
DataRinse: Semantic Transforms for Data preparation based on
Code Mining

Ibrahim Abdelaziz
IBM Research

Yorktown Heights, New York
ibrahim.abdelaziz1@ibm.com

Julian Dolby
IBM Research

Yorktown Heights, New York
dolby@us.ibm.com

Udayan Khurana
IBM Research

Yorktown Heights, New York
ukhurana@us.ibm.com

Horst Samulowitz
IBM Research

Yorktown Heights, New York
samulowitz@us.ibm.com

Kavitha Srinivas
IBM Research

Yorktown Heights, New York
kavitha.srinivas@ibm.com

ABSTRACT
Data preparation is a crucial first step to any data analysis problem.
This task is largely manual, performed by a person familiar with
the data domain. DataRinse is a system designed to extract relevant
transforms from large scale static analysis of repositories of code.
Our motivation is that in any large enterprise, multiple personas
such as data engineers and data scientists work on similar datasets.
However, sharing or re-using that code is not obvious and difficult
to execute. In this paper, we demonstrate DataRinse to handle data
preparation, such that the system recommends code designed to
help with the preparation of a column for data analysis more gen-
erally. We show that DataRinse does not simply shard expressions
observed in code but also uses analysis to group expressions applied
to the same field such that related transforms appear coherently
to a user. It is a human-in-the-loop system where the users select
relevant code snippets produced by DataRinse to apply on their
dataset.

PVLDB Reference Format:
Ibrahim Abdelaziz, Julian Dolby, Udayan Khurana, Horst Samulowitz,
and Kavitha Srinivas. DataRinse: Semantic Transforms for Data
preparation based on Code Mining. PVLDB, 16(12): 4090 - 4093, 2023.
doi:10.14778/3611540.3611628

1 INTRODUCTION
Enterprises often have many data analysts performing modeling
and exploration on the same or similar types of datasets. One of
the most time consuming parts of any data analysis step is the
preparation of data, such as encoding categorical values, handling
ordinals, imputation of missing values, data aggregations, amongst
others. This step often requires a significant amount of domain
knowledge, and is largely carried out manually by a data engineer,
data scientist, analyst or a domain expert. The knowledge, once
applied, is often buried in code, and this code tends to be stored
in enterprise repositories. Listing 1 shows an example of such a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611628

transform, where the data scientist is trying to bin Age so that it can
be combined with the passenger class attribute to make a combined
inference about the wealth and age of the passenger, which likely
impacted survival on the Titanic. This snippet of code is adapted
from a much larger script that performs multiple operations on the
titanic dataset1. A key goal of DataRinse is to allow a data scientist
re-use of code relevant to the dataset without them having to peruse
all the code that manipulates the same dataset.

In DataRinse, we perform this by applying static code analysis
on Python scripts. We adopt the path of static analysis compared
to dynamic analysis because very often the datasets associated
with code in repositories are not available readily making dynamic
analysis impractical. It works by finding the transformations to
fields of a dataframe, which are then extracted, and converted into
an intermediate representation, and this representation is traversed
to generate code to help the user transform their dataframe. A key
goal of DataRinse is to behave as a recommendation system rather
than automating data preparation in one shot. Code generation for
data preparation is particularly challenging because: (a) the order in
which specific transformations are performed is important; (b) code
generation has to be sensitive to the ‘groups’ of transformations
that constitute a single operation conceptually. We illustrate both
points with a running example. Listing 1 shows a code snippet from
an actual script for preparing the titanic dataset for exploratory
analysis. Note that when code is generated, it needs to be aware
that a number of transforms are being performed as a ‘group’, so all
the contiguous Age transforms bin Age into buckets. Furthermore,
the transformation of Age * Pclass is dependent on that binning
operation being performed first; that is, there is a dependency
between the first function and the second.

DataRinse performs both grouping of conceptually related oper-
ations into functions and encodes dependencies between several
functions to offer users functions that can be easily incorporated
into their own notebooks. We use control flow from static anal-
ysis to perform grouping, and we use control and data flow to
understand dependencies between the functions that are generated
in DataRinse. Furthermore, to make this consumable to the end
user, we display a drop down box in the notebook, so that they
can choose which field they want to view cleansing functions for.
For each function that is extracted, we also show the URL of the
1https://github.com/davified/clean-code-ml/blob/master/notebooks/titanic-
original.ipynb

4090

https://doi.org/10.14778/3611540.3611628
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611628
https://github.com/davified/clean-code-ml/blob/master/notebooks/titanic-original.ipynb
https://github.com/davified/clean-code-ml/blob/master/notebooks/titanic-original.ipynb

script that was used to generate that function. Listing 4 shows the
output of DataRinse of a code snippet for the Age column, where a
single function captures all binning changes to Age, and a second
separate function shows the creation of a new column using it.
The user has a number of such functions per column that can be
readily applied to their dataset if they deem it applicable, and the
ordering of transformations is encapsulated in the code generated
such that a call to transform Age is performed before the use of it
in expressions such as Age * Pclass, as shown. All the generated
functions are dynamically evaluated on the dataframe to ensure
that any functions that are not compile-able are filtered out. Simi-
larly, the generated functions that do not result in a change in the
values of the dataframe are also eliminated.

We note that ChatBots such as ChatGPT2 can appear to provide
similar functionality for such tasks. There are however key differ-
ences between those systems and DataRinse. While ChatGPT gen-
erates some useful data operations, it has the following characteris-
tics that are different from DataRinse: (a) It has non-determinism
in its generation, it can sometimes find cleansing operations, but
produces different results on each run; a well-known problem for
ChatBots (see Listings 2, 3 for two different code snippets produced
for the same dataset (b) It does not follow basic data operation
rules such as being consistent across train and test, and it is not
comprehensive - Fare is handled only in one snippet. (c) There is
no attribution to the source that these are drawn from, (d) It is not
focused - the snippets were drawn from a much larger script, where
the system produced imports, read CSV files, etc. (e) It can only
work off its training dataset - DataRinse can for instance run over
any scripts in any repository at any desired frequency (e.g., on ev-
ery commit or daily) requiring negligible computational resources;
ChatBots have to be retrained on enterprise specific code.

2 SYSTEM OVERVIEW
Figure 1 describes the overall DataRinse system for data prepara-
tion. Given a new dataset, the system queries code repositories
such as GitHub with the table’s metadata, specifically the table
and column names. One current limitation of DataRinse is that it
will only select scripts that match column names and table names
- this is a limitation we plan to address in future work through
more flexible column-to-concept mappers [7]. The analysis frame-
work is an open source project that we created3 which performs
inter-procedural static analysis to create control flow and data flow
graphs for Python scripts [1]. The scope of the analysis is the entire
notebook, so dataflow and control flow can be used to order the
cleansing operations. We perform interprocedural analysis to trace
both data and control flow, as illustrated in Figure 2. The chalky
lines for read_df and prep_df denote function calls, and dataflow
follows them, e.g "titantic_train.csv" flows to fl_name. After
analysis, the code generation component for cleansing starts by
isolating reads, writes and updates to pandas dataframe. It uses
dataflow information to determine which expressions are relevant,
e.g. dataflow connects the read of a pandas dataframe at the top of
Figure 2 to the update of dataset at the bottom.

2https://openai.com/blog/chatgpt
3https://github.com/wala/graph4code/tree/master/semForms

1 import pandas as pd
2

3 def read_df(fl_name):
4 return pd.read_csv(fl_name)
5

6 def prep_df(combine):
7 for dataset in combine:
8 dataset.loc[dataset['Age'] <= 16, 'Age'] = 0
9 dataset.loc[(dataset['Age'] > 16) &

(dataset['Age'] <= 32), 'Age'] = 1↩→

10 dataset.loc[(dataset['Age'] > 32) &

(dataset['Age'] <= 48), 'Age'] = 2↩→

11 dataset.loc[(dataset['Age'] > 48) &

(dataset['Age'] <= 64), 'Age'] = 3↩→

12

13 def main():
14 train_df = read_df("titanic_train.csv")
15 test_df = read_df("titanic_test.csv")
16 combine = [train_df,test_df]
17 prep_df(combine)
18 for dataset in combine:
19 dataset['Age*Class'] = dataset.Age *

dataset.Pclass↩→

Listing 1: Example data preparation code, handling the titanic
dataset

1 train_df = train_df.drop(['PassengerId', 'Name',

'Ticket', 'Cabin'], axis=1)↩→

2 train_df['Age'].fillna(train_df['Age'].median(),

inplace=True)↩→

3 train_df['Embarked'].fillna(

train_df['Embarked'].mode()[0], inplace=True)↩→

4 train_df['FamilySize'] = train_df['SibSp'] +

train_df['Parch'] + 1↩→

5 train_df['IsAlone'] = 1
6 train_df['IsAlone'].loc[train_df['FamilySize'] > 1]

= 0↩→

7 train_df['Sex'] = train_df['Sex'].map({'female': 0,

'male': 1}).astype(int)↩→

Listing 2: Code snippets from ChatGPT, when prompted to
prepare the titanic dataset for analysis, first attempt

The code generation component assembles related code into
multiple functions, organized by the fields that they change, as well
as records any dependencies in the application of the functions by
encoding calls to relevant functions. In Pandas, calls on a dataframe
can sometimes mutate the dataframe (e.g. drop()), and sometimes
not (e.g. isnull()). Because there is no way of knowing if the
values of a dataframe are actually modified by a call, the filtering
component dynamically evaluates the functions returned by the
code generationmodule in the client notebook to filter out functions
that do not transform the data frame. Extracted functions across

4091

https://openai.com/blog/chatgpt
https://github.com/wala/graph4code/tree/master/semForms

Code generation
with grouping/
dependencies

Age Pclass

Dataset Query GitHub

Program analysis

Analyze CodeGen Human use of
functions

Function filter

Filter

Figure 1: Overview of DataRinse

1 train_df.drop(['PassengerId', 'Name', 'Ticket',

'Cabin'], axis=1, inplace=True)↩→

2 test_df.drop(['Name', 'Ticket', 'Cabin'], axis=1,

inplace=True)↩→

3 train_df['Age'].fillna(train_df['Age'].median(),

inplace=True)↩→

4 test_df['Age'].fillna(test_df['Age'].median(),

inplace=True)↩→

5 test_df['Fare'].fillna(test_df['Fare'].median(),

inplace=True)↩→

Listing 3: Code snippets from ChatGPT, when prompted to
prepare the titanic dataset for analysis, second attempt

Figure 2: Analysis on listing 1

multiple scripts are then grouped by field, and each function for
a given field encapsulates the extraction from a single script. The
user can choose which functions they would like to look at, and
explore what they would like to add to their own code through an
interactive interface.

3 DEMONSTRATION
We show in Listing 4 an example of how DataRinse recommends
data transforms is used for the example code shown in 1, which is
a simplified version of the original code in4, for the titanic dataset5.
The UI is structured as a Jupyter notebook where the user loads

4https://github.com/davified/clean-code-ml/blob/master/notebooks/titanic-
original.ipynb
5https://www.kaggle.com/competitions/titanic/data

Figure 3: Display of expressions by columns

a dataset. The dataset name and columns are fed to GitHub to re-
trieve scripts that may be cleansing the same dataset. The scripts
are analyzed, and code generation is performed for each field in
that is manipulated in the scripts. Any dependencies in manipu-
lations are captured by the code generation as well, as shown in
Listing 4. A second example is shown in Listing 5 for the UCI heart
disease prediction dataset6. Notice here that the order of opera-
tions in the original script7 are maintained, which involves setting
missing values in the resting ECG results to normal before using a
LabelEncoder to encode all the values.

In general, there may be too many data manipulation operations
across scripts. Since the generated code relies on an IR, obvious
duplicates are eliminated at creation time across scripts. Scripts are
also ordered by the ones that have the most number of functions
across fields, because those are the most comprehensive. The code
suggestions are organized by columns using a dropdown as shown
in Figure 3. At the conference, we will allow the audience to select
an available dataset, and explore the code segments provided by
the system. We will also work with the audience to use a dataset of
their choice.

4 EXPERIMENTS
To assess the generality of DataRinse as a tool, we applied it to
1,589 Python notebooks from GitHub that were converted into
Python scripts for analysis. Table 1 shows some statistics of running
DataRinse over these scripts. Approximately 11% (182) of the 1,589
scripts had failures because the code could not be parsed or was not
actually Python code; so that left us with 1407 scripts. Analysis ran
successfully on most of those scripts (1,406); but after removal of
duplicate scripts, we had 1,142 scripts. Of the 1,142 scripts that were
successfully analyzed, 55% yielded at least one cleansing function.
The total number of CSV files mentioned in these scripts fromwhich
cleansing functions were extracted was 2,262, but we note that this
is likely an overestimate since many scripts load train and test splits

6https://www.kaggle.com/datasets/redwankarimsony/heart-disease-data
7https://www.kaggle.com/code/achintyak/decision-tree

4092

https://github.com/davified/clean-code-ml/blob/master/notebooks/titanic-original.ipynb
https://github.com/davified/clean-code-ml/blob/master/notebooks/titanic-original.ipynb
https://www.kaggle.com/competitions/titanic/data
https://www.kaggle.com/datasets/redwankarimsony/heart-disease-data
https://www.kaggle.com/code/achintyak/decision-tree

1 def Age_01(df):
2 df.loc[(df['Age'] <= 16), 'Age'] = 0
3 df.loc[((df['Age'] > 16) and (df['Age'] <=

32)), 'Age'] = 1↩→

4 df.loc[((df['Age'] > 32) and (df['Age'] <=

48)), 'Age'] = 2↩→

5 df.loc[((df['Age'] > 48) and (df['Age'] <=

64)), 'Age'] = 3↩→

6

7 def all_df(df):
8 Age_01(df)
9 df['Age*Class'] = df['Age'] * df['Pclass']

Listing 4: Partial Output of DataRinse for the script shown
in the running example

1 from sklearn.preprocessing import LabelEncoder
2

3 def restecg_0(df):
4 df['restecg'] = df['restecg'

].fillna('normal')↩→

5

6 def restecg_1(df):
7 df['restecg_n'] =

LabelEncoder().fit_transform(df[
'restecg'])

↩→

↩→

Listing 5: Partial Output of DataRinse the UCI heart dataset

Table 1: Statistics of running DataRinse on 1,589 GitHub
scripts

Category Count
Total number of scripts 1,589
Number of scripts that passed analysis 1,407
Number of scripts that failed due to front end errors 182
Number of distinct scripts that passed analysis 1,406
Number of scripts with extracted functions 630
Number of CSV files mentioned in scripts 2,262
Number of cleansing functions extracted (pre-filtering) 4,688

for the same CSV file. The total number of cleansing functions
extracted was 4,660, prior to any filtering. Filtering requires access
to the datasets being manipulated in the script, so we do not have
the actual post-filtering results yet. This will be a focus for future
work.

5 RELATEDWORK
Suggestions for cleansing have mostly been based on dynamic
analysis based approaches; e.g. Auto-suggest [10] uses heuristics
to handle hard issues such as missing data files and packages by
searching to actually run notebooks. Auto-suggest depends on the
availability of the CSV file in the public domain, and on dynamic

analysis which is difficult to perform on a large number of scripts
efficiently mostly because software versions change, and most note-
books are not shipped with environments. Vizsmith [2] similarly
uses 1260 Kaggle notebooks and their associated CSV files to mine
7K visualization functions using dynamic analysis, as does wran-
glesearch [3]. Our work can mine functions statically, without the
need for executing a notebook and is hence much more scalable.

Other systems follow variants of programming by example (PBE)
to create cleansing functions [4, 6, 8, 10]. Transform Data By Exam-
ple (TDE) indexes over 50K functions from GitHub, and uses it to
perform data transformations given user examples [5]. A more re-
cent work examines whether large language models such as GPT-3
can solve problems from [5], given prompts that include a couple of
examples [9]. DataRinse does not require any sort of user specified
examples - in fact, for the sorts of problems considered in this work,
it is unclear that the user would even know what the input and
output pairs should be - if they did, they would know how to code
it. We note that most of the PBE work has targeted spreadsheet
users where users frequently perform the same operation over cells
of a column, transforming or extracting bits of strings.

6 CONCLUSION
In this work, we introduced DataRinse, an approach for mining
transforms from existing repositories to re-use prior work per-
formed by other data scientists on similar datasets. Our demo high-
lights how the system when given an input dataset searches GitHub
for relevant scripts and generates code for cleansing functions
which are recommended to the user.

REFERENCES
[1] Ibrahim Abdelaziz, Julian Dolby, James P McCusker, and Kavitha Srinivas. 2021.

A Toolkit for Generating Code Knowledge Graphs. The Eleventh International
Conference on Knowledge Capture (K-CAP) (2021).

[2] Rohan Bavishi, Shadaj Laddad, Hiroaki Yoshida, Mukul R Prasad, and Koushik
Sen. 2021. VizSmith: Automated Visualization Synthesis by Mining Data-Science
Notebooks. In 2021 36th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 129–141.

[3] José Pablo Cambronero, Raul Castro Fernandez, and Martin C Rinard. 2022.
wranglesearch: Mining Data Wrangling Functions from Python Programs. https:
//www.josecambronero.com/publication/wranglesearch/wranglesearch/. [On-
line; accessed 31-May-2022].

[4] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit
Chaudhuri. 2018. Transform-data-by-example (TDE) an extensible search engine
for data transformations. Proceedings of the VLDB Endowment 11, 10 (2018),
1165–1177.

[5] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit
Chaudhuri. 2018. Transform-Data-by-Example (TDE): An Extensible Search
Engine for Data Transformations. Proc. VLDB Endow. 11, 10 (jun 2018), 1165–1177.
https://doi.org/10.14778/3231751.3231766

[6] Zhongjun Jin, Michael R Anderson, Michael Cafarella, and HV Jagadish. 2017.
Foofah: Transforming data by example. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. 683–698.

[7] Udayan Khurana and Sainyam Galhotra. 2021. Semantic Concept Annotation
for Tabular Data. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 844–853.

[8] Vu Le and Sumit Gulwani. 2014. Flashextract: A framework for data extraction by
examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 542–553.

[9] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. 2022. Can Foun-
dation Models Wrangle Your Data? arXiv preprint arXiv:2205.09911 (2022).

[10] Cong Yan and Yeye He. 2020. Auto-suggest: Learning-to-recommend data prepa-
ration steps using data science notebooks. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data. 1539–1554.

4093

https://www.josecambronero.com/publication/wranglesearch/wranglesearch/
https://www.josecambronero.com/publication/wranglesearch/wranglesearch/
https://doi.org/10.14778/3231751.3231766

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration
	4 Experiments
	5 Related Work
	6 Conclusion
	References

