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ABSTRACT
Utilizing cloud for common and critical computing infrastructures

has already become the norm across the board. The rapid evolve-

ment of the underlying cloud infrastructure and the revolutionary

development of AI present both challenges and opportunities for

building new database architectures and systems. It is crucial to

modernize database systems in the cloud era, so that next genera-

tion cloud native databases may run like legos–they are adaptive,

flexible, reliable, and smart towards dynamic workloads and varying

requirements.

That said, we observe four critical trends and requirements for

the modernization of cloud databases: embracing cloud-native ar-

chitecture, full integration with cloud platform and orchestration,

co-design for data fabric, and moving towards being AI augmented.

Modernizing database systems by adopting these critical trends and

addressing key challenges associated with them provide ample op-

portunities for data management communities from both academia

and industry to explore. We will provide an in-depth case study of

how we modernize PolarDB with respect to embracing these four

trends in the cloud era. Our ultimate goal is to build databases that

run just like playing with legos, so that a database system fits for

rich and dynamic workloads and requirements in a self-adaptive,

performant, easy-/intuitive-to use, reliable, and intelligent manner.
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1 INTRODUCTION
Cloud has become the de-factor IT infrastructure standard for large

and small enterprises across almost all industry sectors. With the

increasing deployment of mission critical systems for businesses

ranging from transaction processing to analytical processing on

the cloud, fundamental changes are required for moving database

systems to the cloud. In particular, we need to transform cloud-
hosted databases to cloud-native databases so that database systems

take the best advantages of the underlying cloud infrastructure.

Meanwhile, with the rapid deployment of AI and big data technolo-

gies, database systems need to be more intelligent, so that they are

easy and intuitive to use. In summary, database systems need to be
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modernized in the cloud-era, so that they are born to be both cloud

native and AI native.

That said, we identify four critical trends and requirements for

the modernization of cloud databases: embracing cloud-native ar-
chitecture, full integration with cloud platform and orchestration,
co-design for data fabric, and moving towards being AI augmented.
Modernizing database systems by adopting these critical trends and

addressing key challenges associated with them provide ample op-

portunities for data management communities from both academia

and industry to explore. We will provide an in-depth case study of

how we modernize PolarDB with respect to embracing these four

trends in the cloud era.

In particular, major cloud service providers have deployed the lat-

est networking infrastructure, memory/storage technologies, and

interconnected heterogeneous computing devices in their IDCs,

such as RDMA, persistent memories, CXL memories, cloud storage,

FPGA, GPUs, DPAs such as bluefiled and more. Meanwhile, the or-

chestration of cloud resources has evolved quickly from hypervisor-

based virtual machines to light-weight containers using kubernetes

(and a mixture of the two). The first generation of cloud native

database explores the decouple of computation and storage, so that

computation nodes and storage nodes in a database system can

independently scale. That is no longer sufficient, in order to fully ex-

plore the potential of what the underlying cloud infrastructure has

to offer. The new generation of cloud native database systems needs

to disaggregate storage, memory, and cpu cores, so that advanced

features such as serverless, multi-master can be more naturally de-

veloped. At the same time, orchestration of (often, the computation

nodes) container-based cloud native database instances becomes a

critical need to achieve high availability, high elasticity and high

resource utilization efficiency.

Furthermore, as more and more data are moving to the cloud and

being generated in the cloud, business applications on the cloud in-

creasingly demand agile development and deployment frameworks

for their data processing needs, ranging from transaction processing

to analytical processing. The concept of data-fabric becomes both

popular and important, that is to enable the easy-sharing and the

smooth-flow of data in-between different data processing engines

and eco-systems without trouble. This requires the co-design of dif-

ferent cloud native database systems to achieve data-fabric, such as

zero-ETL between OLTP and OLAP database systems, cloud-native

HTAP, sharing of meta-data among different cloud native database

systems, etc.

Lastly, with the eruptive development of ML and AI technologies,

LLM (large language model) being a latest example, integrating

AI technologies natively inside a database system will become a

standard practice. In addition to having ML-based tuning, monitor-

ing, and optimization for database systems (i.e., AIops for database
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Figure 1: Building databases that run like legos.

systems), supporting AI inference inside a database system will also

become widely available. Furthermore, vector database or vector

engine will be a commodity in most database systems to store and

processing high dimension vectors produced by the embedding

process of various LLMs. ML and AI technologies will also change

the way how we interact with a database system. NL2SQL (and

NL2API) interface will witness wide adoption in BI and data science

applications.

In this keynote, we will highlight the key challenges and develop-

ment of modern cloud native databases using PolarDB as an example.

Our ultimate goal is to build databases that run just like playing

with legos as shown in Figure 1, so that a database system fits for

rich and dynamic workloads and requirements in a self-adaptive,

performant, easy-/intuitive-to use, reliable, and intelligent manner.

2 MODERNIZATION OF CLOUD DATABASES
2.1 Four Trends
As mentioned above, we have observed four critical trends and

requirements for the modernization of cloud databases: embracing

cloud-native architecture, full integration with cloud platform and

orchestration, co-design for data fabric, and moving towards being

AI augmented. We will first give an overview of PolarDB and then

provide an in-depth study of PolarDB to demonstrate the develop-

ment of modern cloud databases with respect to these four critical

trends and requirements.

2.2 A Case Study: PolarDB
PolarDB [26] is a cloud native database system developed at Alibaba

Cloud, and adopts a shared storage architecture. It is derived from

theMySQL code base and uses PolarFS [11] as its underlying storage

pool. It includes one primary read-write node (i.e., RW node) and

multiple read-only replicas (i.e., RO nodes) in the compute node

layer. Like a traditional database kernel, each RW or RO node

contains a SQL processor, a transaction engine (like InnoDB [32],

X-Engine [23]), and a buffer pool to serve queries and transactions.

In addition, there are some stateless proxy nodes for the purpose

of load balancing.

Figure 2: PolarDB Architecture.

PolarFS is a durable, atomic and scale-out distributed storage

service. It provides virtual volumes that are partitioned into chunks

of 10GB size, which are distributed into multiple storage nodes. A

volume contains up to 10000 chunks, and can provide a maximum

capacity of 100TB. These chunks are provisioned on demand, so

that volume space can grow dynamically. Each chunk has three

replicas, and linear serializablility is guaranteed through Parallel
Raft, which is a consensus protocol derived from Raft.

The RW node and RO nodes synchronize memory status through

redo logs, and coordinate consistency through log sequence number

(LSN), which indicates an offset of redo log files (e.g., in InnoDB). As
shown in Figure 2, in a transaction 1○, after RW finishes flushing

all redo log records to PolarFS 2○, the transaction can be committed

3○. RW broadcasts messages that the redo log have been updated

as well as the latest LSN 𝑙𝑠𝑛𝑅𝑊 to all RO nodes asynchronously

4○. After the node 𝑅𝑂𝑖 receives the message from RW, it pulls up-

dates of redo log from PolarFS 5○, and applies them to the buffered

page in buffer pool 6○, so that 𝑅𝑂𝑖 keeps synchronized with RW.

Then 𝑅𝑂𝑖 piggybacks the consumed redo log offset 𝑙𝑠𝑛𝑅𝑂𝑖
in the

reply and sends it back to RW 7○. RW can purge the redo log be-

fore the𝑚𝑖𝑛{𝑙𝑠𝑛𝑅𝑂𝑖
} location, and flush the dirty pages elder than

𝑚𝑖𝑛{𝑙𝑠𝑛𝑅𝑂𝑖
} to PolarFS in the background 8○. While 𝑅𝑂𝑖 can serve
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(a) shared storage architecture (b) disaggregation architecture

Figure 3: Architectures for resource disaggregation.

read transactions using the snapshot isolation with version before

𝑙𝑠𝑛𝑅𝑂𝑖
9○. Some RO nodes may fall behind because of high CPU

utilization or network congestion. Say there is a certain node 𝑅𝑂𝑘 ,

whose LSN 𝑙𝑠𝑛𝑅𝑂𝑘
is much lower than that of RW 𝑙𝑠𝑛𝑅𝑊 (the lag

is larger than one million). Such node 𝑅𝑂𝑘 will be detected and

kicked out of the cluster to avoid slowing down RW through dirty

page flushes.

Those stateless proxy nodes provide transparent load balancing

service for separating read and write traffics, i.e., distributing read

requests to RO nodes and forwarding write requests to RW.

3 CLOUD-NATIVE ARCHITECTURE
This section introduces PolarDB’s capabilities that embrace the

advantages of cloud-native architecture. They have significantly

strengthened the system’s flexibility (e.g., via resource disaggrega-
tion), efficiency (e.g., via multi-master replication), and consistency

(e.g., via strong-consistent reads).

3.1 Resource Disaggregation
3.1.1 Background. There are three typical architectures for cloud
databases: 1) monolithic machine; 2) virtual machine with remote
disk; and 3) shared storage as shown in Figure 3(a). The last two can

be referred as the decouple of computation and storage. Though these
architectures have been widely used, they all suffer from challenges

caused by resource coupling.

Under the monolithic machine architecture, all resources (e.g.,
CPU, memory and storage) are tightly coupled. Different resources

allocated on a physical machine are difficult to sustain at a high

utilization rate, and hence they are prone to fragmentation. In

addition, a system with tightly coupled resources has the problem

of fate sharing, i.e., the failure of one resource will cause the failure
of other resources, leading to longer system recovery time. With

the decouple of computation and storage architecture, DBaaS (DB as

a service) can independently improve the resource utilization of the

storage pool. The shared storage subtype further reduces storage
costs — the primary and read replicas can attach and share the

same storage. Read replicas help to serve high-volume read traffic

and offload analytical queries from the primary. However, in all

these architectures, problems like bin-packing of CPU and memory,

lacking of flexible and scalable memory resources, remain unsolved.

Furthermore, each read replica keeps a redundant in-memory data

copy, leading to high memory costs.

3.1.2 PolarDB serverless. To address above issues, we propose

a novel cloud database paradigm called disaggregation architec-

ture [13] as shown in Figure 3(b). It goes one step further than the

shared storage architecture. The disaggregation architecture runs

in the disaggregated data centers (DDC), in which CPU, memory

and storage resources are no longer tightly coupled as in a mono-

lithic machine. Resources are located in different nodes connected

through high-speed network. As a result, each resource type can

improve its utilization rate and expand its volume independently.

This also eliminates fate sharing, i.e., allowing each resource be

recovered from failure and upgraded independently. Moreover, data

pages in the remote memory pool can be shared among multiple

database processes, analogous to the storage pool being shared

in shared storage architecture. Adding a read replica no longer in-

creases the cost of memory resources, except for consuming a small

piece of local memory.

Following this disaggregation architecture, we build PolarDB
Serverless [13]. It introduces a multi-tenant scale-out memory pool,

including page allocation and life cycle management. Our first

challenge is to ensure that the system executes transactions correctly
after adding remote memory to the system. For example, read after

write should not miss any updates even across nodes. We solve

it using cache invalidation. When RW is splitting or merging a

B+Tree index, other RO nodes should not see an inconsistent B-

tree structure in the middle. We protect it with global page latches.

When a RO node performs read-only transactions, it must avoid

reading anything written by uncommitted transactions. We achieve

it through the synchronization of read views between database

nodes.

Besides, the evolution of the disaggregation architecture could

have a negative impact on the database performance. It is because

the data is likely to be accessed from the remote, which introduces

significant network latency. Our second challenge is to execute

transactions efficiently. We exploit RDMA optimization extensively,

especially one-sided RDMA verbs, including using RDMA CAS [42]

to optimize the acquisition of global latches. In order to improve

concurrency, both RW and RO nodes use optimistic locking tech-

niques to avoid unnecessary global latches. On the storage side,

page materialization offloading allows dirty pages to be evicted

from remote memory without flushing them to the storage, while

index-aware prefetching improves query performance.

Finally, the disaggregation architecture complicates the system

and hence increases the variety and probability of system failures.

As a cloud database service, our third challenge is to build a reliable
system. We derive our strategies to handle single-node crashes of

different node types, which guarantee that there is no single-point

failure in the system. Because the states in memory and storage

are decoupled from the database node, crash recovery time of the

RW node becomes 5.3 times faster [13] than that in the monolithic
machine architecture.

3.2 Multi-Master Replication
3.2.1 Background. Recall that PolarDB consists of one primary

(RW) node to process the read/write requests and one or more

secondary (RO) nodes to handle read-only requests. However, in

write-heavy workloads, the single primary node will become the
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Figure 4: Architecture of PolarDB-MM.

bottleneck. We have to scale up the primary node when the write

pressure becomes heavy, but it is still restricted by the physical

machine’s specification. When the primary node fails, one of the

secondary nodes will be promoted to the new secondary node. How-

ever, this kind of high-availability still induces a brief downtime

during failover [1]. Thus, multi-master cloud-native databases are

highly required to support high scalability and availability.

3.2.2 PolarDB-MM. We design and implement PolarDB-MM (Po-
larDBMulti-Master) on top of PolarDB’s shared storage architecture.
It still uses PolarFS [11] as the shared storage, but multiple master

nodes are connected with the shared storage. All master nodes

have equal access to the shared storage. What’s more, we use mod-

ern RDMA network to speed up communication among different

masters.

Figure 4 shows the overview architecture. All master nodes share

the same data and have equal access to the shared data, and they

could process read/write requests simultaneously. The core compo-

nent is the Polar Multi-Master Fusion Services (PF) that serves the
master nodes to achieve concurrent transaction execution. The mas-

ter nodes and PF are connected via the high-speed RDMA network.

Our highly-optimized RDMA library supports ultra-low-latency

communication between masters and PF. PF only serves master

nodes, having no connection to the storage. All the I/Os are issued

on the master nodes.

PF has three components, i.e., buffer fusion, transaction fusion and
lock fusion. Buffer fusion is designed to achieve buffer coherency

between different master nodes. In PolarDB-MM, each master node

has its own buffer pool and PF maintains a global buffer pool in

its buffer fusion module. Since all master nodes have equal access

to the shared storage, each data page can be read/written by any

master. So we design the distributed page locking scheme to con-

trol the inter-master concurrent page data access. A master has

to require a shared/exclusive lock to read/write a page from the

global buffer pool. Once a master updates a page, it will invalidate

that page on other masters’ local buffer pools before releasing the

page lock. Buffer fusion achieves the page’s consistent state in the

multi-master cluster.

Based on the consistent page state, transaction fusion further

supports the concurrent transaction execution on multiple masters,

while guaranteeing the transaction’s ACID. Transaction fusion

provides a centralized Timestamp Oracle (TSO) that monitors the

commits of all transactions. Each transaction has to request a global

commit timestamp (CTS) from the TSO before committing. The

CTS reflects the transaction’s ordering. PolarDB-MM also supports

MVCC to achieve high-throughput and lock-free snapshot reads.

Transaction fusion provides a novel transaction system to speed

up the transaction’s visibility decision.

Lock fusion supports the row-level lock for the concurrent trans-

action’s execution on different master nodes. To support efficient

locking on different nodes, we store the lock information with the

row data. This could save a lot of overhead to maintain the lock

information in a global data structure.

Our evaluation shows that PolarDB-MM has linear scalability

when different masters access different parts of the dataset, and each

node’s throughput only drops by 15%-30% when they uniformly

access all the data in SysBench’s read-write workload.

3.3 Strong-consistent Reads
3.3.1 Background. In PolarDB, to keep an RO node’s buffered data

up-to-date, the RW node generates the corresponding log for each

update and ships the log to RO nodes. RO nodes apply the log

to update their buffered data. Since the log application process

is asynchronous, an RO node may be unable to return the latest

updates that have already taken place on the RW node and con-

sequently could return “stale” data. Many cloud-native databases

claim that RO nodes could improve read performance. However, for

the reason outlined above, the service on an RO node can only serve

applications that does not require read-after-write consistency.

However, the strongly consistent read (i.e., a read request always
sees the latest committed updates that happen before it, aka the strict
consistency model [48]) is an essential need in many applications [2].

For instance, in Alibaba’s e-commerce applications, if strong con-

sistency cannot be guaranteed, the customer who has placed an

order may soon finds that the order does not exist or is shown to be

unpaid after payment. Such need for strongly consistent reads also

appear in scenarios where databases are used to support interac-

tions among microservices [25]. These microservices usually share

the same databases and have some dependencies at the application

level. It relies the database to provide strong consistency to ensure

the interactions proceed as expected. At Alibaba Cloud, we also re-

ceive many requests from users to provide such strongly consistent

reads, such as insurance companies and financial institutes.

3.3.2 PolarDB-SCC. To support strong consistency, applications

have to send all read requests to the RW node. Consequently, we

cannot improve the read throughput by adding more RO nodes and

the RW node could quickly become the bottleneck. This dramat-

ically limits the system’s ability to process read-dominant work-

loads [8, 15, 43]. To support the RO node’s auto-scaling-out, a uni-

fied endpoint is required for users. The strongly consistent read

must be guaranteed by this endpoint to ensure that the writes on

this endpoint must be immediately visible to the following reads.

Therefore, it’s imperative to have a new system design to ensure

strongly consistent reads on RO nodes in a cloud-native database
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Figure 5: Architecture of PolarDB-SCC.

cluster to improve system performance and make the system really

scalable.

To enable low-latency strongly-consistent reads on RO nodes,

we build PolarDB-SCC [49] (PolarDB Strongly Consistent Cluster),

which is designed with a read-wait policy. It aims to provide a

low-latency, strongly consistent cloud-native database cluster, in

which the RO nodes could always return the latest updates that

are committed ahead of the request’s/transaction’s start timestamp.

This enables the system to distribute read requests to the RO nodes

and split the read/write requests while ensuring strong consistency.

As a result, the cluster can provide a unified, strongly consistent

endpoint for applications (e.g., via a proxy), and adjust the number

of RO nodes on-demand elastically. Resource utilization on RO

nodes is also improved, rather than deploying RO nodes only for

handling failover. The main challenge is to keep the in-memory

data consistent between the RW and RO nodes while ensuring low

latency. The key idea of PolarDB-SCC is to eliminate unnecessary

waits and reduce the necessary wait time on the RO node.

Figure 5 shows the overall architecture. The core components are

the hierarchical modification tracker, Linear Lamport timestamp,

and the RDMA-based log shipment protocol. The hierarchical mod-

ification tracker maintains the RW node’s modification at three

levels: the global level maintains the whole database’s latest modifi-

cation timestamp; and table/page levels record some tables’/pages’

newest modification timestamps. To perform a strongly consistent

read on the RO node, it will first check the RW node’s global level

timestamp, then the table and page level timestamps. Once one

level is satisfied, it will directly process the request and will not

check the next one. It only needs to wait for the log application on

the requested pages when the last level (page level) is unsatisfied.

Since the latest modification timestamps are maintained on the

RW node, the RO node has to fetch it from the RW node for each

request. Although the RDMA network is fast, the overhead is still

significant if there is a heavy load on the RO node. To overcome the

overhead on the timestamp fetching, we propose the Linear Lam-

port timestamp. Based on it, the RO node can store the timestamp

locally after fetching it from the RW node. Any request arriving at

the RO node earlier than 𝑇𝑆𝑟𝑜 can directly use the locally stored

timestamp instead of fetching a new one from the RW node. This

can save many fetching requests when the load is heavy on RO

nodes.

At last, to further minimize the network overhead, we adopt the

one-sided RDMA for the log shipment and timestamp fetching. We

propose a one-sided RDMA-based log shipment protocol to write

the RW node’s log to the RO nodes. The one-sided RDMA also

saves a lot of CPU cycles during remote writing.

4 CLOUD PLATFORM INTEGRATION AND
ORCHESTRATION

While cloud-native databases are becoming an inexorable trend in

the database industry, its unique advantages root from the close

integration and co-design with the underlying cloud infrastruc-

ture. In this section, we introduce two representative examples that

reflect this concept. We present our best practice in resource sched-

uling of a unified resource pool in Section 4.1, and the adoption of

computational storage devices that enable significant performance

improvement in Section 4.2.

4.1 Unified Resource Pool
With the rising popularity of container infrastructures (such as Ku-

bernetes), there has been a trend to host instances of cloud-native

databases within containers, benefiting from their strong support

for orchestration and migration. This helps cloud vendors achieve

high availability, high elasticity and high resource utilization effi-

ciency. A cluster management system is employed to manage the

jobs or tasks (i.e., database instances) running on the cluster of

machines (nodes). At the center of a cluster management system is

a resource scheduler which dictates when and how cloud resources

are allocated to different jobs.

4.1.1 Balance Allocation Rate and Availability. Typically, cloud ven-
dors use two critical metrics to assess whether a resource scheduler

is running “well”: 1) resource allocation rate refers to the proportion
of allocated resources (out of the total cluster resources) that have

been allocated by the scheduler to a job; 2) resource availability
refers to the proportion of resource requests (from a job) that can

be fulfilled within a given period of time. Naturally, cloud vendors

aim for high resource allocation rate (directly leading to lower

operation cost) and high resource availability (directly leading to

better customer experience). However, it is intuitively difficult to

simultaneously maximize these two metrics. In fact, it depends on

the application scenario and requires balancing the optimization of

the resource allocation rate and resource availability.

4.1.2 Eigen Resource Scheduler. We propose a resource scheduling

strategy that improves resource allocation rate without hurting

resource availability. We adopt a cascading resource flow model

that divide nodes in a cluster into three types: non-empty online

nodes, empty online nodes, and offline nodes. In order to simultane-

ously maximize resource allocation rate and resource availability,

we present Eigen [28], an end-to-end resource optimizer that opti-
mizes the resources in the resource flow simultaneously. We divide

machines of each node pool into three layers: online layer (green

box), warm layer (orange box), and cold layer (blue box). Figure 6

depicts the resource flows that show how machines move between

layers and node pools. We describe the optimization problems at

each layer as follows:
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Figure 6: Eigen’s hierarchical resource management system.
Online layer consists of non-empty machines (online machines).

In this layer, the optimization problem is to allocate database in-

stances with heterogeneous resource requests on as few as possi-

ble online machines. We design Vectorized Resource Optimization

(VRO), which consists of an online version and an offline version.

The online version of VRO is implemented in Scheduler to sched-
ule resource allocations for online requests. To support regional

scheduling on large-scale clusters of up to 100K machines, the com-

putation of scheduling should execute as efficiently as possible. The

offline version of VRO is implemented in Rebalancer, which period-

ically rebalances the cluster through pod moves (i.e., migrations of

database instances). In addition to consolidating clusters, the offline

version of VRO focuses on reducing the number of migrations for

lower rebalance costs.

Warm layer consists of empty machines (warm machines) which

work as “buffers” to support high resource availability. The op-

timization problem in this layer is to evaluate the minimum of

resources which will not cause delayed requests in short-term time

periods (e.g., ten seconds, one minute, ten minutes). We design

Exponential Smoothing (ES) with smoothed adaptive margins, a

resource reservation algorithm that predicts short-term resource

usage with a smoothed adaptive margin. It is implemented in Node
Pool Auto-scaler, and automatically scales up/down warm machines.

Cold layer consists of offline machines (cold machines). In this

layer, the optimization problem is to evaluate the minimum of cold

machines which will not cause failed requests in a long-term time

period (e.g., one week, three weeks, one month). We train and

deploy probabilistic time-series forecasting models on Node Pool
Auto-scaler to predict long-term daily resource consumption (i.e., a

daily difference of allocated resources). Based on the predictions,

we design a Minimum-stock Policy that suggests on adding or

removing cold machines.

4.2 Co-design of Software and Hardware
To best serve OLTP workloads, cloud-native relational databases,

such as PolarDB, typically employ the row-store model. A viable

option for these database to better serve analytical workloads is to

offload data-access-intensive tasks (in particular table scan) from

database nodes to storage nodes. In spite of the simple concept, its

practical implementation in the context of cloud-native databases is

particularly non-trivial, and requires careful co-design of software

and hardware. On one hand, each storage node must be equipped

with sufficient data processing power to handle table scan tasks.

On the other hand, to maintain the cost effectiveness of cloud-

native databases, we cannot significantly (or even modestly) in-

crease the cost of storage nodes. By complementing CPUs with

special-purpose hardware (e.g., GPU and FPGA), heterogeneous

computing architecture appears to be an appealing option to address

this data processing power vs. cost dilemma. Under this framework,

each data storage device becomes a computational storage drive

that can carry out table scan on the I/O path. However, its practically

viable implementation is challenging, mainly due to the difficulty

of addressing two challenges:

• Support pushdown across the entire software hierarchy:
Table scan pushdown is initiated by PolarDB storage engine that

accesses data by specifying the offsets in files, while table scan is

physically served by computational storage drive that operates

as a raw block device and manages data with LBA (logical block

address). The entire storage I/O stack sits in between the PolarDB

storage engine and the computational storage drive. Hence, we

have to cohesively enhance/modify the entire software/driver

stack in order to create a path for table scan pushdown.

• Implement low-cost computational storage drive: Although
the FPGA-based design approach can significantly reduce the

development cost, FPGA tends to be expensive. Moreover, since

FPGA typically operates at only 200-300MHz (in contrast to 2-

4GHz CPU clock frequency), we have to employ a large degree of

circuit-level implementation parallelism (hence more silicon re-

source) in order to achieve sufficiently high performance. There-

fore, we must develop solutions to enable the use of low-cost

FPGA chip in our implementation.

To address these two challenges, PolarDB adopts a set of soft-

ware/hardware techniques [10]: To reduce the product development

cycle and meanwhile ensure cost effectiveness, computational stor-

age drives use an FPGA-centric host-managed architecture. Inside

each computational storage drive, a single low-cost Xilinx FPGA

chip handles both flash memory control and table scan. With highly

optimized software and hardware design, each computational stor-

age drive can support high-throughput (i.e., over 2GB/s) table scan

on compressed data and meanwhile achieve storage I/O perfor-

mance comparable to leading-edge NVMe SSDs.

In addition to offloading scan operations to the computational

storage devices, PolarDB has further leveraged smartSSD to per-

formance transparent data compression. The compression is per-

formed by the FPGA (or ASIC) colocated with SSDs, delivering over

60% reduction in storage (compared to uncompressed data) with

no negative impact on throughput and little increase in the cost of

SSDs. Co-design of software and hardware extends beyond storage

devices; for example, the emergence of new technologies such as

software defined network (SDN) and Compute Express Link (CXL)

opens new directions that explores in-network computation and

memory pooling and sharing.

5 CO-DESIGN FOR DATA FABRIC
Another trend that we have witnessed is that the line between

different types of database engines start to blur: there is a grow-

ing need for a database to provide sufficient support for a wide
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variety of different workloads (notably, both transactional process-

ing and analytical processing), especially in the fields of business

intelligence [44], social media [7, 31], fraud detection [9], and mar-

keting [19, 52]. To provide such capability, traditional solutions

often deploy data and application logic into multiple databases spe-

cialized in processing different types of queries, and rely on data

synchronization techniques (such as ETL) for consistencies among

them. Such solutions are costly, as it negatively impacts the OLTP

performance, and introduces a time-consuming data synchroniza-

tion process, which further leads to delays or even inconsistencies

between the data maintained at the TP/AP databases. Additionally,

users are often provided with isolated portals or interfaces for ac-

cess each of the different databases. In practice, these issues lead to

sub-optimal user experience.

The concept of data fabric emerges in recent years, promoting

easy-sharing and smooth-flow of data in-between different data pro-

cessing engines and even different eco-systems. In this section, we

discuss the designs that enables unified database interface through

meta-data sharing among engines (Section 5.1), and allows smooth

data flow in-between different database engines through zero-ETL

and cloud-native HTAP (Section 5.2).

5.1 Unified Database Interface
The wide variety of database engines allows customers to have

different choices for their data processing needs, however, at the

same time, it poses challenges to the customers: they need to make

“wise" decisions in terms of which engine fits their needs the best,

and how the data should be stored (e.g., within the same engine or

across multiple engines). It calls for a unified database interface to

simplify this process and alleviate the burden.

• G#1: Transparent Query Execution. To serve mixed work-

loads in a single database, database users should not be required

to understand the working logic of the database, nor should they

identify query types manually. That is, users should not perceive

multiple isolated systems (e.g., engines, indexes, interfaces, etc.)

for workloads with different characteristics.

To achieve this, it requires cross-engine sharing of metadata,

such that the database system can make decisions from a holistic

view. We adopt a unified management of metadata, including table

schema and statistics, data lineage, database topology, and execu-

tion history. Based on these information, the database system’s

optimization and fabric layer can generate and coordinate, through

a rule-based or cost-based process, executions in different engines.

5.2 Data Flow in-between DB Engines
With the unified execution, the data engine responsible for handling

writes (e.g., insertion, deletion and update) might not be the one

that is best fit for reads. Particularly, OLTP engines are often opti-

mized for write performance, while OLAP engines are optimized for

processing complex analytical queries. The data flow in-between

DB engines ideals should satisfy the following properties:

• G#2: Advanced OLAP Performance. As a major goal of any

HTAP database, its OLAP performance (e.g., execution latency)

should be comparable to typical databases specialized in pro-

cessing OLAP queries (typically through the introduction of

columnar data storage).

OLTP DBMS
(e.g., PolarDB)

OLAP DBMS
(e.g., ADB)

REDO

HTAP DBMS
(PolarDB-IMCI)

T QT Q

Figure 7: Architecture of HTAP databases.

• G#3: Minimal Perturbation on OLTP Workloads. While

the performance of OLAP queries is significantly improved, it

should have a minimal negative impact on the performance of

OLTP queries. In fact, as we have practically validated in real

application scenarios, OLTP queries are usually more mission-

critical and are more sensitive to performance degradation. This

requires effective resource isolation for OLTP and OLAP queries.

• G#4: High Data Freshness.High data freshness is an important

property of HTAP databases, which is a distinguishing advan-

tage compared to the traditional Extract-Transform-Load (ETL)

method. Conventionally, visibility delay is used as a freshness

score for a query: visibility delay is the time interval during

which updates to the database can be visible to OLAP queries.

Figure 7 summarizes two approaches that are designed with

these goals in mind: the system could adopt a zero-ETL approach

(shown on the left), where the data synchronization, typically us-

ing logical logs, is co-designed with the source and destination

engines for achieving goal G#2-G#4; one could alternatively adopt

a cloud-native HTAP approach (shown on the right), where the

synchronization is done through the shared storage, using physical

logs, and an in-memory column index (IMCI) is built along side the

row-oriented data for facilitate the processing of analytical queries.

The zero-ETL approach is more general while the IMCI approach

allows for minimal visibility delay (i.e., highest data freshness).

5.2.1 Zero-ETL between OLTP and OLAP. The key design of the

zero-ETL approach focuses on reducing the resource as well as the

time needed for transfering data from OLTP to OLAP. Crucially, to

address the discrepancy between the write performance of OLTP

and OLAP engines. We adopt a Delta + Main design:

For general stream writing scenarios, data is written to a write-

optimized store (i.e., the delta store), which typically is in the form

of an LSM-tree. The goal is to fully utilize the capabilities of row

storage and make up for the performance shortcomings of colum-

nar storage. Then a compaction process running at background

will automatically sort, merge, and eventually write the data to a

read-optimized storage (i.e., the main store): Data is first sorted

by a predefined sort key. Once sorted, the data is easier to prune

during scanning, reducing I/O overhead and improving scanning

performance. Then the database merges these write-friendly delta

data into read-friendly columnar storage, and promptly reclaims

the storage space.

5.2.2 Cloud-native HTAP. Figure 8 shows the architecture of PolarDB-
IMCI, a cloud native HTAP designed and operated by Alibaba

Cloud [45]. It adopts PolarFS [12] as its storage layer, and a compu-

tation layer that contains multiple computation nodes, including a

primary node for read/write requests (RW node), several nodes for
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Figure 8: Architecture of PolarDB-IMCI.

read-only requests (RO nodes), and several stateless proxy nodes for

load balancing. To speed up analytical queries, PolarDB-IMCI sup-

ports building in-memory column indexes on the row store of RO

nodes. Column indexes store data in insertion order and perform

out-place writes for efficient updates. The insertion order means a

row in column indexes that can be quickly located by its Row-ID

(RID) rather than its primary key (PK). To support PK-based point

lookups, PolarDB-IMCI implements a RID locator (i.e., a two-layer

LSM tree) for PK-RID mapping.

PolarDB-IMCI uses an asynchronous replication framework for

synchronization between RO and RW. That is, updates to RO nodes

are not included in the transaction commit path of the RW to avoid

the impact on the RW node. To enhance data freshness on RO

nodes, PolarDB-IMCI uses two optimizations on the log applying,

the commit-ahead log shipping, and the conflict-free parallel log

replay algorithm. RO nodes are synchronized by REDO logs of the

row store, which causes very low perturbation on OLTP than the

approaches that uses logical logs (such as Binlogs). Note that it’s

nontrivial to apply physical logs into column indexes as the data

format of the row store and column index is heterogeneous.

Inside each RO node, PolarDB-IMCI uses twomutually symbiotic

execution engines: PolarDB’s regular row-based execution engine

to serve OLTP queries, and a new column-based batch mode execu-

tion engine for the efficient running of analytical queries. The batch

mode execution engine draws on the techniques used by colum-

nar databases to handle analytical queries, including a pipeline

execution model, parallel operators, and a vectorized expression

evaluation framework. The regular row-based execution engine

with augmented optimizations can undertake the column engine’s

incompatible queries or point queries.

6 AI AUGMENTED DATABASES
With the rapid progress in artificial intelligence (AI) technologies,

PolarDB takes a proactive approach to integrate AI features into

database systems, so as to be easier to use, more efficient to operate,

and exhibit certain intelligence in deriving valuable insights from

data. To this end, we have put into production a number of AI-

augmented functionalities driven by customer needs. The most

relevant features are two: an enhanced natural language interface

that can convert questions into SQL statements [20], and a diagnosis

system to pinpoint root causes for performance issues[22, 29]. These

new features can enhance database systems by automating data

management processes, improving user experience, and enabling

intelligent decision-making in DevOps.

Figure 9: AI-augmented databases

6.1 NL2SQL
Natural language to SQL (NL2SQL) techniques provide a conve-

nient interface to access databases, especially for non-expert users,

to conduct various data analytics. With prior knowledge on the

database schema information, PolarDB can automatically translate

the natural language question into the corresponding SQL query.

To provide high-quality translation, there are three challenges: (1)

what tables and columns should be used in the query; (2) what is

the correct query structure; and (3) how to fill in query details and

the literal in the query.

Recently, the research on natural language models have made

significant breakthroughs. Deep models based on transformer archi-

tectures have demonstrated great performance due to its excellent

in-context learning capabilities. Interestingly, SQL languages are

traditionally investigated in the framework of context-free gram-

mars. The former captures complex meanings, and generalizes well,

but may result in queries with syntactic or semantic errors. The

latter can define high level structures with rigorous and accurate

grammars, but may miss the global picture of the whole sentence.

We introduce the NL2SQL module for PolarDB, by bridging the gap

between the two and design a new framework to significantly im-

prove both accuracy and runtime. In particular, we develop a novel

sketch [20], which constructs a template with slots that initially

serve as placeholders, and tightly integrates with a deep learning

model to fill in these slots with meaningful contents based on the

database schema.

Comparedwith thewidely used sequence-to-sequence approaches,

our sketch-based method does not need to generate keywords

which are boilerplates in the template, and can achieve better accu-

racy and run much faster. Compared with the existing sketch-based

approaches, our method is more general and versatile, and can

leverage the values already filled in on certain slots to derive the
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rest ones for improved performance. In addition, we also lever-

ages database domain knowledge, by introducing a post-processing

module. It checks the initially generated SQL queries by applying

rules to identify and correct semantic errors. This technique sig-

nificantly improves the NL2SQL accuracy. Extensive evaluations

on both single-domain and cross-domain benchmarks demonstrate

that our approach can achieve great accuracy and throughput.

6.2 In-DB AI
In-DB AI is to reduce the unnecessary data movement between

databases and AI computation engines. It can shorten the devel-

opment cycle and lower the operational cost by integrating AI

capabilities through SQL queries natively. We build an in-database

inference framework that generates database loadable functions

from already developed AI models. After registering the AI models,

user could directly write SQLs to invoke model inference coher-

ently into the query flow. To flexibly support models with different

sizes and platforms, our framework considers three scenarios. First,

we provide pre-installed model functions. Second, user can upload

a trained model, which automatically generates static objects for

shared files inside the database instances. We support models from

Tensorflow, PyTorch and libraries such as XGBoost. Third, for large

models, e.g., LLMs (Large Language Models), our framework gen-

erates a hook function to call external model inference service. For

all of the above scenarios, users can write native SQL statements to

augment data queries by AI models.

6.3 AIOps for Cloud Native Database Systems
PolarDB architecture follows a decoupling design principle, whose

individual components, like any other distributed systems, may

contain inevitable faults or failures, and are organized together

through highly efficient message passing over RDMA networks.

To make it robust and easier to manage, we design a new root

cause diagnosis facility for its DevOps system[22, 29]. It is based

on an observation that anomalies, or general variations, require

a quantitative characterization of the influences from individual

components on the end-to-end performance metrics.

On a causal graph that represents the complex dependencies be-

tween the system components, the scatteredly detected anomalies,

even when they look similar, could have different implications with

contrastive remedial actions. Though various heuristic methods

have been successfully applied for certain cases in practice, the

complexity constantly imposes various challenges for pinpointing

the root causes. Various heterogeneous components are connected

on a (non-strict) causal/relationship graph. Most existing works

focus on predicting the performance issues (or more rigorously,

counterfactuals) when a given set of components/factors change to

a hypothetical operating state. Our work complements by quantify-

ing the influences of the variations from the different factors using

Shapley value, which is a concept in game theory to fairly allocate

the influences of the factors. A factor’s influence is measured by

the average performance difference before and after adding this

factor to a random set of existing factors. For example, one can

study the difference of the end-to-end latency by adding an issue

of high CPU usage. Our system can automatically drill down to the

combinations of attributes where anomalies occur and evaluate the

impact of each attribute values. This system has been successfully

deployed with more than 10,000 operations for 86 services on 2,546

machines. It has significantly improved the DevOps efficiency, and

greatly reduced the system failure rates.

7 OUTLOOK AND FUTURE TRENDS
7.1 LLM and Vector DB
Large language models (LLM) and vector databases, combined to-

gether, bring exciting new opportunities in various fields, thanks

to the progresses in natural language processing and information

retrieval. These technologies have significantly improved the way

we interact with computers and access information.

Large language models, such as ChatGPT and Alibaba Tong Yi,

are capable of generating human-like text and understanding the

context and meaning of words and sentences. They can be used for

a wide range of applications, including language translation, text

summarization, and creative writing. Vector databases can store

and retrieve data by representing them as vectors. It can compare

and search for similar items based on their inherent characteristics.

The combination of large language models and vector databases

can enable more accurate and natural text generation with domain

knowledge, as well as efficient and personalized data retrieval.

Vector database provides new dimensions in forming queries that

enable more intelligence. In certain applications both unstructured

and structured data shall be jointly queried. To address this chal-

lenge due to hybrid queries, we design and implement AnalyticDB-

V (ADBV) [47] that manages feature vectors and structured data

cooperatively. In order to improve the accuracy of querying mas-

sive data in vector forms, we design an index using Voronoi Graph

Product Quantization, which could efficiently narrow down the

search scope for fast indexing. In addition, it is wrapped as physical

operators that can rely on the query optimizer to efficiently and

effectively process hybrid queries.

7.2 Data Security
7.2.1 Background. During the past decade, practical techniques for
database security have not witnessed significant advances, where

access control, file encryption, database audit have long become

de-facto standards [16, 17] that protect the database from unex-

pected accesses and external attacks. In conventional settings, a

database system shall run in a private domain, and the system

owners (as well as administrators) inherently have full access to

the data inside. However, recent trends have overturned the as-

sumption and brought new security issues. The first trend is cloud

computing. Cloud systems, as an outsourced infrastructure, break

the private domain assumption. and hence they might be poten-

tially compromised by insiders (e.g., co-tenants or rogue staffs). The
second trend is that the data-centric revolution has complicated

the data management in applications. More specifically, the data

needs to flow between different processing components, each of

which is probably controlled by a different entity (e.g., internal sub-
divisions, business partners, and independent software vendors).

Once the data flow into others’ subsystems and databases, it is no

longer under the control of the original data owner, leading to a

contradiction between the utilization and the ownership of data.

The data ownership here involves many aspects of data security
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Figure 10: Illustration of supporting the OPDB with Operon.
Data owners use their keys (differently colored) to protect
data against any application processes or databases. It only
performs permitted operations (i.e., by BCL) within TEE.

issues, such as the confidentiality of users’ sensitive data, and the

authenticity of user’s query results.

7.2.2 Encrypted database. Many encrypted database systems have

been built by both academia and industry to protect the confiden-

tiality of sensitive data in outsourced databases. They either exploit

special cryptographic primitives [14, 21, 33] to support data manip-

ulation directly over ciphertext [35, 37, 40] or use trusted execution

environments (TEE) [18, 24] to operate on sensitive data in an iso-

lated enclave inaccessible from the rest of the host [3, 5, 38, 39, 41].

However, existing solutions assume that the authorized endpoint

directly interacting with the encrypted database is trusted and can

touch sensitive data, which is hard to achieve in practice. Hence,

we propose a new paradigm for the encrypted database, namely

ownership-preserving database (OPDB) [46], with which the data

is not even revealed to any subsystems and hence the data owner

exclusively governs data accessibility. In a nutshell, all sensitive

data remains in ciphertext wherever it appears (e.g., in the mem-

ory of application/database server processes or on the disk) and

only the data owner can decrypt the data. When an entity (e.g., a
business partner) needs to process or utilize the sensitive data in

its business logic, the data owner only needs to grant it access to

necessary operations that are adequate to complete the task using

cipher processing capability in an OPDB instance. With OPDB,

sensitive data can be securely passed and processed across different

entities’ subsystems and databases, which significantly reduces the

risk of data abuses and leakages throughout the entire process.

Following the OPDB paradigm, we build Operon [46] as its first

implementation, utilizing TEE to re-establish the private domain

assumption. Operon introduces a behavior control list (BCL), which
extends conventional system-oriented resource access control with

the control of data operation behaviors, decoupling the data owner-

ship away from the system ownership. Operon is the first database

framework with which the data owner exclusively controls the

accessibility and behaviors of sensitive data, even when the data

has passed through many entities’ untrusted subsystems. Figure 10

shows an example of supporting OPDB with Operon. It adopts a
modular architecture and acts as a feature enhancement to existing

database systems. We have successfully integrated it with different

TEEs (i.e., Intel SGX [18] and an FPGA-based implementation), as

well as various database services on Alibaba Cloud (i.e., PolarDB
and RDS). In addition, since real-world applications always involve

rich database functionalities (e.g., mix-typed expression, connec-

tion pool, client driver) beyond basic operational primitives, we

should also provide corresponding functionalities while preserving

data ownership. Operon uses a set of server-side and client-side

co-designs to solve this problem.

7.2.3 Verifiable database. Currently, data integrity largely relies

on the customer’s trust that the cloud service provider has faithfully

maintained the data (and computed results) outsourced to them. It

remains challenging for the customer to verify whether the data or

computation results retrieved from the cloud are correct; from the

cloud service provider’s perspective, such capability of proving to
the client that its data is correctly handled is also a highly desirable

security feature, encouraging hesitant clients to adopt cloud-centric

solutions. Therefore, verifiability is a sufficiently strong guarantee

in practice, i.e., the correctness of any returned results is (crypto-

graphically) verifiable. It allows the client to detect any faults with

non-reputable evidence, and allows the cloud service provider to

retain a formal proof for its correct operations. There has already

been a large body of work in the field of providing verifiability for

cloud databases [4, 6, 27, 34, 36, 51]. Notably, a classic approach

leverages cryptographic primitives to verify the query result of a

specific query [30] or an arbitrary SQL [50, 51], but with either

limited capability or poor performance.

The emergence of TEE provides a new avenue towards verifiable

database. Such trust hardwares act as an additional trust anchor,

allowing great simplification and, in turn, performance improve-

ment [4]. In consequence, we build VeriDB [53], an SGX-based

verifiable database that supports relational tables, multiple access

methods and general SQL queries. In VeriDB, the client interacts
with a query engine that resides in an SGX enclave. Hence, the

returned query result can be trusted and easily verified (by check-

ing whether it is endorsed by the SGX), as long as the inputs to

the query engine (i.e., the data retrieved from the storage) are cor-

rect. This effectively reduces the problem of verifying the query

correctness to that of verifying the integrity of data retrieval from

the storage.

8 CONCLUSION
Cloud databases have evolved significantly, yet many more impor-

tant and interesting features are still to be explored and developed.

With the rapid development of cloud infrastructures and AI tech-

nologies, deep and seamless integration of cloud databases with

both the cloud platform and AI techniques are only to be further

intensified. By fully leveraging the benefits offered by the underly-

ing cloud infrastructure and the advanced AI techniques, we may

soon expect running cloud databases just like playing with legos.
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