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ABSTRACT
Clustering is one of the most popular time-series tasks because it
enables unsupervised data exploration and often serves as a subrou-
tine or preprocessing step for other tasks. Despite being the subject
of active research across disciplines for decades, only limited ef-
forts focused on benchmarking clustering methods for time series.
Unfortunately, these studies have (i) omitted popular methods and
entire classes of methods; (ii) considered limited choices for un-
derlying distance measures; (iii) performed evaluations on a small
number of datasets; or (iv) avoided rigorous statistical validation of
the findings. In addition, the sudden enthusiasm and recent slew
of proposed deep learning methods underscore the vital need for
a comprehensive study. Motivated by the aforementioned limita-
tions, we present Odyssey, a modular and extensible web engine to
comprehensively evaluate 80 time-series clustering methods span-
ning 9 different classes from the data mining, machine learning,
and deep learning literature. Odyssey enables rigorous statistical
analysis across 128 diverse time-series datasets. Through its inter-
active interface, Odyssey (i) reveals the best-performing method
per class; (ii) identifies classes performing exceptionally well that
were previously omitted; (iii) challenges claims about the use of
elastic measures in clustering; (iv) highlights the effects of parame-
ter tuning; and (v) debunks claims of superiority of deep learning
methods. Odyssey does not only facilitate the most extensive study
ever performed in this area but, importantly, reveals an illusion of
progress while, in reality, none of the evaluated methods could out-
perform a traditional method, namely, 𝑘-Shape, with a statistically
significant difference. Overall, Odyssey lays the foundations for
advancing the state of the art in time-series clustering.
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1 INTRODUCTION
Time-series analysis has gained ample attention due to the increas-
ing prevalence of time-varying measurements across industrial and
scientific applications [17, 18, 21, 22, 29]. Among analytical tasks
for time series [6, 7, 11, 12, 24, 25, 31], clustering is one of the most
widely used as it does not require annotated data or human super-
vision [4, 5, 20]. Clustering does not only facilitate effective data
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Table 1: Summary of the clustering classes evaluated across 128
datasets using Odyssey. Last columns show category cardinality and
similarity measures (in parentheses) evaluated in previous studies.

Clustering
Class

Category
Cardinality

Distance
Measures [16] [27] [19] [14]

Partitional 5 10 3 (3) 5 (5) 5 (3) 2 (9)
Kernel 2 4 ✘ 1 (3) ✘ ✘

Hierarchical 2 10 1(1) 1 (3) ✘ ✘

Density 3 10 1 (2) 2 (3) ✘ ✘

Distribution 2 10 ✘ ✘ ✘ ✘

Model 5 - ✘ ✘ ✘ ✘

Shapelet 3 - ✘ 1 1 ✘

Semi-Supervised 2 - ✘ ✘ ✘ ✘

Deep Learning 32 - ✘ ✘ 26 ✘

exploration but often serves as a preprocessing step or subroutine
for other tasks (e.g., anomaly detection [8, 23, 28]).

Despite decades of attention, only limited efforts have focused
on comprehensively evaluating time-series clustering methods (no-
table examples [14, 16, 19, 27]). Unfortunately, existing benchmark-
ing studies often overlooked popular methods and entire classes
of methods, omitted state of the art underlying distance measures,
or performed comparisons on a limited number of datasets. Impor-
tantly, some studies have avoided any form of statistical validation
of the findings, resulting in incomplete assessments of the superi-
ority of certain methods. In addition, the recent advances in deep
learning technologies have sparked a surge of interest in using
neural network architectures for time-series clustering [19].

Considering the sudden enthusiasm and recent slew of proposed
methods, we believe it is critical to revisit this subject in more de-
tail. Importantly, our effort is also motivated by the necessity to
challenge misconceptions that have appeared in the literature. For
example, we have observed misconceptions concerned with the
(i) importance of distance measures; (ii) parameter tuning affected
by supervised tasks; and (iii) inadequate comparisons among neu-
ral networks with many modular components (e.g., architectures,
reconstruction losses, pretext losses, optimizers, etc.).

Motivated by the aforementioned issues and our curiosity to
shed some light on these misconceptions, we present Odyssey [1],
a modular and extensible system to assist in the navigation of the
time-series clustering land. Odyssey aims to enhance the visualiza-
tion and comprehension of a large-scale evaluation of time-series
clustering methods using a wide variety of datasets, clustering
methods, and quality assessment measures. In particular, Odyssey
integrates 80 time-series clustering methods spanning 9 different
classes from the data mining, machine learning, and deep learn-
ing literature [2]. Table 1 summarizes the characteristics of the
evaluation enabled by Odyssey in comparison to earlier studies.

Odyssey facilitates on-the-fly, rigorous statistical analysis across
128 diverse time-series datasets [9], using 3 assessment measures.
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Figure 1: Taxonomy of time-series clustering methods in Odyssey.

Through its interactive interface, Odyssey not only reveals the best-
performing methods or omitted classes but, importantly, challenges
biases about the importance of distance measures and parameter
tuning, and debunks claims of superiority of deep learning meth-
ods. Odyssey enables the most extensive study ever performed
in this area and has revealed an illusion of progress: none of the
evaluated methods was able to outperformwith a statistically signif-
icant difference 𝑘-Shape, a scalable partitional method [26]. Overall,
Odyssey alters the landscape of what is known about time-series
clustering and lays the foundations for advancing state of the art.

2 EVALUATION FRAMEWORK
We now provide the background necessary to introduce Odyssey,
including details for the methods, datasets, and quality measures.
Time-Series Clustering Methods: To enable a fair and repro-
ducible study of time-series clustering methods, Odyssey requires
all methods under the same framework. Specifically, Odyssey builds
on top of our new (unpublished) library [2], which aims to hide
all the complexity of benchmarking time-series clustering meth-
ods. Therefore, Odyssey integrates 80 methods that encompass a
diverse range of algorithmic classes, including partitional, hierarchi-
cal, kernel, density, distribution, shapelet-based, semi-supervised,
model-based, feature-based, and deep learning methods. For cer-
tain classes, Odyssey enables extensive in-depth analysis to derive
critical insights and factors that influence the performance of meth-
ods. For example, for partitional and kernel methods, this analysis
includes choices of the best 10 distance and best 4 kernel measures
as identified before in [30]. For deep learning methods, the analysis
dives into components of neural networks such as the architecture,
the clustering losses, and the pretext losses, as described in detail
at [19]. Figure 1 summarizes the classes of methods integrated at
Odyssey, along with the distance measures and components of the
deep learning methods (we provide all references online [1, 2]).
Datasets:We conduct our evaluation using the UCR Time-Series
Archive [9], the largest collection of class-labeled time series
datasets. The archive consists of 128 real and synthetic datasets,
which span several different domains. Each dataset contains from
40 to 24000 sequences and their length vary from 15 to 2844.
Quality Assessment: To assess the clustering quality of each
method, we use the following popular measures: Rand Index (RI)
[32], Adjusted Rand Index (ARI) [15] and Normalized Mutual In-
formation (NMI) [33]. Along with the above measures, Odyssey

Figure 2: Overview of Odyssey’s architecture.

integrates the Friedman test [13] and the post-hoc Nemenyi test [10]
to compare results for multiple methods across multiple datasets.

3 ODYSSEY ENGINE: SYSTEM OVERVIEW
In this section, we present Odyssey, a modular and extensible en-
gine designed to assist analysts in navigating large-scale benchmark
evaluations containing results from hundreds of datasets and meth-
ods. Odyssey features a stand-alone web application with a GUI,
developed using Python 3.9 and the Streamlit framework [3].

Figure 2 shows the architecture of the Odyssey engine, including
the inputs and outputs. Odyssey exploits 128 different datasets, 80
time-series clustering algorithms spanning 9 classes, and 3 quality
assessment measures. The GUI permits interactions with these in-
puts (selection of dataset, dataset characteristics, clustering classes,
clustering methods, and assessment measures). The user interacts
with Odyssey to visualize and compare the performance of various
classes and methods under different desired settings. Odyssey en-
ables an interactive, on-the-fly, rigorous statistical analysis, which
is critical for navigating thousands of possible options of the un-
derlying large-scale study of time-series clustering methods.

In total, the GUI consists of 9 frames: (1) Description, (2) Evalua-
tion, (3) Runtime, (4) Statistical Test, (5) Comparative Analysis, (6)
Misconceptions, (7) DNN Ablation Analysis, (8) Datasets, and (9)
Methods. The Description frame introduces the objectives of the sys-
tem along with some additional resources, while the Datasets and
Methods frames contain the summary information about datasets
and methods. Next, we provide details for the remaining frames.
Evaluation Frame: This frame has two sub-frames. The first sub-
frame, shows the overall performance and compares our results
using a table and boxplot (see Figure 3 (A)). The table displays one
clustering assessment value for each dataset and method, while the
boxplots illustrate the distribution of clustering assessment values
for each method. The second sub-frame compares the performance
of any pair of methods using a scatterplot. By hovering the mouse
over these plots, the user obtains dataset details.
Runtime Frame: This frame uses a bubbleplot (as shown in Figure
3 (B) to illustrate the runtime performance of clustering methods
on 128 datasets. The runtime performance is the total time required
by a clustering method to fit and infer clusters for the selected
datasets. Deep learning methods utilize a GPU and, therefore, some
of them may appear faster than traditional CPU-bound methods.
The interface marks the GPU-accelerated methods for clarity.
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Figure 3: The main frames of the Odyssey engine.

Statistical Testing Frame: This frame in Figure 3 (C) allows the
user to choose a subset of methods to conduct statistical testing and
produce a critical difference diagram. The critical difference diagram
shows the statistical significance of the performance differences
among various methods across multiple datasets. By interacting
with the left sidebar, the user can statistically validate any potential
hypothesis using the underlying large-scale results.
Comparative Analysis Frame: Each sub-frame shows the com-
parative analysis of time-series clustering methods within a class of
methods. Figure 3 (D) consists of a table that reports the clustering
assessment measure, a boxplot that summarizes the performance,
and a critical difference diagram that indicates the statistical signif-
icance in performance among the methods in a class.
Misconceptions Frame: This frame, shown in Figures 3 (E & F),
is composed of three sub-frames, where each sub-frame addresses
an important misconception in the time-series clustering literature.
Specifically, in these subframes, the user explores misconceptions
about the impact of (i) choosing a distance measure in clustering
methods, (ii) tuning parameters using supervised and unsupervised
settings, and (iii) evaluating standalone deep learning methods as
proposed in the literature without an effort of bringing them in
the exact same evaluation framework (i.e., same optimizers, loss
functions, etc.). These results help debunk several misconceptions
about the superiority of deep learning methods [19] or about the
fact that elastic distance measures do not improve the performance
of clustering measures compared to Euclidean distance [14].
DNN Ablation Analysis Frame: Finally, this frame provides a
deeper analysis of the contributions of the individual components
of deep learning clustering methods. As shown in Figures 3 (G & H),
each sub-frame evaluates the contributions of the selected archi-
tecture, pretext loss, and clustering loss on model performance by
visualizing critical difference diagrams. This is of great importance
because Odyssey enables users to perform large-scale ablation anal-
ysis for neural networks and understand trade-offs on different
datasets. This ablation analysis essentially permits keeping two
characteristics static (e.g., clustering and pretext loss) and varying

the third characteristic (e.g., architecture), to understand the impact
of different architectures in certain datasets or the benchmark.

4 DEMONSTRATION SCENARIOS
This demo has five goals: (i) emphasize the significance of utilizing
a Web engine to derive valuable insights regarding the disparities
in the performances of an extensive set of clustering methods when
assessed on a diverse range of datasets; (ii) facilitate the user with
the ability to visualize and contrast the trade-off between runtime
and performance among various clustering methods; (iii) empower
the user to perform and visualize statistical testing to enhance their
comprehension of the significance of differences in performance
among various methods and classes; (iv) enable users to explore
prevalent misconceptions within the time-series clustering litera-
ture; and (v) derive deeper insights on the contribution of different
components towards the performance of deep learning methods.
Scenario 1: Finding the best clustering method: This scenario
is depicted in the evaluation frame 3 (A). First, utilizing the sidebar,
users have the option to either select all available datasets or man-
ually choose a specific set based on characteristics such as cluster
size, sequence length, or sequence type. Then, users may select from
all implemented time-series clustering methods or choose a subset
of methods from specific classes. The first sub-frame displays the
time-series clustering methods in increasing order of performance
using a boxplot and provides raw performance scores in the table
below. The second sub-frame offers an interactive user interface
for comparing pairs of methods using a scatterplot. The scatterplot
enables the user to identify datasets where the compared methods
are more or less accurate. This enables users to determine the most
suitable time-series clustering methods per dataset.
Scenario 2: Understanding the accuracy to runtime perfor-
mance trade-off of different methods: In this scenario, the user
is asked to select a clustering assessment measure and a set of
time-series clustering methods to understand the tradeoffs between
accuracy and runtime. Figure 3 (B) displays a bubble plot with time-
series clustering methods on the x-axis and their average accuracy
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on the y-axis. The size of each bubble indicates the magnitude of
runtime. The runtime and accuracy scores displayed in this frame
are aggregated values for selected datasets, and the plot is ordered
with methods consuming the least to most runtime. For instance,
Figure 3 (B) highlights the significance of scalable methods like
𝑘-Shape, which is faster and more accurate than DNN methods.
Scenario 3: Highlighting the current state of each time-series
clustering class: In this scenario, the methods for each time-series
clustering class are preset, as shown in Figure 3 (D). Each sub-frame
in this frame summarizes the results for a clustering class. Users
can change clustering assessment measures and have the option
to either select all available datasets or manually choose a specific
set based on characteristics such as cluster size, sequence length,
or sequence type. The results for each class are summarized using
a boxplot, a critical difference diagram, and a table. This informa-
tion helps users understand the current state of each time-series
clustering class. For example, in the partitional clustering class, we
observe that 𝑘-Shape statistically outperforms other methods, while
in the deep learning class, we observe that no method statistically
outperforms other methods in the class.
Scenario 4: Uncovering challenging claims and misconcep-
tions in time-series clustering literature: The fourth scenario
focuses on uncovering challenging claims and misconceptions in
the literature. The misconceptions frame, as shown in Figure 3 (E
& F), is composed of three sub-frames. Each sub-frame is preset to
a set of methods, with its results highlighting a misconception or
challenging an existing claim. In the first sub-frame, contrary to the
claims from [14] that DTW fails to outperform the ED similarity
measure, our results show that under both supervised and unsu-
pervised settings, DTW outperforms the ED similarity measure
with a statistically significant difference. The choice of parameters
for distance measures such as MSM, TWED, SWALE, DTW, EDR,
and LCSS are often arbitrary in the literature. The results from the
second sub-frame show that in the unsupervised setting, 𝑘-Shape
for example outperforms the top elastic measure with statistical
significance. However, in the supervised setting, there is no signifi-
cant difference in performance. Likewise, in the supervised setting,
measures like TWED outrank all other elastic measures. In contrast,
in the unsupervised setting, it is outranked by non-parametric mea-
sures like ERP. Finally, using the results from the third sub-frame,
we gather that many deep learning-based time-series clustering
models have no significant difference in their performances, and
none of the best-performing deep learning-based time-series clus-
tering models can outperform 𝑘-Shape. It is crucial to identify such
observations to debunk the illusion of progress in this area.
Scenario 5: Evaluating contributions of components for deep
learning models: As shown in Figure 3 (G & H), this final scenario
evaluates how neural network components, such as the architec-
ture, pretext loss, and clustering loss affects the performance of
these methods. Despite previous extensive evaluations [19], simul-
taneous evaluation of numerous components makes rigorous con-
clusions difficult. In the first sub-frame, convolution-based models
(RES_CNN, D_CNN, S_CNN) outrank recurrent (BI_RNN, BI_LSTM,
BI_GRU, D_RNN) and fully-connected (MLP) models with no sta-
tistically significant difference. Similarly, in the second and third
sub-frames, our implementation of contrastive pretext loss (CNRV)

outperforms the previously evaluated pretext losses (REC, MREC,
VAE, TRPLT). Results are summarized with critical diagrams.

5 CONCLUSIONS
We described Odyssey, a system that allows users to navigate the
vast search space of datasets, methods, and evaluation techniques
for time-series clustering. Odyssey revealed best-performing meth-
ods per class, challenged biases concerned with the impact of dis-
tance measures and parameter tuning, and debunked claims of the
superiority of deep learning methods. Odyssey revealed an illusion
of progress and altered the landscape in this area.
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