
Fanglue: An Interactive System for Decision Rule Crafting
Chen Qian
Ant Group

Hangzhou, China
frank.qc@antgroup.com

Shiwei Liang
Ant Group

Hangzhou, China
shiwei.lsw@antgroup.com

Zhaoyang Wang
Ant Group

Beijing, China
mark.wzy@antgroup.com

Yin Lou
Ant Group

Sunnyvale, CA, USA
yin.lou@antgroup.com

ABSTRACT
In many applications the training data do not always contain suffi-
cient information to produce high-quality decision rules for stan-
dard (end-to-end) rule mining algorithms, and human experts have
to incorporate domain knowledge during rule induction in order to
get meaningful results. In this work we present Fanglue, a home-
grown system inside Alipay, for interactive decision rule crafting.
Fanglue is a distributed in-memory system and is highly respon-
sive when processing large-scale datasets. In addition, Fanglue
extends the standard representation of a decision rule by introduc-
ing disjunctive clauses. Having disjunctive clauses can improve
the coverage and robustness of a decision rule, especially for fraud
prevention in Fintech applications.

PVLDB Reference Format:
Chen Qian, Shiwei Liang, Zhaoyang Wang, and Yin Lou. Fanglue: An
Interactive System for Decision Rule Crafting. PVLDB, 16(12): 4062 - 4065,
2023.
doi:10.14778/3611540.3611621

1 INTRODUCTION
Decision rules are widely used in mission-critical tasks such as
fraud prevention in Fintech applications since rules are highly
interpretable thanks to their simple if-then structure. Standard
decision rule has two parts; a conjunction of conditions and a
prediction. A condition is of the form (feature, operator, value), e.g.,
age > 50. A rule makes certain prediction when all conditions are
satisfied for a given input. In this case, we say that the rule covers
this input.

Most existing rule mining systems (such as CN2 [3] or RIP-
PER [4]) are end-to-end; given a training set, the human expert
specifies the optimization metric and hyperparameters for the rule
mining algorithm, and then she has to wait for the algorithm to
terminate in order to get a set of rules. In other words, hyperparam-
eters and the optimization metric are the only “knobs” for human
expert to incorporate domain knowledge to some extent, and there
is nothing else that the human expert can do to guide the algorithm
how to grow a rule once the rule mining process starts.

Unfortunately, in many applications the training data do not
always contain sufficient information to produce high-quality deci-
sion rules for standard (end-to-end) rule mining algorithms, and
human experts have to incorporate domain knowledge during rule
induction to a deeper extent in order to get meaningful results.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611621

For example, assume a human expert at Alipay,1 the largest
third-party online payment platform in China, is authoring rules
to cover a new kind of fraudulent activity that is only identified
recently. She has prepared a dataset for the learning algorithm but
it has only a few examples of such activity. Suppose a key step
of this fraud is to ask the victim to send the fraudster multiple
payment QR codes, and therefore the count of payment QR code
refreshment within a short time should be an important identifier of
such fraudulent activity. However, she finds that none of the rules
returned by the mining algorithm uses this feature, and most rules
employ transaction amount to distinguish the fraud from normal
activities, as transaction amount in the dataset “coincidentally”
separates these two kinds of activities. This is not uncommon in
practice for applications such as fraud prevention, where there
are usually very few positive points. Therefore, there is a high
chance that an irrelevant feature can perfectly separate positive
and negative points based on the input data. Although the count of
payment QR code refreshment is indeed a very competitive feature
during the rule induction process (e.g., often ranked high in the
candidate evaluation), it simply never gets the chance to win over
other features due to the noise in the dataset.

In this paper we present Fanglue, a home-grown system inside
Alipay, for interactive decision rule crafting that helps human ex-
perts better incorporate their domain knowledge in the face of data
scarcity. Fanglue provides a web interface for users to visualize and
craft decision rules, and it has been serving risk control experts
for fraud prevention rule authoring for more than 2 years. Users
upload the data into Fanglue to start data-driven rule authoring,
and Fanglue generates real-time condition suggestion and data an-
alytics to provide helpful quantitative information. To be highly
responsive when processing large datasets, Fanglue distributes the
data in memory and employs Ray [8] as its computation engine.

In addition, unlike standard rule mining algorithm that produces
conjunction-only rules, Fanglue employs a conjunctive normal form
(CNF) type of rule representation that allows disjunctive clauses in
a decision rule. Introducing disjunctive clauses in a decision rule
can increase its coverage while keeping the rule concise. Producing
a succinct and concise rule set is usually preferred by human when
authoring rules. We also introduce a special disjunctive condition
in Fanglue, called similar condition, to increase the robustness of a
rule while ensuring the change in coverage as small as possible. For
example, when the human expert decides to pick some vulnerable
condition during the rule authoring (such as transaction amount
> 500), she might want to add another layer of protection by finding
“semantically similar” conditions that behave just like transaction
amount > 500 (although being less powerful), so that when the

1https://www.alipay.com/

4062

Evaluate Metrics

Edit Condition

Core Module

Web UI

rule list
…

…

…

conditionscanvas

Task
Manager

Rule
Manager

Backend Service

Saved Rules

Driver

Ray Cluster

Actor 0

Actor 1

Actor 2

1 2

6

5

4

Get Condition Suggestion

3

Data
Processor

data shard data shard

data shard

Figure 1: System overview.

fraudster discovers the 500 threshold on transaction amount, this
rule may still keep functioning for fraud prevention.

To enable multiple rule crafting, by default Fanglue automatically
excludes the data covered by previous rules so that the next rule
authoring can focus on covering the remaining data. Users can also
choose to undo some exclusion for further experimentation.

Some commercial solutions, such as Sparkling Logic’s SMARTS
decision manager [2], also provide an interactive environment for
rule authoring. Fanglue differs from those commercial solutions in
that a) Fanglue can process large datasets with low latency and b)
Fanglue extends the representation of a decision rule by introducing
disjunctive clauses. There are also interactive rule refinement sys-
tems, such as Rudolf [6], that focus on post processing of decision
rules while Fanglue provides an interactive environment during
the whole process of rule crafting.

2 SYSTEM OVERVIEW
Figure 1 shows an overview of Fanglue. Users interact with Fanglue
through a Web interface. There are three core modules in Fanglue;
Get Condition Suggestion, Edit Condition (including manual
editing or applying a suggested condition), and Evaluate Metrics
of the current rule. The task manager is responsible for handling
requests from different core modules 1 , and it will launch the
corresponding Ray job 2 .

The data are distributed across a set of Ray actors and are persis-
tent in memory. For a specific computation task, each actor builds
its own local statistic. Those local statistics are then aggregated
onto the driver to obtain the global statistic 3 . The driver returns
results to the task manager 4 , which are then passed to data pro-
cessor. The data processor proposes some operations based on the
global statistic (e.g., evaluation results of a list of candidate condi-
tions) 5 , and the system waits for the user’s response. Once the
user makes some action (e.g., user picks one condition suggestion),
the action triggers corresponding core module (e.g., add a particular
condition) and the above process repeats. Authored rules are saved
into a database 6 .

Figure 2: Running time comparison on evaluation of candi-
dates for the next condition suggestion.

3 TECHNICAL BACKGROUND
Fanglue employs a conjunctive normal form (CNF) type of rule
representation. A CNF type of decision rule is a conjunction of one
or more clauses and a prediction, where a clause is a disjunction of
conditions. A condition is in the form of (feature, operator, value).
In this work we focus on binary classification problems where
labels are either positive or negative. We assume a training set
and a validation set are given. Metrics such as precision, recall, 𝐹1
score, or coverage on positive labels2 can be used to evaluate a
decision rule. Fanglue provides three types of real-time suggestion
in a data-driven way to assist users in their decision rule authoring;
“AND” condition suggestion, “OR” condition suggestion, and similar
condition suggestion.

3.1 “AND”/“OR” Condition Suggestion
Assume we already have some clauses in a decision rule, to pro-
vide suggestion on “AND” (or “OR”) condition, we search over all
possible (feature, operator, value) triples and evaluate them by ap-
pending the candidate condition to the current decision rule. This
is the same procedure in many rule induction algorithms such as
OneR [5]. Standard rule induction algorithms would choose the
candidate condition with the best metric score, while Fanglue dis-
plays a shortlist of those candidate conditions with metric scores
on validation set for users to choose from.

To facilitate fast evaluation of (feature, operator, value) triples,
each Ray actor builds the histogram on its local partition of the data,
and all local histograms are reduced onto the driver to get the global
histogram. Once the global histogram is computed, the evaluation
of a condition candidate triplet can be efficiently computed.

To evaluate the efficiency of our system design, we perform
an experiment on a proprietary dataset with 1.4 million points
and 50 features. Each feature is discretized into 32 equi-frequency
bins and we consider operators in {≥, >, ≤, <}. Figure 2 illustrates
the running time comparison (aggregated over 5 runs) of generat-
ing evaluation results of all candidates of the very first condition,
using our implementation and an optimized Mars on Rays [1] im-
plementation (using data frame operators). We can see Fanglue’s

2Coverage on positive labels measures the count of covered positive examples while
recall is the ratio of this count over the total number of positive examples.

4063

implementation is very efficient on this large dataset and can be
highly responsive in an interactive environment. We also notice
that the efficiency cannot be improved with more actors for data
frame-based implementation, due to the overhead introduced by
the framework.

3.2 Similar Condition Suggestion
As we mentioned in Section 1, a semantically similar condition
can increase the robustness of a decision rule. Similar condition
is a special type of “OR” condition with additional constraints.
Assume the current rule is𝐶1 ∧𝐶2 ∧𝐶3, where𝐶𝑖 ’s are disjunctive
clauses, and suppose we want to add a similar condition to 𝐶2. A
“semantically similar” condition should have the similar coverage
of 𝐶2 on positive data, without introducing too many additional
(negative) points in the meantime. We use A to denote the subset
of data covered by the current rule𝐶1 ∧𝐶2 ∧𝐶3. We search over all
possible (feature, operator, value) triples under𝐶1 ∧𝐶3 (leave alone
𝐶2). Each candidate condition will cover a subset of data, denoted
as B and an ideal similar condition should have A = B.

In practice, however, we found such ideal similar condition is
very rare. Therefore, for each candidate similar condition, we cal-
culate the Jaccard similarity of the positive points as,

PosJaccard(A,B) = |A𝑝𝑜𝑠 ∩ B𝑝𝑜𝑠 |
|A𝑝𝑜𝑠 ∪ B𝑝𝑜𝑠 | , (1)

where R𝑝𝑜𝑠 denotes a subset of R on positive labels. To avoid
introducing too many negative points, we calculate the similarity
of these two sets on negative points for all eligible candidates as

NegRatio(A,B) = |A𝑛𝑒𝑔 |
|A𝑛𝑒𝑔 ∪ B𝑛𝑒𝑔 | , (2)

where R𝑛𝑒𝑔 denotes a subset of R on negative labels.
We define the “overall similarity” as the harmonic mean of

PosJaccard and NegRatio as,

OverallSim(A,B) = 2PosJaccard(A,B) × NegRatio(A,B)
PosJaccard(A,B) + NegRatio(A,B) .

(3)

We filter out candidates with PosJaccard < 0.8 and then sort all
eligible similar condition candidates according to their OverallSim
in decreasing order so that users can choose a proper one based on
domain knowledge and our suggestion.

For each condition candidate (feature, operator, value), |A𝑝𝑜𝑠 ∩
B𝑝𝑜𝑠 | and |A𝑝𝑜𝑠 ∪ B𝑝𝑜𝑠 | can be collected locally within each Ray
actor, and PosJaccard and OverallSim can be computed on the
driver once global statistics be aggregated.

3.3 Multiple Rule Authoring
When a single rule is authored and saved, its effects on the data
should be excluded (by removing data covered by this rule), so that
the next rule authoring can focus on covering the remaining data
points instead of wasting the effort on those already covered points.
This is typically known as the sequential covering algorithm [7],
as illustrated in Figure 3.

Fanglue supports an extended version of sequential covering;
users can choose whether to include or exclude the effects of particu-
lar rules. For example, users may find some equally good conditions
when authoring one rule. Instead of making the choice right away,

1. Data 2. Author rule A

3. Remove data points covered by rule A 4. Author rule B on remaining data

Figure 3: Illustration of the sequential covering algorithm.

Fanglue users can choose one of them to finish the current rule
authoring, and then undo the exclusion of the newly crafted rule.
By doing so, users can go back to previous states to explore other
options. This gives users the freedom to go back and forth when
authoring multiple decision rules.

4 DEMONSTRATION SCENARIOS
We will use the “Default” dataset from the UCI machine learn-
ing repository3 to demonstrate Fanglue’s core functionalities. The
dataset contains 30,000 points and the task is to predict whether a
credit card default will happen for the next month. The dataset will
be pre-loaded into the system, and the audience will be able to ex-
perience interactive rule crafting in Fanglue through the following
scenarios.
Finding Best “AND”/“OR” Conditions. We will ask the user to
add the next best “AND”/“OR” condition, with the help of Fanglue’s
real-time condition suggestion. The user will be able to playwith dif-
ferent conditions to see their effects on the target metric, and trade
off metric improvement for interpretability. Figure 4 showcases
a situation where there are multiple “AND” condition candidates
with similar effects on the target metric but the interpretability of
those candidates differs.
Adding Similar Conditions. In this scenario, the user will be
asked to add similar condition to an existing rule to improve its
robustness. We have prepared a rule that there are multiple places
to add similar condition. Fanglue computes all eligible similar con-
ditions and presents them to the user along with metric values of
OverallSim and PosJaccard. The user will experience the tradeoff
among rule robustness, metric changes and interpretability. Fig-
ure 5 illustrates one possibility of adding a similar condition to an
existing rule.
Authoring Multiple Rules. Once a single rule is authored and
saved, Fanglue by default will exclude its effect on the current

3https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

4064

Figure 4: The left panel displays “AND” condition suggestions on the right of the canvas given current rule. Notice that there
are multiple candidates on different features with similar metric value (0.5 recall in this case) for the next “AND” condition.
Users will employ their domain knowledge to apply one of those candidates. The right panel shows the pop-up window for
user manual adding an “AND” condition. Notice also the metrics for top 3 condition candidates are very close.

Figure 5: On the left we show the screenshots before and
after adding a similar condition (in light cyan) for a selected
row in current rule. The right panel shows the suggested
similar conditions along with metric values of OverallSim
and PosJaccard for users to make a sensible choice. We see
that adding similar condition does not change the metrics
too much on current rule.

dataset (by removing data covered by this rule) to prevent duplicate
effort for subsequent rule crafting from covering points that are
already covered. Users will also have the choice of not excluding a
particular rule. In this scenario, the user will experience multiple
rule authoring in Fanglue and in particular experience the different
consequences of excluding and not excluding the effect of a partic-
ular rule. Figure 6 illustrates the interface of setting rule exclusion
in Fanglue. Users can choose to undo the exclusion of rule 4, so
that the next rule will have the exact same context with the context
right before authoring rule 4. This usually happens when there
were some equivalently good choices during rule 4’s authoring,
and users may want to go back to the previous states and try other

Figure 6: Fanglue’s interface for setting rule exclusion.

choices. Once the new rule is crafted, it can be compared with rule
4 for further investigation.

REFERENCES
[1] 2023. Mars on ray. https://docs.ray.io/en/latest/ray-more-libs/mars-on-ray.html
[2] 2023. Sparkling Logic’s SMARTS decision manager. https://www.sparklinglogic.

com/
[3] P. Clark and T. Niblett. 1989. The CN2 induction algorithm. Machine learning 3, 4

(1989), 261–283.
[4] W.W. Cohen. 1995. Fast effective rule induction. In ICML.
[5] R.C. Holte. 1993. Very Simple Classification Rules Perform Well on Most Com-

monly Used Datasets. Machine learning 11, 1 (1993), 63–90.
[6] T. Milo, S. Novgorodov, and W. Tan. 2016. Rudolf: interactive rule refinement

system for fraud detection. PVLDB 9, 13 (2016), 1465–1468.
[7] C. Molnar. 2020. Interpretable Machine Learning. Lulu. com.
[8] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z.

Yang, W. Paul, M.I. Jordan, and I. Stoica. 2018. Ray: A distributed framework for
emerging AI applications. In OSDI.

4065

	Abstract
	1 Introduction
	2 System Overview
	3 Technical Background
	3.1 ``AND''/``OR'' Condition Suggestion
	3.2 Similar Condition Suggestion
	3.3 Multiple Rule Authoring

	4 Demonstration Scenarios
	References

