around 6GB/s, 5GB/s and 2.5GB/s (Figure 9) for
16, 32 and 64 streams and 2 million items per stream, respectively.
For each baseline, we report the throughput (Figure 9-lines) and
compute time (Figure 9-bar) measurements. Compute time is pri-
marily consumed by collecting the sufficient statistics, whereas the
merge and PCC calculation times are much smaller. If the former
gets damped with larger number of threads allocated for the task,
saturating for 16 threads and more, the latter two have a similar
behavior across all data width representations.

4.6 Correlation on a SmartNIC
For this use case, we utilize the setup in Figure 10a with two CPUs
(remote host A initiates the RDMA-Write transfers while local host
B receives them) and two data center class FPGAs connected via a
switch. The data values coming from the remote host are forwarded
by the RDMA network stack simultaneously to the local CPU’s
DDR(2’○) and to AMNES (2○) on the FPGA as illustrated by the links
1○-> 2○ and 1○-> 2’○ in Figure 4b. When the coefficients results are
ready, DMA-Read transfers transfer them from AMNES to the local
CPU’s DDR (3○-> 4○). For the software baseline associated with the
SmartNIC setup, the Eigen-based application starts processing the
values as soon as they are placed in the local CPU’s memory (2’○-
> 5○), with each thread having associated to it one or multiple slices
of the data. The application starts processing before full stream data
transfer and once the first data values reach the CPU’s DDR. The
FPGA performance assessment includes the 1○-> 2○-> 3○-> 4○ data
links, whereas the CPU baseline for the SmartNIC setup includes
1○-> 2’○-> 5○ data link together with the CPU processing.
We focus on the 32-bit data representation and evaluate the net-

work setup by employing 32 KiB RDMA-Write transfers. To achieve
streams length from 4Ki, 16Ki up to 2Mi for 16 streams, multiple
RDMA transfers are needed. Considering the RDMA connection in
Figure 10a, we distinguish between different measurable durations:
(1) network time - the time from when the first write request is
sent from the remote host till the last acknowledgment is received
by it from the local CPU; (2) data reception time - the time from
when the first data byte arrives to the local CPU’s memory till the
acknowledgment is sent to the remote CPU; (3) data reception +
correlation on CPU (x threads) - the time from when the first

Local Host B

FPGA based
SmartNIC

PCIe

Memory
bus

Ethernet

Remote Host A

PCIe

Memory
bus

RoCE

v2

FPGA based
SmartNIC

RoCE

v2

(a) RDMA Setup.

4Ki 8Ki 16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi
101

102

103

104

Items per Stream

La
te
nc
y[
µs
]

2.5
5
7.5
10
12.5

Th
ro
ug

hp
ut

[G
B/
s]Latency Throughput

(b) Latency (bars, left y-axis, log scale) and throughput (line, right
y-axis, linear scale).

Figure 10: RDMA communication setup and performance.

byte arrives to the local CPU’s memory till the correlation coeffi-
cients are produced (1 to 16 threads are allocated to compute the
sufficient statistics using Eigen Library (v3.4.0) and a single thread
is allocated for the PCC values computation); (4) data reception +
correlation on FPGA - the time from when the first byte arrives
to the local CPU’s memory, until all the coefficients are transferred
from the FPGA to the local CPU’s memory via PCIe transfers.

In Figure 10b, we assess network throughput by adjusting the
number of transfers exchanged between the remote and local CPUs.
The number of transfers is varied from 8 for 4Ki items per stream,
2048 for 1Mi items per stream, to 4096 for 2Mi items per stream.
This serves as a reference point for evaluating network commu-
nication overhead. The network throughput saturates when the
number of transfers exchanged between the two CPUs exceeds 64.
At this point, the throughput stabilizes at approximately 12.5GB/s,
which aligns with the PCIe saturation. This confirms that the Coy-
ote framework does not impose any backpressure on the network.
We present the latency measurements as the data reception time
instead of the network time. The data reception time includes the
network time for all transfers except the first one. For 16 streams,
the data reception time ranges from 21 µs for 4Ki items per stream
to 11ms for 2Mi items per stream. Both AMNES and the CPU base-
line start data processing as soon as the data enters the system, in

4Ki 8Ki 16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi

25
250
1250
12500
125000

Items per Stream

Ti
m
e[
µs
]

rdma rdma+corr CPU: 1 thread rdma+corr CPU: 2 threads rdma+corr CPU: 4 threads
rdma+corr CPU: 8 threads rdma+corr CPU: 16 threads rdma+corr FPGA

Figure 11: RDMA communication w/o correlation computation time on the CPU and FPGA (bars, left y-axis, log scale).

4182

the FPGA and CPU’s DDR, respectively, rendering the first network
transfer time insignificant. Modifications to the Eigen-baseline al-
low processing of smaller data chunks than N/thread_count (i.e.,
16 items/stream) without waiting for the entire transfer.

On the FPGA, analyzing 16 streams produces 120 correlation co-
efficient floating-point values. This requires 8 DMA-Read transfers
and only one PCIe transfer for a 4096 B payload size. This com-
munication expense, combined with RDMA, incurs an overhead of
approximately 1 µs. As shown in Figure 11 (rdma and rdma+corr
FPGA bars), this overhead results in latency similar to solely re-
ceiving the data. In Figure 11, we analyze stream lengths up to 1Mi
items per stream, which already saturate the available bandwidth.

Implementing correlation on the host CPU incurs significantly
higher time overhead compared to simply receiving the data (base-
line). On average, it is 30× larger when a single thread (rdma+corr
CPU: 1 thread bar in Figure 11) is allocated for getting the sufficient
statistics and computing the coefficients. Allocating more compute
threads reduces this overhead. For 8 threads, it is only 7× larger
on average than the baseline (rdma+corr CPU: 8 threads bar in Fig-
ure 11). The compute time on the host CPU decreases on average by
1.62× when the number of threads allocated for the task is doubled.
However, even with 16 threads, the host CPU implementation is on
average 4.4× slower than the FPGA implementation (i.e., AMNES).
The FPGA incurs no backpressure on the network by processing
data at every clock cycle (𝐼 𝐼 = 1). Even if the host CPU implemen-
tation is slower than the FPGA implementation, it does not have a
negative impact on the RDMA network performance since the CPU
acts upon data already residing in its DDR memory and transferred
there via RDMA-Write transactions that do not involve the CPU.

For a 32-bit data representation, the latency inferred byAMNES in
the SmartNIC setup is larger than the latency inferred in the co-
processor setup with a Δ < 100 µs. This difference (Δ) becomes
larger as the number of items per streams increases, since more
RDMA-Write transfers are needed to transfer all the data.

5 DISCUSSION
In this section, we discuss the number of streams used by other
systems and explain how AMNES can be generalized to more than
16/32/64 streams, why C++ HLS was the language of choice, the
challenges the FPGA must overcome, and how the use of the gath-
ered sufficient statistics can be further extended.

Table 4: Number of attributes (streams).

System
Parallel

Attributes
Total Number
of Attributes Items per attribute PCC

AMNES 16-64 16-64 2 Mi
BRAID [66] 2 59 100 Ki

Joglekar et al. [35] 2 5 45 Ki -
Hermit [77] 2 16 4 Mi -

200 15 Ki
CORDS [30] - 18 1 Ki - 64 Ki - 2 Mi -
Wadjet [65] - 5000 50 Ki
EXORD+[50] - 8 90 Ki -
COCOA [20] 2 22 100 - 356 Ki rank

Joglekar et al. [35] - 5 45 Ki -

5.1 Number of Streams
In our evaluation, we analyze AMNES’s performance for a maxi-
mum of 64 streams in parallel. For reference, in Table 4 we sum-
marize the parameters used in related work, covering the number
of coefficients computed in parallel, the total number of stream-
s/attributes considered, and the size of each stream. AMNES is the
only one computing coefficients in parallel (16 to 64 while all others
are just between pairs of attributes). Similarly, our experiments
consider much larger data sets per stream/attribute than almost in
all previous work, especially when compared to those computing
PCC instead of simpler or approximated forms of correlation.

5.2 Engine Generalization
Engine generalization expands AMNES’s capabilities to more than
16/32/64 streams by trading latency, resources, or complexity and
is defined by the extended parameters in Table 5. As before, each
cacheline (512 bits) is composed of values from𝑀 streams. Apart
from these definitions, we introduce the notion of batch of streams.
A batch of streams (a batch), represents the number of cachelines
needed to cover one value from each distinct stream M. If the
total number of streams to analyze exceeds the cacheline capac-
ity (𝑆 > 𝑀), then a batch extends over ⌈𝑆/𝑀⌉ cachelines. We focus
on generalizing the ACC engine due to its parallelizability and
low latency. Once all the sufficient statistics are gathered, they can
be sent to the host CPU and queried for the PCC value. We have
identified two approaches to generalize the concept: (1) support a
pre-defined total number of streams that are time-multiplexed at the
cacheline level (timeAMNES ACC), or (2) impose fixed hardware lim-
itations of the engine and run stream values multiple times through
it (fixedAMNES ACC); the latter solution requires all streams’ values
to be temporally stored in internal or external FPGA memory.

timeAMNES ACC-Sufficient Statistics. Figure 12 shows the
principle for this generalization. timeAMNES ACC differs from the
basic engine by supporting (M+1) streams instead of M. The ex-
tra one stream is a dummy stream (d) at the beginning, when the
batch’s first cacheline arrives (Figure 12a). With the arrival of sub-
sequent batch cachelines, the dummy stream’s place is taken by
the values of each previously seen stream (Figure 12b). The pro-
cedure is as follows: (1) one cacheline arrives and goes through
the ACC engine; (2) ACC computes the required sufficient statis-
tics for (M+1) streams, and discards the sums that are part of the
dummy component or have already been computed; (3) update
BRAM storage for sum of elements (𝑆𝑒), sum of squares (𝑆𝑠𝑞) and
sum of products (𝑆𝑝); (4) update line storage for the later use of
line’s values; (5) replace the dummy stream with the first element
of the line storage, and send it together with the new incoming
cacheline through the ACC engine (Figure 12b); (6) repeat this pro-
cess until all the components of the previous line storage have been

Table 5: Symbols for design generalization, extends Table 1.

𝑆 Total number of streams (𝑆 ≥ 4).
𝑇𝐶𝐿𝐾 Clock period of the design.
𝑇𝑝 Number of distinct pairs between S streams.
𝐶𝑆𝑡 Cumulative streams observed at time 𝑡 (𝐶𝑆0 = 𝑀 , 𝑡 = 0).

𝑆𝑡𝑎𝑡𝑒𝐴𝐶𝐶 Accumulator state to maintain.

4183

ACC Engine

Line Storage

L1

s0

s1

s2

s3

...

sM-1

s0

s1

s2

s3

...

sM-1

d

Se0 Se1 ... SeM-1
Sed

Sq0 Sq1 ... SqM-1
Sqd

Sp0 Sp1 ... Sp 𝑀 (𝑀+1)
2 − 1

s0 s1 s2 s3 ... sM-1

(a) timeAMNES ACC, t=0.

ACC Engine

Line Storage

L1:

L2:

sM+0

sM+1

sM+2

sM+3

...

s2M-1

sM+0

sM+1

sM+2

sM+3

...

s2M-1

s0

SeM+0 ... Se2M-1

SqM+0 ... Sq2M-1

Sp 𝑀 (𝑀+1)
2

... SpM(M+1)-1

s0 s1 ... sM-1

sM+0 sM+1 ... s2M-1

(b) timeAMNES ACC, t=1.

Figure 12: timeAMNES ACC.

combined with the new incoming cacheline. The line storage grows
in a cumulative way, with cacheline elements being added to it
until all streams’ values in a batch have been seen. When a new
batch of streams arrives, the line storage and the dummy stream are
considered empty. We distinguish two actions for a data cacheline
observed at a moment 𝑡 : (1) updates - immediate action (Equation 3),
and (2) holds - future action (Equation 4).

𝑢𝑝𝑑𝑎𝑡𝑒𝑠 =

{︄
𝑀 (𝑀+3)

2 , 𝑡 = 0
𝑀 (𝑀+3)

2 +𝑀 ∗𝐶𝑆𝑡 , 𝑡 ≥ 1
(3)

ℎ𝑜𝑙𝑑𝑠 =
𝑆 (𝑆 − 1)

2 −
𝐶𝑆𝑡 (𝐶𝑆𝑡 − 1)

2 −
(𝑆 −𝐶𝑆𝑡) (𝑆 −𝐶𝑆𝑡 − 1)

2 (4)

For each stream 𝑖 in a cacheline, the updates include: 𝑆𝑒𝑖 , 𝑆𝑠𝑞𝑖 ,
𝑆𝑝𝑖 for the distinct pairs that can be formed between the streams
of the cacheline, and 𝑆𝑝𝑖 for the pairs that have been on hold and
have the second stream (operator) within the given cacheline. The
holds are a metric for future actions and include all pairwise sum
of products that can be formed between current cacheline streams
and batch streams, but are missing the second stream (operator).

Depending on the total number of streams, the accumulator state
𝑆𝑡𝑎𝑡𝑒𝐴𝐶𝐶 can be maintained on-chip or off-chip. The number of ac-
cumulators involved in the computation has a quadratic relationship
with the total number of streams. 𝑆𝑡𝑎𝑡𝑒𝐴𝐶𝐶 =

𝑆 (𝑆+3)
2 ∗𝑊𝑖𝑑𝑡ℎ𝐴𝐶𝐶 .

We extrapolate in Table 6 how many streams would fit in the
internal memory (BRAM or/and URAM) for 64-bit accumulators for
AMD data center accelerator cards. We also consider the deploy-
ment of the engine in a single FPGA SLR (Super Logic Region-a
single FPGA die slice) instead of the entire FPGA in the last table’s
column. Each data center class FPGA has between 2 to 4 SLRs.

TimeAMNESACC’s latency (Equation 5) indicates the back pres-
sure that will be induced for large 𝑆 values, making this solution
inappropriate for high rate communication links.

𝑇𝑜𝑡𝑎𝑙𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐿𝐴𝐶𝐶 +
[︃
𝑆 (𝑆 −𝑀)

2𝑀 + 1
]︃
∗𝑇𝐶𝐿𝐾 (5)

fixedAMNES ACC-Sufficient Statistics. As opposed to the pre-
vious solution that time-multiplexes stream values, fixedAMNES ACC
analyzes all the values from the streams covered in one cacheline

Table 6: AMD data center accelerator cards.

Board BRAM [MB] URAM [MB] SBRAM SURAM SSLR:BRAM+URAM

U50 6.048 23.04 1228 2398 1754
U200 9.72 34.56 1557 2937 1912
U250 12.096 46.08 1737 3392 1853
U280 9.072 34.56 1504 2937 1856
U55c 8.8625 33.75 1486 2903 1883

before moving to another set of streams. This solution constrains
the engine’s compute and storage capabilities at M streams. If
we have 𝑇𝑝 = 𝑆 (𝑆 − 1)/2, the total number of distinct pairs be-
tween S streams, and 𝐺𝑝 = 𝑀 (𝑀 − 1)/2, the number of distinct
pairs between M streams, then the lower bound for the number of
passes through the engine to obtain all necessary pairs would be
𝑇𝑝/𝐺𝑝 = [𝑆 (𝑆 − 1)]/[𝑀 (𝑀 − 1)]. This lower bound is not a tight
bound, and heuristics indicate more passes for full pair coverage [3].
For example, for 𝑆 = 6 and𝑀 = 3, 6 passes instead of 5 are needed
in order to cover all the streams. This solution requires the stream
values to be stored, so that the set of streams of one cacheline can
be correlated with the set of streams of another cacheline, after all
values of the previous set have been seen by the engine. This offers
an upper bound for the supported number of streams that can be
stored in the FPGA external memory: for DRAM, a maximum of
2000 streams of 1 million items each or 250 streams of 8 million
items each; for HBM, amaximum of 16000 streams of 1million items
each or 2000 streams of 8 million items each, for 32-bit data value
representations. The latency of the pairing compute will depend
on the number of groups that need to be formed in order to create
all the pairs that are necessary. The advantages of this solution are
that it will not add back pressure on the communication link and
will require only the state of one engine to be maintained inside the
FPGA. The solution’s disadvantages will be: (1) all streams values
need to be temporally stored in the memory and passed through
the engine; (2) a data structure that tracks formed pairs, potentially
solvable through edge clique covering [3, 15]. If we consider the
streams being the vertices of a graph and the pair between each
two streams being the edges, then all the unique pairs between S
streams are characterized by a fully connected graph with S vertices.
If the same analogy is applied to ACC Engine capabilities, creating
a fully connected graph with M vertices, then the engine becomes
a clique of the total number of supported streams.

5.3 Challenges of Using FPGAs
Utilizing FPGAs for accelerating database tasks requires addressing
challenges that are unique to FPGAs but absent in CPUs. FPGAs
implement computations as a spatial dataflow architecture, where
the compute operators are connected to physically resemble the
dataflow graph using actual point-to-point links rather than com-
municating through shared address-based memory resources like
in a CPU. Such a spatial control flow enables greater degrees of
parallelism but also requires to design the algorithm accordingly.

Deploying a design on an FPGA involves synthesis tools for place
and route: positioning of operators on the FPGA fabric and the
links between them. The implemented routing defines the signal
propagation latencies that limit the clock frequency achievable
by the design. AMNES’s operational frequency is 300 MHz, low
compared with CPUs but competitive for FPGAs. For performance,
the design needs to exploit the hardware customization and fully
tailored parallelism possible on an FPGA. In our case, through the
processing of multiple input streams in parallel.

AMNES is implemented in C++ using Vitis high-level synthesis
(HLS) capabilities. HLS code is more approachable and manageable
than, e.g., VHDL or (System)Verilog but it still requires awareness of
the underlying spatial architecture. Pragmas are widely employed

4184

to guide the synthesis with hints on loop unrolling, pipelining,
dataflow regioning and resource mapping. The goal is to ingest
one input vector in each and every clock cycle, i.e., to sustain an
initiation interval (II) of 1. Our design can serve as a blueprint for
other researchers working with FPGAs.

The biggest advantage of having correlation computation on
the FPGA is that data can be processed on the fly, as it arrives
from the network, without CPU involvement. Not all algorithms
and database operators can do this, so FPGAs are not suitable for
all operations a database engines can do. The results of the paper
show, however, the advantages of an FPGA based accelerator for
operations that can be streamed such as the correlation. The limi-
tation associated to the design is the amount of streams that can
be processed in parallel before the design is not able to maintain
100 Gbps for PCIe and/or network. AMNES is capable of correlating
64 parallel streams of 8-bit data with an initiation interval of 1
at 190MHz, enough to match the net data throughput just below
PCIe/network capabilities (Figure 8c).

Regarding integration in a full system, our approach aligns with
a recent proposal using the FPGA on the I/O path, as an external
service for compression and encryption [13]. In our use case, data
arrives from the network.

5.4 Data Representation
AMNES is adaptable to different data representations and is not
tied to the ones that are used in this paper for illustration pur-
poses. Adapting to different representations may require temporary
buffering and simple transformations. For instance, systems such as
Snowflake employ a format where groups of rows are mapped into
individual micro-partitions, organized in a columnar fashion [69].
Applying our design would require to transpose the micro-partition
to reconstruct the tuple. This can be easily done on the fly on an
FPGA without any performance loss. This is the reverse (columns
to rows) of the transformation performed by Oracle Exadata (rows
to columns). In the storage layer of Oracle Exadata, AMNES would
not need to transpose the data. In addition to columns-to-rows
transformations, FPGAs can efficiently decompress (e.g., delta en-
coding or run-length) and decrypt column-based structures [36].
Such operations can be easily integrated with our design.

For varying data arrival rates from different streams, the cache-
lines are assembled in a temporary input buffer. Faster source
streams will eventually experience pacing backpressure in this
process. For data types smaller than 8 bits (i.e., more than 64 items
in a cacheline), that exceed AMNES’s compute capacity, the input
data needs to be divided to match the engine size. Then multiple
iterations over the data are required so that all streams are mutually
correlated. This introduces latency but can be addressed as the next
case when data is wider than a cacheline.

Data spread across multiple cachelines can currently be handled
by instantiating multiple AMNES engines within the FPGA, with
one or two engines being allocated to each FPGA SLR and each
engine processing one cacheline at a time. For example, for 32-bit
data representation, a maximum of 6 engines can be instantiated on
the FPGA, with each engine occupying only half an SLR (the Alveo
U55c board comprises 3 SLRs). This implies processing data spread
across 6 cachelines, where each engine correlates 16 streams at a

time. Once the data from the 6 cachelines is analyzed (6× 120 = 720
PCCs) and placed in the CPU memory (RDMA use case), the CPU
application can trigger the 6 engines to compute the correlation
coefficient by combining streams from different cachelines.

5.5 Further Usage
The Kendall and Spearman correlation coefficients are non-
parametric statistical tests that rely on the data ranks rather than
the values themselves, requiring data to be sorted beforehand. The
Spearman coefficient (𝑟𝑆) can be calculated using AMNES when
the values are rank values associated with the stream values. Nev-
ertheless, if all ranks are distinct integers, the Spearman coefficient
is reduced to 𝑟𝑆 = 1 − 6

∑︁𝑁−1
𝑡=0 𝑑

2
𝑡

𝑁 (𝑁 2−1) , where 𝑑𝑡 represents the differ-
ence between the ranks of two observations. This formulation is
easier to implement on FPGA since it requires fewer accumula-
tors and multipliers than AMNES. The same ranked data can be
applied to the computation of the Kendall coefficient (𝜏), which
then reduces to comparisons and unitary additions, namely to
𝜏 =

𝑛𝑐−𝑛𝑑
1
2𝑁 (𝑁−1) , where 𝑛𝑐 represents the number of observations

ordered in the same way, and 𝑛𝑑 represents the number of ob-
servations ordered differently. The sufficient statistics gathered
in the ACC Engine can be used to estimate a simple linear re-
gression, a statistical function commonly available in relational
engines (e.g., Oracle’s REGR_SLOPE operator). If we consider the
general line equation 𝑌 = 𝑚𝑋 + 𝑛, knowing the stream values
X (∑︁𝑁−1

𝑡=0 𝑥𝑡) and Y (∑︁𝑁−1
𝑡=0 𝑦𝑡), then 𝑛 =

∑︁𝑁−1
𝑡=0 𝑦𝑡
𝑁

−𝑚 ∗
∑︁𝑁−1
𝑡=0 𝑥𝑡
𝑁

, and

𝑚 =
𝑁

∑︁𝑁−1
𝑡=0 𝑥𝑡 𝑦𝑡−

∑︁𝑁−1
𝑡=0 𝑥𝑡

∑︁𝑁−1
𝑡=0 𝑦𝑡

𝑁
∑︁𝑁−1
𝑡=0 𝑥2𝑡 −(

∑︁𝑁−1
𝑡=0 𝑥𝑡)2

by using the least squares method
for a set of paired data [29]. For only 𝑌 =𝑚𝑋 , m is calculated with
𝑚 =

∑︁𝑁−1
𝑡=0 𝑥𝑡 𝑦𝑡∑︁𝑁−1
𝑡=0 𝑥2𝑡

. The ACC Engine, notably its sum of products and
sum of squares, can be used for cosine similarity (CosSim) com-
putation [57], since 𝐶𝑜𝑠𝑆𝑖𝑚(𝑋,𝑌) =

∑︁𝑁−1
𝑡=0 𝑥𝑡 𝑦𝑡√︂∑︁𝑁−1

𝑡=0 𝑥2𝑡

√︂∑︁𝑁−1
𝑡=0 𝑦2𝑡

for two

streams X and Y. In turn, this can be used to derive the cosine dis-
tance (1-CosSim) between vectors in a multi-dimensional space [57].
Similarly, the statistics computed can be trivially employed to de-
rive other valuable meta-data such as variance, standard deviation,
or averages. With very little overhead, functions such as min, max,
top/bottom n outliers can be easily added to the overall design.

6 CONCLUSION
This paper explores the implementation space of advanced data
analytics while leveraging specialized hardware solutions. We focus
on correlation and show its integration as a coprocessor or on a
SmartNIC with an RDMA network interface, all without impacting
CPU or network performance. Maximum advantages emerge when
correlation is deployed within the network, as additional and unnec-
essary data transfers via PCIe are avoided. In this scenario, FPGA
outperforms multi-threaded CPU execution by 4.4× on average.

ACKNOWLEDGMENTS
We would like to thank AMD for the generous donation of the Het-
erogeneous Accelerated Compute Clusters (HACCs) at ETH Zurich
and the financial support for the research at the Systems Group.

4185

REFERENCES
[1] Statology 2021. Correlation Does Not Imply Causation: 5 Real-World Examples.

Statology. https://www.statology.org/correlation-does-not-imply-causation-
examples/

[2] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Antoine Murat,
Athanasios Xygkis, and Igor Zablotchi. 2023. uBFT: Microsecond-Scale BFT using
Disaggregated Memory. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2023, Vol. 2. ACM, 862–877. https://doi.org/10.1145/3575693.3575732

[3] Noga Alon, Yair Caro, and Raphael Yuster. 1998. Packing and covering dense
graphs. Journal of Combinatorial Designs 6, 6 (1998), 451–472. https://doi.org/10.
1002/(SICI)1520-6610(1998)6:6<451::AID-JCD6>3.0.CO;2-E

[4] Meteb M. Altaf, Eball H. Ahmad, Wei Li, Houxiang Zhang, Guoyuan Li, and
Changshun Yuan. 2015. An ultra-high-speed FPGA based digital correlation pro-
cessor. IEICE Electron. Express 12 (2015). https://doi.org/10.1587/elex.12.20150214

[5] AMD-Xilinx. [n.d.]. Floating-Point Operator v7.1 Product Guide (PG060). Retrieved
May 17, 2023 from https://docs.xilinx.com/v/u/en-US/pg060-floating-point

[6] Buda Andrzej and Jarynowski Andrzej. 2010. Life-time of correlations and its
applications.

[7] Jeff Barr. 2021. AQUA (Advanced Query Accelerator) – A Speed Boost for Your
Amazon Redshift Queries. Retrieved May 10, 2023 from https://aws.amazon.com/
blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/

[8] Tim Bock. [n.d.]. What is a Correlation Matrix? Retrieved November 03, 2022
from https://www.displayr.com/what-is-a-correlation-matrix/

[9] Sebastian Breß, Felix Beier, Hannes Rauhe, Kai-Uwe Sattler, Eike Schallehn, and
Gunter Saake. 2013. Efficient co-processor utilization in database query process-
ing. Inf. Syst. 38, 8 (2013), 1084–1096. https://doi.org/10.1016/j.is.2013.05.004

[10] Paul Brown and Peter J. Haas. 2003. BHUNT: Automatic Discovery of Fuzzy
Algebraic Constraints in Relational Data. In Proceedings of 29th International
Conference on Very Large Data Bases, VLDB 2003. Morgan Kaufmann, 668–679.
https://doi.org/10.1016/B978-012722442-8/50065-3

[11] Lei Cao and Elke A. Rundensteiner. 2013. High Performance Stream Query
Processing With Correlation-Aware Partitioning. Proc. VLDB Endow. 7, 4 (2013),
265–276. https://doi.org/10.14778/2732240.2732245

[12] Dar-Jen Chang, Ahmed H. Desoky, Ming Ouyang, and Eric C. Rouchka. 2009.
Compute Pairwise Manhattan Distance and Pearson Correlation Coefficient of
Data Points with GPU. In 10th ACIS International Conference on Software Engineer-
ing, Artificial Intelligences, Networking and Parallel/Distributed Computing, SNPD
2009. IEEE Computer Society, 501–506. https://doi.org/10.1109/SNPD.2009.34

[13] Monica Chiosa, Fabio Maschi, Ingo Müller, Gustavo Alonso, and Norman May.
2022. Hardware Acceleration of Compression and Encryption in SAPHANA. Proc.
VLDB Endow. 15, 12 (2022), 3277–3291. https://www.vldb.org/pvldb/vol15/p3277-
chiosa.pdf

[14] Stavros Christodoulakis. 1983. Estimating record selectivities. Information
Systems 8, 2 (1983), 105–115. https://doi.org/10.1016/0306-4379(83)90035-2

[15] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Known Algorithms
for Edge Clique Cover are Probably Optimal. SIAM J. Comput. 45, 1 (2016), 67–83.
https://doi.org/10.1137/130947076

[16] Ruslana Dalinina. 2017. Introduction to Correlation. Oracle AI & Data Science.
Retrieved March 2, 2022 from https://blogs.oracle.com/ai-and-datascience/post/
introduction-to-correlation

[17] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed
Workloads. Proc. VLDB Endow. 14, 2 (2020), 74–86. https://doi.org/10.14778/
3425879.3425880

[18] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2014. USENIX
Association, 401–414. https://www.usenix.org/conference/nsdi14/technical-
sessions/dragojevi%C4%87

[19] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates us-
ing Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057. https:
//doi.org/10.14778/3329772.3329780

[20] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2021.
COCOA: COrrelation COefficient-Aware Data Augmentation. In Proceedings of
the 24th International Conference on Extending Database Technology, EDBT 2021.
331–336. https://doi.org/10.5441/002/edbt.2021.30

[21] Arash Fard. 2019. How to Calculate a Correlation Matrix – Data Exploration for
Machine Learning. Vertica. https://www.vertica.com/blog/in-database-machine-
learning-2-calculate-a-correlation-matrix-a-data-exploration-post/

[22] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,
Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt
Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye,
Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Mad-
han Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak

Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg.
2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In 15th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2018.
51–66. https://www.usenix.org/conference/nsdi18/presentation/firestone

[23] Karl Freund. [n.d.]. Microsoft: FPGA Wins Versus Google TPUs For AI. Re-
trieved May 17, 2023 from https://moorinsightsstrategy.com/microsoft-fpga-
wins-versus-google-tpus-for-ai/

[24] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng Cao, Chen Tian, Jinbo
Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai, and Jiesheng Wu. 2021. When Cloud
Storage Meets RDMA. In 18th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2021. 519–533. https://www.usenix.org/conference/
nsdi21/presentation/gao

[25] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org
[26] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-

hye, and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale.
In Proceedings of the ACM SIGCOMM Conference 2016. ACM, 202–215. https:
//doi.org/10.1145/2934872.2934908

[27] Mark A. Hall. 2000. Correlation-based Feature Selection for Discrete and Nu-
meric Class Machine Learning. In Proceedings of the Seventeenth International
Conference on Machine Learning (ICML) 2000. 359–366.

[28] Max Heimel and Volker Markl. 2012. A First Step Towards GPU-assisted Query
Optimization. In International Workshop on Accelerating Data Management Sys-
tems Using Modern Processor and Storage Architectures - ADMS 2012. 33–44.
http://www.adms-conf.org/heimel_adms12.pdf

[29] Cynthia Helzner. 2022. Least Squares Regression: Formula, Method, and Exam-
ples. https://study.com/academy/lesson/least-squares-regression-definition-
equations-examples.html

[30] Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga.
2004. CORDS: Automatic Discovery of Correlations and Soft Functional Depen-
dencies. In Proceedings of the International Conference on Management of Data,
SIGMOD 2004. 647–658. https://doi.org/10.1145/1007568.1007641

[31] Intel. 2022. Compare Benefits of CPUs, GPUs, and FPGAs for Differ-
ent oneAPI Compute Workloads. Retrieved May 23, 2023 from https:
//www.intel.com/content/www/us/en/developer/articles/technical/comparing-
cpus-gpus-and-fpgas-for-oneapi.html

[32] Zsolt István, Louis Woods, and Gustavo Alonso. 2014. Histograms as a side effect
of data movement for big data. In International Conference on Management of
Data, SIGMOD 2014. 1567–1578. https://doi.org/10.1145/2588555.2612174

[33] Vladimir Ivanov and Todor Stoilov. 2019. Design and Implementation of Moving
Average Calculations with Hardware FPGA Device. In Advanced Computing in
Industrial Mathematics: 12th Annual Meeting of the Bulgarian Section of SIAM
2017. Springer, 189–197.

[34] Carlos M. Jarque. 2011. Jarque-Bera Test. In International Encyclopedia of Statis-
tical Science. 701–702. https://doi.org/10.1007/978-3-642-04898-2_319

[35] Manas Joglekar, Hector Garcia-Molina, Aditya G. Parameswaran, and Christo-
pher Ré. 2015. Exploiting Correlations for Expensive Predicate Evaluation. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data 2015. 1183–1198. https://doi.org/10.1145/2723372.2723715

[36] KaanKara, Ken Eguro, Ce Zhang, andGustavoAlonso. 2018. ColumnML: Column-
Store Machine Learning with On-The-Fly Data Transformation. Proc. VLDB
Endow. 12, 4 (2018), 348–361. https://doi.org/10.14778/3297753.3297756

[37] Yiping Ke, James Cheng, and Wilfred Ng. 2007. Correlation search in graph
databases. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 2007. 390–399. https://doi.org/10.1145/
1281192.1281236

[38] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B.
Zdonik. 2009. Correlation Maps: A Compressed Access Method for Exploit-
ing Soft Functional Dependencies. Proc. VLDB Endow. 2, 1 (2009), 1222–1233.
https://doi.org/10.14778/1687627.1687765

[39] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stan-
ley B. Zdonik. 2010. CORADD: Correlation Aware Database Designer for
Materialized Views and Indexes. Proc. VLDB Endow. 3, 1 (2010), 1103–1113.
https://doi.org/10.14778/1920841.1920979

[40] Nicolas Klodt, Lars Seifert, Arthur Zahn, Katrin Casel, Davis Issac, and Tobias
Friedrich. 2021. A Color-blind 3-Approximation for Chromatic Correlation
Clustering and Improved Heuristics. In The 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining 2021. 882–891. https://doi.org/10.1145/
3447548.3467446

[41] Michael A. Koets and Peter W. A. Roming. 2021. Computationally Efficient Image
Correlation for De-blurring with Photon-Counting Instruments. In 2021 IEEE
Aerospace Conference (50100). 1–8. https://doi.org/10.1109/AERO50100.2021.
9438236

[42] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov,
Dejan S. Milojicic, and Gustavo Alonso. 2022. Farview: Disaggregated Memory
with Operator Off-loading for Database Engines. In 12th Conference on Innovative
Data Systems Research, CIDR 2022. https://www.cidrdb.org/cidr2022/papers/p11-

4186

https://www.statology.org/correlation-does-not-imply-causation-examples/
https://www.statology.org/correlation-does-not-imply-causation-examples/
https://doi.org/10.1145/3575693.3575732
https://doi.org/10.1002/(SICI)1520-6610(1998)6:6<451::AID-JCD6>3.0.CO;2-E
https://doi.org/10.1002/(SICI)1520-6610(1998)6:6<451::AID-JCD6>3.0.CO;2-E
https://doi.org/10.1587/elex.12.20150214
https://docs.xilinx.com/v/u/en-US/pg060-floating-point
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://www.displayr.com/what-is-a-correlation-matrix/
https://doi.org/10.1016/j.is.2013.05.004
https://doi.org/10.1016/B978-012722442-8/50065-3
https://doi.org/10.14778/2732240.2732245
https://doi.org/10.1109/SNPD.2009.34
https://www.vldb.org/pvldb/vol15/p3277-chiosa.pdf
https://www.vldb.org/pvldb/vol15/p3277-chiosa.pdf
https://doi.org/10.1016/0306-4379(83)90035-2
https://doi.org/10.1137/130947076
https://blogs.oracle.com/ai-and-datascience/post/introduction-to-correlation
https://blogs.oracle.com/ai-and-datascience/post/introduction-to-correlation
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3425879.3425880
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.5441/002/edbt.2021.30
https://www.vertica.com/blog/in-database-machine-learning-2-calculate-a-correlation-matrix-a-data-exploration-post/
https://www.vertica.com/blog/in-database-machine-learning-2-calculate-a-correlation-matrix-a-data-exploration-post/
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://moorinsightsstrategy.com/microsoft-fpga-wins-versus-google-tpus-for-ai/
https://moorinsightsstrategy.com/microsoft-fpga-wins-versus-google-tpus-for-ai/
https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/nsdi21/presentation/gao
http://eigen.tuxfamily.org
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
http://www.adms-conf.org/heimel_adms12.pdf
https://study.com/academy/lesson/least-squares-regression-definition-equations-examples.html
https://study.com/academy/lesson/least-squares-regression-definition-equations-examples.html
https://doi.org/10.1145/1007568.1007641
https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-gpus-and-fpgas-for-oneapi.html
https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-gpus-and-fpgas-for-oneapi.html
https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-gpus-and-fpgas-for-oneapi.html
https://doi.org/10.1145/2588555.2612174
https://doi.org/10.1007/978-3-642-04898-2_319
https://doi.org/10.1145/2723372.2723715
https://doi.org/10.14778/3297753.3297756
https://doi.org/10.1145/1281192.1281236
https://doi.org/10.1145/1281192.1281236
https://doi.org/10.14778/1687627.1687765
https://doi.org/10.14778/1920841.1920979
https://doi.org/10.1145/3447548.3467446
https://doi.org/10.1145/3447548.3467446
https://doi.org/10.1109/AERO50100.2021.9438236
https://doi.org/10.1109/AERO50100.2021.9438236
https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf

korolija.pdf
[43] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstractions

make sense on FPGAs?. In 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020. 991–1010. https://www.usenix.org/conference/
osdi20/presentation/roscoe

[44] Alexander Kumaigorodski, Clemens Lutz, and Volker Markl. 2021. Fast CSV
Loading Using GPUs and RDMA for In-Memory Data Processing. In Daten-
banksysteme für Business, Technologie und Web (BTW) 2021 (LNI, Vol. P-311).
19–38. https://doi.org/10.18420/btw2021-01

[45] Lak Lakshmanan. 2019. Simplified data transformations for machine learning
in BigQuery. Google Cloud. https://cloud.google.com/blog/products/data-
analytics/simplified-data-transformations-for-machine-learning-in-bigquery

[46] Se Kwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K. Aguilera, Kimberly
Keeton, and Vijay Chidambaram. 2022. DINOMO: An Elastic, Scalable, High-
Performance Key-Value Store for Disaggregated Persistent Memory (Extended
Version). CoRR abs/2209.08743 (2022). https://doi.org/10.48550/arXiv.2209.08743

[47] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, An-
drew Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-
Performance In-Memory Key-Value Store with Programmable NIC. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles 2017. 137–152.
https://doi.org/10.1145/3132747.3132756

[48] Yuhong Li, Leong Hou U, Man Lung Yiu, and Zhiguo Gong. 2016. Efficient
discovery of longest-lasting correlation in sequence databases. VLDB Journal 25,
6 (2016), 767–790. https://doi.org/10.1007/s00778-016-0432-7

[49] Allison Linn. 2018. Real-time AI: Microsoft announces preview of Project Brainwave.
Microsoft. https://blogs.microsoft.com/ai/build-2018-project-brainwave/

[50] Yuchen Liu, Hai Liu, Dongqing Xiao, and Mohamed Y. Eltabakh. 2018. Adaptive
correlation exploitation in big data query optimization. VLDB Journal 27, 6
(2018), 873–898. https://doi.org/10.1007/s00778-018-0515-8

[51] Guy Lohman. 2014. Is Query Optimization a "Solved" Problem? ACM SIGMOD
Blog. https://wp.sigmod.org/?p=1075

[52] Bernard Marr. 2016. Key Business Analytics: The 60+ business analysis tools every
manager needs to know. Pearson UK.

[53] Matt McGee. 2014. Microsoft’s Catapult Project Aims To Speed Bing Search, Im-
prove Relevancy. SearchEngineLand. https://searchengineland.com/microsofts-
catapult-project-aims-speed-bing-search-improve-relevancy-194345

[54] Microsoft. [n.d.]. Empowering Azure Storage with RDMA. Retrieved May 31, 2023
from https://www.microsoft.com/en-us/research/uploads/prod/2023/03/RDMA_
Experience_Paper_TR-1.pdf

[55] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2022.
Rethinking Stateful Stream Processing with RDMA. In Processings of the Inter-
national Conference on Management of Data, SIGMOD 2022. 1078–1092. https:
//doi.org/10.1145/3514221.3517826

[56] Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast approximate correlation for
massive time-series data. In Proceedings of the International Conference onManage-
ment of Data, SIGMOD 2010. 171–182. https://doi.org/10.1145/1807167.1807188

[57] Brendan O’Connor. 2012. Cosine similarity, Pearson correlation, and OLS coeffi-
cients. Retrieved May 12, 2023 from https://brenocon.com/blog/2012/03/cosine-
similarity-pearson-correlation-and-ols-coefficients/

[58] Vladimir Andrei Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa, Cristi
Baciu, Mark Silberstein, Georgios Nikolaidis, Mark Handley, and Costin Raiciu.
2022. An edge-queued datagram service for all datacenter traffic. In 19th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2022. 761–777.
https://www.usenix.org/conference/nsdi22/presentation/olteanu

[59] Oracle. 2017. Oracle Exadata Architecture. Retrieved May 12, 2023 from
https://www.oracle.com/database/technologies/exadata/architecture/

[60] Thinh Hung Pham, Suhaib A. Fahmy, and Ian Vince McLoughlin. 2013. Low-
Power Correlation for IEEE 802.16 OFDM Synchronization on FPGA. IEEE Trans.
Very Large Scale Integr. Syst. 21, 8 (2013), 1549–1553. https://doi.org/10.1109/
TVLSI.2012.2210917

[61] PyTorch. [n.d.]. TORCH.CORRCOEF. Retrieved May 17, 2023 from https:
//pytorch.org/docs/stable/generated/torch.corrcoef.html

[62] Waleed Reda, Marco Canini, Dejan Kostic, and Simon Peter. 2022. RDMA is
Turing complete, we just did not know it yet!. In 19th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2022. 71–85. https:
//www.usenix.org/conference/nsdi22/presentation/reda

[63] Joseph Lee Rodgers and W Alan Nicewander. 1988. Thirteen ways to look
at the correlation coefficient. American statistician 42 (1988), 59–66. https:
//doi.org/10.2307/2685263

[64] André Ryser, Alberto Lerner, Alex Forencich, and Philippe Cudré-Mauroux.
2022. D-RDMA: Bringing Zero-Copy RDMA to Database Systems. In 12th

Conference on Innovative Data Systems Research, CIDR 2022. www.cidrdb.org.
https://www.cidrdb.org/cidr2022/papers/p77-ryser.pdf

[65] Md. Shiblee Sadik, Le Gruenwald, and Eleazar Leal. 2018. Wadjet: Finding Out-
liers in Multiple Multi-Dimensional Heterogeneous Data Streams. In 34th IEEE
International Conference on Data Engineering, ICDE 2018. 1232–1235. https:
//doi.org/10.1109/ICDE.2018.00118

[66] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. 2005. BRAID:
Stream Mining through Group Lag Correlations. In Proceedings of the Inter-
national Conference on Management of Data, SIGMOD 2005. 599–610. https:
//doi.org/10.1145/1066157.1066226

[67] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso.
2020. StRoM: Smart Remote Memory. In Fifteenth EuroSys Conference, EuroSys
2020. 29:1–29:16. https://doi.org/10.1145/3342195.3387519

[68] Snowflake. [n.d.]. Overview of Warehouses. Retrieved May 31, 2023 from
https://docs.snowflake.com/en/user-guide/warehouses-overview

[69] Snowflake. 2014. Understanding Snowflake Table Structures. Retrieved May 12,
2023 from https://docs.snowflake.com/en/user-guide/tables-micro-partitions

[70] NCSS Statistical Software. [n.d.]. Correlation Matrix. NCSS. https://ncss-
wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/
Correlation_Matrix.pdf

[71] Statistics Solutions. [n.d.]. Correlation (Pearson, Kendall, Spearman). Statistics So-
lutions. Retrieved March 23, 2022 from https://www.statisticssolutions.com/free-
resources/directory-of-statistical-analyses/correlation-pearson-kendall-
spearman/

[72] Laerd Statistics. [n.d.]. Pearson Product-Moment Correlation. Laerd Statis-
tics. Retrieved March 23, 2022 from https://statistics.laerd.com/statistical-
guides/pearson-correlation-coefficient-statistical-guide.php

[73] ETH Zurich Systems Group. [n.d.]. Scalable Network Stack for FPGAs (TCP/IP, Ro-
CEv2). Retrieved November 03, 2022 from https://github.com/fpgasystems/fpga-
network-stack

[74] ETH Zurich Systems Group. 2020. Heterogeneous Accelerated Compute Clus-
ter. Retrieved November 03, 2022 from https://systems.ethz.ch/research/data-
processing-on-modern-hardware/hacc.html

[75] ETH Zurich Systems Group. 2023. AMNES. Retrieved August 10 , 2023 from
https://github.com/fpgasystems/amnes

[76] Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu. 2022. Replicat-
ing Persistent Memory Key-Value Stores with Efficient RDMA Abstrac-
tion. CoRR abs/2209.09459 (2022). https://doi.org/10.48550/arXiv.2209.09459
arXiv:2209.09459

[77] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber. 2019.
Designing Succinct Secondary Indexing Mechanism by Exploiting Column Cor-
relations. In Proceedings of the International Conference on Management of Data,
SIGMOD 2019. 1223–1240. https://doi.org/10.1145/3299869.3319861

[78] AMD Xilinx. 2022. DMA/Bridge Subsystem for PCI Express Product Guide (PG195).
AMD Xilinx. https://docs.xilinx.com/r/en-US/pg195-pcie-dma

[79] AMD Xilinx. 2022. Overview of Arbitrary Precision Integer Data Types (UG1399).
AMD Xilinx. https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-
Arbitrary-Precision-Integer-Data-Types

[80] Hui Xiong, Shashi Shekhar, Pang-Ning Tan, and Vipin Kumar. 2006. TAPER: A
Two-Step Approach for All-Strong-Pairs Correlation Query in Large Databases.
IEEE Trans. Knowl. Data Eng. 18, 4 (2006), 493–508. https://doi.org/10.1109/
TKDE.2006.1599388

[81] Lei Yu and Huan Liu. 2003. Feature Selection for High-Dimensional Data: A
Fast Correlation-Based Filter Solution. In Machine Learning, Proceedings of the
Twentieth International Conference (ICML) 2003. 856–863. http://www.aaai.org/
Library/ICML/2003/icml03-111.php

[82] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim Kraska. 2019. Re-
thinking Database High Availability with RDMA Networks. Proc. VLDB Endow.
12, 11 (2019), 1637–1650. https://doi.org/10.14778/3342263.3342639

[83] Jian Zhang and Joan Feigenbaum. 2006. Finding highly correlated pairs ef-
ficiently with powerful pruning. In Proceedings of the International Confer-
ence on Information and Knowledge Management, CIKM 2006. 152–161. https:
//doi.org/10.1145/1183614.1183640

[84] Tao Zhang, Tianqing Zhu, Ping Xiong, Huan Huo, Zahir Tari, and Wanlei Zhou.
2020. Correlated Differential Privacy: Feature Selection in Machine Learning.
IEEE Trans. Ind. Informatics 16, 3 (2020), 2115–2124. https://doi.org/10.1109/TII.
2019.2936825

[85] Yunyue Zhu and Dennis E. Shasha. 2002. StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time. In Proceedings of 28th International
Conference on Very Large Data Bases, VLDB 2002. Morgan Kaufmann, 358–369.
https://doi.org/10.1016/B978-155860869-6/50039-1

4187

https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.18420/btw2021-01
https://cloud.google.com/blog/products/data-analytics/simplified-data-transformations-for-machine-learning-in-bigquery
https://cloud.google.com/blog/products/data-analytics/simplified-data-transformations-for-machine-learning-in-bigquery
https://doi.org/10.48550/arXiv.2209.08743
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1007/s00778-016-0432-7
https://blogs.microsoft.com/ai/build-2018-project-brainwave/
https://doi.org/10.1007/s00778-018-0515-8
https://wp.sigmod.org/?p=1075
https://searchengineland.com/microsofts-catapult-project-aims-speed-bing-search-improve-relevancy-194345
https://searchengineland.com/microsofts-catapult-project-aims-speed-bing-search-improve-relevancy-194345
https://www.microsoft.com/en-us/research/uploads/prod/2023/03/RDMA_Experience_Paper_TR-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2023/03/RDMA_Experience_Paper_TR-1.pdf
https://doi.org/10.1145/3514221.3517826
https://doi.org/10.1145/3514221.3517826
https://doi.org/10.1145/1807167.1807188
https://brenocon.com/blog/2012/03/cosine-similarity-pearson-correlation-and-ols-coefficients/
https://brenocon.com/blog/2012/03/cosine-similarity-pearson-correlation-and-ols-coefficients/
https://www.usenix.org/conference/nsdi22/presentation/olteanu
https://www.oracle.com/database/technologies/exadata/architecture/
https://doi.org/10.1109/TVLSI.2012.2210917
https://doi.org/10.1109/TVLSI.2012.2210917
https://pytorch.org/docs/stable/generated/torch.corrcoef.html
https://pytorch.org/docs/stable/generated/torch.corrcoef.html
https://www.usenix.org/conference/nsdi22/presentation/reda
https://www.usenix.org/conference/nsdi22/presentation/reda
https://doi.org/10.2307/2685263
https://doi.org/10.2307/2685263
https://www.cidrdb.org/cidr2022/papers/p77-ryser.pdf
https://doi.org/10.1109/ICDE.2018.00118
https://doi.org/10.1109/ICDE.2018.00118
https://doi.org/10.1145/1066157.1066226
https://doi.org/10.1145/1066157.1066226
https://doi.org/10.1145/3342195.3387519
https://docs.snowflake.com/en/user-guide/warehouses-overview
https://docs.snowflake.com/en/user-guide/tables-micro-partitions
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Correlation_Matrix.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Correlation_Matrix.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Correlation_Matrix.pdf
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/correlation-pearson-kendall-spearman/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/correlation-pearson-kendall-spearman/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/correlation-pearson-kendall-spearman/
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://github.com/fpgasystems/fpga-network-stack
https://github.com/fpgasystems/fpga-network-stack
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
https://github.com/fpgasystems/amnes
https://doi.org/10.48550/arXiv.2209.09459
https://arxiv.org/abs/2209.09459
https://doi.org/10.1145/3299869.3319861
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Precision-Integer-Data-Types
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Precision-Integer-Data-Types
https://doi.org/10.1109/TKDE.2006.1599388
https://doi.org/10.1109/TKDE.2006.1599388
http://www.aaai.org/Library/ICML/2003/icml03-111.php
http://www.aaai.org/Library/ICML/2003/icml03-111.php
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.1145/1183614.1183640
https://doi.org/10.1145/1183614.1183640
https://doi.org/10.1109/TII.2019.2936825
https://doi.org/10.1109/TII.2019.2936825
https://doi.org/10.1016/B978-155860869-6/50039-1

	Abstract
	1 Introduction
	2 Background
	2.1 The Correlation Coefficients
	2.2 RDMA

	3 Correlation Engine
	3.1 System Overview
	3.2 The ACC Engine
	3.3 The COEFF Engine
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setting
	4.2 Baselines
	4.3 Datasets
	4.4 Comparison with Relational Operators
	4.5 Correlation on a Coprocessor
	4.6 Correlation on a SmartNIC

	5 Discussion
	5.1 Number of Streams
	5.2 Engine Generalization
	5.3 Challenges of Using FPGAs
	5.4 Data Representation
	5.5 Further Usage

	6 Conclusion
	References

