Portals: A Showcase of Multi-Dataflow Stateful Serverless

Jonas Spenger
RISE Research Institutes of Sweden &
KTH Royal Institute of Technology
Stockholm, Sweden
jspenger@kth.se

Philipp Haller
KTH Royal Institute of Technology
Stockholm, Sweden
phaller@kth.se

ABSTRACT

Serverless applications spanning the cloud and edge require flexible
programming frameworks for expressing compositions across the
different levels of deployment. Another critical aspect for applica-
tions with state is failure resilience beyond the scope of a single
dataflow graph that is the current standard in data streaming sys-
tems. This paper presents Portals, an interactive, stateful dataflow
composition framework with strong end-to-end guarantees. Por-
tals enables event-driven, resilient applications that span across
dataflow graphs and serverless deployments. The demonstration
exhibits three scenarios in our multi-dataflow streaming-based sys-
tem: dynamically composing a stateful serverless application; an
interactive cloud and edge serverless application; and a Portals
browser playground.

PVLDB Reference Format:

Jonas Spenger, Chengyang Huang, Philipp Haller, and Paris Carbone.
Portals: A Showcase of Multi-Dataflow Stateful Serverless. PVLDB, 16(12):
4054 - 4057, 2023.

doi:10.14778/3611540.3611619

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/portals-project/portals.

1 INTRODUCTION

Serverless functions, such as Amazon AWS Lambda [3], have en-
abled developers to write and deploy functions on fully managed
elastic serverless runtimes with great ease of use, allocating re-
sources on demand. Over time, these solutions have become more
sophisticated by including management of state and communica-
tion, with examples such as Cloudburst [11], Durable Functions [4,
5], Stateful Functions on Apache Flink [1, 8], and KAR [12].

In spite of these developments, the growing need for local-first
processing capabilities in edge computing is not yet satisfied. Mod-
ern end-to-end applications require a new take on flexible data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611619

4054

Chengyang Huang
KTH Royal Institute of Technology
Stockholm, Sweden
chehuang@kth.se

Paris Carbone
RISE Research Institutes of Sweden &
KTH Royal Institute of Technology
Stockholm, Sweden
parisc@kth.se

service composition, stepping away from cloud-managed infras-
tructures towards decentralized, local-first execution. To that end,
the overarching challenge lies in finding an all-encompassing state-
ful serverless processing model that can provide both cloud-grade
reliability and local-first computing flexibility.

Portals is a first step towards cloud and edge stateful serverless
dataflow processing [10]. With serverless and edge execution in
mind, Portals provides the following unique capabilities:

@ Multi-Dataflow Applications. Multiple stateful dataflow stre-
aming pipelines can dynamically be composed together on
top of atomic streams, a transactional type of data streams.
Inter-Dataflow Services. The Portal abstraction binds data-
flow pipelines together to create and expose reusable ser-
vices. A request-reply type of communication between
pipelines is employed, by providing serverless access to
remote operator states on top of a continuation-style exe-
cution.

Decentralized Cloud and Local Execution. The decentralized
runtime can be executed on cloud and edge devices, still
providing end-to-end exactly-once processing guarantees.

This paper demonstrates the Portals framework [9, 10], show-
casing its use for composing complex serverless multi-dataflow
applications. Section 2 provides a background on multi-dataflow
serverless applications and the Portals programming model and
system. The interactive demo is discussed in section 3, building
and running applications in Portals. Section 4 concludes with a
summary and an outlook on future work.

2 SERVERLESS DATAFLOWS IN PORTALS

Portals is a serverless multi-dataflow processing system [10]. This
section highlights three primary aspects of the programming model:
(1) multi-dataflow composition of applications; (2) the portal service
abstraction for dataflows; and (3) the decentralized cloud and local
execution, with end-to-end exactly-once processing guarantees.
(D) Portals enables the dynamic composition of multi-dataflow
applications. Its core building blocks are dataflow pipelines and
atomic streams (Figure 1). Dataflow pipelines represent dataflow
streaming programs with stateful operators, similar to existing
stream processing engines such as Apache Flink [7]; each pipeline
is a directed acyclic graph of operators. Pipelines can be connected

https://doi.org/10.14778/3611540.3611619
https://github.com/portals-project/portals
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611619
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Dataflow A

Atomic Stream

Dataflow B

Dataflow C ’-P

DAG of Composition of
Operators Pipelines via Dataflow D
Streams

Figure 1: Core building blocks for multi-dataflow composi-
tion: dataflow pipelines (gray boxes); and atomic streams
(arrows).

Responding Responding Portal Service
Dataflow Dataflow
Requests Reps

A

tasks sink

) [V =
Access 1 | Requests Replies > &>
Operator ! 1 ¥ L
Regs Replies | {
=aABT —a "
H Requesting
Portal Service : Portal Service Dataflow

Figure 2: Exposing a service portal of a dataflow pipeline (left,
middle), and using a service portal from another dataflow
pipeline (right).

Listing 1: User cart as a dataflow, it consumes cart operations
(AddToCart, RemoveFromCart, Checkout), produces an or-
ders stream (Order), and communicates to the inventory via
the inventory portal.

1 Dataflows("cart")

.source(cartOpsStream)

.requester(inventoryPortal, { x => x match
" case AddToCart(item) =>
5 req = Getltem(item)
6 future = request(inventoryPortal, req)
7 await(future, {

future.value match // handle reply
9 case GetltemSuccess =>
10 // per user—cart state
1 state.update(item, state.get(item) + 1)
case ... // truncated
b

14 case Checkout =>
15 order = Order(state.get())
16 emit(order)

}

.sink()

freeze()

together via atomic streams to form reliable multi-dataflow appli-
cations. New pipelines can be added dynamically over time to the
deployment, enabling a dynamically evolving application.

(2) Portals AV, or service portals, are a service abstraction of
dataflow pipelines (Figure 2). They allow abstracting either an
operator (Figure 2, left), or the whole pipeline (middle), as a service.

4055

End-to-End Exactly-Once Processing

edge
A serverles: serverles:
devices 000 > (eerisss Y 000 »(3emertes) 000 E
wearables data
collection Dataflow
- collect data
- output day average Dataflow External
r T - generate system:
4 4 . | |user websit - serve website
@@_ | Dataflow]
- dietary

recommendations

Figure 3: End-to-end IoT wearable analytics application, span-
ning multiple deployments, cloud and edge devices.

A service takes requests, processes them, and replies back to the
requester. The processing may access and modify the state of the
operator and may cause the processing operator to call other portals
recursively, or to emit events. An exposed portal service can be
used by other pipelines (right), or by external systems in an ad hoc
manner (e.g., as a query service).

The core use cases of portals are to expose dataflow operators as
stateful services. For example, the inventory in our demonstration
scenario exposes a portal (Figure 4, left). This portal is used by the
cart dataflow (Listing 1), and the interaction is with a futures-based
APIL The cart binds to the inventoryPortal (Listing 1, line no. 3), and
sends it a request (6). This returns a future, and the cart can await
(7) on the completion of the future before executing the provided
continuation which handles the response (8-12): if the item was
in the inventory (GetltemSuccess) it can be added to the cart state
(11). The awaiting is not a blocking operation, rather, it registers
a continuation which will be executed on receiving the response.
Similarly to the cart, the inventory defines a responder which binds
to the created inventoryPortal in order to define how to handle the
portal requests. Besides the cart and inventory example as discussed
here, demonstration scenario 2 showcases a SQL portal interface
for a dataflow key-value store (Figure 4, middle).

(3) The Portals programming model enables end-to-end exactly-
once processing across cloud and edge deployments. An example
of this is an IoT wearables analytics application, from trackers to
dashboards (Figure 3). The application is deployed on multiple
separately hosted serverless clouds, as well as on edge devices. The
separately hosted dataflows connect via remote streams. Even in this
situation, with a decentralized execution, the underlying atomic
streaming mechanism ensures that the end-to-end exactly-once
processing guarantees are always satisfied.

2.1 System Overview, Implementation

The Portals system consists of an API and a serverless runtime [10].
The API is built around the core multi-dataflow APIL The system
architecture adopts the standard out-of-order dataflow processing
model as used in Google Dataflow [2] and Apache Flink [7]. Por-
tals differ to these systems by supporting multiple decentralized
deployments of dataflow pipelines, inspired by virtual and durable
actor models [5, 6]. To support this, Portals features an additional
management layer for the portals registry and metadata service.
The end-to-end exactly-once guarantees are implemented using
asynchronous two-phase commit with snapshotting [10].

Shopping Cart

SQL to Dataflow

Screenshots

KV-Store
Dataflow

Inventory

Analytics

s

993
18:31:54.060

Figure 4: Overview over the demonstration scenarios: dynamically launching a shopping cart using multi-dataflow composition
and portals (left, in order 1, 2, 3); SQL to Dataflow, using the portal SQL interface to connect to a remote KV-store dataflow
instance from edge devices (middle); screenshots from the shopping cart app (right).

The portal services are currently implemented through a pre-
compilation step which implements them using the existing primi-
tives in the system. They can be constructed through a combination
of internal atomic stream operators called sequencers and splitters,
together with a slight alteration of the internal dataflow graphs [10].

The Portals runtime is compiled both to JVM as well as JavaScript,
leveraging Scala 3 and the Scala-JS library. This way, Portals pro-
grams can run both on lightweight edge devices, as well as on
serverless cloud instances, all from the same shared source code.

3 DEMONSTRATION

The demonstration exhibits running serverless multi-dataflow ap-
plications in Portals through three scenarios (Figure 4). The first
scenario presents dynamically building and launching a server-
less e-commerce solution written in Portals. The second scenario
presents an interactive SQL Dataflow application, which runs lo-
cally on participants’ web-browser devices, and can issue requests
using the SQL interface of the portal service to a cloud instance.
The third scenario presents the Portals playground.

Scenario 1: Complex E-Commerce Pipeline

The first scenario demonstrates, step-by-step, how to launch a
serverless e-commerce solution written in Portals (Figure 4, left).

The scenario consists of four services: an inventory; cart; order;
and analytics service. The inventory manages the inventory state in
an operator, and exposes this state as a portal service. It can handle
either Getltem (take an item from the inventory) or Putltem (put
the item back) requests. The user cart interacts with the inventory
from one of its operators (see Listing 1). For example, to add an
item to the cart, it will have to request to get the item (GetItem)
from the inventory, by calling the inventory portal, and await the
response from the call. The successfully checked-out carts will be
consumed by the order service. Lastly, there is an analytics service,
that consumes the order history in order to provide real-time rec-
ommendations. In our example, this produces a top-100 list of item
purchases, accessible as a portal service.

4056

Demonstration experience: The demonstration will show, step-
by-step, how each service is launched onto the Portals serverless
platform, whilst explaining the example code. A data generator
is used for simulating data, which will allow the participants to
interactively inspect the various services through ad hoc querying
of the portals. For example, sending custom Getltem and Putltem
queries to the inventory portal, or querying the analytics dataflow
for the most purchased items.

Scenario 2: Interactive SQL to Dataflow

The second scenario demonstrates a cloud and edge serverless
application. The cloud runtime runs a key-value store dataflow
accessible through a portal. The edge devices run locally on an
instance of Portals and can connect to the remote (cloud) instance in
order to send queries to the portal. For this demonstration, multiple
participants will be able to query, as well as insert values into,
the key-value store; the changes will be reflected by all devices
connected to the portal. To note is that this application provides
end-to-end exactly-once processing guarantees, spanning over all
edge devices to the serverless cloud instances.

Demonstration experience: Through a URL, the participants will
be able to submit ad hoc SQL queries via a prompt using a JavaScript
version of the Portals framework, running the dataflow application
in the browser. The queries will use the request/response capability
of a portal service to submit the queries and get back the results
from the active state, all with exactly-once-processing semantics.

Scenario 3: Portals Playground

The Portals playground (Figure 5) is a JavaScript-based sandbox
capable of running the Portals runtime directly in the browser. It
supports most of the Portals API with slight differences in the API
due to the differences between JavaScript and Scala. The playground
can be used to write multi-dataflow applications, connect them with
other applications, and to run them locally in the browser. It hosts
a code editor and prints the log output.

Portals Playground

Portals)S Code Editor
var builder = PortalsJS.ApplicationBuilder("simpleRecursive")
var gen = builder.generators.fromArray([128])
var seq = builder.seguencers.random()
var recursiveWorkflow = builder.workflows
.source(seq.stream)
.processor(ctx => x == {
if (x> 0) {
ctx.emit(x - 1)
}
H
. logger()
.sink()
.freeze()
var _ = builder.connections.connect(gen.stream, seq)
var _ = builder.connections.connect({recursiveWorkflow.stream, seq)
var simpleRecursive = builder.build()
var system = Portals]S.System()
system. launch(simpleRecursive)
system.stepUntilComplete()

Code Examples -

Log Output
$6 - 127
$6 - 126
$6 - 125
$6 - 124
$6 - 123
$6 - 122
$6 - 121
$6 - 120
$6 - 119
$6 - 118
$6 - 117
$6 - 116
$6 - 115
$6 - 114
$6 - 113
$6 - 112
$6 - 111
$6 - 110
$6 - 109

Figure 5: Portals playground available at https://www.portals-project.org/playground.

The playground is available at https://www.portals-project.org/
playground for further explorations, together with example appli-
cations (Figure 5).

4 SUMMARY

We have showcased the Portals serverless multi-dataflow stream-
ing runtime [10]. Our demonstration focused on three capabili-
ties: multi-dataflow, i.e., dynamically composing multiple dataflow
pipelines together via atomic streams; portal services, i.e., exposing
dataflow pipelines (operators, state) as inter-dataflow services; and
cloud and edge decentralized execution, i.e., a decentralized runtime
with end-to-end exactly-once processing guarantees that runs both
on edge devices as well as on serverless cloud instances.

The demonstration exhibited three scenarios. The first scenario
showcased how to build an analytics-powered serverless e-commerce
solution in Portals . The second scenario showcased a cloud and
edge runtime, with a dataflow key-value store accessed via the
portal SQL interface. The third scenario showcased the Portals play-
ground.

Future Work

In the near future, we plan to work on a dataflow optimizer for
Portals , exploiting the uniquely global view over the deployment;
in particular, we are interested in improving the performance of
cyclic dependencies across pipelines through dataflow rewriting.
Additionally, we plan to work on multi-dataflow ACID transactions.

ACKNOWLEDGMENTS

This work was partially funded by Digital Futures, the Swedish
Foundation for Strategic Research under Grant No.: BD15-0006, as
well as RISE AL

REFERENCES
[1] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. Stateful Func-
tions as a Service in Action. Proc. VLDB Endow. 12, 12 (2019), 1890-1893.
https://doi.org/10.14778/3352063.3352092

4057

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Ap-
proach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded,
Out-of-Order Data Processing. Proc. VLDB Endow. 8, 12 (2015), 1792-1803.
https://doi.org/10.14778/2824032.2824076

Amazon Web Services. 2023. AWS Lambda. https://aws.amazon.com/lambda/.
Accessed: 2023-03-20.

[4] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher Meiklejohn, and Xiangfeng
Zhu. 2022. Netherite: Efficient Execution of Serverless Workflows. Proc. VLDB
Endow. 15, 8 (2022), 1591-1604. https://www.vldb.org/pvldb/vol15/p1591-
burckhardt.pdf

Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S. Meiklejohn. 2021. Durable functions: semantics
for stateful serverless. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1-27. https:
//doi.org/10.1145/3485510

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen
Thelin. 2011. Orleans: cloud computing for everyone. In ACM Symposium on
Cloud Computing in conjunction with SOSP 2011, SOCC 11, Cascais, Portugal,
October 26-28, 2011, Jeffrey S. Chase and Amr El Abbadi (Eds.). ACM, 16. https:
//doi.org/10.1145/2038916.2038932

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28-38. http://sites.computer.
org/debull/A15dec/p28.pdf

The Apache Software Foundation. 2022. Apache Flink Stateful Functions. https:
//nightlies.apache.org/flink/flink- statefun-docs-release-3.2/. Accessed on 2022-
06-26.

Portals Project Committee. 2022. Portals. https://www.portals-project.org/.
Accessed: 2023-03-20.

Jonas Spenger, Paris Carbone, and Philipp Haller. 2022. Portals: An Extension
of Dataflow Streaming for Stateful Serverless. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2022, Auckland, New Zealand, December
8-10, 2022, Christophe Scholliers and Jeremy Singer (Eds.). ACM, 153-171. https:
//doi.org/10.1145/3563835.3567664

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 11 (2020), 2438-2452.
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf

Olivier Tardieu, David Grove, Gheorghe-Teodor Bercea, Paul Castro, Jaroslaw
Cwiklik, and Edward Epstein. 2023. Reliable Actors with Retry Orchestration.
Proc. ACM Program. Lang. 7, PLDI, Article 159 (jun 2023), 24 pages. https:
//doi.org/10.1145/3591273

(8]

[

[10

(11]

[12

https://www.portals-project.org/playground
https://www.portals-project.org/playground
https://www.portals-project.org/playground
https://doi.org/10.14778/3352063.3352092
https://doi.org/10.14778/2824032.2824076
https://aws.amazon.com/lambda/
https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
https://doi.org/10.1145/3485510
https://doi.org/10.1145/3485510
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/2038916.2038932
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/
https://www.portals-project.org/
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
https://doi.org/10.1145/3591273
https://doi.org/10.1145/3591273

	Abstract
	1 Introduction
	2 Serverless Dataflows in Portals
	2.1 System Overview, Implementation

	3 Demonstration
	4 Summary
	Acknowledgments
	References

