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ABSTRACT

Performance of worst-case optimal join algorithms depends on
the order in which the join attributes are processed. It is challeng-
ing to identify suitable orders prior to query execution due to the
huge search space of possible orders and unreliable execution cost
estimates in case of data skew or data correlation.

We demonstrate ADOPT, a novel query engine that integrates
adaptive query processing with a worst-case optimal join algorithm.
ADOPT divides query execution into episodes, during which dif-
ferent attribute orders are invoked. With runtime feedback on per-
formance of different attribute orders, ADOPT rapidly approaches
near-optimal orders. Moreover, ADOPT uses a unique data structure
which keeps track of the processed input data to prevent redun-
dant work across different episodes. It selects attribute orders to
try via reinforcement learning, balancing the need for exploring
new orders with the desire to exploit promising orders. In experi-
ments, ADOPT outperforms baselines, including commercial and
open-source systems utilizing worst-case optimal join algorithms,
particularly for complex queries that are difficult to optimize.
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1 INTRODUCTION

Recently, worst-case optimal join algorithms have brought about
a revolution in the field of join processing, in particular LeapFrog
TrieJoin (LFTJ) [9]. Those algorithms provide formal guarantees of
asymptotically worst-case optimal complexity, setting them apart
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Figure 1: Execution times for different attribute orders of the
five-clique query on the ego-Twitter graph.

from traditional join algorithms that are known to be sub-optimal.
In practice, worst-case optimal join algorithms can lead to signifi-
cant improvements in runtime performance of cyclic queries when
compared to traditional approaches. As a result, they have been
integrated in the commercial systems LogicBlox [2] and Relation-
alAl and also into various query engines such as those used for
factorized databases, graph processing, general query processing,
and in-database machine learning. However, the performance of
any worst-case optimal join algorithm crucially depends on the
order in which join attributes (i.e., groups of join columns that are
linked by equality constraints) are processed. Even though all or-
ders are equally good to achieve optimality in the worst case, their
performance may differ significantly in practice. Figure 1 shows
the performance between different attribute orders for the five-
clique query on the ego-Twitter graph. Clearly, the performance
gap between the best and worst attribute order is more than 16x.

We demonstrate ADOPT (ADaptive wOrst-case oPTimal joins),
the first adaptive processing strategy for worst-case optimal join al-
gorithms. ADOPT uses reinforcement learning (Monte Carlo Tree)
to adaptively select best attribute orders. The goal of adaptive pro-
cessing is to enable attribute order switches during query process-
ing. Specifically, the processing time is divided into episodes, and
for each episode, ADOPT selects an attribute order for executing
the query over a fragment of the input data. By measuring execu-
tion speed for different attribute orders, the adaptive processing
framework converges to near-optimal attribute orders over time.

In our demonstration, participants will be able to run their
queries and gain insights into how ADOPT identifies optimal at-
tribute orders by visualizing various aspects of adaptive processing
via interactive videos.
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Figure 2: Overview of ADOPT system components.

2 OVERVIEW

Figure 2 shows the primary components of ADOPT, described in
more detail in a recent paper [10], available as pre-print!. ADOPT
performs in-memory data processing using a columnar data layout.
It uses a reinforcement learning-based approach to select attribute
orders and the LeapFrog TrieJoin algorithm to process joins.

Filter & Sort. ADOPT begins with a preprocessing step that uses
unary predicates from the query to filter the tables. Following this,
it constructs sort indices to facilitate the use of LeapFrog TrieJoin
(LFTJ) during the join phase.

Anytime LFT]. ADOPT employs a worst-case optimal join al-
gorithm based on LeapFrog TrieJoin (LFTJ). This algorithm (LFTJ)
considers join attributes in a fixed order to find value combinations
that satisfy all join predicates. ADOPT implements an anytime
variant of this algorithm, enabling it to frequently halt and resume
execution. This feature facilitates an adaptive processing approach,
which permits ADOPT to identify near-optimal attribute orders
based on feedback obtained during run time.

RL optimizer. ADOPT utilizes a reinforcement learning-based
optimizer to select attribute orders. The optimizer balances the
exploration of new attribute orders with the exploitation of those
that have proven good in the past. Each selected attribute order
is executed for a limited number of steps (an “episode”), allowing
ADOPT to test numerous attribute orders per second. To compare
attribute orders, ADOPT defines a quality estimation metric that
assesses the performance of an attribute order during a single in-
vocation. Although performance may vary for the same attribute
order across different invocations due to skewed data, ADOPT ob-
tains increasingly accurate quality estimates over time by averaging
the results of multiple invocations for a given attribute order.

ADOPT utilizes the UCT algorithm [4] to select attribute orders.
The UCT algorithm represents the state space as a search tree, where
each node denotes a state, and edges represent transitions. The
tree nodes are equipped with statistics, which establish confidence
bounds on the average reward linked with the sub-tree rooted at
that node. Confidence bounds are updated as new reward samples
become available. During each episode, the UCT algorithm selects
a path from the root of the search tree to one of the leaf nodes. At
each step, the algorithm chooses the child node with the highest
upper confidence bound. Subsequently, the confidence bounds are
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updated for each node on the selected path after calculating the
associated reward. This method ensures convergence to optimal
policies, as has been shown in [4].

Task manager. When switching between attribute orders, it can
be difficult to avoid redundant work. ADOPT addresses this issue
by utilizing a task manager that keeps track of the portions of the
join input that still need to be processed. Specifically, the task man-
ager keeps track of (hyper)cubes in the Cartesian product space,
created from the value ranges of all join attributes. Each cube rep-
resents a part of the input space that requires processing by some
attribute order (i.e., the corresponding result tuples have not yet
been added to final result set). The anytime LFTJ algorithm’s execu-
tion is confined to cubes that have not been processed previously
or concurrently by other threads. Data processing threads query
the task manager for cubes (known as "target cubes") that do not
overlap with any previously or concurrently processed cubes by
other threads. Threads process the target cube until either comple-
tion or reaching the per-episode limit of computational steps. The
task manager is informed of the processed portions of the target
cube. The task manager then removes the processed cubes from
the set of remaining cubes.

Quality Estimates. The reinforcement learning process in ADOPT
relies on reward values to guide the selection of the best attribute
order for a specific data part. These values represent the quality of
an attribute order when processing a particular portion of the data.
While quality estimates may differ across different runs of the same
order, ADOPT gradually converges to the order with the highest
average quality over time.

The volume of a cube is defined as the product of all value ranges
of join attributes. We use Volume(p) to denote the volume of a
cube p. Using this notation, we can write Volume(q) to indicate
the volume of the cube that spans all join attributes of a query q.

To fully process a query, ADOPT needs to cover the entire space
of attribute value combinations, which corresponds to the cube with
the highest volume. Therefore, the more volume covered per unit
time, the faster the query processing. This implies that the covered
volume is a useful measure of progress. The reward function used
by ADOPT takes this into account and uses the aggregate volume
covered, scaled to the total volume to process, for a set of processed
cubes P for query q. This scaling ensures that the reward values
are between zero and one, as required by the UCT algorithm:

Reward(P,q) = (Z Volume(p))/Volume(q)
peEP

1)

Project & Aggregate. ADOPT executes a post-processing stage
for certain types of queries, involving group-by clauses and aggre-
gates. For count queries, ADOPT integrates join processing with
aggregation and thus does not require a separate post-processing
stage.

3 EXTRACT OF EXPERIMENTAL RESULTS

We present a small extract of the full experimental results for
ADOPT. More results, as well as more details on the experimental
setup, are reported in the full paper [10].
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Figure 3: Visualizing attribute order search tree in ADOPT.
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Benchmarks. We adopt the approach from previous studies that
compared worst-case optimal join algorithms with traditional join
plans. Prior work evaluates the performance of these algorithms
on clique and cycle queries using the binary edge relations of four
graph datasets from the SNAP network collection [6]. Whereas
ADOPT is primarily targeted at benchmarks with cyclic queries,
we evaluate it on the join order benchmark (JOB) [5] as well.

Systems. ADOPT is implemented in JAVA (jdk 1.8) and uses 10,000
steps per episode and a UCT exploration ratio of 1E-6. The com-
petitors include the open-source engines MonetDB [3] (Database
Server Toolkit v11.39.7, Oct2020-SP1) and PostgreSQL 10.21 [7],
which employ traditional join plans, as well as a commercial engine
System-X (implemented in C++) that uses the worst-case optimal
LFT]J algorithm [9], the open-source engine EmptyHeaded that uses
a worst-case optimal join algorithm [1], and SkinnerDB [8] (imple-
mented in Java jdk 1.8), which uses reinforcement learning to learn
an optimal join order for traditional query plans.

Setup. We run each experiment five times and report the average
execution time in Table 1. We used a server with 2 Intel Xeon Gold
5218 CPUs with a clock speed of 2.3 GHz (32 physical cores), 384GB
of RAM, and a 512GB hard disk. ADOPT, EmptyHeaded, MonetDB,
SkinnerDB, and System-X were set to run in memory. By default, all
engines use 64 threads; for ADOPT, we also investigate its runtime
as a function of the number of threads.

Results. Table 1 shows the total execution time in seconds for each
benchmark. In the case of the JOB benchmark, the ">" symbol de-
notes that the reported time is only for a subset of the queries,
while for the four graph datasets, the ">" symbol indicates that
the time taken for some cyclic queries exceeded the six-hour time-
out. The speedup factors in parentheses after the system runtimes
indicate how much faster ADOPT is compared to those systems.
ADOPT performs better than its competitors on all graph bench-
marks, achieving speedups of 2-30x. In the case of the JOB bench-
mark, ADOPT is almost as good as MonetDB, with a speedup of
0.91x, and outperforms the other systems by a factor of 1.4-6.3x.
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Figure 4: Visualizing processed volumes in the space of po-
tential join results, projected onto different attributes.
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Figure 5: Breakdowns of execution time and processed vol-
ume by attribute order and by thread.

4 DEMONSTRATION SETUP

The demonstration setup consists of one table with several laptops,
enabling visitors to execute queries via ADOPT and to visualize
various aspects of the query execution process as videos. Visitors
will be able to use ADOPT locally, installed on the laptops. To run
queries on larger data sets, visitors will have access to a remote
server with a large number of cores and main memory. We will load
all datasets mentioned in the last section into ADOPT prior to the
demonstration. This enables visitors to run queries on a variety of
graphs and relational databases. We also provide example queries
for each of the benchmarks that users can run with a single click.
Running queries via the ADOPT demo results in log files that con-
tain traces, describing the query evaluation process. For instance,
those log files capture the attribute orders, selected in different
episodes, reward values obtained, and the internal counters of the
reinforcement learning algorithm used for order selection. Also, the
logs store information on execution time breakdowns, data skew,
as well as per-thread progress metrics analyzing the efficiency of



Table 1: Total time in seconds to compute all queries for each benchmark for different baselines.

Systems ‘ JOB ego-Facebook ego-Twitter soc-Pokec  soc-Livejournall
ADOPT 45 4,414 3,931 9,268 26,350
System-X > 287 (6.38x) > 22,459 (5.09x) 11,384 (2.90x) > 23,623 (2.55x) > 63,878 (2.42x)
EmptyHeaded - 6,783 (1.54x) 10,381 (2.64x) > 43,444 (4.69%) > 55,144 (2.09%)
PostgreSQL 285 (6.33x) > 67,774 (15.35x) > 70,515 (17.94x) > 67,016 (7.23x) > 101,193 (3.84x)
MonetDB 41(0.91x) > 66,165 (14.99x) > 86,596 (22.03x) > 59,131 (7.23x) > 96,222 (3.84x)
SkinnerDB 65 (1.44x) > 69,366 (15.71x) > 129,741 (33.00x) > 95,374 (10.29x) > 101,392 (3.85x)

multi-threading. Rather than reading logs, visitors will be able
to transform those traces into multiple, interactive visualizations.
These visualizations will enable visitors to explore various aspects
of ADOPT’s query evaluation process. To enable users to explore
visualizations without spending the time to run queries first, we
will also provide a set of pre-recorded log files, capturing a diverse
mix of queries and benchmarks.

As ADOPT uses an adaptive evaluation strategy, visualizations
are not static but dynamic (i.e., videos), showing the evolution of at-
tribute order choices and other variables over the course of a query
evaluation. Visitors will have various possibilities to interact with
those visualizations, adapting the speed of the evolution (e.g., to
see key moments in slow motion), stopping and resuming visualiza-
tions, as well as gathering additional information by hovering over
or clicking on certain visualization features. In doing so, visitors
gain a deeper understanding into the internals of ADOPT and how
adaptive processing converges to optimal attribute order choices.

Figures 3, 4, and 5 show example visualizations that visitors
will be able to access during the demo. Those visualizations are
described in more detail next.

Figure 3 shows a visualization that focuses on ADOPT’s learning-
based optimizer. ADOPT uses reinforcement learning to select at-
tribute orders to try in each time slice. Figure 3 visualizes the inter-
nal state of that learning algorithm (which changes over time). The
space of possible attribute orders is visualized as a search tree. Tree
edges represent the selection of one single attribute. Paths from
the root node to a leaf node represent an entire attribute order. Ini-
tially, the search tree is built only partially (to avoid disproportional
startup overheads). Visitors will be able to watch the tree grad-
ually expand over time, as query evaluation proceeds. Currently
selected attribute orders are marked up with gray rectangles. The
node size represents the average reward that the learning algorithm
currently associated with specific nodes. Nodes that are visited less
frequently, gradually fade over time.

Figure 4 shows a visualization that captures the way in which
ADOPT processes the space of potential join results. ADOPT grad-
ually explores the space of potential join results (i.e., attribute value
combinations), i.e., it searches this space for corresponding result
tuples. ADOPT keeps track of parts of that space already explored,
thereby avoiding redundant work across different episodes. Multi-
ple threads explore non-overlapping parts of the search space in
parallel (and, possibly, using different attribute orders). Figure 4
offers visitors insights into how the aforementioned search space is
divided across different threads. The space of possible join result is,
in general, high-dimensional (it has one dimension for each query

attribute) and therefore difficult to visualize directly. Instead, the
visualization in Figure 4 displays multiple projections, showing the
percentage of value combinations explored by different threads,
given a fixed value range in one of the three attributes.

Figure 5 shows dynamic breakdowns, considering different met-
rics and breakdown criteria. The upper part shows breakdowns of
execution time and processed volume in the space of join results
by attribute order. As ADOPT selects different attribute orders in
different episodes, execution time (and volume explored) is split
across multiple attribute orders. Over time, ADOPT converges to
high-quality attribute orders. Therefore, visitor will observe how
the breakdown, starting from a rather uniform distribution, is more
and more dominated by a single attribute order as query evaluation
proceeds. The lower part of Figure 5 shows breakdowns by thread.
Here, visitors will be able to judge the efficiency of ADOPT’s paral-
lelization mechanism, showing that the execution time breakdown
per thread is almost uniform over the course of query evaluation.
On the other hand, the volume explored per thread is typically not
uniform, showing that exploration overheads per volume unit are
typically non-uniform (due to heterogeneous data).
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