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ABSTRACT
Anomaly detection has been extensively implemented in industry.
The reality is that an application may have numerous scenarios
where anomalies need to be monitored. However, the complete
process of anomaly detection will take much time, including data
acquisition, data processing, model training, and model deploy-
ment. In particular, some simple scenarios do not require building
complex anomaly detection models. This results in a waste of re-
sources. To solve these problems, we build an anomaly detection
pipeline(ADOps) to modularize each step. For simple anomaly de-
tection scenarios, no programming is required and new anomaly
detection tasks can be created by simply modifying the configura-
tion file. In addition, it can also improve the development efficiency
of complex anomaly detection models. We show how users create
anomaly detection tasks on the anomaly detection pipeline and
how engineers use it to develop anomaly detection models.
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1 INTRODUCTION
Anomaly detection aims to identify behaviors that do not con-
form to expectations[8], and has been extensively implemented in
domains such as online game monitoring, and financial fraud de-
tection. Logs are one of the most valuable data sources for anomaly
detection[14]. The structured logs record the massive behaviors of
users in games or applications (trading, battles, advertising clicks
,etc.). The majority of abnormalities can be inferred based on log
sequences because they usually violate regular rules. So far a wide
variety of anomaly detection methods have been devised including
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Figure 1: An pipeline of MLOps

supervised methods[4], semi-supervised methods[17], and unsuper-
vised methods[3]. Nevertheless, they focus on the promotion of the
accuracy of anomaly detection or the scarcity of available labeled
anomalies. There is also a shortage of studies on how to establish
an efficient, stable, and general anomaly detection pipeline, which
is vital in the industry. In many scenarios, hundreds or thousands
of items may need to be monitored for anomalies, so training an
anomaly detection model for each one and deploying it online is
difficult to achieve. It requires a lot of time and computing power.

Challenges remain in establishing an anomaly detection pipeline.
Application developersmay need to configure hundreds of detection
items to monitor whether anomalies occur. Consequently, moni-
tored items need to be easy to extend and modify in this pipeline.
Moreover, each item possesses its ownmonitoring rule. For complex
scenarios, e.g. real money trading detection, user behavior sequence
modeling is momentous to detect outliers[16], while some simple
scenarios may only need to execute a SQL command to locate anom-
aly log. It requires the pipeline to be able to implement a mass of
anomaly detection methods. At last, the pipeline needs to have the
ability to analyze continuous streams of data to meet the demand
for real-time anomaly detection.

To overcome these challenges, we construct a pipeline of log
anomaly detection named ADOps to provide efficient and diverse
anomaly detection services. The system is derived from the concept
of Machine Learning Operations (MLOps1). MLOps is a combina-
tion of machine learning and operation. It is a set of methods for
automating the lifecycle management of machine learning algo-
rithms in production. The core problem to be solved by MLOps is to

1https://ml-ops.org/
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shorten the iterative cycle of model development and deployment.
Figure 1 illustrates the components of MLOps. (1)Design, including
requirements engineering, machine learning(ML) use-cases prion-
zation, and data availability check. (2)Model development, including
data engineering, ML model engineering, model testing & valida-
tion. (3)Operations, including ML model deployment, CI/CD/CT
Pipelines, monitoring & triggering.

The ADOps enables to (i) accept JSON format for establishing or
modifying anomaly monitoring tasks; (ii) execute multiple anomaly
detection methods(SQL command, xgboost[7], autoencoder[1], etc.)
(iii) recommend appropriate anomaly detection thresholds for users
and (iv) support offline analysis of logs but also anomaly detection
on the data stream.

To demonstrate the benefits of the proposed system, we designed
several interfaces to exhibit the different functions of ADOps. First,
it allows users to specify thresholds to query the anomaly logs;
second, it can recommend suitable thresholds for users; third, it
enables to monitor the data stream in real-time according to user-
configured detection rules, and finally, it helps engineers to develop
and deploy personalised models for anomaly detection more effi-
ciently.

2 PRELIMINARIES
In this section, we present the necessary background for the re-
mainder of the paper.
[Datasets] The dataset we use consists of a public dataset and
a private dataset, the public dataset is derived from the Kaggle
competition to detect the presence of click fraud2. The private
dataset is derived from structured logs of NetEase game3. Each
entry records the player’s behavior in the game or the player’s state
at that moment. The data is stored on the distributed file system
HDFS.
[Time series and streaming data] A time series is a set of vari-
ables ordered by time, and timestamping is one of its key attributes.
We could define it as 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑇 ], 𝑋 ∈ R𝑇 . T is the length of
𝑋 , and The appearance of 𝑥𝑖 precedes that of 𝑥 𝑗 , 𝑖 < 𝑗 . Streaming
data can be considered a dynamic collection of data that grows
indefinitely with the continuation of time. In our dataset, streaming
data is a generalization of the time series, i.e., 𝑇 → ∞.
[Anomaly Definition] Anomalies mainly contain two categories:
point anomalies and contextual anomalies[5]. A point anomaly
is an individual data instance that can be considered anomalous
concerning the rest of the data (e.g., a player’s level must be at least
50 when entering a specific game scenario). A contextual anomaly
is a data instance anomalous in a specific context but not otherwise
(For example, the player’s acquisition of gold coins over a while
exceeds a specified threshold). Since logs are refreshed daily at a
fixed time, contextual anomalies are subdivided in this paper into
anomalies with refresh time and anomalies without refresh time.

3 SYSTEM OVERVIEW
[Preparation] We built a log offline analysis tool(OATool) that
explores anomalies under different thresholds. It requires the user

2https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-
detection/overview
3http://game.163.com/

Table 1: Similarity of manual-based and gaussian-based

Anomaly Type Similarity

Point 95.6%
Contextual 89.8%

Contextual(refresh) 93%

to set anomaly detection thresholds. It parses the log ID, monitor-
ing items, and other filter conditions the user provides into SQL
statements to retrieve logs related to the monitoring items from
plenty of logs. Log filtering is implemented through the Impala
engine[11] because it communicates faster with HDFS. Log filter-
ing can output anomalies directly for point anomalies, and for
contextual exceptions, it will aggregate filtering results based on
the user-defined time range. OATool assists in the proper function-
ing of the components of ADOps and offers candidate dimension
sets for interpretative analysis of anomalies.

3.1 ADOps Framework
ADOps is an anomaly detection pipeline that can interact with
the user. Given a set of user-defined monitoring tasks (including
log id, monitoring items, etc.), output anomalies with explanatory
exploration. Figure 2 shows an overview of ADOps. The lines in the
figure represent the process of moving the data. ADOps comprises
three main components: the Pre-computation Engine; the Feature
Store Database and the Intelligent Detection Engine. ADOps is
able to recommend appropriate anomaly classification thresholds
for users and create services for real-time monitoring. When the
recommended thresholds do not cover the user’s needs, the engineer
can develop and deploy anomaly detection models on ADOps to
detect anomalies intelligently.
[Pre-computation Engine]Modeling each monitoring item is dif-
ficult to achieve when there are many monitoring items (hundreds
or thousands), simple scenarios, and a lack of labeled data. Filtering
anomalies by thresholds and then labeling them is an efficient way.
The pre-computing engine aims to recommend anomaly thresholds
to novice users who need help setting them. It can (i) handle mas-
sive amounts of data; (ii) personalise the recommended threshold
for each monitored item in the log; (iii) provide a short response
time. Taking the threshold based on expert knowledge(manually
configured) as the baseline, we calculate the similarity between
the threshold by Gaussian modeling[9, 12] and the baseline. The
comparison result is shown in Table 1 and they have a significant
similarity. Based on these, we recommend thresholds for users by
pre-computation. We employ Apache Kylin4 as the Pre-computation
Engine to measure (e.g., COUNT, SUM, AVG) potential monitoring
items using player id and time (minute level) as dimensions.

Kylin applies Apache Spark[18] for data computation and stores
computation results as parquet tables. Since the pre-computed
results are fine-grained (at the minute level), the actual moni-
toring items may reach the ten-minute or hourly level. The Pre-
computation Engine first needs to aggregate the result table and then
generate the recommended thresholds by the Gaussian model(3𝜎
rule, box plot rule, etc.). The Pre-computation Engine then interacts
4https://kylin.apache.org/
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Figure 2: The ADOps architecture.

with the user. The user can select either a recommended threshold
or a custom threshold. Then, the Pre-computation Engine passes
the configuration information to the intelligent detection engine
to create a real-time task. The Pre-computation Engine only pro-
vides initial thresholds for anomaly monitoring, and subsequently,
engineers can update the thresholds based on actual anomalies.
[Feature Store Database] In machine learning tasks, the original
data must undergo a series of pre-processing operations before be-
ing fed into the machine learning model, such as one-hot encoding
and normalization. The data obtained after these transformations
are called features, which are also the input to the machine learning
model. Feature Store5 Database (FsDB) is a data management tool
for machine learning. It stores feature values and endorses sharing
feature values across teams and domains. FsDB is the data provider
for intelligent detection engines. It is built based on OpenMLDB[6].
FsDB provides the following aspects: (𝑖) guarantees data consis-
tency during training and inference of anomaly detection models;
(𝑖𝑖) ensures low tail latency for feature construction in online scenar-
ios. (𝑖𝑖𝑖) supports distributed storage and computation. It manages
offline data(derived from Hive[2] or local files) separately from
online data(from Apache Kafka6). In Fsdb, all feature processing
relies on SQL statements. Engineers can use SQL statements to
turn offline data into features for model training. Then it could
switch the SQL feature processing statement from offline to online
mode and deploy online. Finally, it could load the real-time data and
perform online real-time feature computation for model inference.
[Intelligent Detection Engine] The Intelligent Detection Engine is
responsible for managing online tasks and improving the efficiency
of model development. It receives the monitoring configuration
from the Pre-computation Engine and creates Dask[15] real-time
monitoring tasks based on the configuration items. In some complex
scenarios, threshold monitoring may not meet the user’s demands,
and the engineer must build a personalized model to detect the

5https://www.featurestore.org/
6https://kafka.apache.org/

anomalies. The pipeline reduces model development time (from
data processing to model validation). Engineers can simplify feature
processing with Fsdb and model deployment with the Intelligent
Detection Engine. They can load offline and online features from
the FsDB for model training and validation.

Engineers can easily manage and maintain anomaly detection
tasks on the Intelligent Detection Engine. When users need to add
new monitoring items, they can add new tasks by simply updating
the log ID and monitoring items entered by users into the configu-
ration file. Moreover, the Intelligent Detection Engine can assist in
model deployment. After the engineer completes the model train-
ing, he can provide data format, model storage location, and model
type to the intelligent detection engine in the form of JSON, and
the intelligent detection engine can deploy the model online to
provide real-time anomaly detection services. All the anomaly data
is saved in the MySQL database7, when the engineer finds that the
anomaly data is wrong, the model can be iteratively updated. The
iterative process is shown in Figure 2, where the data is re-written
to the feature store database and the anomaly detection pipeline is
re-executed.

Intelligent Detection Engine also has a built-in shap library[13]
that allows anomalies to be explored in both temporal and behav-
ioral dimensions, helping engineers to attribute them. The temporal
dimension refers to the change in the value of the monitored item
over a while before and after the anomaly. The behavioral dimen-
sion refers to the contribution value of other features to determine
an outlier. A bigger contribution value indicates that the feature
may be wrong and needs to be investigated by the engineer. The
outlier analyzer can display the feature contribution of a single
outlier or the feature distribution of multiple outliers by clustering.

4 DEMONSTRATION
In our demo, users will use ADOps to create anomaly detection
tasks. Users can get recommended anomaly thresholds fromADOps
7https://www.mysql.com/
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Listing 1: An example of the monitoring settings for contex-
tual anomaly

{
" pro jec tName " : projectName ,
" l o g i d " : l o g i d ,
" mont ior " : "DELTA" ,
" a u x i l i a r y _ f i e l d " : [ " SERVER " , " ROLE_ID " , " SRCTYPE " ,

"MINUTE" , "DS " ] ,
" t s _ t h d " : 1 0 ,
" v a l u e_ thd " : 8 000 ,
" a g g r e g a t i o n " : " sum " ,
" op " : " g r e a t e r " ,
" f i l t e r " : [ [ " s r c t y p e " , " = " , " 14 " ] ] ,
" name " : " s t r e am_mon i to r ing "

}

or customize them. We will also demonstrate how engineers can
quickly develop anomaly detection models on ADOps using Jupyter
notebook[10].

Anomaly Detection Task Creation. Initially, the user needs to
specify the log ID, the monitoring item, the type of anomaly (point
anomaly, contextual anomaly, contextual anomaly with refresh
time), and other auxiliary fields. For contextual anomalies, the user
also needs to specify a time range (10 minutes, 2 hours, 1 day, etc.)
with log update times. These information form a monitoring setting.
Each monitoring setting represents an anomaly detection task and
is passed as JSON to the Pre-computation Engine interface. ADOps
returns the corresponding recommended anomaly threshold. The
user can either use the recommended thresholds directly or modify
the thresholds and then pass the modified monitoring setting to
the Intelligent Detection Engine interface, which will successfully
create a new anomaly detection task.

Listing 1 is an example of the monitoring settings for contextual
anomaly. 𝑡𝑠_𝑡ℎ𝑑 = 10 represents the range of time is ten minutes;
𝑣𝑎𝑙𝑢𝑒_𝑡ℎ𝑑 is anomaly threshold;𝑚𝑜𝑛𝑡𝑖𝑜𝑟 is the monitoring item;
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 is the aggregation methods for streaming data; and
𝑜𝑝 is the comparison operator. This example means that a player
who gains deltas greater than 8000 in 10 minutes is an outlier. All
anomaly settings and anomalies are stored in the MYSQL database
and can be viewed by the user.

Anomaly Detection Model Development. After connecting to FsDB,
engineers can create and store features using SQL statements. After
the model design is complete, engineers can use the offline features
in FsDB to train the model. Subsequently, engineers can pass model
deployment configuration to the intelligent detection engine and
deploy it online. Engineers can also explore the anomaly detec-
tion model and anomaly data in terms of temporal and behavioral
dimensions. When it is time to iterate the model, engineers can di-
rectly reuse the original feature-processing SQL statements without
redeveloping them.

5 CONCLUSION
In this demo, we present ADOps, an anomaly detection pipeline
that allows users to quickly build multiple real-time anomaly de-
tection tasks without requiring programming. It also provides a
recommended solution for users with no knowledge of anomaly de-
tection and can improve the efficiency of anomaly detection model

development. With two demo scenarios, we showed that ADOps
make it convenient to detect anomalies and develop models.
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