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ABSTRACT
Knowledge Graphs (KGs) have been used to support a wide range of
applications, fromweb search to personal assistant. In this paper, we
describe three generations of knowledge graphs: entity-based KGs,
which have been supporting general search and question answering
(e.g., at Google and Bing); text-rich KGs, which have been supporting
search and recommendations for products, bio-informatics, etc.
(e.g., at Amazon and Alibaba); and the emerging integration of
KGs and LLMs, which we call dual neural KGs. We describe the
characteristics of each generation of KGs, the crazy ideas behind
the scenes in constructing such KGs, and the techniques developed
over time to enable industry impact. In addition, we use KGs as
examples to demonstrate a recipe to evolve research ideas from
innovations to production practice, and then to the next level of
innovations, to advance both science and business.
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"Science is to test crazy ideas; engineering is to bring these ideas
into business." – Andreas Holzinger

1 INTRODUCTION
Since the birth of modern Knowledge Graphs (KGs) around 2007
(in the same year, Yago [40], DBPedia [4], and Freebase [5] were
released) 1, the area has been broadly researched in a multitude
of research communities (to name a few, NLP, IR, Data Mining,
Databases, Semantic Web). The industry deployment started about
a decade ago, when Google launched Knowledge Panels in web
search in 2012; since then, KGs have been used broadly to support
web search (e.g., Google and Bing web search), voice assistants (e.g.,
Amazon Alexa, Apple Siri, and Google Assistant), and so on, and
have made profound business impact.

KGs model the real world in a graph representation, where nodes
represent real-world entities or atomic (attribute) values, and edges
represent relations between the entities or attributes between enti-
ties and atomic values. A piece of knowledge can be considered as
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1There are two knowledge bases before all KGs discussed in this paper, Cyc (cyc.com)
and WordNet (wordnet.princeton.edu); they are limited in scope and scale because of
hand-crafting.

a triple in the form of (subject, predicate, object), such as (Seattle,
located_at, USA). The data instances in a KG follow the ontology
as the schema, which in itself is represented in a graph form and
can be taken as a part of the KG. The ontology describes entity
classes, often organized in a hierarchical structure and also called
taxonomy, and meaningful relationships between classes.

KGs can be considered as semi-structured: on the one hand, it
enjoys clean semantics of structured data powered by the rigidity
of schemas (i.e., ontology); on the other hand, it embraces the flexi-
bility of unstructured data by allowing easily adding new classes
and relationships. An additional advantage of KGs is that it can
seamlessly connect a large number of domains through common
entities across domains or relationships between domains (e.g., the
Movie andMusic domains can be connected by people who are both
actors/actresses and singers, and by the featured_song relation).
These advantages give KGs a unique position that is both under-
standable to machines (through ontology) and easy-to-understand
by human beings (blessed by the structure), suitable to facilitate
understanding in search, question answering (QA), and dialogs, to
power recommendation through the graph structure, and to display
information for human understanding (in attribute-value pairs),
comparison (in tables), and explanation (in paths in the graph).

With the widespread applications of KGs, how to model and
capture all valuable knowledge in the world has emerged as a promi-
nent research area. This paper delves into this subject through the
author’s journey in the past decade, enriched with extensive sci-
entific research and production deployment experiences gained at
esteemed companies like Google, Amazon, and Meta.

1.1 Generations of knowledge graphs
In this paper, we discuss a few generations of KGs. The first gener-
ation is entity-based KGs, where both ontology and data are more
rigorous, and nodes in the graphs are mostly entities that have
one-to-one correspondence with real-world entities (see Figure 1(a)
as an example). Most well-known generic KGs, such as Yago [40]
from academia and Google KG [39] from industry, are entity-based
KGs. We discuss this generation in Section 2.

The second generation is text-rich KGs, where ontology and data
allow much more ambiguities, and nodes in the graphs are more
often just free texts. With the text nodes, the graph is mostly in the
form of a bipartite graph, as depicted in Figure 1(b). Text-rich KGs
are often used to model domains where structure is sparse while
ambiguities are abundant, with vague and fluid semantic boundaries
between values and even classes, such as Product, Bio-informatics,
and Health. Section 3 discusses this generation.

The upcoming generation is not fully shaped yet and we call it
dual neural KGs for now. It encodes knowledge explicitly as triples
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(a) An example entity-based KG in the music domain. Nodes are
mostly entities, each with an ID.

(b) An example text-rich KG in the product domain. The top
depicts the taxonomy, which can be a rich and deep hierarchy. The
bottom depicts data instances, where attribute values are mostly
texts; as such, it is mostly in the form of a bipartite graph (except
edges like "synonym").

Figure 1: Example knowledge graphs.

(as in KGs) and implicitly as embeddings (as in language models).
The same piece of knowledge may co-exist in both forms or stay
on one side that is more suitable, and there is smooth transition
between the two forms to allow harmonic blending. Section 4 dis-
cusses why we believe co-existing is the key for success, at least in
the near future.

1.2 The recipe from innovation to practice
KG is an area that has witnessed success both in research and
in industry. As we discuss the evolution of KGs, we employ it as
an example to illustrate the cycle from innovation to production
practice, and subsequently to the next round of innovation. This
iterative cycle often comprises several stages, each contributing to
impacts from initial to profound.

(1) Feasibility: The cycle first starts with a (or a series of)
prototype or an experiment, showing the feasibility of a
crazy idea, which sometimes seeds a new field.

(2) Quality: The second stage focuses on gradually improving
the quality of the solution (a model, an algorithm) to pro-
duction quality, which enables trustworthy and pleasant
user experiences. This is the key stage to land an innovation
as a tangible product: unless attaining production quality,
a research idea will only remain research.

(3) Repeatability: Once we achieve success with the initial
product, usually within a limited scope (a few domains,
or working under a set of constraint conditions), the next
stage is to repeat the success for larger scopes like broader
domains. This stage often emphasizes building pipelines
to facilitate automation, and employing machine learning
(ML) models to minimize manual work. It is a stage leading
to much higher business impact.

(4) Scalability: Although repeatability could lead to impact
enhancement of 1-2 orders of magnitude, it oftentimes falls
short of achieving true scalability, demanding impacts of
thousands or millions of times. Scalability often necessitates
a new set of solutions that substantially reduce costs and
eliminate all manual work from the loop.

(5) Ubiquity: Finally, ubiquity seeks to maximize the scope of
applicability, to encompass long-tail use cases, to remove
any underlying assumption in the solutions. Pursuing such
solutions often triggers a new round of innovations, initiat-
ing the next cycle (sometimes even scalability can lead to
the next cycle).

This paper interweaves the discussions of the three generations
of KGs and the innovation-to-practice-to-innovation cycle. Through
the former, we illustrate how development of techniques leads
to larger and larger business impact; through the latter, we shed
insights on how the pursuit of large business impact sparks new
innovations. Finally, we reflect on critical factors for production
success in Section 5.

2 ENTITY-BASED KNOWLEDGE GRAPHS
Entity-based KGs are the most popular KGs in both academia (e.g.,
Yago [40], DBPedia [4], etc..) and industry (e.g., Google KG [39],
Bing Satori KG [23], Alexa KG [2], WikiData [43]). As early as
in 2015, it was reported that Google Knowledge Graph shows for
about 25% of all Google search queries 2.

There are two characteristics for entity-based KGs. First, the
ontology of the KGs is normally manually defined with clear se-
mantics, where entity types and relationships have few ambiguities
or overlaps. For each domain in the ontology, the numbers of en-
tities and relationships are fairly small and thus manageable for
manual definition; for example, Freebase contains 52 entity types
and 155 relationships in the Movie domain.

Second, most entities in entity-based KG are named entities, each
corresponding to a real-world entity, such as a person, a university,
a movie, a song, and so on. There is rarely overlap between the
entities; for example, there are no two persons who are the same,
and no two movies that are exactly the same, even if they may share
the same name.

2.1 Feasibility and Quality: Knowledge
transformation

The seed crazy idea behind entity-based KGs is exactly the idea
of modeling the world with entities and relationships. In a sense,
that is how human beings understand the world: a child would
think about the world as herself, her mom and dad, her friends, her
2https://searchengineland.com/googles-knowledge-graph-may-show-14th-search-
queries-212962
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kindergarten, the cartoon she likes, etc.. Now the question becomes,
how to identify the entities in the world and discover their relationships
from available data sources?
Feasibility: Luckily, the idea of modeling the world with entities
and relationships is not new: the DBMS (DataBase Management
System) uses ER (Entity Relationship) Diagrams to visualize the
logical structure of the database. Therefore, entities and relation-
ships in KGs can be transformed from structured data such as
relational databases. Wikipedia [13], which started in 2001 and
describes entities and provides hyperlinks from one entity page
to another, conveniently becomes a starting point for collecting
knowledge. Wikipedia Infoboxes can be transformed to entities
and relationships in a straight-forward way (see an example in
https://en.wikipedia.org/wiki/William_Shakespeare); this spurs suc-
cessful early KGs such as Yago, DBPedia and Freebase.
Quality: The high accuracy of Wikipedia data also guarantees
reliability of the derived knowledge. So as far as the transformation
is carefully curated to ensure semantics correctness, we can achieve
high quality. Since 2012, KGs have been used in production as a
trustworthy data source, and Wikipedia has been serving as the
major source for the majority of generic KGs even now.

2.2 Repeatability: Knowledge integration
With the success of transforming Wikipedia Infoboxes into knowl-
edge, we naturally wish to enrich knowledge from other struc-
tured sources, such as IMDb for movies,MusicBrainz for music, and
Goodreads for books. These sources may supplement Wikipedia,
oftentimes about torso to long-tail entities (in terms of popularity).
However, each of these sources organizes its data in a different
way, so the next question becomes, how to integrate the knowledge
transformed from different structured sources?

The knowledge integration problem is one form of data integra-
tion, and it needs to resolve three types of heterogeneities [21]:

• Schema heterogeneity: Different data sources may ex-
press the same entity type and relationship in different
ways (e.g., first name and last name vs. full name). Schema
alignment aligns source schemas with the KG ontology.

• Entity heterogeneity: Different data sources may rep-
resent the same real-world entity with slightly different
names, and provide different attribute values (e.g., Xin Dong
from Univ. of Washington vs. Xin Luna Dong from Meta).
Entity linkage links such entities such that we have a dis-
tinct node in the KG to represent a real-world entity. This
problem is even more tricky as different entities may share
the same name (thus entity disambiguation).

• Value heterogeneity: Different data sources may provide
different attribute values for the same entity, some of which
may be imprecise or out-of-date (refer to the same example
for entity heterogeneity). Data fusion decides among differ-
ent, and possibly conflicting values, which are correct and
up-to-date values.

Among the three problems, schema alignment is mostly done
manually to ensure semantics correctness in knowledge transfor-
mation; data fusion is less prominent when we restrict knowledge
sources to a few authoritative ones. Entity linkage stands out as
a critical problem to solve when we link multiple sources, each

Figure 2: Entity linkage qualitywith random forest onmovies
and people between Freebase and IMDb [15]. We are able to
achieve over 99% precision and recall with 1.5M labels. When
applying active learning to selectively introduce labels, we
can achieve the same quality with 10K labels.

of which often has millions of entities or more, making manual
linkage implausible.

Entity linkage is a problem with decades of research, dating
back to 1969 [22]. In practice, tree-based models have been proved
to be effective solutions for entity linkage. Figure 2 shows that
we can train random forest models that take attribute-wise value
similarities as features, and obtain over 99% precision and recall
when linking movies and people between Freebase and IMDb. In
addition, the figure shows that although very high precision and
recall could require a large number of training labels, applying
active learning can reduce training labels by orders of magnitude
while maintaining similar linkage quality.

Knowledge integration, especially entity linkage, allows us to
repeat the success of knowledge collection from Wikipedia to mul-
tiple authoritative structured sources. Most of large KGs harvest
data from a variety of sources; for example, Freebase takes data
from MusicBrainz, NNDB, Fashion Model Directory, etc..3

2.3 Scalability: Knowledge extraction from
semi-structured websites

As discussed in Section 1.2, repeatability does not necessarily lead
to scalability. We can transform data from tens of structured sources
into knowledge and integrate them to create a holistic KG; however,
a lot of manual interference is needed and it is hard to scale up to
thousands, or even millions of sources. On the web there are numer-
ous semi-structured websites (e.g., rottentomatoes.com), where each
page represents a topic entity, and different pages display informa-
tion in key-value pairs at relatively consistent locations across the
pages. These websites are typically populated from large structured
data sources, thus serve as good data sources to enrich KGs. If we
can automatically extract knowledge from these websites, instead
of relying on manual knowledge transformation, we will be able
to scale up knowledge collection from structured sources on the

3https://en.wikipedia.org/wiki/Freebase_(database).
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Figure 3: Extraction quality from semi-structured web-
sites [34], showing that ClosedIE has achieved over 90% ac-
curacy, whereas OpenIE has shown the promise to increase
knowledge, but has much lower accuracy.
web.4 Three major techniques has been proposed for knowledge
extraction from semi-structured data.
Wrapper induction:Wrapper induction, dating back to 1997, takes
manual annotations on a few semi-structured webpages from the
same website and induces the extraction patterns expressed in
XPaths that can apply to the whole website [27]. This method
works because semi-structured websites are normally populated
from underlying databases using some templates (e.g., CSS), and
wrapper induction reverse engineers the templates. Although wrap-
per induction can normally obtain high extraction quality (over
95%), it still requires annotations on every website so is not truly
web-scale.
Distantly supervised extraction: Distantly supervised extraction
started in 2014 [16]; it compares knowledge in existing KGs and
data on the semi-structured websites, and generates training data
according to the overlaps. Extraction quality is more or less driven
by the quality of the training data, so there has been research
focused on generating high-quality training data; Ceres [32] does
so with careful examination of the structure of semi-structured
pages and commonality between pages. OpenCeres [33] further
extends this method to annotate (attribute, value) pairs, allowing
extracting knowledge for unknown attributes (thus OpenIE). This
class of methods trains a model per website (precisely, for each
cluster of webpages in the website that apply the same template),
but the whole process is automatic and thus can scale up to a large
number of websites.
GNN-based extraction: The intuition behind GNN-based extrac-
tion is that given a semi-structured webpage, one can fairly easily
guess what is the topic entity, and what are the attribute-value
pairs, without domain knowledge, and even without necessarily
understanding the language (e.g., in foreign language). Systems
like ZeroshotCeres [34] leverages Graph Neural Network (GNN)
to explore both the visual clues and the text semantics, to train
one single extraction model for different websites, including even
websites in domains where training data do not exist, pushing the
boundary of extracting knowledge for unknown unknowns.

These three methods are progressively more scalable. As shown
in Figure 3, Ceres can achieve over 90% extraction accuracy, thus
reaches production quality; whereas extraction for new relations /

4Webtables [9] is a special form of semi-structured data.

domains remains in exploratory stages. Finally, knowledge extrac-
tion scales up by automating schema alignment, but there will still
be needs for entity linkage and data fusion, where there have been
plenty of research for large-scale linkage [25] and fusion [20, 29].

2.4 Ubiquity:Web-scale extraction and fusion
The web is a huge repository of knowledge and it has been the
wish of many researchers to extract knowledge from the whole web
to achieve ubiquity of knowledge collection. Well-known projects
in this line include NELL [10] and Knowledge Vault (KV) [16].
NELL focuses on text extraction, whereas KV extracts knowledge
from four types of web contents: texts, semi-structured data (as
discussed in 2.3), web tables, and HTML annotations (e.g., according
to schema.org).

To achieve web-scale, we need an efficient way to generate train-
ing data to cover various data patterns. Distant supervision [3, 7, 36,
41] is applied for this purpose, but the training data and thus the
extractions are often noisy. Various knowledge fusion techniques
are proposed to predict correctness of the extractions, such as PRA
(Path ranking algorithm) in NELL [10], deep learning based link
prediction in KV [16], and graphical models in KV [17]. The graphi-
cal models are also used to distinguish extraction errors and source
errors, leading to web source trustworthiness evaluation, as in
Knowledge-Based Trust [18].

Withweb-scale knowledge extraction and fusion, NELL extracted
435K knowledge triples and KV extracted 100M triples with over
90% confidence (94M from semi-structured websites). It is orders
of magnitude smaller than commercial KGs (to compare, at the
same time point Freebase contained 637M triples and Google KG
contained 18B triples). Although web extraction did not generate a
huge volume of knowledge as expected, it led to several important
insights. First, entity-based knowledge is mainly structured data,
so the best knowledge sources are still structured sources; thus,
knowledge transformation (Section 2.1) and integration (Section 2.2)
from well-curated structured sources could be the most effective
method to collect high quality knowledge. Second, semi-structured
websites are major contributors of high-quality knowledge in web
extraction, and they can cover long tail knowledge not covered
by major structured sources; this insight inspired further invest-
ment on knowledge extraction from semi-structured websites, as
described in Section 2.3. Finally, we find that texts often embrace
knowledge not easily captured cleanly by entities, leading to the
next generation of KGs, as we will describe in Section 3.

2.5 Summary
To recap, the seed crazy idea behind entity-based KGs is to model
the world with entities and relationships, and it faces the chal-
lenge that different structured sources express entities and rela-
tionships in a heterogeneous way. With knowledge transformation
and knowledge integration, major KGs have harvested knowledge
from authoritative sources and grown over an order of magnitude
over time (e.g., Google KG has grown from 18B triples at launch to
over 500B triples5). Web extraction from semi-structured websites
has also been put in production to supplement long-tail knowl-
edge. Figure 4(a) depicts key techniques as components in building
5https://encyclopedia.pub/entry/37713
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(a)

(b)

Figure 4: (a) Architecture for constructing an entity-based
KG. (b) Architecture for constructing a text-rich KG.

entity-based KGs. Web-scale knowledge extraction has not been
as proliferative as wished, but has inspired research and technical
directions to collect long-tail knowledge [14, 28].

3 TEXT-RICH KNOWLEDGE GRAPHS
In many domains like Products, Bioinformatics, Health, Law, Events,
we cannot cleanly model the domain by entities and relationships.
We use the Product domain as an example to illustrate. First, there
can be millions of product types, and many of them are overlapping
(e.g., fashion swimwear vs. two-piece swimwear); thus, defining a
clean taxonomy hierarchy is challenging. Second, product attributes
are fuzzy and overlapping in nature (e.g., mocha vs. cappuccino as
flavors, where there could be subtle differences but are also often
considered as very similar by most customers); thus, entities may
not be the best way to capture them. Finally, products are not
strictly named entities: unlike a person or movie name, product
names (e.g., "Onus 2 Colors Highlighter Stick, Shimmer Cream Powder
Waterproof Light Face Cosmetics, creamy Self Sharpening Crayon
Stick Highlighter") are long, verbose, and concatenation of product
type and attributes).

Text-rich KGs are used to model such domains. Instead of setting
up clean and strict semantic boundaries between types, relation-
ships, and entities, themajority of the nodes in text-rich KGs can be
just non-canonical texts. Note that different from entity-based KGs,
which often also contain text attributes, here text attributes can be
dominant, and it is nearly impossible to extract clean entities from
these texts. As such, text-rich KGs are more like bipartite graphs
rather than regular connected graphs, with topic entities in the
domain on one side of the graph, attribute values (or entities) on
the other sides of the graph, connected by attributes (see Figure 1(b)
as an example).

In the rest of this section, we continue with the Product domain as
an example to describe the techniques, as the aforementioned chal-
lenges are best highlighted in the product domain, and e-business
has been prevalent in people’s lives. Similar techniques have been
applied in other text-rich domains [47].

(a)

(b)

Figure 5: (a) Knowledge extraction pipeline to ensure produc-
tion quality. (b) Knowledge extraction pipeline with reduced
manual work.

3.1 Feasibility: The extraction model
With the huge semantic ambiguities, it is not hard to imagine that in
the product domain, structured data are sparse and error prone [47].
The seed crazy idea behind text-rich KGs is thus to mine structure
and model ambiguity from the structure-sparse source data.

Structure mining relies on knowledge extraction, which requires
different techniques from those described in Section 2, since entities
are non-named and attributes can be mostly free texts. We resort to
product profiles including product names, descriptions, and bullets,
and train Named Entity Recognition (NER)models to detect patterns
that express a particular attribute. Such models, like OpenTag [51],
serve as the basis for product knowledge collection.

With the extracted types and attributes, we can mine their re-
lationships (hypernyms, synonyms, etc.) from customer shopping
behaviors, such as search, co-view ("customers who viewed this
also viewed"), and co-purchase. For example, if users searching for
"tea" often buy "green tea", whereas users searching for "green tea"
seldom end up buying other types of teas, it hints that "green tea"
is a subtype of tea. GNN models have been employed to mine such
relationships for types [35] and attribute values [19]. Such methods
are also used to establish the substitutes and complements between
products [24, 48].

3.2 Quality and Repeatability: The extraction
pipeline

Quality: Despite the initial success for NER-based extraction, the
quality falls between 85% − 95%, so still mediocre. To achieve pro-
duction quality (e.g., 90%), a lot of pre- and post-processing is still
needed, as shown in Figure 5(a):
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• Understand the domain and attributes, and generate train-
ing data;

• Fine-tune hyper-parameters to improve the model;
• Postprocess extraction results with rule-based filtering;
• Pre-publish evaluation as a gate-keeper to guarantee high

quality results on real data in the wild.
These methods together allow high-quality extraction, often with
accuracy above 95%. On the other hand, it introduces a lot of manual
work, from labelers, from taxonomists, and from ML engineers and
scientists.
Repeatability: To achieve true repeatability for extractions on
different attributes and product types, we need a pipeline that is
fairly automatic. The following changes, as described in Figure 5(b),
aim to remove manual work as much as possible.

• Training data are generated by distant supervision, from ex-
isting product Catalog. Since Catalog data could be noisy [19],
we still manually label a small number of instances (tens to
hundreds) for benchmarking.

• Postprocessing is replaced with deep learning based data
cleaning (e.g., transformers, GNNs), leveraging consistency
between product descriptions and attributes, between dif-
ferent attribute values of the same product (e.g., snack with
sugar in the ingredient is unlikely to be sugar-free), and
between products of the same type (e.g., spicy is unlikely
to be the flavor of icecreams) [11, 12, 19]. Manual post-
processing is only done if ML-based post-processing still
cannot achieve the quality bar.

• AutoML pipeline is built to reduce model fine tuning efforts
and enable non ML-savvies to tune the models.

With the above improvements, we observed that the time to train
and deploy an extraction model can be reduced from a couple of
months to a couple of weeks, allowing steadily generating product
knowledge to feed e-business features (information display, product
comparison, search, recommendation, etc.).

3.3 Scalability: One-size-fits-all solutions
The product domain can contain millions of product types, thou-
sands of product attributes, and hundreds of languages and locales.
Even an efficient pipeline as described in Section 3.2 cannot afford to
train a model for every combination of product type, attribute, and
language. To scale up, we need a solution that is one-size-fits-all.

The product domain is complex because of the huge type variety;
even neighboring product types, such as Coffee and Tea, could have
quite different attributes, and different vocabularies and patterns for
attribute values. One-size-fits-all models need to be able to under-
stand and leverage the subtle differences between types, attributes,
and languages when training the models. Once developed, they
would significantly increase the volume of product knowledge and
thus the business impact. We next give a few examples.
Multi-type extractions: TXtract [26] deepens its understanding
of product types for better extraction in two ways. First, it takes
the embedding of the product types as part of the input to the
model, so the extraction is type-aware. Second, it employs multi-
task learning to predict product types in addition to knowledge
extraction, for the model to better understand texts related to type
semantics. TXtract shows that it can train one model for 4K product

types, while increasing extraction F-measure by 10% compared to
OpenTag as a baseline.
Multi-attribute extractions: The values for different attributes
can be more different than values for the same attribute across
different product types, thus requiring slightly different models.
AdaTag [50], as an example, takes attribute embeddings as input,
and applies Mix of Expert (MoE) and HyperNet to leverage the
similarities between the attributes (e.g., flavor and scent, though
different, share a lot of common vocabularies) in model training. It
can train one model for 32 major attributes whereas still improving
quality over training one model per attribute.

3.4 Ubiquity: Extraction from broader sources
Just as collecting entity-based knowledge, we wish to harvest any
knowledge existing for the product domain. The techniques de-
scribed above focus on text information provided by retailers on
one single e-business data source, and we can imagine extending
knowledge collection in three directions: product images, customer
reviews, and multiple e-business websites. These directions can all
lead to a new round of innovations, and we briefly describe early
results for multi-modal product knowledge extraction.

Product images (both the visual clues and the texts on products)
supplement information not existing in product profiles, or en-
hance information that is vague or ambiguous in profiles. The PAM
multi-modal extractor [30] employs a multi-modal transformer to
attend across texts and images to improve knowledge extraction; in
addition, it uses a generative model, adapted according to the prod-
uct types, to allow extracting values not observed in training data.
Experimental results show that it can improve over text extraction
by 11% on F-measure.

3.5 Summary
To recap, the seed crazy idea behind text-rich KGs is to mine struc-
ture and model ambiguity for complex domains, and it faces the
challenge that structured data are sparse and noisy. With one-size-
fits-all extraction and cleaning (see Figure 4(b)), Amazon AutoKnow
system automatically collected 1B knowledge triples over 11K dis-
tinct product types, and considerably extended the ontology and
improved Catalog quality [19]. Similar success has been witnessed
in other e-business companies [44, 49], and other domains [47].

4 DUAL NEURAL KNOWLEDGE GRAPHS
Comparing with rigorously-structured entity-based KGs, text-rich
KGs inject free texts in the structure and thus allow much more
flexibility to model complex domains. A natural question to ask
next is whether we can completely remove the structure—instead
of explicitly modeling knowledge, we capture semantics implicitly
such as through embeddings. This question is even more prominent
given the recent huge success of LLMs, whose emerging reasoning
capabilities [46] seem to have implied failures of Symbolic AI 6.Will
KGs be replaced with LLMs?
The current: At the current moment, LLMs clearly have not re-
placed knowledge graphs. First, training an LLM is expensive. As

6One application of symbolic AI is knowledge-based systems, but here "knowledge"
refers to logic rules, instead of structured information as discussed in this paper.
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such, it is hard for LLMs to quickly absorb recent knowledge. For
example, GPT-4, released in March 2023, is trained with knowledge
up to September 2021, with a 1.5-year lag [8]. Second, as broadly
known, onemajor problem for LLMs is hallucination of non-existing
facts; our recent study [42] shows that for questions that can be
answered using DBPedia data, ChatGPT [1] has a hallucination
rate of ∼20%, and cannot answer ∼50% of them. Finally, LLMs can
only learn knowledge when it appears often in the training data;
as the same study shows, the accuracy in answering questions in-
volving long-tail facts (questions regarding entities in the bottom
33% popularity) drops from ∼50% to ∼15%.
The future:With the above analysis, we envision a KG that encodes
knowledge both in the form of knowledge triples and in the form
of LLM embeddings, where the former are easier to use for human
understanding and explainability, whereas the latter are easier for
machine comprehension. We next elaborate with three subsets of
knowledge.

• Taxonomy: Taxonomy, or the type hierarchies, is what
LLMs are good at capturing. With LLMs, it may not be
worth explicitly modeling type relationships (e.g., hyper-
nyms, synonyms, etc.), not to mention manually construct-
ing a very deep and complex hierarchy. So tail taxonomy
may best reside at the LLM side.

• Head knowledge: Training data should be abundant for
head knowledge (popular entities and popular attributes)
so intuitively there could be a way to teach LLMs head
knowledge so they can efficiently address such information
needs; in other words, ideally head knowledge reside in
both forms. Surprisingly, LLMs can still have a high hallu-
cination rate for head entities (the previously mentioned
study shows a hallucination rate of 21% for DBPedia en-
tities with top-33% popularity). One important research
problem is how to infuse head knowledge into LLMs to en-
able precise answers to relevant questions, through model
training, or through model fine tuning. Early work in this
line includes knowledge infusion [31, 45].

• Torso-to-tail and recent knowledge:With the current
techniques for LLM training, LLMs are unlikely to be able
to effectively incorporate such knowledge, which is lacking
in training data. Thus, such knowledge may best reside as
triples. Best serving such knowledge requires knowledge-
enhanced LLM, which can effectively decide if such knowl-
edge is required for the conversation, seamlessly plug-in ex-
ternal knowledge sources, and do so efficiently. Early work
in this line includes knowledge-augmented LLM [6, 37, 38].

How to blend the two forms of knowledge elegantly and how
we best address our knowledge needs by leveraging the latest ad-
vancements of LLMs remain an open question, and a hot research
topic. In addition, how to effectively capture personal knowledge
and multi-modal knowledge, leverage them in LLMs to support QA
and conversations are even broader research areas.

5 REFLECTIONS: FACTORS TO INDUSTRY
SUCCESS

Before we conclude this paper, we reflect on what are key factors to
land crazy science ideas in industry and lead to real business impact.

As observed from a broad range of research directions, there are two
necessary conditions. First, the technique has achieved production
quality, or, it is ready; the bar can be different for different tech-
niques, but high for knowledge correctness, normally 90% to 99%.
Second, the technique enables significant scale-ups of productivity,
or, it is essential. We now illustrate using KG-relevant topics.
Industry successes: A few areas have witnessed prosperity in in-
dustry, including (1) knowledge-based QA, which improves the way
we address people’s information needs; (2) entity linkage, which
is critical in knowledge integration, as discussed in Section 2.2;
(3) closed information extraction (ClosedIE), which is critical for
scaling up knowledge collection for both entity-based and text-
rich KGs, and (4) knowledge cleaning, which is important to filter
imprecise knowledge from sources and from extractions. All of
these fields satisfy the two conditions: reaching production qual-
ity, and increasing productivity significantly to provide better user
experiences.
Not-yet successful: On the other hand, there are research areas
that have not seen prevalent industry applications.

(1) Automatic schema alignment: Schema alignment for a few
sources is typically done manually by professional tax-
onomists to ensure 100% correctness (as discussed in Sec-
tion 2.1), whereas schema alignment at the web scale is
done through ClosedIE.

(2) Knowledge fusion: Integrating knowledge from a few au-
thoritative sources does not encounter too many conflicts,
and integrating knowledge from a very large number of
sources is not popularly deployed in industry, so the need
for fusion is still limited.

(3) Link prediction (aka, knowledge inference): Link predic-
tion has not achieved the quality to reliably add inferred
knowledge into KGs; another use of it, to detect incorrect in-
formation, has been incorporated into knowledge cleaning
techniques.

(4) OpenIE: Extracting knowledge where entities and relations
are all texts without any restriction has been considered as a
promising way to significantly increase the volume of KGs,
but the quality has not been satisfactory for production;
recent LLMs have allowed much better ways to capture
such fully open knowledge.

These techniques miss one of the two factors thus have not
seen broad production uses; however, we find that they have in-
spired new research topics, and sometimes those newly developed
techniques "replaced" techniques of the original form.

6 CONCLUSIONS
This paper describes generations of knowledge graphs: entity-based
KGs, text-rich KGs, and dual neural KGs. In addition, it uses the
evolution of KG construction techniques to illustrate the cycle from
innovation to production and further to next round of innovation,
containing five stages: feasibility, quality, repeatability, scalability,
and ubiquity. The recent big success of LLMs shows new directions
for knowledge collection and knowledge encoding, which surely
will bring knowledge encoding, collection, and mining to the next
era and further push business impact to the next level.
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