
Demonstrating GPT-DB: GeneratingQuery-Specific and
Customizable Code for SQL Processing with GPT-4

Immanuel Trummer
Cornell University
Ithaca, NY, USA

itrummer@cornell.edu

ABSTRACT
GPT-DB generates code for SQL processing in general-purpose pro-
gramming languages such as Python. Generated code can be freely
customized using user-provided natural language instructions. This
enables users, for instance, to try out specific libraries for SQL
processing or to generate non-standard output while processing.

GPT-DB is based onOpenAI’s GPTmodel series, neural networks
capable of translating natural language instructions into code. By
default, GPT-DB exploits the most recently released GPT-4 model
whereas visitors may also select prior versions for comparison. GPT-
DB automatically generates query-specific prompts, instructing
GPT on code generation. These prompts include a description of
the target database, as well as logical query plans described as
natural language text, and instructions for customization. GPT-
DB automatically verifies, and possibly re-generates, code using a
reference database system for result comparisons. It enables users
to select code samples for training, thereby increasing accuracy
for future queries. The proposed demonstration showcases code
generation for various queries and with varying instructions for
code customization.

PVLDB Reference Format:
Immanuel Trummer. Demonstrating GPT-DB: Generating Query-Specific
and Customizable Code for SQL Processing with GPT-4. PVLDB, 16(12):
4098 - 4101, 2023.
doi:10.14778/3611540.3611630

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/itrummer/CodexDB.

1 INTRODUCTION
Database management systems typically process queries using a
fixed set of standard operator implementations. Their behavior can
be influenced via system parameters but this allows only a limited
degree of customization. Using a general-purpose programming
language to write query-specific code for SQL processing gives de-
velopers maximal flexibility. This is useful, for instance, to achieve
optimal performance tradeoffs for specific, frequently occurring
queries. It can also be useful to test ideas for novel processing mech-
anisms on a small set of benchmark queries, before implementing

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611630

a full-blown processing engine based on those ideas. Also, writ-
ing custom code enables non-standard output, allowing users, for
instance, to gain detailed information describing intermediate re-
sults. The flexibility of query-specific code comes at a price: even
for experienced developers, writing such code is time-consuming
and error-prone. GPT-DB [10] (formerly CodexDB) helps by par-
tially automating the code generation process, specifically for SQL
queries, taking into account natural language instructions for cus-
tomization.

Similar to GitHub’s Copilot [4], GPT-DB is based on the GPT
model [7]. This model can translate natural language instructions
into code. Different from GitHub Copilot, GPT-DB is specialized for
generating code that processes SQL queries. Users select a database
(characterized by a schema and by files storing base table data)
and submit SQL queries, along with natural language instructions
on how to generate associated code. Those instructions may, for
instance, instruct GPT-DB to use specific libraries or to generate
specific, non-standard output. Then, GPT-DB generates one or mul-
tiple code variants, processing the query on disk files and writing
the query result to disk when executed. Furthermore, GPT-DB offers
users several options for automated verification, including process-
ing queries on a reference system to verify correctness of generated
results. If satisfied with generated code, users can add code to a
library of code samples. These samples are used to train GPT-DB,
thereby improving result quality.

One of the primary contributions of GPT-DB is the automated
generation of query-specific “prompts”. Prompts are small text doc-
uments that serve as input to the GPT model. These documents
describe the code to generate in natural language. Prompts gener-
ated by GPT-DB integrate a description of the database schema and
paths to the associated files (both generated using GPT-DB’s cata-
log). Furthermore, GPT-DB generates a query plan that describes
processing steps at a high level of abstraction (enabling customiza-
tion via user instructions). Different from traditional query plans,
this plan is described in natural language to enable integration into
the prompt. Finally, GPT-DB integrates user-provided natural lan-
guage instructions into the prompt for customization. The resulting
prompt is submitted as input to GPT, triggering code generation.

The proposed demonstration enables visitor to use GPT-DB live.
Visitors may select between several hundred example databases,
enter queries, and specify natural language instructions influencing
the code generated for query processing. Beyond that, the demo en-
ables users to try different prompt structures, compare GPT model
variants, and to experiment with various automated code verifica-
tion strategies. The demonstration interface shows generated code
for query processing, query results obtained by executing that code,
as well as logs detailing GPT-DB’s internal processing steps.

4098

https://doi.org/10.14778/3611540.3611630
https://github.com/itrummer/CodexDB
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611630
https://www.acm.org/publications/policies/artifact-review-and-badging-current


2 BACKGROUND AND PRIOR WORK
The proposed demonstration focuses on GPT-DB, described in more
detail in a recent paper [10] but never demonstrated before1. GPT-
DB is enabled by recent advances in the domain of language models
(including models for natural language as well as models for code).
These advances are based on two key ideas: a new neural network
architecture, the Transformer [13], and a particularly successful
application of the general idea of transfer learning.

Among other advantages, Transformer models enable highly
efficient parallelization of the training process. This has allowed
creating Transformer models with parameter counts in the hun-
dreds of millions to hundreds of billions [2, 3]. While such models
can benefit from very large amounts of training data, it is often pro-
hibitively expensive to gather such data for highly specialized tasks.
Instead, Transformer models are typically trained on large amounts
of unlabeled text or code corpora, using tasks such as predicting
the next token. Given sufficient amounts of generic training data,
it turns out that such models can solve a variety of tasks, described
simply as part of the input text. In particular, it has been shown
that such models are often able to write code in genera-purpose
programming languages, based on a natural language description
of the task to solve [7].

GPT-DB is a framework on top of GPTmodels, similar to GitHub’s
Copilot [4]. GPT-DB differs by its focus on SQL query process-
ing, motivating specialized components for query parsing, query
optimization, and query verification. Whereas GitHub’s Copilot
offers generic code completion functionality, it does not decom-
pose queries into processing steps nor does it generate prompts
describing database schemata. More broadly, GPT-DB relates to
prior work exploiting language models in the context of data man-
agement [12]. Language models have been used in the context of
natural language query interfaces [6, 15], as well as for tasks such
as data cleaning and data preparation [9], data integration [8], fact
checking [5], or database tuning [11]. GPT-DB differs by its focus
on code generation for SQL processing.

3 SYSTEM OVERVIEW
Figure 1 shows an overview of the GPT-DB system. GPT-DB gen-
erates query-specific code for processing SQL queries, using any
version of OpenAI’s GPT model series [1]. This code is specified
in general-purpose programming languages such as Python (i.e.,
it does not rely on an SQL backend). It executes directly on files
containing table data and writes the query result to disk.

Along with queries, users may provide natural language instruc-
tions customizing generated code. These instructions may, for in-
stance, express preferences with regards to libraries used for pro-
cessing. As another example, they can describe customized logging
output to generate during query execution. By submitting the same
query with different instructions for customization, GPT-DB can
generate a large number of code variants quickly.

GPT-DB parses incoming queries into a tree representation. Next,
it uses a query planner to generate a query processing plan. Tra-
ditional query planers represent query plans as trees. However,
GPT-DB generates code using any of the GPT model versions, in

1Compared to the prior paper, the name has been changed from CodexDB to GPT-DB
to indicate that visitors can choose between multiple GPT model versions.

SQL Query

Query Parser

Query Optimizer

Prompt Generator

GPT-* Model

Code Verification

D
at
ab

as
e

C
at
al
og

C
od

e
Sa

m
pl
es

Customized Code

C
od

e
C
us

to
m
iz
at
io
n

(N
at
ur

al
La

ng
ua

ge
)

Figure 1: Overview of GPT-DB.

particular GPT-4. This model accepts text as input. Therefore, GPT-
DB represents a query plan as a short text, summarizing processing
steps. Processing steps are described at a high level of abstraction
(i.e., the text plan corresponds to a logical, rather than a physical
query plan). This opens up the possibility to customize operator im-
plementations using user instructions, as described in more detail
later. To generate plan text, the query planner instantiates simple,
operator-specific text templates.

The Prompt Generator component combines the plan text with
other information into a short text document, a “prompt”, instruct-
ing GPT how to generate code. Beyond the plan, the prompt con-
tains a description of the database schema (i.e., table and column
names) and paths to the associated files. Finally, the prompt in-
tegrates (natural language) instructions for code customization,
provided as input by the user. GPT-DB uses GPT to generate code,
using the prompt as input.

GPT-DB offers options to verify generated code automatically.
For instance, it can verify whether the generated code produces
the correct query result upon execution, using a traditional SQL
engine as a reference. GPT-DB can be configured to re-generate
code (with some degree of randomization) until the generated code
produces accurate query results. Beyond automated verification,
users can confirm that generated code follows their instructions
via manual inspection. If the code is satisfactory, users can choose
to add it to a library of code samples. By integrating such samples
into prompts submitted to GPT, GPT-DB increases the chances to
generate valid code significantly.

Example 3.1. Figure 2 shows a prompt for the query “SELECT
year FROM concert GROUP BY year ORDER BY count(*) DESC
LIMIT 1”. Triple quotes in the first and in the last line hint at the
programming language to use (Python). This is important as GPT
generates code in various languages. The upper part of the prompt
describes the database schema and file locations. The lower part
describes processing steps. Steps two to seven are generated auto-
matically, based on the input query. Step one contains instructions
provided by the user, instructing GPT to generate code using a

4099



"""
Table stadium with columns 'stadium_id','location','name','capacity','highest','lowest','average', stored in 'stadium.csv'.
Table singer with columns 'singer_id','name','country','song_name','song_release_year','age','is_male', stored in 'singer.csv'.
Table concert with columns 'concert_id','concert_name','theme','stadium_id','year', stored in 'concert.csv'.
Table singer_in_concert with columns 'concert_id','singer_id', stored in 'singer_in_concert.csv'.
Processing steps:
1. Use pandas library.
2. Load data for table 'concert'.
3. Group rows from results of Step 2 using 'year'.
4. Order rows from results of Step 3 using number of rows (descending).
5. Keep only 1 rows from results of Step 4.
6. Create table with columns 'year' from results of Step 5.
7. Write results of Step 6 to file 'result.csv' (with header).
"""

Figure 2: Prompt for code generation integrating language hints (green, Lines 1 and 14), a description of the database (blue,
Lines 2 to 5), processing steps (black, Lines 8 to 13), and natural language instructions for code customization (red, Line 7).

import pandas as pd

df_concert = pd.read_csv('/tmp/concert.csv')
df_concert_grouped = df_concert.groupby('year')
df_concert_grouped = df_concert_grouped.size().\

sort_values(ascending=False)
df_concert_grouped = df_concert_grouped.head(1)
df_year = df_concert_grouped.\

reset_index()[['year']]
df_year.to_csv(

'result.csv', index=False, header=True)

Figure 3: Code generated by GPT for query “SELECT year
FROM concert GROUP BY year ORDER BY count(*) DESC
LIMIT 1” with instructions “use pandas library”.

specific library (pandas). Figure 3 shows corresponding code, gen-
erated by GPT (newlines and comments are omitted due to space
restrictions). In contrast, Figure 4 shows code generated for the
same query without any customization instructions.

4 DEMONSTRATION PLAN
The demonstration setup encompasses a table with laptop, con-
nected to a portable projector. Visitors can use GPT-DB via the
laptop which must be connected to the Internet to access OpenAI’s
GPT service. The requirements on the quality of the Internet con-
nection are very modest (sending one prompt and receiving one
short piece of code for each query). If the conference Internet fails,
a mobile hotspot (established via cell phone) would suffice.

Each visitor receives a short introduction, explaining the system
and the interface. Then, visitors may proceed to use the GPT-DB
system themselves. Figure 5 shows the user interface (with annota-
tions). Users must first select a relational database to query (Area A
in Figure 5). For the demonstration, all databases of the SPIDER
benchmark [14] are pre-loaded and can be queried by GPT-DB. Next,
users customize code generated for query processing via natural
language instructions (Area B). For instance, in Figure 5, GPT-DB
is instructed to use the pandas library for query processing and to

import csv
from collections import Counter

with open('/tmp/concert.csv', 'r') as f:
reader = csv.DictReader(f)
rows = list(reader)

grouped_rows = {}
for row in rows:

year = row['year']
if year in grouped_rows:

grouped_rows[year].append(row)
else:

grouped_rows[year] = [row]

ordered_rows = sorted(grouped_rows.items(),
key=lambda x: len(x[1]), reverse=True)

kept_rows = ordered_rows[:1]
table = [{'year': row[0]} for row in kept_rows]

with open('result.csv', 'w') as f:
writer = csv.DictWriter(

f, fieldnames=['year'])
writer.writeheader()
writer.writerows(table)

Figure 4: Code generated by GPT for query “SELECT year
FROM concert GROUP BY year ORDER BY count(*) DESC
LIMIT 1” without customization.

generate progress updates after each processing step (see natural
language instructions in Area B).

Then, users enter SQL queries (Area C), select the number of
code generation retries (Area D), and start code generation and
query processing (Area E).While processing, the interface generates
various types of output (Area F shows a small part). These outputs
include, for instance, the prompt generated by GPT-DB as well as
the completion returned by GPT, statistics on generation time, as
well as the results of code verification steps. The latter consist of the
results generated when executing generated code on a data sample,
as well as a comparison of this result to the result generated by a

4100



B

C
D
E
F

A

Figure 5: User interface of GPT-DB: users select data sources (A) and customization instructions (B), then enter an SQL query
(C), choose the number of retries (D), and start processing (E), resulting in output (F) for each try.

reference engine. Ultimately, if code generation succeeds, the code
as well as the query result (obtained by executing the code on the
full data) are returned. Note that code generation only takes a few
seconds, making the system suitable for a live demonstration.

Beyond the aforementioned options (data source, natural lan-
guage instructions, and query), users can configure the code gen-
eration process in various ways (bar on the left in Figure 5). For
instance, users can choose between several prompt types. While
the primary prompt variant used by GPT-DB features an auto-
generated query plan, described in natural language, alternative
variants use the SQL query alone or vary the description of the
database schema. Visitors may try different prompt versions for a
fixed query and database, thereby gaining insights into the impact
of prompt structure on success ratio. Also, users can choose be-
tween different variants of the GPT model. Whereas GPT-DB uses
the GPT-4 Davinci model by default (the largest and most powerful
model), visitors may try out smaller variants. This sheds light on
tradeoffs between generation time and quality of the generated
code. Finally, visitors can change the verification mechanism used
as a stopping criterion. Verification options range from code execu-
tion without errors to result consistency, compared to a reference
SQL engine.

REFERENCES
[1] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric

Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha
Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of Artificial
General Intelligence: Experiments with an early version of GPT-4. Technical Report.
arXiv:arXiv:2303.12712v3

[2] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL. 4171–4186. arXiv:1810.04805

[3] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its Nature, Scope, Limits,
and Consequences. Minds and Machines 30, 4 (2020), 681–694. https://doi.org/
10.1007/s11023-020-09548-1

[4] Nat Friedman. 2021. Introducing GitHub Copilot: your AI pair pro-
grammer. https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-
programmer/ (2021).

[5] Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, and Immanuel Trummer.
2020. Scrutinizer: A mixed-initiative approach to large-scale, data-driven claim
verification. VLDB 13, 12 (2020), 2508–2521.

[6] Fei Li and HV Jagadish. 2014. NaLIR: an interactive natural language interface
for querying relational databases. In SIGMOD. 709–712.

[7] OpenAI. 2021. https://openai.com/blog/openai-codex/.
[8] Sahaana Suri, Ihab Ilyas, Christopher Re, and Theodoros Rekatsinas. 2021. Ember:

No-Code Context Enrichment via similarity-based keyless joins. PVLDB 15, 3
(2021), 699–712. arXiv:arXiv:2106.01501v1

[9] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Sam
Madden, and Mourad Ouzzani. 2021. Rpt: Relational pre-trained transformer is
almost all you need towards democratizing data preparation. PVLDB 14, 8 (2021),
1254–1261. https://doi.org/10.14778/3457390.3457391 arXiv:2012.02469

[10] Immanuel Trummer. 2022. CodexDB: Synthesizing code for query processing
from natural language instructions using GPT-3 Codex. PVLDB 15, 11 (2022),
2921 – 2928.

[11] Immanuel Trummer. 2022. DB-BERT: a database tuning tool that “reads the
manual”. In SIGMOD. 190–203.

[12] Immanuel Trummer. 2022. From BERT to GPT-3 Codex: Harnessing the Potential
of Very Large Language Models for Data Management. PVLDB 15, 12 (2022),
3770 – 3773.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5999–6009.
arXiv:1706.03762

[14] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, DongxuWang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev.
2020. Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2018. 3911–3921.
https://doi.org/10.18653/v1/d18-1425 arXiv:1809.08887

[15] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.0, 1 (2017), 1–12. arXiv:1709.00103 http://arxiv.org/abs/1709.00103

4101

https://arxiv.org/abs/arXiv:2303.12712v3
https://arxiv.org/abs/1810.04805
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://arxiv.org/abs/arXiv:2106.01501v1
https://doi.org/10.14778/3457390.3457391
https://arxiv.org/abs/2012.02469
https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/d18-1425
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

	Abstract
	1 Introduction
	2 Background and Prior Work
	3 System Overview
	4 Demonstration Plan
	References

