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ABSTRACT

After decades of progress, database management systems (DBMSs)
are now the backbones of many data applications that we interact
with on a daily basis. Yet, with the emergence of new data types
and hardware, building and optimizing new data systems remain
as difficult as the heyday of relational databases. In this paper, we
summarize our work towards automating the building and opti-
mization of data systems. Drawing from our own experience, we
further argue that any automation technique must address three
aspects: user specification, code generation, and result validation.
We conclude by discussing a case study using videos data process-
ing, along with opportunities for future research towards designing
data systems that are automatically generated.
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1 INTRODUCTION

Since the dawn of the relational data model, designing and imple-
menting data systems has been a challenging and resource-intensive
task. Not only do developers need to design a user-facing or pro-
gramming interface that is intuitive for users to manipulate the
stored data, devising an efficient implementation of the data model
and query language is also crucial in order for the system to be
usable.

The recent plethora of new data types (e.g., videos captured
on phones, high-dimensional embeddings from machine learning
models), new hardware architectures (e.g., GPU and other accel-
erators), and new data-intensive applications (e.g., training deep
learning models) has exacerbated this problem. To illustrate, the ini-
tial prototype of Postgres took multiple students and three years to
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implement [53], and even a lightweight system such as SQLite took
months before its first prototype was released [54]. Likewise, com-
mercial implementations take even more resources to construct [55].
In fact, our own experience in building data processing systems
for video data has been no better — as we will discuss in Sec. 7, it
took us multiple years to design and implement a prototype system
for storing and manipulating geospatial videos, and modifying our
design has been a time-consuming task.

Given the recent advances in using machine learning to aid
in programming tasks, it is tempting to apply such techniques to
(semi-)automate the building of new data systems. In fact, such
endeavor can be traced all the way back to query-by-example that
was developed during the early days of SQL [74], where the idea
was to develop a graphical interface for users to provide a subset
of data that they would like to retrieve from the database, and the
tool would find a query execution plan that performs the desired
computation. Since then, various techniques have been developed,
ranging from how users specify their intention to the algorithms
that are used to find efficient query execution plans.

In this paper, we summarize the work we have performed in the
past few years on the various aspects of automating data systems
implementation. We believe that while recent advances in machine
learning, programming systems, and user interface research can
automate many tasks in the design and implementation of data
systems, we still have a long way to go before such techniques can
be applied to automatically design and implement data systems,
with numerous research opportunities ahead. Learning from our
experience, we argue that in order to leverage such techniques in
an effective manner to build data systems, three aspects must be
addressed: 1) how developers specify their intentions in terms of
what they want to build, 2) algorithms to be used for generating the
implementation given user specifications and, 3) mechanisms to
validate the implementations generated for correctness, and refine
them needed. We hope that identifying the key elements in building
automated data systems, we can help the research community focus
on future efforts across the different aspects.

In the following, we first describe each of these aspects in de-
tail. We then illustrate examples of each aspect using our prior
work across a number of data systems-related application domains:
constructing end-user interfaces to data systems, building database-
backed applications, and finding execution plans for queries. We
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conclude by describing our ongoing work on building a database
system and programming framework for video analytics, and future
challenges that lie ahead.

2 ASPECTS OF AUTOMATION

To automate the design and implementation of data systems, we
argue that three key aspects must be addressed as we outline below.

2.1 User Intention

Before we can generate implementations, we must design means
to capture what the end user would like to build. This aspect is
arguably the most important one in automation, as failing to under-
stand what the user plans to build directly impacts the usefulness
of the generated implementation. Researchers have designed “di-
rect” interfaces that allow users to provide or manipulate (part of)
the program to be generated (e.g., by providing the skeleton of a
SQL query that includes only the tables to be scanned but not the
predicates), or “indirect” ones where users provide inputs using
natural language and the tool will translate such input into its own
internal representation.

User familiarity. Ideally, there should be minimal friction from
the user’s perspective in using the interface to incorporate automa-
tion into their data processing workflows. The declarative nature of
query languages makes it easy to design declarative interfaces for
automation. For instance, classical programming-by-example (PBE)
techniques, where users provide examples of input data and the
corresponding output, fall within this category of declarative inter-
faces. Furthermore, recent advances in natural language processing
and generative models allow users to specify their intentions us-
ing human languages, for instance as code comments in the case
of Copilot [23] that can be incorporated into a code developer’s
existing development workflow, or as a natural language “question
and answer” interface such as ChatGPT [41].

Refinement. No interface is perfect and humans make mistakes.
A well-designed interface to capture user intention should include
means for the user to alter their original input, either due to errors
in the generated implementation or user’s changing their mind.
Classical query interfaces (e.g., SQL) are not designed to be “cor-
rectable” and users must start from the beginning if they are not
satisfied with the previous results returned. Recent development
in data exploration interfaces have incorporated ways for users
to change their previous inputs, such as using a “drag and drop”
interface to alter previously provided intentions [1]. Refinements
can also be done in the case of natural language interfaces by users
providing a new utterance that updates their previous intention.

Extracting intentions. The goal of a user interface is to capture
user’s intention. As such, there should be a simple way to extract
the captured intention from it. Doing so in an effective manner
requires designing an internal representation for user intentions,
which serves as a bridge between the user input interface and the
generation algorithm. Such representations include logical formulas
(e.g., constraints describing what the generated implementation
should and should not return), formal representations (e.g., lambda
calculus in the case of semantic parsing [70]), or a combination of
representations (e.g., code skeleton provided by the user along with
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constraints for the implementation to be generated expressed using
assertions). For indirect user interfaces (e.g., natural language), it
is important to have an effective translation mechanism that can
convert user’s input into the tool’s internal representation, as errors
in translation will generate incorrect implementations.

2.2 Code Generation

Given user intentions, the next step is to design algorithms that
can be used to generate implementations. Such algorithms can
be categorized as search algorithms, where the algorithm searches
for code implementations that satisfy the inputs or constraints
provided by the user, or as optimization algorithms, where a skeletal
or partial implementation has been provided, and the goal is to
tune the implementation such that it is optimal with respect to
user-provided metrics.

There has been much work done in both categories. For code
search algorithms, this includes code enumeration algorithms given
a search space of programs (which can be expressed using a gram-
mar, for instance) [74], to techniques based on version space alge-
bra [37] where rules that are specific to the application domain are
designed to explore the space of programs in a systematic man-
ner, or utilize solvers to guide the search [52]. On the other hand,
for optimization algorithms ranging from dynamic programming
(e.g., the Selinger optimizer for join order [48]) to integer program-
ming have been used, together with recent work on using machine
learning models to find the optimal setting for database engine
parameters [4].

2.3 Validation

Any generated implementation should be validated. Unfortunately,
this is often an overlooked part of the generation workflow. At the
minimum, there should be means to check the generated imple-
mentation against the user-provided specifications and see if the
user specification is satisfied. Validation methods include testing
the generated implementation against the provided specification,
using model checkers and theorem provers to assert the validity
of the generated and the original unoptimized or incomplete im-
plementations. While it may be difficult to validate the generated
implementations formally (e.g., the user specification was provided
using natural language), mechanisms can be put in place to allow
users examine and debug the generated implementation, or refine
it if necessary.

3 APPLICATION DOMAINS

We now illustrate the three aspects mentioned above using a num-
ber of application domains. We first describe the domains before
going into the details.

3.1 End-User Data Programming

While SQL is the de facto language for manipulating relational data,
authoring SQL queries can be difficult due to their highly expressive
constructs. In Scythe [60], we use the programming-by-example
paradigm to help users write SQL queries, using a similar interface
from online help forums such as Stack Overflow. In Sickle [72], a
follow-up work to Scythe, we further examine the task of authoring
analytical SQL queries (e.g., those with complex aggregations or



user-defined analytical functions). In Sickle, we explored using
a combination of programming-by-example and partial queries
provided by the user, along with an interface design that enables
users to refine their intentions as necessary. Similarly, in Falx [62]
we proposed a similar programming-by-example interface to auto-
generate visualizations from relational data.

3.2 Building Database-Backed Applications

Database-backed web applications (DBWAs) underpin numerous
daily online interactions, spanning from banking services to social
networks. These DBWAs follow a three-tiered architecture that
comprises a presentation tier (the view), an application tier, and a
storage tier, each carrying out specific functions. The view, executed
by the web browser, interacts with the application tier residing on a
server, while the storage tier oversees the management of database
queries and persistent data. This architecture opens up numerous
optimization opportunities. For instance, historically, different tiers
have been optimized independently, Coco [34] explores application
semantics to enhance database query optimization. Similarly, Hy-
perloop [66] demonstrates a view-driven optimization approach.
It enables developers to assign priorities to different webpage ele-
ments, and uses the analysis results to optimize the entire webpage.
This approach illustrates how a nuanced understanding of DBWAs
can lead to substantial performance improvement.

3.3 Query Compilation

Generating efficient query execution plans has been one of the core
data management research topics for decades. While the historical
focus has been on compiling relational query plans, recent efforts
have focused on plan generation for non-relational queries (e.g.,
JSON document stores, time-series databases, etc). In Casper [2, 3],
we utilized program synthesis to automatically generate distributed
query execution plans in Spark and Hadoop. Starting from sequen-
tial query plans to be executed on a single-node provided by the
user, Casper searches for possible plans expressed using Spark and
Hadoop that implements the same functionality but executed in a
distributed fashion.

Besides the execution plan, choosing the appropriate data struc-
tures to maintain data in memory also impacts the efficiency of
query execution. Towards that end, we have looked into auto-
generating cost-effective data structures in Chestnut [47, 64] and
Katara [33], where we use combinations of classical in-memory data
structures (e.g., lists and maps) along with Conflict-free Replicated
Data Types (CRDTs) [50] to speed up distributed query processing.

As a preview, Table 1 summarizes the domains mentioned above,
along with how the three aspects of automation are addressed in
each of the scenarios. We will discuss each in detail in subsequent
sections.

4 CAPTURING USER INTENTION

We first discuss our prior approaches in designing different means
for users to specify their intentions, using the application domains
mentioned above as an illustration.
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4.1 Programming-by-Example

SQL is a highly expressive language for querying relational databases.
Unfortunately, to complete practical database querying or analy-
sis tasks, users not only need to master advanced table operators
(e.g., outer-join, grouping, partition) but also need to learn how
to combine them to form idioms like “arg-max,” “greatest-n-per-
group,” and “moving average” Similarly, when users need to create
data visualizations, they face the challenges of reshaping the input
data into “tidy format” using data transformation libraries like tidy-
verse [56] and pandas [43], which is observed in prior work as a
significant barrier for visualization authoring.

So, without programming, how can inexperienced users express
their database querying, analysis, and visualization intents? Our
solution is programming by example: instead of directly writing a
program p to solve their task, the user demonstrates the task by
providing an example input-output (I/O) pair to ask a program
synthesizer to find a program p that matches the I/O examples,
i.e., p(I) = O. Because the user only needs to know the expected
output of their task on a small input as opposed to how the output
should be computed in the given language (say SQL), I/O exam-
ples are commonly employed by inexperienced end-users / non-
programmers in online forums like Stack Overflow to illustrate data
manipulation objectives. In the past few years, we developed three
programming-by-example tools to democratize database querying
and data visualization.

Relational Query. Scythe [59, 60] is a programming-by-example
system for database querying. Given a list of input tables T;; and
an output table Ty, our goal is to construct a query g in SQL that
includes projection, filtering, join, group, aggregate, union such
that q(Tin) = Tour For example, a user has an input table with
columns id, date, item, price, and they want to retrieve entries in Ty
that have the highest sale price for each item. To use Scythe, the
user demonstrates the idea with the following example input T;
and its corresponding output Tyy;.

T
id | date | item | price T
out
1 12/24 1 10 P p p e
0 1 2 3
2 12/25 1 30 1 12/25 1 30
3 12/24 2 20 3 12/24 2 50
4 12/25 2 10
5 12/27 3 50

With this example, Scythe synthesizes the “arg-max” SQL query
“Select * from T1 where T1.price = (Select max(t.price) from T1
as t where t.item = T1.item)” to solve the user’s task. As we will
describe more in detail later, the synthesis process is achieved by
the abstract-guided enumerative search algorithm, where Scythe
efficiently enumerates and prunes programs based on SQL grammar
to search for queries that are consistent with the user examples.

Analytical Computation. In retrieval tasks, I/O examples are effec-
tive for expressing the tasks because the output example preserves
the structure information of the query. However, in analytical tasks
like moving average and aggregation, asking users to provide the
output example is not as ideal. On one hand, because analytical
computation always involves groups of values, it requires users
to manually find all the values that belong to a specific group
and compute their aggregated results; on the other hand, the final
output “hides” the computation process, which makes it harder



Table 1: Application domains and aspects of automation discussed in this paper

Domain

[

User Intention

[

Code Generation [

Validation

End-user data programming [60, 62, 72]

Programming-by-example

Solver-based program synthesis

Consistency with user examples

Database-backed web applications [34, 66]

Unoptimized application code

Rule-based code analysis

Semantic equivalence with input code

Query compilation [3, 17, 64]

Unoptimized application code

Solver-based program synthesis

Theorem prover

for the synthesizer to automatically identify the correct opera-
tors needed for the query. To address this problem, we revised the
basic programming-by-example specification into a new specifi-
cation “programming-by-computation-demonstration,” where the
user demonstrates the computation process of how output rows
are derived using values from the input table (via expressions) as
shown in Fig. 1. Our tool, named Sickle [72], can then take advan-
tage of the computation traces to synthesize analytical SQL queries
to solve the querying task.

row_id | City Quarter Group Enrolled Population
1 A 1 Youth 1667 5668
2 [FA 1 Adult 1367 . 5668
7i| A 4 ' Youth 556 % | 5668
4% i Adult 432 5668/

‘ Tel c2/ @ | €3
L S (1667) s
AL sun:g\(n(ﬂ) /5668 % 100%
i 1 1667, 1367 -
A 4 sum ( N ) /5668 * 100%

Figure 1: Using Sickle, the user demonstrates the analytical
task of calculating the moving average of enrolled partici-
pants per city divided by population.

Visualization by Example. When it comes to data visualization,
instead of asking the user to provide the input-output tables, we
ask users to provide input data T, and a partial visualization as
the output example V,y. The visualization example consists of a
subset of visual elements (i.e., bars in a histogram, and points in
a scatterplot) that should be included in the final visualization.
Our tool, Falx [61, 62], synthesizes a data transformation program
pr and a visualization script p, such that the final visualization
contains all elements provided by the user, i.e., Vex € po(p:(Tin))-
Fig. 2 shows how a user can use Falx to create a visualization that
compares New York and San Francisco temperature.

4.2 Using a Familiar Programming Interface

Besides programming-by-examples, asking users to provide an
unoptimized or incomplete implementation is another means to
capture user intent, especially for users with programming skills.
We next discuss two cases where we have applied such techniques
to capture user intent.

Translating Sequential Code to MapReduce. MapReduce [20], a
popular paradigm for developing data-intensive applications, has
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Figure 2: Using Falx, the user demonstrates how they plan
to visualize two data points in the input data to compare
New York and San Francisco temperature. Falx generalizes
the user demonstration to a full visualization that shows all
rows in the input.

@Summary (
m = map(reduce(map(mat, Apm1), Ar). Am2)
Ami
Ar (v, 02) 2 v+ 02
Amz 1 (k, v) = {(k, v/cols)})
int[] rwm(int[J[] mat, int rows, int cols) {
int[] m = new int[rows];
for (int i = @; i < rows; i++) {
int sum = 06;

(i, j, v) = {(i, v)}

for (int j = @; j < cols; j++) {
sum += mat[i]1[j];
3
mfi] = sum / cols;
3
return m;

(a) Input: Sequential Java Code

RDD rwm(RDD mat, int rows, int cols) {
Spark.broadcast(cols);

RDD m = mat.mapToPair(e -> Tuple(e.i, e.v));
m = m.reduceByKey((v1, v2) -> (vl + v2));
m = m.mapValues(v -> (v / cols));

return m;}
(b) Output: Apache Spark Code

Figure 3: Translation of the row-wise mean benchmark to
MapReduce (Spark) using CASPER.

varied and highly efficient implementations [6-8, 44]. All these im-
plementations expose an application programming interface (API)
to developers. While the concrete syntax differs slightly across
the different APIs, they all require developers to organize their
computation into map and reduce stages in order to leverage their
optimizations.



While exposing optimization via an API shields application de-
velopers from the complexities of distributed computing, legacy
applications must re-organize the computation using the target
framework’s API in order to leverage such frameworks. This re-
quires not only expertise but also a significant expenditure of time
and effort. Further, each code rewrite or algorithm reformulation
opens another opportunity to introduce bugs. Casper [2, 3] is a
tool that alleviates these issues by automatically translating sequen-
tial Java code into semantically equivalent MapReduce programs.
Rather than relying on rules to translate different code patterns,
Casper is inspired by prior work on cost-based query optimiza-
tion [49] and program synthesis (to be discussed in Sec. 5.2), which
consider compilation to be a dynamic search problem.

To illustrate, given a sequential Java program, such as the row-
wise mean function in Fig. 3(a), Casper first annotates the program
with a program summary that helps with the translation to MapRe-
duce. The program summary describes how the output of the code
fragment (in this case m) can be computed using a high-level in-
termediate representation (IR) of a series of map and reduce with
transformer functions on the input data (i.e., mat), as shown on
lines 1 to 5 of Fig. 3(a). While the summary is not executable code,
it accurately describes the semantics of the input code using an
abstraction that is easy to translate to the concrete syntax of the
target MapReduce framework. This is shown in Fig. 3(b) where
the map and reduce primitives from our IR are translated to the
appropriate Spark API calls.

Casper infers program summaries through program synthesis
and verification. Casper’s IR for program summaries is designed
to succinctly express computations in the MapReduce paradigm,
allowing program synthesis to discover complex algorithms found
in real code. Furthermore, Casper accelerates the search process by
incrementally expanding the space of candidates considered during
search and uses a domain-specific cost model to bias search towards
performant MapReduce translations. We provide more details on
Casper’s incremental grammar generation in Sec. 5.3.

Synthesizing Replicated Data Types. Besides finding execution
plans, choosing the appropriate data structures is another aspect
that affects execution efficiency. For developers who only have
experience writing software for single-node systems, reasoning
about the failure conditions and asynchrony in a distributed system
can be a daunting task. Recent innovations like CRDTs [50], a
class of data structures that can be replicated in an eventually
consistent manner, offer a more friendly object-oriented interface.
But they have complex correctness guarantees that make it hard
for developers to craft their own domain-specific types.

With program synthesis, this challenge turns into an oppor-
tunity! The same correctness guarantees can be encoded as con-
straints on the synthesis problem, with existing single-threaded
logic used as a reference to verify the behavior of the distributed im-
plementation. We apply this approach in Katara [33], a system that
automatically synthesizes CRDTs that are observationally equiva-
lent to sequential data types.

By providing an existing data structure implementation in C/C++,
such as a Boolean toggle or set, and a lightweight annotation that
specifies how concurrent mutations should be ordered, Katara can
automatically perform end-to-end synthesis to derive a provably
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equivalent CRDT. For example, in Figure 4, Katara takes a sequen-
tial implementation of a shopping cart (which supports insertions
and removals) along with a tie-breaking opOrder which specifies
how concurrent operations should be ordered. Using just this in-
formation, Katara can automatically synthesize a provably-correct
CRDT implementation that can be used as a drop-in replacement.

Input: Sequential C Datatype and Operation Order
set* init_state() { return set_create(); }

set* next_state(set* state, int add, int v) {
if (add 1) return set_insert(state, v);
else return set_remove(state, v);

}

int query(set* state, int v) {
return set_contains(state, v);

}
opOrder(01,02): 01 gqqg =1V 09444 # 1

Output: Synthesized CRDT Design
crdt ShoppingCart
initialState: ({}, {})
merge (ay, az), (b1, b2)
return (a; U by, az U by)
operation (s, add, value)
return merge(s, if add = 1 then

({value}, {})

else
({}, {value})
)

query ((s1,s2), value)
return value € (s1 \ s2)

Figure 4: A user-provided sequential reference and the CRDT
design synthesized by Katara.

To generate the implementation, Katara uses program synthesis
as the code generation mechanism, based on the sequential, single-
node implementation. We will discuss the details in Sec. 5.2.

4.3 Program Analysis

In applications that interact with databases, the SQL queries are
often not created directly by users or issued stand-alone; instead,
they are a sequence of queries automatically generated by the
application code. One such example is web applications developed
via object-relational mapping (ORM) frameworks like Django [21]
and Rails [45], where users write code in a programming language
such as Python or Ruby, and the ORM translates such code into
SQL.

The following shows an example snippet from a project-management

web application, which uses an ORM library to retrieve projects
with non-empty associated todos with condition done==false. These
projects are then rendered in a webpage returned to the user. In
such applications, the application code is the user specification,
where it describes (1) how the data is generated for the application
database, (2) what data they want to retrieve from the database,
and (3) how to make use of such retrieved data. Therefore, program
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analysis can help understand the application developer’s intent and
optimize the application queries accordingly. We illustrate how this
can be done through three systems, PowerStation, Panorama and
Coco.

# code to retrieve data from the database

user = User.where(:id=param[:id])

projects = user.projects

todo_projects = projects.select{|p]|

< p.todos.where(done=>false).count>0}

# code to generate a webpage to render unfinished projects
<% for p in todo_projects %>

<a href=..%=p.1id%. .><%=p.name%></a>

Listing 1: An example snippet that generates a web page
showing a user’s unfinished projects

PowerStation [65, 67, 68] improves commonly-seen inefficient
queries in database applications that use ORM frameworks to gen-
erate SQL queries. These queries are often not inefficient by them-
selves, but because of how the query result is used. For example,
an automatically-generated SQL query SELECT * FROM table
retrieves the entire table while the application only uses the first
tuple, it can be optimized by adding a LIMIT 1 clause to retrieve
the only tuple being used. Powerstation performs program analysis
on 12 popular open-source applications to extract 9 common anti-
patterns which produce inefficient queries and generate patches
for 6 of these anti-patterns. Such anti-patterns widely exist: Pow-
erStation identifies 1221 inefficiency issues in these applications,
and automatically generates patches for 730 of them, achieving
performance gain up to 10x.

While PowerStation improves the application without changing
its semantics, Panorama [69] offers the user alternative choices in
the application design that can achieve much greater performance
gain. For example, a forum application shows a list of discussion
posts on its main webpage. The developer may render all the posts
at once and let the user scroll down to browse them, which may
make this webpage slow under a large number of posts. In this case,
the developer may want to consider paginating the webpage to
show a fixed number of posts and let the user browse other posts
by clicking “next page” button. We build Panorama to automate
this process. It again uses program analysis to extract the intention
from the user-provided code, with the goal of understanding the
cost of queries issued to generate the webpage as well as the cost
to process the query result. A heatmap for the webpage is then ren-
dered to let developers easily understand which component incurs
the highest computational cost to render. It will also recommend
alternative designs like pagination and automatically refactors the
code if the developer accepts the new design. Our user study shows
that using Panorama’s recommended designs would not affect the
user experience (occasionally even improving it) while achieving
speedup up to 38X in rendering.

As a third illustration, Coco [34] is a system that automatically
extracts both application and database constraints from the source
code. Database constraints are explicitly defined in the migration
files [40] for applications built using ORM frameworks, and they
alter the database schema over time as the application evolves. Ap-
plication constraints are semantically embedded in the application
code during model class definition. Listing 2 gives an example of

O N G O
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application constraint. Lines 1-4 define the Member class and lines
5-7 create and save a Member object. Line 4 utilizes Rails’ built-in
validation API and is called whenever the object is saved to the
database, as shown in line 7. Rails executes the validation on Line 4
by executing a query to determine if a user with the same project
already exists in the member table and raises an error if so. Here,
the validation function implicitly defines a data constraint that
given a project, the users belonging to the project are unique. Yet, it
is only defined in the application code but not specified as part of
the database schema, as developers can write arbitrary code in the
validation function, and not all of them can be easily translated to
SQL constraints. Because of its flexibility, ease of use, and error
management capabilities, constraints are often defined in the ap-
plication rather than the database. Coco uses both database and
application constraints to enhance query performance. It works by
treating the application source code as specification, analyzing the
code by building an abstract syntax tree (AST) for each file, and
performing pattern-matching on the AST nodes. Using this analy-
sis, Coco extracts an average of 289 constraints for six evaluated
applications, and subsequently uses these extracted constraints to
improve query execution by over 2xX to be discussed in Sec. 5.

# Member Class definition
class Member
belongs_to :user, :project
validates_uniqueness_of :user_id, :scope => :project_id
# Create a Member object and save it to the database
member = Member.new(user_id=1, project_id=2)
member . save

Listing 2: Redmine code with an implicit data constraint.

5 CODE GENERATION

The goal of extracting user intentions is to use them to generate
code. We highlight the different approaches we have devised in
prior work in automating the code generation process.

5.1 Rule-Based Search

A simple search algorithm is a rule-based search, which defines the
patterns to look for in the original program as well as rules to pro-
duce new program for each pattern. In Chestnut [47, 64], we explore
patterns in the schema and the queries in an application to find
better data structures to store the data based on such patterns. For
example, in the TPC-H benchmark, the lineitem table is often inner-
join or semi-joined with the orders table on o_orderkey to filter the
orders where each order can map to several lineitems. Chestnut
accelerates such queries by using a nested data structure that stores
a list of lineitems (storing a subset of projected fields) inside each
orders tuple. Such data structure essentially pre-computes the joins
while avoiding redundancy as compared to fully materialized join
results. Chestnut uses a rule-based search that produces nested
data structures according to foreign keys and join patterns and only
searches for nestings that can be used to answer queries (rather
than trying all possible data structures given the large search space),
and chooses the optimal one based on the estimated query cost.
It achieves significant performance improvement by speeding up
queries to 42x for applications built using ORMs, which typically
store results using nested objects and are often inefficient.



On the other hand, Coco leverages detected constraints to en-
hance query performance by rewriting queries. It uses the con-
straints it has extracted to enumerate feasible rewrites, such as
removing DISTINCT. Subsequently, it filters out inefficient rewrites
based on estimated costs. To guarantee that the rewritten queries
are semantically equivalent to the original, Coco uses both test-
ing and formal verification, to be discussed in Sec. 6. This process
results in a lookup table composed of pairs of original and opti-
mized queries. As the application runs, this table is used online to
efficiently rewrite queries, thereby enhancing performance. Fig. 5
shows the total number of queries rewritten by Coco after analyzing
six open-source Ruby on Rails applications, as well as the number of
rewrites after each step. In total, Coco’s constraint-driven optimizer
improves the performance of 2,492 queries, 118 of which have over
2% speedup.

Coco utilizes a rule-based search mechanism to list potential
rewrites, with each rewrite drawing upon specific types of con-
straints. As such, Coco enumerates potential rewrites exclusively
when the relevant constraints are present. In practical terms, Coco
extracts all columns employed in a query and cross-references them
with the extracted constraints. For each identified constraint, Coco
applies the associated potential transformations. For instance, for

the query in Listing 3, Coco extracts the used columns members.user_id,

users.id, users.status, and members.project_id. Coco then
determines that users.id and each pair of (members.user_id,
members.project_id) is unique. It then removes the DISTINCT
keyword and add LIMIT 1 to generate three candidate rewrites as
shown in lines 14-16. Coco’s modular design makes it easy to add
new types of rewrite rules. Users can simply add a new semantic
query rewrite rule to the search space by providing the utilized
constraints and associated enumeration.

-- Original Query

SELECT DISTINCT users.* from users

INNER JOIN members ON members.user_id = users.id
WHERE users.status = $1 AND (members.project_id = $2)

-- Used columns
members.user_id, users.id, users.status, members.project_id

-- Extracted constraints on used columns
Uniqueness: (members.user_id, members.project_id) pair is unique
Uniqueness: users.id is unique

Candidate rewritten templates:

SELECT users.* from users INNER JOIN members ON members.user_id =
users.id WHERE users.status = $1 AND (members.project_id = $2)
-- remove DISTINCT

SELECT DISTINCT users.* from users INNER JOIN members ON
members.user_id = users.id WHERE users.status = $1 AND
(members.project_id = $2) LIMIT 1 -- add LIMIT 1

SELECT users.* from users INNER JOIN members ON members.user_id =
users.id WHERE users.status = $1 AND (members.project_id = $2)
LIMIT 1 -- remove DISTINCT and add LIMIT 1

rreer>rr o

Listing 3: Heuristic-guided rewrite for a Redmine query. Red-
mine is an open-source application built using the Ruby on
Rails ORM framework.
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Figure 5: Number of queries after each of Coco’s analysis
step. Queries with constraints: queries that can potentially
be rewritten by leveraging the constraints extracted by Coco.
Enumerate: possible query plans that are enumerated by
Coco’s rule-based search algorithm given the extracted con-
straints. No slow rewrites: queries that can be sped up after
being rewritten. Coco determines the potential speedups us-
ing the database’s cost estimator. Test: rewritten queries that
return the same results as the original by running tests on
a small test database. Verify: once the rewrites pass the test
phase, Coco then uses the Cosette solver in an attempt to
formally verify their equivalence. Each line represents a dif-
ferent application, and the final numbers are the number of
queries that not only achieve a speedup but are also proved
to be semantically equivalent to the original query.

5.2 Program Synthesis

Abstraction-guided Program Synthesis. The workhorse behind
programming-by-example systems is the abstraction-guided pro-
gram synthesis algorithm, a technique that leverages abstract se-
mantics of the underlying language to effectively prune incorrect
program skeletons during top-down enumerative search to speedup
the synthesis process. This technique powers relational query and
data transformation program synthesis in Scythe, Falx and Sickle
described in Sec. 4.1.

Fig. 6 shows how Falx synthesizes a data transformation p from
input tables Tq, T> and partial output example T. Unlike simple
top-down enumerative search algorithms that would fully expand
the search tree until all leaf nodes are concrete programs, Falx’s
abstraction guided synthesis algorithm allows it to prune program
sketches (i.e., programs with uninstantiated parameters annotated
as holes “0”) before they are fully expanded. This allows the syn-
thesizer to prune the full sub-tree without paying the cost of fully
expanding the tree and evaluating all programs (which is expo-
nential to the number of holes in the sketch). The reason that the
synthesizer can prune such program sketches is that while the pro-
gram is not yet fully instantiated, we can derive properties of the
output table Tyt based on known parameters (i.e., properties that
all programs in this sub-tree share), and if these properties conflict
with the synthesis objective, we can confidently prune the program
sketch.



Input Tables: T+, T2 Requires:
| [ipiCond Al Aneg| [EID!Gender| | ®out= T Tou, Where
Af 1 i6l 1 Al M 1 | o2 | c3 tl = dinner_join(T1,T2,0h)
Bi 2 i4i 2 B M T=["4 7 M t2 = mutate(tl,c3=Cond+Aneg)
€ .1.2.5 ¢ F 2 6 M Instantiate ot = select(t2,05) X . L P N
D: 2 i3 6 D F 0z and Oa tl = inner_join(T:, T2, “ID”,“EID")
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, t2 = mutate(tl,c3=A+Aneg)
tl = dinner_join(Ti,T2,0n) Tout = select(t2,Cond,Gender,c3) o
tl = inner_join(Ti,T2,01) t2 = mutate(tl,c3=A+Aneg) e >
Tout = select(tl,h) X / Tout = select(t2,0s) t1 = inner_join(Ti, T2, NULL)
. A t2 = mutate(tl,c3=A+Aneg)
tl = inner_join(T1,T2,01) -
/ e 32 et doin(uTa o Tout = select(t2,Cond,Gender,c3)y
0 Tout = select(t2,0s) \ t1 = inner_join(T:,T2,00)
start ) o t2 = mutate(tl,c3=Cond+A)
\ tl = inner_join(T1,T2,0h) Tout = select(t2,0s) X
t2 = mutate(tl,=C3+04)

Tout = select(t2,0s)

tl inner_join(T1,T2,01)
t2 mutate(tl, cl=C3+4)
Tout = select(t2,0s)

tl = mutate(T1,h=[h+03)
Tout = select(tl,0s) X

X

Figure 6: Given input tables Tj, T, and partial output table T, Falx synthesizes a data transformation program p composed of R
tidyverse operators whose output Ty, satisfies the objective ®,,+. At each step, the synthesis algorithm first picks a known
variable and expands it (new values expanded at each step are labeled in red), then it evaluates each program sketch using
abstract semantics of the table transformation language and prunes it if the evaluation process results in conflicts.

For example, given the program t1 = inner_join(T1, T2, _);
T_out = select(t1, _)!inFig. 6, while the synthesizer does not
yet know the possible join predicates and projection parameters,
it can infer the properties of this sketch that the program cannot
generate new values that are not in T; and T». Given that, the syn-
thesizer compares the property with the output example T: the
partial output T contains new value 7 that is not in Ty or Ty, and
thus the program sketch is incorrect and can be pruned away. These
properties are organized systematically as abstract semantics of the
language, allowing the synthesizer to recursively derive such prop-
erties given any composition of the partially instantiated operators.

Verified Lifting. Katara uses verified lifting [10, 14, 29, 51] to
search for CRDT implementations. Verified lifting internally uses
program synthesis as the code generation mechanism. On top of
lifting, Katara introduces several new components to the lifting
pipeline. Because synthesizing a CRDT requires not only defining
the implementations of operations and queries on the datatype,
but specifying how the state of the data structure is represented
internally, Katara must search through a space of potential storage
types. We leverage the composition of join-semilattices, which
define how instances of a CRDT can be merged, to define a grammar
of state structures that we perform an enumerative search over.

But the challenges don’t end there! Unlike past verified lifting
work where the correctness conditions rely on equality of outputs
when given the same inputs, CRDTs separate interactions into
mutating operations and queries, and thus correctness relies on
observational equivalence. When the original datatype and the
CRDT are fed the same sequence of operations, and then are queried
for a piece of that state, then the result of the query must be the same.
Katara takes the approach of synthesizing inductive invariants to
verify correctness over unbounded interactions.

But performing this synthesis can be extremely expensive, some-
times taking multiple hours on some benchmarks. To tackle this,

The select operator in R tidyverse implements projection, unlike in relational algebra.
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Katara applies another novel technique in the verified lifting space:
using multiple phases of synthesis to enumerate candidates ac-
cording to bounded verification and only synthesizing inductive
invariants after using the first phase to prune the search space.
Altogether, Katara is able to synthesize CRDT equivalents to many
classic data structures in minutes, and comes up with CRDT im-
plementations that have better performance characteristics than
human-designed ones in existing literature. Katara demonstrates
how program synthesis can go beyond translating code to new
domains, instead extending it with new capabilities.

5.3 Incremental Search

The fundamental hurdle faced by search-based methods is scalabil-
ity. As the space of candidate solutions grows larger, exhaustively
searching for a correct solution can become prohibitively expensive.
This problem is further exacerbated when the goal is to not merely
find a correct solution but rather an optimal solution. An important
tactic for scaling up search is to incrementally expand the space of
candidate solutions considered during search. For example, if the
search space is encoded as a context-free grammar, we can expand
the space of candidate solutions by (1) adding new production rules
to the grammar, and (2) increasing the number of times that each
product rule can be expanded.

There are two benefits to this approach. First, since search time
for a valid solution is proportional to the size of the search space,
we can often find valid solutions quickly for less complex problems
that do not require a very expressive grammar to solve. Second,
as larger grammars generate longer and more complex solutions,
the discovered solutions are likely to be more expensive computa-
tionally. Hence, incremental grammar generation can be a way to
bias search towards more desirable candidates, such as those with
higher performance.

The idea of incremental search was used in Casper, where we
partition the space of program summaries into different grammar
classes, where each class is defined based on a number of syntactical



features: (1) the number of Map/Reduce operations, (2) the number
of emit statements in each map stage, (3) the size of key-value pairs
emitted in each stage, as inferred from the types of the key and
value, and (4) the length of expressions (e.g., x + y is an expression
of length 2 while x +y + z has a length of 3). All of these features are
implemented by altering the production rules in the search space
grammar. A grammar hierarchy is created such that the set of all
program summaries that are expressible in a grammar class G; is
a syntactic subset of those expressible in a higher level class, i.e.,
Gj where j > i. Our approach was quite effective in pruning down
the search space and reduced search time by at least one order of
magnitude as evaluated using our benchmark set.

6 REASONING ABOUT CORRECTNESS

Validating the generated code is an important part of any auto-
generated system. While testing the generated implementation
against the user-provided inputs might suffice in situations where
test cases are available, formal reasoning represents another valida-
tion mechanism. In this section, we illustrate this using Cosette [15,
17, 18], an equivalence checker for SQL. While the problem of deter-
mining equivalence for arbitrary SQL queries is undecidable [58],
Cosette focuses on fragments of SQL queries that commonly arise in
practice, including conjunctive queries, correlated queries, queries
with outer joins, and queries with restricted uses of aggregates.

As an equivalence checker, Cosette takes in two SQL queries and
determines if they are equivalent, i.e., for two given queries if they
will always return the same results for all possible input relations.
Cosette leverages recent advances in both automated constraint
solving and theorem proving, and returns a counterexample (in
terms of input relations) if two queries are inequivalent, or a proof
of equivalence otherwise. As shown in Fig. 7, Cosette consists of
two parts: a proof search engine that translates the input queries
into a formal representation called U-semiring expressions, and
leverages a proof assistant to find a proof that shows that the two
input queries are semantically equivalent; and a counterexample
search engine that converts the queries into constraints, and uses
a constraint solver to find counterexample relations, i.e., instances
of input relations to the two queries such that, when executed, the
two queries will return different results, hence proving that they
are inequivalent.

Cosette internally uses a combination of constraint solving and
theorem proving to search for equivalence proofs and inequivalent
counterexamples. As such provers do not come with an understand-
ing of SQL, our first task is to model the semantics of relations and
queries.

6.1 Proof Search

In searching for proofs, our goal is to show that the two input
queries always return the same results for all input relations. While
we can model relations as sets and queries as iterations over sets, it
would be challenging to search for proofs under such modeling, as
doing so will require proving equivalence of iterations which can
become highly undecidable even for simple iterations.

For proof search, Cosette instead models relations and queries
based on K-relations, which was first proposed by Green et al. [25].
Under K-relations, a relation is modeled as a function that maps
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Figure 7: Architecture of Cosette

tuples to a commutative semiring, K = (K, 0, 1, +, X). In other words,
a K-relation, R, is a function:

[R] :Tuple(o) —» K

with finite support. Here, Tuple(o) denotes the (possibly infinite)
set of tuples of type o, and [R] (¢) represents the multiplicity of ¢ in
relation R. For example, a relation under SQL’s standard bag seman-
tics is an IN-relation (where IN is the semiring of natural numbers),
and a relation under set semantics is a B-relation (where B is the
semiring of Booleans). All relational operators and SQL queries can
be expressed in terms of semiring operations; for example:

[[SELECT * FROMR x, S y]] =A(t,t2) . I[R]](tl) X [[S]](tz)
[[SELECT * FROM R WHERE a > 10]] =At.[ta>10] X IIR]](t)
[t".a=t] x[R] ()

t":Tuple(o)

[SELECT a FROM R] = A t.

For any predicate b, we denote [b] the element of the semiring
defined by [b] = 1 if the predicate holds, and [b] = 0 otherwise.

To extend K-relations for automatically proving SQL equiva-
lences under database integrity constraints, we develop a novel alge-
braic structure called U-semiring, as the semiring in K-relations [16].
A U-semiring extends a semiring with a few new operators and a
minimal set of axioms, each of which is a simple identity.? With
these additions, SQL equivalences can be reasoned by checking the
equivalences of their corresponding U-expressions using only these
axioms expressed in U-semiring identities. Cosette implements this
semantics by translating the input queries into U-semiring expres-
sions, along with a rule-based search engine to find equivalent
proofs for the input queries.

6.2 Searching for Counter-Examples

Besides searching for equivalent proofs, Cosette also looks for coun-
terexamples that can show that two SQL queries are inequivalent. It
does so using bounded verification with a constraint solver, where
it models a table as a list of tuples of symbolic values, where each
tuple models a row in the table together with its multiplicity in the
table. For example, given a table schema (id, price, sales), Cosette
creates the following symbolic table:

2An axiom is a logical sentence, such as Yx . R(x) = S(x).



id | price | sales | multiplicity
S11 | S12 13 mi
S21 | S22 523 my

In this table, the symbolic values s;; are symbolic integers that
represent any possible integers, and m; is a symbolic non-negative
integer that represents how many times the tuple would appear
in the actual concrete table. The choice of explicitly representing
multiplicity is to concisely represent larger tables with less sym-
bolic values to reduce computation overhead. This symbolic table
directs Cosette to search the space of all tables with at most two
distinct tuples to check for possible distinguishing inputs that can
disambiguate candidate queries.

Given the symbolic table, Cosette then proceeds to generate con-
straints over these symbolic values based on input queries. Cosette
first translates input queries g1, g2 into a pair of Rosette [57] pro-
grams p1, p2, and then generates an assertion p1(T) == p2(T) ask-
ing Rosette to either prove it within the bound of given symbolic
input T or generate a counter-example. Rosette would further com-
pile the assertion into SMT constraints and asks Z3 to instantiate
all symbolic values defined in the table, and returns the counterex-
ample to the user if one is found.

7 A CASE STUDY: DATA MANAGEMENT FOR
SPATIAL-TEMPORAL VIDEOS

We now describe a case study that highlights the challenges in-
volved in designing data systems for a new domain in our prior
work, and how having automatic generation techniques can help
with design exploration and implementation.

7.1 Virtual & Augmented Reality Video Data

Managing virtual and augmented reality video (respectively VR and
AR video) data at scale is a formidable challenge. While all video
applications tend to be data-intensive, VR and AR video applications
are especially so, typically requiring data transfer of terabytes per
second [35]. Despite this challenge, developers often work with VR
and AR data as if it were ordinary, two-dimensional (2D) video. This
result in brittle applications that intermix application logic with
2D video plumbing (e.g., spherical projection [12, 46], encoding
idiosyncrasies [19, 36])

To address this impedance, we introduced LightDB [27], a system
that treats all types of VR and AR video in a logically unified manner.
LightDB enables developers to reason about VR and AR video as a
declarative, first-class construct, and frees them from needing to
reason about storage and format irrelevancies such as compression
codec, resolution, or stereoscopic representation.

To do so, LightDB introduces a logical abstraction called a tem-
poral light field (TLF). A TLF captures the degrees of freedom (i.e.,
spatial, rotational, and temporal) available to a viewer in VR or AR
space. LightDB then exposes an algebra and declarative query lan-
guage (VRQL) which developers use to express their operations over
TLFs. In addition to decoupling application intent from low-level
plumbing, this enables the LightDB query optimizer to identify the
most performant way in which to execute the application. To fur-
ther increase opportunities for optimization, LightDB additionally
supports various indexes (e.g., a tile index similar to [19]) that may
be defined on TLFs.
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As LightDB introduces a new data model, we had to design a
new algebra and API, and implement them from scratch. In the
end, we designed a query algebra comprising of a minimal set of
~20 non-blocking operations on TLFs that are composed to express
rich functionality that includes a number of modern VR and AR
applications we describe in [27]. Each operation is a unary or n-ary
function from one or more input TLFs to an output TLF. The alge-
bra includes selection operators that capture a region of space or
resample at a particular resolution; partitioning operations that
enable subqueries to operate on partitions independently, merge
operators that combine TLFs; transformations that modify, trans-
late, or rotate TLFs; and storage operators that load or store TLFs
to (from) disk.

Developers use VRQL to express VR and AR applications. Func-
tions in VRQL correspond to the LightDB algebra. For example,
consider the application described in [28], where a developer wishes
to partition a viewer’s perspective into regions and render areas a
viewer is likely to look in higher quality. Using VRQL, a developer
might write the C++ query’® shown in the Listing 4.

Scan("input_t1f")
>> Partition(Time, 1)
>> Partition(Theta, 7 / 2)
>> Partition(Phi, m / 4)
>> Subquery([](auto& partition) {
return Encode(partition, is_important(partition)
? Quality::High : Quality::Low) })

>> Store("rtp://...");

Listing 4: A VRQL query to partition the viewer’s perspective
and render the important ones in higher quality.

This query reads an input TLF and partitions it into one-second
segments and regions of size (Z, ). Next, the subquery operator
is applied to each partition, which changes the quality to that given
by a user-defined function that predicts a user’s future orientation
(e.g., by extrapolating the direction of a viewer’s head motion and
encoding the projected region in high quality). Finally, the result is
streamed to a viewer’s headset using the RTP protocol. We describe
further real-world applications in [27].

Collectively, the LightDB algebra and query language enable
developers to express modern VR and AR applications using up to
97% fewer lines of code [27]. These applications are then executed
using the LightDB architecture, query optimizer, and reference im-
plementation, resulting in up to a 4X speedup compared to variants
expressed in common 2D video processing frameworks such as
FFmpeg [9] and OpenCV [42].

7.2 Geospatial Video Data

Geospatial videos are videos in which the location and time that
they are shot are known. Specifically, the cameras that shoot such
videos contain geospatial metadata, such as their location, rotation,
and intrinsic [71] over time. Joining with the geospatial metadata,
objects (e.g., cars, pedestrians) within geospatial videos also inherit
geospatial properties. As a result, users analyze geospatial videos
through manipulating and querying for such objects. However, the
lack of programming frameworks and data management systems

3This example is drawn with minor modifications from [27]. Additionally, as is typical
in functional languages, VRQL uses g(a) » f(f) as shorthand for f(g(«), ).



for geospatial videos has made it challenging for end users to specify
their workflows, let alone run them efficiently.

Consider a data journalist writing an article on car crashes sta-
tistics and would like to examine the footage collected on traffic
cameras to look for a specific behavior, e.g., two cars crashing at an
intersection. Given today’s technology, they will either watch all
the footage themselves, or concatenate a myriad of machine learn-
ing models to track objects in the videos [11], estimate the objects’
depth [24] from the cameras that shot the videos, and combine
the outputs (tracks and depth) from the models using the cameras’
geospatial metadata to estimate the objects’ geospatial locations.
After that, they will need to join the objects’ geospatial locations
with road network information (say stored in a geospatial data-
base [73]) to find the cars that are at an intersection. Finally, they
use a general programming language to loop through each car to
find an event where two of them face each other at the same period
of time. Sadly, the former is simply infeasible given the amount
of video data collected, while the latter is use-case specific, error-
prone, and reliant on users’ deep programming expertise that many
do not possess.

Given LightDB, we next attempted to design a programming
framework specifically targeted to geospatial videos. The result is
Spatialyze [30], a system for geospatial video analytics that bridges
video processing and geospatial data analytics. Spatialyze comes
with a conceptual data model where users create and ingest videos
into a “world,” and users interact with the world by specifying ob-
jects (e.g., cars) and scenarios (e.g., cars crossing an intersection) of
interest via Spatialyze’s domain-specific language (DSL) embedded
in Python called S-Flow.

w = World()
world.addGeogConstructs(RoadNetwork('road-network/boston-seaport/"'))
world.addVideo(GeospatialVideo(Video('v@.mp4'), Camera('c@.json')))
world.addVideo(GeospatialVideo(Video('v1.mp4"), Camera('cl.json')))
obj1, obj2, intersection = (world.object(), world.object(),
world.geogConstruct(type="'intersection'))

world.filter(

(obj1.type == 'car') & (obj2.type == 'car') &

(distance(obj1, obj2) < 10) &

contains(intersection, (obj1, obj2)) &

headingDiff(obj1, obj2, between=[135, 2251) )
world.saveVideos('output_videos/', addBoundingBoxes=True)

Listing 5: Geospatial video analytic workflow with Spatialyze

With Spatialyze’s conceptual data model, we introduce a concept
of World, a virtual geospatial environment. World is the outer-most
building-block that contains 1) Geographic Constructs, non-moving
constructs, such as roads or intersections; 2) Cameras, configura-
tions (extrinsics and intrinsics [71] over time) of the cameras that
shot the input videos; and 3) Movable Objects, objects tracked from
the input videos, e.g., cars.

With the conceptual data model, we show S-Flow, a DSL that
allows the users to interact with their geospatial and video data. We
propose a build-filter-observe programming paradigm for users to
construct geospatial video analytic workflow as shown in Listing 5.
First, in lines 1-4, users build a world, by integrating video data
with the geospatial metadata. Second, in lines 5-11, they filter for
the video parts of interest, by describing relationships between
Movable Objects (cars) and their surrounding Geospatial Constructs
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(intersection). Finally, in lines 5, they observe the filtered world, in
this case, by saving all the filtered video parts into video files for
further examination.

Users now spend less time watching videos as they only need to
watch the relevant ones, with objects of interest highlighted. Ana-
lyzing videos together with geospatial metadata, S-Flow provides a
declarative interface where users need not specify “how” to find
the video snippets of interest; instead, they only need to describe
“what” their video snippets of interest look like, and Spatialyze will
find such video snippets accordingly.

7.3 Lessons Learned

Aside from users’ challenges in analyzing and storing geospatial
videos, we also faced several challenges while designing and build-
ing LightDB and Spatialyze to support such tasks.

Building Infrastructure. First of all, geospatial video analytics as
a task is a combination of two different but related analytic tasks,
analyzing videos and analyzing geospatial data. Designing a system
for each of them already has its own set of challenges, let alone
integrating them together. We chose to design and build Spatialyze
around tracked objects from videos because tracked objects also
have spatial-temporal properties that can be joined with Geographic
Constructs temporally and Cameras spatial-temporally. With the
tracked objects as a new data type, we build our Movable Objects
query engine on top of an existing geospatial query engine [73].
Still, we spent a countless amount of time in manually designing
efficient join queries when users query for multiple objects. Our
development time for building this infrastructure can be cut short
with automated synthesizing (Sec. 5.2) of such queries, and thus,
reduces the whole development time of Spatialyze.

API Design. After making a decision on designing a system
around object tracks, the next challenge is designing a program-
ming interface for the user. This programming interface serves as
an abstraction for users to interact with the tracked objects and
their geospatial data. LightDB proposed its own light-field centric
data model and API, and Spatialyze uses the World metaphor in-
spired by VisualWorldDB [26] and Apperception [22], where World
as a simple virtual environment that contains object tracks from
videos and cameras that shot the videos. It took us 3 years (and at
least one PhD worth of time) to design these different interfaces
and prototype them for related use cases. Unfortunately, we are still
not done yet, as new use cases keep appearing and they require API
modifications. Some of the techniques described in Sec. 4 will be
useful in reducing the amount of time needed to explore different
API designs.

Users Interaction. Even with the simplified interface presented in
Spatialyze, users still need to have basic programming and data pro-
cessing skills. As future work, since we have S-Flow as a declarative
DSL for interacting with geospatial video data, we can apply the
programming-by-example techniques mentioned in Sec. 4.1 to al-
low users to search for videos given a set of similar video examples
as input. Then, the system can automatically synthesize a S-Flow
program (Sec. 5.2) that searches for the videos of users’ interest
based on the given example videos.



8 FUTURE WORK

We now highlight further challenges in generating data system
implementations, and other application domains beyond those de-
scribed earlier where techniques discussed in this paper can be
applied.

Extending Data Structure Search. Much of the early work in
verified lifting has focused on synthesizing logic in new domains
that compute identical results to a reference implementation. But
projects like Katara have demonstrated that the same overarching
goals are also applicable to stateful programs that other logic can in-
teract with over time. Our work on synthesizing CRDTs shows that
the correctness conditions in such domains can be encoded for auto-
mated verification, and bounded verification enables rapid pruning
of the much larger search space of internal data representations.
In future work, we believe there are ample opportunities to apply
similar approaches in other stateful domains, such as synthesizing
parallel data structures and distributed actor programs.

Applying Equivalence Saturation. The power of verified lifting
and program synthesis comes from its ability to generate code that
applies novel techniques that do not exist in legacy software. But
classic enumerative techniques for synthesizing this code can be
expensive and produce results that can be difficult to explain. An
exciting alternative for automated code generation is to apply equal-
ity saturation through e-graphs [38, 39, 63] to transform the source
program through local rewrite rules. These rules can be indepen-
dently verified and composed to enable complex transformations.
For example, our early work shows how this technique can discover
the classic semi-naive join algorithm for Datalog by composing
primitive rewrites [31]. We believe that combining e-graphs with
classic synthesis techniques will enable a rich space of efficient and
easy-to-verify compilers.

Leveraging Generative Models. Recent advances in generative
models (e.g., large language models) have made them attractive as
code generators. However, such models typically do not have any
means to validate the generated implementation against the input,
and furthermore, the generated implementation can be difficult
to modify or refine if it does not fit the user’s intentions. It will
be interesting to design techniques that enable users to manually
interact with the generated implementation, or design user-aided
algorithms to modify the generated implementation in case of error.

Verified Lifting for Distributed Systems. Developing systems that
efficiently make use of elastic cloud compute is a challenging task.
Declarative approaches that leverage the perspective of databases,
a la Dedalus [5], offer a unique opportunity to transform the pro-
cess of distributing a program into a query optimization problem.
Declarative languages make properties of the program such as
monotonicity easy to identify and leverage for optimizations. But
this comes at a cost: it is difficult for developers to rewrite their
existing systems into such languages. In the Hydro project [13], we
are applying verified lifting to tackle this problem by lifting existing
code into declarative languages. For example, we are developing
techniques to automatically replicate the CRDTs synthesized by
Katara and analyze queries over them to determine the consistency
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levels which can be guaranteed [32]. In future work, we hope to ex-
pand this to more general-purpose programs, leveraging techniques
like CRDTs to automatically distribute stateful tasks.

9 CONCLUSION

With advances in machine learning and other areas of automated
programming, more and more portions of data systems will in-
evitably be auto-generated in the near future. We argue that design-
ing techniques for automation requires one to be aware of three key
aspects: means for users to express their intentions, algorithms for
code generation, and mechanisms to validate the generated code.
We illustrate these three aspects using our prior work, along with
open research challenges towards fully-automated generation of
data systems.
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