
A LearnedQuery Rewrite System
Xuanhe Zhou

Tsinghua University
zhouxuan19@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University

liguoliang@tsinghua.edu.cn

Jianming Wu
Tsinghua University

wjm@yeah.net

Jiesi Liu
Tsinghua University
poldman@yeah.net

Zhaoyan Sun
Tsinghua University

szy22@mails.tsinghua.edu.cn

Xinning Zhang
Tsinghua University

zhang-xn22@mails.tsinghua.edu.cn

ABSTRACT
Query rewriting is a challenging task that transforms a SQL query
to improve its performance while maintaining its result set. How-
ever, it is difficult to rewrite SQL queries, which often involve com-
plex logical structures, and there are numerous candidate rewrite
strategies for such queries, making it an NP-hard problem. Exist-
ing databases or query optimization engines adopt heuristics to
rewrite queries, but these approaches may not be able to judiciously
and adaptively apply the rewrite rules and may cause significant
performance regression in some cases (e.g., correlated subqueries
may not be eliminated). To address these limitations, we introduce
LearnedRewrite, a query rewrite system that combines traditional
and learned algorithms (i.e., Monte Carlo tree search + hybrid es-
timator) to rewrite queries. We have implemented the system in
Calcite, and experimental results demonstrate LearnedRewrite
achieves superior performance on three real datasets.

PVLDB Reference Format:
Xuanhe Zhou, Guoliang Li, Jianming Wu, Jiesi Liu, Zhaoyan Sun,
and Xinning Zhang. A Learned Query Rewrite System. PVLDB, 16(12):
4110 - 4113, 2023.
doi:10.14778/3611540.3611633

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhouxh19/LearnedRewrite.

1 INTRODUCTION
Query rewriting is a critical problem in query optimization (e.g.,
PostgreSQL [6], Calcite [4, 8], and Soar [3]). The goal of query
rewriting is to transform a SQL query at the logical level (e.g.,
removing redundant operators, pulling up subqueries), such that
the rewritten query is equivalent to the original one and has im-
proved execution time. However, query rewriting is an NP-hard
problem [6, 8, 10, 12], and existing methods rewrite SQL queries
using predefined rule orders, such as attempting to pull up the
subquery before pushing down predicates. This approach is lim-
ited because it applies rewrite rules in a default order, which may
result in a local optimum. For instance, as shown in Figure 1, for

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611633

Figure 1: Example query rewrite (removing redundant sub-
query) with over 600x speedup before running in Postgres.

the original query Q1, PostgreSQL rewrites Q1 in a top-down man-
ner, achieving only limited execution time reduction because the
MAX(l_orderkey) operator in the subquery is not removed, and
the subquery cannot be eliminated. In contrast, LearnedRewrite
rewrites Q1 into Q2 by judiciously applying the rewrite rules, first
removing the aggregate operator in the subquery and then merging
the subquery with the join operator. For the rewritten query Q2,
LearnedRewrite executes Q2 on PostgreSQL, achieving over 600x
execution time reduction.
Challenges. Query rewriting for different datasets and queries
can be challenging in practice. In this demonstration, we aim to
solve three key challenges. Firstly, the search space of possible
rewrite strategies for any query can be exponential to the number
of applicable rules. Thus, a major challenge is how to represent
such a large amount of rewrites (C1). Secondly, given a large search
space, another challenge is how to find the near-optimal rewrite
strategy with performance guarantees (C2). Thirdly, to select a good
rewrite strategy, it is vital to estimate the benefit, or cost reduction,
of a rewrite (or a sequence of rewrites), which is relevant to the
query operators, rewrite rules, and dataset statistics. However, there
are scenarios where we cannot access the databases or the whole
dataset due to privacy issues. Thus, the third challenge is how to
estimate the cost reduction of a rewrite outside databases (C3).
Our Methodology. To tackle these challenges, we propose
LearnedRewrite, a learned query rewrite tool that takes a SQL
query and corresponding statistics (e.g., schema, #-table rows) as
input, and outputs an optimized rewritten query by finding the
optimal rewrite sequence. To represent the exponential number of
1Guoliang Li is the corresponding author.

4110

https://doi.org/10.14778/3611540.3611633
https://github.com/zhouxh19/LearnedRewrite
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611633
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Figure 2: The Architecture of LearnedRewrite.
rewrite strategies, LearnedRewrite models the possible rewrite se-
quence as a policy tree, where each node corresponds to a rewritten
query obtained by applying rewrite rules on its parent (address-
ing C1). We utilize Monte Carlo Tree Search (MCTS) to iteratively
explore the policy tree and find the optimal node (i.e., rewritten
query with maximum cost reduction) by defining node utility that
considers both cost reduction and access frequency, guiding the
search to find the promising rewrite sequences (addressing C2). To
estimate the cost reduction of each node accurately, we propose a
deep estimation model that considers query operators, applicable
rewrites, and dataset features (addressing C3). In our demonstra-
tion, users can compare the SQL queries before and after rewriting
and visualize the explored policy trees for different queries to bet-
ter understand the rewrite results and how LearnedRewrite finds
high-benefit rewrite strategies.

This demo is an extension of our research paper [13]. As men-
tioned above, LearnedRewrite distinguishes itself from other
query rewrite tools in three main aspects: (1) LearnedRewrite
uses a policy tree model to represent candidate rewrite sequences
efficiently; (2) LearnedRewrite carefully applies rewrite rules
to different queries and effectively improves the performance;
(3) LearnedRewrite is an auxiliary tool implemented in Cal-
cite, making it easy to use for various queries, datasets, and
databases. Our experiments on real datasets have demonstrated that
LearnedRewrite can efficiently rewrite queries with much higher
performance than existing rewrite methods (e.g., over 25.3% latency
reduction) with acceptable rewrite overhead (e.g., milliseconds).

2 LEARNEDREWRITE OVERVIEW
The architecture of LearnedRewrite is presented in Figure 2. Firstly,
LearnedRewrite supports multiple users to submit their rewrite re-
quests without accessing the databases. Secondly, LearnedRewrite
initializes a policy tree for each submitted query and rewrites these
queries with hybrid rewrite algorithms (e.g., heuristic, learned).
Thirdly, LearnedRewrite demonstrates the rewrite results to help
users easily trace the rewrite procedure.
Data Collection. To provide a lightweight query rewrite tool,
LearnedRewrite only requires necessary statistical information
from the users, such as the original queries, table schema, and row
counts. Additionally, we pass the original queries into the Calcite
engine and parse them into relational algebra expressions (RAs)
based on the table schema. We directly apply rewrite rules on RAs
instead of SQLs, as there can be information loss when translating
between SQLs (e.g., removed дroupby clauses, predicate pushdown
on intermediate tables).
Query Rewrite. Next, we provide a suite of different rewrite algo-
rithms to optimize the overall rewrite performance. For any parsed

query (RA), 1 if the matched rules of this query have rare overlap
(i.e., each rule rewrites different operators of the query), we adopt
a heuristic algorithm to apply any rewrite rules that can transform
this query. 2 Otherwise, we build a policy tree for this query, where
the root node denotes the original query and any non-root node
denotes a rewritten query that applies a rule on its parent node.
However, this policy tree can be extremely large (e.g., around 10!
branches with 10 applicable rules), and enumerating all possible
rewrite rule sequences is not practical, especially for SQL queries
with dozens of operators. To efficiently obtain the optimal node in
the policy tree, we propose aMonte Carlo Tree Search (MCTS) based
search strategy that judiciously explores the nodes to obtain the
optimal node. MCTS [9] is a well-known tree search algorithm that
balances exploitation (high benefit) and exploration (low frequency)
when searching the tree and can acquire more information about
the "optimal" node, i.e., the optimal strategy of applying available
rewrite rules. Moreover, to provide effective guidance on the ex-
plored rewrites, we propose a self-attention-based estimator that
captures the relations between complex queries and rules and can
provide relatively accurate benefit estimation (i.e., cost reduction
caused by the rewrites).
Web Service. We provide a web interface to help users easily and
interactively check out the query rewrite procedure. In the web
interface, we provide three main functions: (i) Submit query rewrite
requests; (ii) Formalize submitted query (e.g., removing redundant
whitespaces); (iii) Demonstrate the rewritten query together with
the reduced costs; (iv) Demonstrate the policy tree of the original
query, which exposes the explored rewrite sequences and why
LearnedRewrite has adopted the final rewritten query.

3 DEMONSTRATION
In this section, we showcase the user interface of LearnedRewrite,
where users can submit their queries and observe the rewrite pro-
cedure. The online website will be continuously updated.

3.1 End-to-End Experience.
Figure 3 is a screenshot of the front-end of LearnedRewrite. The
user can pose rewrite requests of different queries and schema and
observe the rewrite procedure with the following steps.
1) Customize Table Schema. Before submitting origin queries, users
need to define the schema, which is passed as the planner config-
uration. If the schema information is not available due to privacy
issues, we also provide a testing schema (extracted from TPC-H),
based on which users can modify their queries on TPC-H tables
and run the modified queries on LearnedRewrite (Fig. 3- 1 ).
2) Input And Transform Origin Query. Next users input their queries.
Here, we provide three transformation functions (Fig. 3- 2 ): (i)
Query Formatting. Since user-crafted queries can be very casual
and confusing (e.g., no line breaks, random whitespaces), users can
click the “format” button, and LearnedRewrite will automatically
format the query statement (e.g., adding proper line breaks) [1];
(ii) Query Parsing. Since query rewrite works on relational alge-
bra expressions, many rewrites cannot be directly reflected by SQL
statements (e.g., some queries before/after pushing down predicates
corresponding to the same SQL statement). Thus, users can click
the “parse” button and check out the RA format query (RelNode
in Calcite); (iii) Query Rewriting. After parsing the query into RA

4111



format, users can click the “rewrite” button, and LearnedRewrite
will start transforming the RA query in logical level.
3) Check Recommended Rewriting. After the Query Rewriting proce-
dure finishes, users can check out the rewritten query recommended
by LearnedRewrite. In this page, LearnedRewrite demonstrates
two comparisons (Fig. 3- 3 ): (i) The reduced costs before/after
rewriting, which are approximated by our learned estimator. Note
the estimator guides the rewriting directions and so can signif-
icantly affect the rewriting results. Thus, we also provide the
“Cost Function” button, with which users can replace into sim-
ilar cost functions of their databases or learned model file; (ii)
The SQL statements before/after rewriting, which users can easily
execute on their databases; (iii) The parsed queries before/after
rewriting, whose differences are marked with different colors by
LearnedRewrite. The parsed queries can supplement changes that
cannot be reflected by the SQL statements. Besides, we also provide
the description of the rewriting results in natural languages, which
is supported by the large language model [7] (Fig. 3- 4 ).
4) Check Rewriting Procedure. Besides the final rewritten queries
recommended by LearnedRewrite, users may be interested in the
complete rewriting procedure. Thus, users can click the “report”
button and LearnedRewrite will demonstrate the policy tree of
the target query (a rule path for heuristic rewriting), from which
users can observe the explored rewrite sequences together with
their rewritten queries and reduced costs. This may be useful to
identify valuable rewrite rule combinations for typical query pat-
terns. Additionally, the report also provides a visualization of the
policy tree to show the rewrite procedure step by step (Fig. 3- 5 ).

3.2 Scenario 1 - Testing Queries on Postgres.
Standard TPC-H benchmark contains 22 template queries, which
involve relatively complex structures (e.g., multi-join+aggregates in
Q5, multi-join+subqueries in Q2) and are suitable to conduct query
rewrite. However, most database vendors polish their rewriters
(optimizers) based on the 22 TPC-H queries and we need more
queries to verify the rewrite capacity in general scenarios. Thus,
we adopt two query generation approaches in LearnedRewrite:
1) Random Testing Queries. Intuitively we can utilize SQLsmith to
randomly generate complex queries. However, these queries may
havemany redundant operators, e.g., the filter operators output zero
tuples and the left operators are not executed. By removing those
redundant operators (rewriting benefits by estimator or running
on sample data), LearnedRewrite can target at more beneficial
operators (e.g., the filters) and effectively rewrite these operators
(e.g., extracting atomic predicates);
2) Testing Queries with Typical Structures and Cost Ranges. We also
support reinforcement learning algorithm that generates queries
with both various structures and different cost ranges [11]. Com-
pared with SQLsmith, users can easily generate desired SQL queries
by customizing (i) the SQL syntax and (ii) cost/cardinality con-
straints based on their scenario characters, and optimize these SQL
queries with LearnedRewrite.

3.3 Scenario 2 - Real OLTP Queries on Oracle.
Compared to testing queries, rewriting real-world queries can
be more challenging. Firstly, queries from multiple applications
may have complex semantics that are difficult to capture from

SQL statements. LearnedRewrite can help to judiciously rewrite
these queries and highlight the modified parts to enhance user
understanding. Secondly, real queries often use placeholders for
values, which are replaced before they become publicly available.
LearnedRewrite needs to analyze the statistics (e.g., value ranges
of the columns, #-accessed-blocks), infer the removed values, and
then rewrite the queries. In these cases, the policy tree can assist
users in selecting the most appropriate rewritten queries.
Future Revolution. Furthermore, there are still many real-world
requirements for query rewriting. For instance, more complex SQL
grammars like UDFs involve relatively complex logic (e.g., iter-
ations), and existing rewrite rules cannot handle them. Thus, it
is necessary to generate rewrite rules (or provide instructions)
for these complex SQL queries. Additionally, many engineers use
object-oriented paradigms (e.g., ORM) to write database requests.
In the future, LearnedRewrite will integrate more functions (e.g.,
SQL2ORM) to support more general database applications.

4 EVALUATION
Settings.We evaluate the rewriting capability of LearnedRewrite
in comparison with Postgres’ default rewriter, which conducts logi-
cal transformation rules over parse trees in two stages before query
planning. We use 15 queries from real datasets, i.e., Shopmall (78
tables with 298,208 sampled tuples) and Material (41 tables with
683,130 sampled tuples). The evaluation is performed on a machine
with 16GB RAM, 256GB disk, 4.00GHz CPU.
SQL Verification. Some rules in Calcite may not ensure semantic
equivalence (e.g., the result set changes), we try to find and remove
those rules by utilizing some basic proof assistants to reason about
the conducted rewrites (e.g., operators reordering, operator elimina-
tion) [2, 5]. And since SQL verification is a complex issue, in some
cases we still require users to verify by actually running on their
databases (e.g., significant changes occur in the rewritten queries).
Performance Analysis. Figure 4 shows the detailed latency reduc-
tion of queries in the real datasets. And we find most of the queries
(80%) can be optimized with LearnedRewrite. And we showcase
some typical rewrites together with the insights.

Query#1 aims to count the number of products that satisfy cer-
tain conditions in a specific shop. The origin query uses inner joins
to combine data from three tables (i.e., shop_goods, mall_goods,
and mall_picture), and filter the results based on the given con-
ditions. Instead, LearnedRewrite rewrites the join between the
shop_goods, mall_goods, and mall_picture tables using a subquery,
i.e., creating a subquery that filters the shop_goods table based on
the conditions in the WHERE clause, and then join that result with
the mall_goods table. This way, LearnedRewrite uses subqueries
and joins to reduce the number of tables that need to be scanned
and simplify the conditional statement.

Query#6 aims to select unique non-null supplier values from two
tables, combining them using a union, and assigning alias names
to the resulting supplier column. The rewritten query eliminates a
DISTINCT operator by using UNION ALL instead of UNION, and
also removes the GROUP BY clause.

Query#12 aims to select the count of rows that satisfy some
conditions across four tables. The rewritten query is simpler and
much faster because it avoids unnecessary join operations and

4112



1

5

Customize Table Schema

Analyze Rewritten Query

Browse Rewriting Procedure

2 Input SQL Query

Origin Query

rule_agg (aggregate_expand_to_join)

rule_join (join_filter_transpose)

rule_filter (filter_remove)

rule_agg (project_remove)

3 Transform and Rewrite Input Query

4

Figure 3: A Screenshot of LearnedRewrite (http://rewrite_demo.dbmind.cn/)

Figure 4: Performance on real datasets. LearnedRewrite reduces the execution latency of 12 out of the 15 slow real queries,
resulting in over 25.3% total latency reduction (detailed queries in github.com/zhouxh19/LearnedRewrite/tree/main/real).

filters early by only considering rows that have a matching value
in one of the four tables. The rewritten query returns a count
of 0 for the specified conditions because the fake table has no
rows. The difference in latency between the original and rewritten
queries is significant because the rewritten query requires much
less computation and processing.

Query#8 aims to selects specific column values from a table. The
rewritten latency is higher than the origin latency even though the
rewritten query has a lower estimated cost than the original query.
In this case, the rewritten query includes an explicit order of the
IN clause values whereas the original query does not. This could
result in a different execution plan being chosen by the query
optimizer which could have a different impact on performance.
Additionally, the rewritten query might have a larger result set due
to the changed ordering of the IN clause values, which could result
in higher latency due to increased I/O or network traffic.

ACKNOWLEDGEMENTS
This paper was supported by NSFC(61925205, 62232009, 62102215),
Huawei, TAL education, and Zhongguancun Laboratory.

REFERENCES
[1] https://github.com/jdorn/sql-formatter (last checked on 2023-7).
[2] https://github.com/uwdb/cosette (last checked on 2023-7).
[3] https://github.com/xiaomi/soar (last checked on 2023-7).
[4] E. Begoli, J. Camacho-Rodríguez, J. Hyde, and et al. Apache calcite: A foundational

framework for optimized query processing over heterogeneous data sources. In
SIGMOD, pages 221–230, 2018.

[5] S. Chu, K. Weitz, A. Cheung, and D. Suciu. Hottsql: proving query rewrites with
univalent SQL semantics. In PLDI, pages 510–524, 2017.

[6] B. Finance and G. Gardarin. A rule-based query rewriter in an extensible DBMS.
In ICDE, pages 248–256. IEEE Computer Society, 1991.

[7] J. Li and et al. Can LLM already serve as A database interface? A big bench for
large-scale database grounded text-to-sqls. CoRR, abs/2305.03111, 2023.

[8] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based query rewrite
optimization in starburst. In M. Stonebraker, editor, SIGMOD, pages 39–48, 1992.

[9] I. Trummer, J. Wang, D. Maram, and et al. Skinnerdb: Regret-bounded query
evaluation via reinforcement learning. In SIGMOD, pages 1153–1170. ACM, 2019.

[10] Z.Wang, Z. Zhou, Y. Yang, and et al. Wetune: Automatic discovery and verification
of query rewrite rules. In SIGMOD, pages 94–107, 2022.

[11] L. Zhang, C. Chai, X. Zhou, and G. Li. Learnedsqlgen: Constraint-aware SQL
generation using reinforcement learning. In SIGMOD, pages 945–958, 2022.

[12] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial intelligence: A survey.
TKDE, 34(3):1096–1116, 2022.

[13] X. Zhou, G. Li, C. Chai, and J. Feng. A learned query rewrite system using monte
carlo tree search. Proc. VLDB Endow., 15(1):46–58, 2021.

4113

http://rewrite_demo.dbmind.cn/

	Abstract
	1 INTRODUCTION
	2 LearnedRewrite OVERVIEW
	3 Demonstration
	3.1 End-to-End Experience.
	3.2 Scenario 1 - Testing Queries on Postgres.
	3.3 Scenario 2 - Real OLTP Queries on Oracle.

	4 Evaluation
	References

