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ABSTRACT
Cloud service providers offer robust infrastructure for rent to or-
ganizations of all kinds. High stakes applications, such as the ones
in defense and healthcare, are turning to the public cloud for a
cost-effective, geographically distributed, always available solution
to their hosting needs. Many such users are unwilling or unable to
delegate their data to this third-party infrastructure.

In this demonstration, we introduce RESCU-SQL, a zero-trust
platform for resilient and secure SQL querying outsourced to one
or more cloud service providers. RESCU-SQL users can query their
DBMS using cloud infrastructure alone without revealing their
private records to anyone. It does so by executing the query over se-
cure multiparty computation. We call this system zero trust because
it can tolerate any number of malicious servers provided one of
them remains honest. Our demo will offer an interactive dashboard
with which attendees can observe the performance of RESCU-SQL
deployed on several in-cloud nodes for the TPC-H benchmark. At-
tendees can select a computing party and inject messages from it to
explore how quickly it detects and reacts to a malicious party. This
is the first SQL system to support all-but-one maliciously secure
querying over a semi-honest coordinator for efficiency.
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1 INTRODUCTION
Users are increasingly turning to a cloud-first deployment for their
DBMS applications. Here their database runs on infrastructure
provided by one or more third-party cloud service providers (CSPs),
such as Amazon AWS or Microsoft. This is an attractive option
for running a globally available application because it provides
high availabilty with pay-as-you-go pricing. On the other hand,
this setup implicitly calls for entrusting the database’s records to
the CSP. Some high-stakes DBMS applications, such as defense
and healthcare, would like to reap the benefits of a cloud-first
deployment but are unable to do so owing to confidentiality or
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regulatory requirements. They cannot delegate responsibility for
their records to a third party and need to work within a zero trust
cloud. We focus on OLAP querying in this work.

For example, consider someone wearing a smartwatch to mon-
itor their vital signs. As a wearable edge device, the watch has a
limited ability to maintain a large volume of data for the person
such as heart rate, blood oxygen and so on. Moreover, it is too
computationally weak and low energy to perform analytics locally.
Hence, the watch is connected to healthcare providers supported by
their insurance. These providers maintain databases of similar data
for other patients and offer individualized feedback to the watch
user. However, those servers are usually operated by public CSPs
and are vulnerable to data breaches. To mitigate this risk–while
maintaining a lightweight resilient edge presence–the patient con-
siders the cloud servers untrusted and the watch works with this
outsourced DBMS via a slim coordinating interface.

We propose RESCU-SQL a platform for resilient and secure
computing of SQL queries on the untrusted cloud. We offer a zero-
trust cloud security model. Our setup consists of 𝑛 cloud servers and
a trusted coordinator or client. Although trusted coordinator is the
data owner, they would like to store the data on the cloud for better
resilience and improved availability to other users authorized to
query the data. The 𝑛 cloud servers store and query confidential
data and they are secure against malicious adversaries. This means
RESCU-SQL is secure even when 𝑛−1 of them are corrupted. These
servers are hosted by one or more CSPs. In our example, the trusted
coordinator is the watch user. This party is semi-honest in that we
trust them to submit queries and also to generate randomness for
the system’s underlying cryptographic protocols.

Our system evaluates its queries using secure multi-party com-
putation (MPC), or cryptographic protocols that enable a group of
mutually distrustful parties to jointly compute a function over its
private inputs without revealing anything except (optionally) the
output of the function. Our MPC protocol relies on the authenti-
cated garbling approach proposed by Wang et al. [9] to achieve
all-but-one malicious security, protecting against unauthorized data
exposure even if 𝑛 − 1 out of 𝑛 servers are corrupted.

In this work, we extend the authenticated garbling protocol by
Wang et al. to the outsourced setting. Specifically, we leverage
the trusted coordinator to create and distribute random authen-
ticated secret shares, which otherwise would require expensive
multi-round communication between all parties. This strategy sig-
nificantly reduces the communication and memory cost of our pro-
tocol. For example, we measured the communication complexity
by evaluating a standard MPC benchmarking circuit that computes
the SHA-256 compression function: in our protocol, the maximum
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data a server needs to send is 4.28 MB, which is a 20x improvement
over the result reported in [9] for the corresponding three-party
case. More importantly, we achieve optimal asymptotic improve-
ment in memory usage. Their protocol needs to store the whole
circuit in memory, requiring O(|C|) memory for a circuit size of
|C|. In contrast, with the help of a trusted coordinator, evaluating
the authenticated garbled circuit in our protocol requires the same
memory asymptotically as evaluating the circuit in the clear.

With our all-but-onemaliciously secureMPC protocol, we ensure
that client–the trusted coordinator in our setting or smartwatch in
our running example–stays secure in the presence of up to 𝑛 − 1
corrupted parties among 𝑛 cloud servers. To our best knowledge,
there is limited work for query evaluation on zero-trust cloud in
the presence of any malicious dishonest majority. For example,
similar to RESCU-SQL, Senate [5] supported analytical queries
over maliciously secure MPC protocols, but it is not as scalable
as ours although it also decomposes its queries into operator-at-a-
time secure evaluation. Our MPC protocol may be of independent
interest for other outsourced tasks. Our work is implemented atop
EMP-toolkit [8], although our protocols are previously unpublished.

Our contributions are:
• We propose RESCU-SQL, the first pragmatic OLAP system with

all-but-one malicious security for ad-hoc SQL queries.
• We extend the state-of-the-art malicious MPC protocol to the

outsourced setting, leveraging a lightweight trusted coordina-
tor to obtain optimal memory usage and significantly reduced
communication overhead.

• We verify the performance of this system on the TPC-H bench-
mark and analyze the cost of each operator.

• We propose a demonstration of a user-friendly dashboard that
monitors query evaluation using TPC-H and invites users to
explore its detection of malicious cloud servers.
We organize the rest of the paper as follows. First, we describe

the system architecture, zero-trusting setting, and threat model in
Section 2; we evaluate our prototype in Section 3. Next, we will
outline our proposed demo experience in Section 4. We describe
related work in Section 5 and conclude.

2 RESCU-SQL OVERVIEW
We now describe the setting of outsourced query evaluation in the
zero trust cloud. We then walk through the steps the engine will
take in a SQL query and execute it on the compute nodes.

2.1 Zero Trust Cloud
Figure 1(a) shows the workflow of RESCU-SQL during its out-
sourced query evaluation. In this setting, we have two types of
participants: 𝑛 cloud servers, shown as cylinders, and one trusted
coordinator, displayed as the rounded rectangle.

Before it runs its first query, RESCU-SQL has a one-time setup
phase (not shown) where the data owner secret shares their records
to distribute them over our 𝑛 untrusted nodes for querying. We
call the private input data 𝑅 and we show its corresponding secret
shares as [𝑅]. Server 𝑖 is responsible for the shares [𝑅𝑖 ]. This is
equivalent to each host receiving an encrypted copy of the private
input records for query evaluation but not having the key with
which to decrypt it. The secret sharing protocol is maliciously
secure. As with our computation, when we deploy over 𝑛 hosts the
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Figure 1: System Overview

data will remain confidential for up to 𝑛− 1 corruptions. Section 2.3
has more details on our security model.

The database schema is known to all parties, as is the number
of rows in each table. RESCU-SQL’s query evaluation is oblivious,
meaning its instruction traces are data-independent. We do this
using well-known operator algorithms similar to [2, 5, 7]. The
trusted coordinator alone learns the query answers.

Our client is a lightweight trusted coordinator that is semi-honest.
This party will not deviate from our MPC protocol but may try to
deduce information about the private records from participating
in a query evaluation. This client is the data owner. The trusted
coordinator generates randomness that it sends to the cloud servers
that they use for secure query evaluation. Our query lifecycle starts
when the trusted coordinator sends its SQL statement, Q, to all
nodes. Q’s execution plan is known to all parties.

The 𝑛 nodes shown in Figure 1(a) jointly compute the answer to
the SQL query provided by the trusted coordinator. They evaluate
each gate by passing authenticated messages amongst themselves,
shown with padlocks. The output of each gate is itself a secret share.
We call the query answer A.

In order to make progress on computing a query, all 𝑛 servers
must remain good faith participants throughout the protocol. If one
node drops out or injects faulty messages into this exchange, then
the remaining ones will detect this deviation and abort thereby
ensuring that no unauthorized information is recovered by anyone.
This distributes the trust among more parties. If RESCU-SQL is
deployed over multiple CSPs, an attacker has to compromise all of
them before there is any risk of unauthorized data access.

When the nodes are done evaluating the query’s circuits, they
each hold secret shares for A, i.e. node 𝑖 holds [A𝑖 ]. Each host
sends its shares of A to the trusted coordinator over an encrypted
link to prevent eavesdropping. The trusted coordinator assembles
the shares thereby revealing A.

2.2 Outsourced Query Lifecycle
When the trusted coordinator submits a query to RESCU-SQL, it
first sends its SQL statement to each of the 𝑛 cloud servers. Fig-
ure 1(b) has the steps each server takes to convert the query into
an executable plan and run it. This workflow consists of two parts.
First, the Java front-end converts Q into a directed acyclic graph
(DAG) of database operators and organizes it to run efficiently in the
outsourced MPC setting. After that, the back-end runs the garbled
circuits in C++ and returns A to the client (trusted coordinator).

The front-end is similar to a conventional SQL parser and it
readies the plan for execution in MPC. First, the system receives a
SQL statement from the client and verifies that it is syntactically
correct with respect to the schema. Then it parses the query into
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Table 1: Runtime in seconds for plaintext vs RESCU-SQL

𝑄1 𝑄3 𝑄5 𝑄8 𝑄9 𝑄18

Plaintext 0.004 0.001 0.004 0.003 0.005 0.003
RESCU-SQL 341.764 507.914 802.051 1,373.1 8,487.79 1,827.52
Slowdown 8,544× 507,914× 200,513× 457,700× 1,697,558× 609,173×

a DAG. RESCU-SQL then applies heuristics to minimize the size
of our garbled circuits by eagerly projecting out attributes and
combining operators to minimize our passes over the data. Our
front-end builds atop Apache Calcite [3] and it outputs the query
tree in JSON for use in the back-end.

The back-end then parses the JSON plan and maps each node in
the query tree to a cryptographic protocol. RESCU-SQL supports
the following operators: Select, Project, Join, Sort, and Aggregate.
When the system executes a query, it first does a sequential scan
over the secret shares for each leaf in the query tree. Then it executes
the plan bottom-up one operator at a time. It executes the operators’
circuits depth-first as implemented in EMP Toolkit [8]. Finally, all
parties jointly validate the query answer.

We protect the data access patterns of each operator by injecting
dummy tuples or placeholders when a tuple is conditionally emitted
from an operator. For example, when Filter removes a tuple, we
replace it with a tombstone row so that an adversary cannot deter-
mine the positions of removed tuples. To do so, we add a dummy
tag at the end of each row and set it to true when we disregard a
tuple for all subsequent query evaluations. The system thus hides
the true cardinality of each intermediate result. Once the root node
of Q is finished, all parties return their secret shares of A to the
trusted coordinator. The client reconstructs the query results using
shares from all parties. Table 1 demonstrates RESCU-SQL runtime
using the experimental configuration in Section 3. We see it has
a slowdown of 4 − 7 orders of magnitude compared to plaintext
runtime over the TPC-H benchmark, which is a price we pay for
outsourcing MPC in a zero-trust setting.

2.3 Threat Model
In our work, we adopt a threat model where a malicious adversary
can corrupt any number of servers provided at least one remains
honest. Specifically, cloud servers are modeled as malicious parties
that could deviate from the protocol arbitrarily, while the trusted
coordinator is modeled as a semi-honest party that follows the pro-
tocol but may attempt to learn as much information about the data
as possible while doing so. Under this threat model, our protocol
can tolerate up to 𝑛 − 1 corrupted cloud servers while also ensuring
the trusted coordinator learns nothing but the query answer. To
achieve this goal, We design our system on a maliciously secure
MPC protocol We then build the SQL processing engine on top of
our MPC protocol. Then, the security of our MPC protocol naturally
translates to the all-but-one malicious security of RESCU-SQL.

We remark that viewing the trusted coordinator (client) as semi-
honest in our threat model may be seen as somewhat restrictive, as
the client is usually the data owner in our setting, and thus data pri-
vacy is inherently guaranteed. We believe, however, this definition
aligns with the practical demands of our outsourced setting, where
the client’s aim is to utilize high-performance computing resources
that are not available locally. Consequently, our system should not
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Figure 2: Performance on the trusted coordinator over data of increasing sizes.
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Figure 3: Operator-level performance on TPC-H Q3.

rely on the client’s resources: the client should not maintain lo-
cal copies of the data or receive any intermediate query results;
rather, its role should be limited to providing the data at setup time,
submitting queries, and assembling their answers.

3 EXPERIMENTAL RESULTS
In this section, we first describe system implementation and exper-
imental setup. Then, we discuss the cost of outsourcing MPC based
on the system and operator-level cost analysis.

SetupWe examine our system over a subset of queries in TPC-H
benchmark [6] stored in the PostgreSQL engine, namely Q1, Q3,
Q5, Q8, Q9 and Q18. They vary in their level of complexity with
respect to the number of operators. For our experiments, we select
𝑛 = 3 and allow up to two corrupted parties (see Section 2.1), so we
use 4 Linux servers including one trusted coordinator. In addition,
we create 3 different sizes of data from TPC-H database, named
TPCH-25, TPCH-50 and TPCH-100. To do so, we truncate customer
and supplier tables to 25, 50, or 100 tuples and prune the other tables
using their primary key-foreign key relationships.

3.1 End-to-End Performance
Recall that Table 1 shows RESCU-SQL takes several orders of magni-
tude more time than conventional plaintext execution on TPCH-25.
Our strong security guarantees come at a substantial slowdown.
Our results reveal that our performance naturally gets slower when
we tackle more complex queries such as Q8 and Q9 with their cas-
cades of joins and computationally-intense aggregation. To address
this, in future work we may investigate parallelizing this query pro-
cessing. We may also benchmark how our performance improves
with access to more hardware resources.

Figure 2 shows the scalability of RESCU-SQL when we extended
our evaluation to TPCH-50 and TPCH-100. We show the runtimes
for the trusted coordinator because it has the longest execution
time. As the data size doubles, runtime grows at the about same
rate. Memory footprint grows modestly as we scale up; at TPC-H
25 we use up to 1.7 GB and at TPC-H 100 we reach 6.7 GB. This
growth rate is more gradual as we amortize our setup phase with
the trusted coordinator for the protocols in each query evaluation.
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3.2 Operator-Level Results
Now, we granulate our analysis into operator level. For example,
Figure 3 illustrates runtime per operator in 𝑄3 over TPCH-25. Join
operator, simultaneously evaluating over two tables, dominates–a
total of 89%. Sort operators cost 9% runtime due to intricate Bitonic
sorting network [1]. Aggregate and Project(revenue) take 0.3% and
1% respectively, mainly for arithmetic calculation for revenue. Filter
and other Project operators take minor overall time, merely 0.006%.

4 DEMONSTRATION
Our demonstration will greet participants with a dashboard for the
trusted coordinator with which participants launch a query, moni-
tor its resource utilization, and inject corruptions into computing
parties. Figure 4 provides an overview of the interface, where the
lightweight trusted coordinator will run locally and the outsourced
computing servers will be deployed on one or more CPSs.

First, attendees will select one of the queries from our subset of
TPC-H. They click the “Run” button to launch the query. Then, the
coordinator generates randomness for underlying MPC protocols
and sets up its connection with each server. The coordinator sends
the query to each server and launches its worker process. This
starts the timer in the upper right corner of each server’s panel.

Each computing party has a panel to provide real-time updates
on its resource utilization and overall health. If a server is healthy,
it is shown in white. If it is corrupted or the trusted coordinator
aborts then it becomes shaded in red (e.g. Server B). The bottom of
each panel displays query usage statistics for memory, CPU, and
kilobits per second of data for communication among the nodes.

While a query is running, attendees may elect to corrupt one of
the servers. They will select a server and send a message. The server
will broadcast the message to its 𝑛−1 peers, thereby deviating from
the protocol. We will show in real time how each computing node
will detect this defection and abort. Each one will incrementally
turn red until all nodes abort. Recall that we need all 𝑛 hosts to
remain uncorrupted to uphold our security guarantees. Otherwise,
we would implicitly be trusting these outsourced servers.

5 RELATEDWORK
Wenow briefly survey related research. There is significant research
interest in computing SQL queries obliviously using MPC [2, 7]
and secure enclaves [4, 10]. The MPC-based solutions work in a
semi-honest setting. The secure enclave setting offers stronger guar-
antees but requires specialized hardware. In contrast, we address a
single data owner outsourcing to the untrusted cloud.

Senate [5] is a SQL platform for collaborative analytics that
achieves malicious security. This work most closely resembles our
own. It is possible to adapt this platform for outsourcing but the
protocol would not be as efficient as ours since Senate is not de-
signed for the outsourcing setting. In particular, with the help of
the data owner (i.e, trusted coordinator), we are able to achieve
much higher scalability and efficiency. Instead of executing a sin-
gle costly query between all parties, Senate breaks it into smaller
queries between some parties. The final result is obtained through
a verified joint computation. In certain cases, this decomposition
allows for parallelization, which may improve runtime. Note that
this optimization relies on assumptions about the collaborating
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RESCU-SQL Dashboard

 Q1  Q3  Q18 Q9 Q5 Q8 Run!

RESCU-SQL 
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Figure 4: RESCU-SQL Dashboard

data owners being able to access their own data in the clear which
is not applicable in the zero trust setting.

6 CONCLUSIONS
We propose to demo RESCU-SQL, a SQL-over-MPC framework
for the zero trust cloud. This system makes it possible for a data
owner to outsource their operations in a geographically distributed
deployment that will detect and prevent an attacker from gaining
unauthorized access to its data if at least one compute node out
of 𝑛 remains uncorrupted. Demo goers will get hands-on experi-
ence with launching TPC-H queries in this setting and injecting
corruptions into its query evaluation.
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