
Web Connector: A Unified API Wrapper to Simplify Web Data
Collection

Weiyuan Wu
Simon Fraser
University

youngw@sfu.ca

Pei Wang
Simon Fraser
University
peiw@sfu.ca

Yi Xie
Simon Fraser
University

yi_xie_2@sfu.ca

Yejia Liu
Simon Fraser
University

yejia_liu@sfu.ca

George Chow
Simon Fraser
University

george_chow@sfu.ca

Jiannan Wang
Simon Fraser
University

jnwang@sfu.ca

ABSTRACT
Collecting structured data from Web APIs, such as the Twitter API,
Yelp Fusion API, Spotify API, and DBLP API, is a common task in
the data science lifecycle, but it requires advanced programming
skills for data scientists. To simplify web data collection and lower
the barrier to entry, API wrappers have been developed to wrap
API calls into easy-to-use functions. However, existing API wrap-
pers are not standardized, which means that users must download
and maintain multiple API wrappers and learn how to use each
of them, while developers must spend considerable time creating
an API wrapper for any new website. In this demo, we present the
Web Connector, which unifies API wrappers to overcome these
limitations. First, the Web Connector has an easy-to-use program-
ming interface, designed to provide a user experience similar to
that of reading data from relational databases. Second, the Web
Connector’s novel system architecture requires minimal effort to
fetch data for end-users with an existing API description file. Third,
the Web Connector includes a semi-automatic API description file
generator that leverages the concept of generation by example to
create new API wrappers without writing code.

PVLDB Reference Format:
Weiyuan Wu, Pei Wang, Yi Xie, Yejia Liu, George Chow, and Jiannan Wang.
Web Connector: A Unified API Wrapper to Simplify Web Data Collection.
PVLDB, 16(12): 4042-4045, 2023.
doi:10.14778/3611540.3611616

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/sfu-db/APIConnectors.

1 INTRODUCTION
Data is the primary fuel for any data analysis, making it the most
critical and fundamental component of the data science lifecycle.
Collecting data from the web is a vital skill for data scientists. For-
tunately, there are several websites that provide their data through
public APIs [12]. One popular Github repository, public-apis [7],
with 231k stars, curates hundreds of free APIs that offer valuable
data sources across different domains, such as finance, business,
and food & drink.

Although convenient, fetching data successfully from a Web
API requires advanced programming skills [13]. For instance, a
data scientist who intends to gather all the SIGMOD publications

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611616

utilizing the DBLP Search API [3] and store them in a Pandas
DataFrame must have a comprehensive understanding of various
concepts:

(1) What is the endpoint? (https://dblp.org/ search/publ/api)
(2) What is the request parameter? (q=sigmod)
(3) How to retrieve more rows using pagination API? For exam-

ple, the API request "https://dblp.org/ search/publ/api?q=sigmod&
h=100&f=300" can return 100 publications starting from the 300th
publication.

(4) How to establish a HTTP connection, send requests, and
get responses?

(5) How to parse a JSON/XML response?
(6) How to send requests in parallel to save time?
(7) How to handle errors and exceptions? (e.g., what if a

request gets rejected or returns an error?)

There exist two distinct solutions to the challenge of web data
collection. One solution involves the adoption of graphical user
interface (GUI) applications such as Postman [6], Tableau Web Data
Connector [8], and ScrAPIr [11]. These applications facilitate data
acquisition from web APIs by non-programmers but are generally
unsuitable for data scientists who primarily operate within a Python
or R programming environment. Usage of these applications en-
tails manual transfer of data between the GUI application and the
programming environment, leading to errors and increased labour
demands. Additionally, it introduces difficulties in data provenance
and reproducibility of results.

The other solution involves the utilization of an API wrapper,
which essentially encapsulates API calls into simple and user-friendly
functions(e.g., tweepy for Twitter API [9]). This approach simplifies
the process of web data collection for data scientists. Nonetheless,
there exists a steep learning curve for data scientists to become
proficient in using an API wrapper for each specific website [14].
Furthermore, the availability of wrapper libraries is limited to a
handful of popular websites, and collecting data from websites
without wrapper libraries remains an arduous task.

In this demo paper, we introduce a novel solution, Web Connec-
tor, which serves as a unified API wrapper in Python1 to address
the shortcomings of current solutions for web data collection. Our
approach is underpinned by two key observations. Firstly, although
web APIs can be highly complex, we only need to handle a specific
type of API that retrieves structured data from a website database.
Through an extensive survey [10] of public web APIs, we have
identified a common pattern in relation to query parameters, pag-
ination, and authorization for this type of API. Secondly, several
repetitive tasks are common to all API wrappers, including error
handling and parallel request management. By implementing these
tasks once, they can be reused for multiple API wrappers.

TheWebConnector comprises three essential components. Firstly,
the execution logic, which contains the code for web data collection
and is published as a library. Secondly, the API description files,
which describe how to use the execution logic in component 1 to

1Our focus on Python is based on its prevalence in the data science community; however, it is worth
noting that our system design can be extended to other programming languages such as R.

4042

https://doi.org/10.14778/3611540.3611616
https://github.com/sfu-db/APIConnectors
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611616
https://dblp.org/search/publ/api
q=sigmod
https://dblp.org/search/publ/api?q=sigmod&h=100&f=300
https://dblp.org/search/publ/api?q=sigmod&h=100&f=300
https://www.acm.org/publications/policies/artifact-review-and-badging-current

download data for a specific API endpoint. Thirdly, an API descrip-
tion file generator that creates API description files for component
2 from examples. TheWeb Connector boasts several features, in-
cluding its ease of use through a unified programming interface,
its ease of extension through declarative API description files and
the aid of the generator, and its ease of update by automatically
updating the API descriptions from a registry without needing to
update the library. Our extensive survey [10] of commonly used
websites, including the 50 most frequently visited websites like
Youtube, and 50 randomly sampled domain-specific APIs from a
popular Github API hub page, shows that the Web Connector can
cover the majority of the website (81 out of 100).

Our library is also presented in PyData Global and the related
video can be accessed through [1].

We describe our demo in Section 2 and provide detailed informa-
tion about our system in Section 3. Finally, in Section 4, we conclude
the paper.

2 USINGWEB CONNECTOR
In this section, we first introduce how to useWeb Connector. After
that, we describe our demo, which showcases to the audience how
to do data collection usingWeb Connector.

2.1 A Unified Programming Interface
When a data scientist is given a relational database, it is easy for
her to read data from each table in the database. The reason is that
the interface to access a relational database is unified. We want
to give data scientists the same experience as reading data from a
(hidden) database on the website.

Our unified programming interface consists of five declarative
functions: connect, show_tables, show_schema, info, and query.
That is, a data scientist can use them to describe what she wants to
do rather than how to do them.
Step 1. Connect. A data scientist first specifies which website she
is interested in by calling the connect function.

connect(website_name, _auth, _concurrency)

The function returns a Connector object, which will be used to
understand and query the Website database. The function can take
as input two optional arguments.

• _auth aims to unify authorization. It supports four com-
monly used authorization schemes. Please refer to Sec-
tion 3.2 for more detail.

• _concurrency aims to simplify concurrency. This field
describes how many requests at max are active (request
sent but response no received) at any time.

Step 2. Understand. The data scientist can check what tables
are available in the database by calling the show_tables function
and what is the schema of each table by calling the show_schema
function. Additionally, she can check what query parameters can
be used to query each table by calling the info function.
Step 3. Query. Once a table is selected, the data scientist can read
data from the table by calling the query function:

query(table_name, query_parameter_list, _count)

The function unifies query parameters and pagination, respectively.
• query_parameter_list is a list of key-value pairs. The

query parameters can be a direct mapping of parame-
ters in the request, or a transformation. For the latter,
for example, DBLP provides an API to fetch publica-
tions of a specific author, e.g., "https://dblp.org/ search/publ/
api?q=author:Michael_Stonebraker:". The two parameters
"first_name = ...&last_name=..." are merged into a single one

Figure 1: Case Study on DBLP API and Yelp API

"q=...". The query function hides this complexity from the
end user.

• _count. The user can directly specify the number of re-
turned results without getting into unnecessary detail about
a specific pagination scheme. The system will try to send
out requests concurrently to make the result meet the re-
quested count.

After collecting all API responses, the query function will automati-
cally extract structured data from JSON/XML responses and return
a Pandas DataFrame.
2.2 Demonstration
For the demonstration, we have compiled a set of 119 questions [2],
spanning 18 distinct categories, enabling the audience to peruse and
experiment with the tool. Each question within the list consists of
the question, for instance, "How to fetch all publications of SIGMOD
2022?", accompanied by a code snippet that employs Connector to
produce the desired response. Throughout the demonstration, we
will present these questions to our audience, ask them to select
any questions that pique their interest and run the code to get the
answer.

We employ the subsequent two tasks to exemplify the process:
A. Collect SIGMOD 2022 paper through the DBLP search API

and generate a word cloud from the paper titles.
B. Collect the ratings of the sushi restaurants in Vancouver

through the Yelp search API and plot the distribution.
The Python code to perform the tasks described above on Jupyter

notebooks is presented in Figure 1.
To execute Task A, the user first invokes the connect function

to retrieve the DBLP API descriptions and sets _concurrency to 3
to ensure a maximum of 3 requests per second. Subsequently, the
query function can be called with q="sigmod 2022" and _count=500.
By specifying _count, the user can retrieve more than the default
30 results returned by the DBLP API without worrying about pagi-
nation. The query result is returned as a Pandas DataFrame, which
can be directly used for analysis. Our analysis shows that the hot
topics at SIGMOD 2022 include "System," "Graph," "Learning," and
"Distributed."

4043

https://dblp.org/search/publ/api?q=author:Michael_Stonebraker:
https://dblp.org/search/publ/api?q=author:Michael_Stonebraker:

Figure 2: An illustration of two system architecture designs.

To perform Task B, the user can collect data from the Yelp API in
a similar manner. Our analysis indicates that most of the restaurants
have a rating of 3.5 or 4.

Overall, this demo showcases three advantages of using Web
Connector:
(1) The process of collecting data from diverse sites is highly

streamlined and unified, requiring only two lines of code to
retrieve a Pandas DataFrame from either DBLP or Yelp.

(2) The API call process is exceptionally smooth and user-friendly,
featuring automated pagination, error handling, and parallelism.
These automated handling mechanisms make the unified inter-
face possible, and fetching data from website APIs is as straight-
forward as reading data from a relational database.

(3) The organization of results in a Pandas DataFrame and integra-
tion with the Python ecosystem make it incredibly convenient
to perform downstream data analysis. Users can effortlessly use
the output of API requests for further analysis and modeling,
which is facilitated by the popular and powerful Python data
analysis ecosystem.

3 THE WEB CONNECTOR SYSTEM
In this section, we first discuss the architecture design of Connec-
torX, and then describe the detailed system implementation.

3.1 System Architecture
At a high level, Web Connector consists of two parts. The API-
specific part covers the specification of each supported API, includ-
ing the endpoint, the query parameter format, the response data
format, the pagination scheme, and the authorization scheme of an
API. All these specifications are described in an API Description. The
general-component part covers reusable components that benefit to
many APIs, including rate limit handling, error handling, and the
implementations of common pagination and authorization schemes.
These components constitute theWeb Connector Engine.

Figure 2 illustrates two architecture design choices. The first
design is shown on the left side of the figure. It puts both parts
in a single Python library. The main issue of this design is that it
is hard to handle API updates. If the specification of a Web API
has some changes, the corresponding API description needs to be
updated accordingly. Since API descriptions store inside the library,
updating them will lead to a new version of the library. As a result,
we have to ask all the current users to upgrade to this new version,
which is almost impossible.

To address this issue,WebConnector adopts the design shown on
the right side of Figure 2. It separates the storage of API descriptions
from theWeb Connector engine. With this design, the user does not
need to upgrade the library. She only needs to delete the local API
description that stops working and then call the connect function,

Response:{
"ctype": "application/json",
"tablePath": "$.albums.items[*]",
“orient”: “records”,
"schema": {

"album_name": {
 "target": "$.name",
 "type": "string"

},
"Release_date":{

"target": "$.release_date",
 "type": "string"

},
 …
}

Request:{
"Url":

"https://api.spotify.com/v1/search?type=album",
"method": "GET",
"authorization": {

"type": "OAuth2",
 "grantType": "ClientCredentials",
 "tokenServerUrl":

"https://accounts.spotify.com/api/token"
 },

"params": {
"q": true,
"market": false,
"include_external": false
},

"Pagination":{
"type":"offset",

 "offsetKey":"offset",
"limitKey":"limit",
"maxCount": 50
}

}

“Request” Block
“Response” Block

Figure 3: The API description of Spotify Album Search API.
which will automatically download the up-to-date API description
of the API.

3.2 API Description
There can be multiple APIs for one website. We organize the API
descriptions for one website under one folder. For the DBLP exam-
ple, we may have a folder, containing a meta-data file and three
API descriptions for the three APIs: publication API, author API,
and venue API [3]. The meta-data file stores the meta informa-
tion of the API descriptions, such as the number and names of the
API descriptions. Those API descriptions are stored in a GitHub
repository where developers can freely access and download the
existing API descriptions. To use the API descriptions, at runtime,
the Web Connector engine handles the API description processing,
requesting and receiving data.

Figure 3 shows an example of Spotify Album Search API.
There are two major blocks: “request” and “response”. “request”
block defines the parameters needed for a successful API call. “re-
sponse” block defines how to parse and flatten the returned nested-
structured result to a table format. While the “url” and “method”
fields are straightforward, we delve into the details of other fields.
Authorization There is a variety of authorization schemes [15].
In the Figure 3 example, the Spotify album search endpoint adopts
OAuth 2.0 client credentials authorization. In the case of DBLP, the
authorization field is absent (i.e., no auth) since it does not require
authorization.
Pagination Our library supports two mainstream pagination
schemes. (1) Offset-based: attaching limit and offset in each re-
quest. It has two flavours. (1.1) Offset & Limit: requesting limit the
items starting from a specific offset. for example offset = 0, limit =
20 returns the first 20 items. (1.2) Page & Perpage: requesting the
content of a certain page. (2) Cursor-based: The response contains
a token to be used for getting more data. (2.1) Page Cursor : a token
for next “page” is included in the metadata of each response. (2.2)
Item Cursor : a token for the first item of the next “page” is included
in the metadata of each response.
Query Parameters The field “params” defines legal query param-
eters like search keywords that can be queried through the query
method. In Figure 3, “q” is the keyword search query parameter,
“market” defines that only the content playable in that market is
returned, “include_external” include any relevant audio content
that is hosted externally. These parameters are usually listed and
explained in the API documentation.
Response The response block defines how to parse and flatten
the returned nested-structured result to a table format. We support
both JSON and XML. Figure 3 shows an example of how to map

4044

JSON data to a table. The “ctype” field says it is a JSON string to be
mapped. The “tablePath” field uses a JSONPath expression [5] to
specify the location of the table data in the JSON data. Finally, the
“schema” field specifies the location of each table attribute in the
JSON data and their data types.
3.3 Web Connector Engine
The Web Connector engine is the component that handles API
request creation, response parsing, and DataFrame construction. It
also contains complex logic for concurrency and error handling.
Concurrent Requesting. A naive approach for request sending is
one at a time. In the case of pagination, multiple requests are sent
out sequentially. This is slow because it misses the opportunity of
sending concurrent requests to the API server. For example, to fetch
1000 records for the keyword "restaurant" using the Yelp Search
API, the basic workflow took 32.7 seconds, while by allowing 5
requests per second concurrency, Web Connector finished the task
in 6.87 seconds, which is 4.8x faster.

Web Connector makes use of the Python async/await feature,
which is the solution to the IO-bounded applications. Web Con-
nector delays all IO operations into an async object and then uses
asyncio.gather to let the delayed IO operations be executed con-
currently.

For the offset-based pagination, Web Connector first creates
delayed requests for every offset, and then sends them out using
asyncio.gather altogether. For the cursor-based pagination, since
the next page depends on the last record of the previous response,
it is not possible to make it concurrent.
Early Stopping. With pagination on, it is very likely to concur-
rently send out a large number of requests due to the end of pagina-
tion being unknown. This creates resource waste. Web Connector
leverages that when there’s no more record to return for a certain
offset, the response returned is usually different than usual to early
stop the pending requests. In detail,Web Connector won’t arbitrar-
ily send out requests concurrently, but will only keep a window
of requests whose paginations are continuous in-flight. This way,
Web Connector can early stop as many requests as possible but still
maintains the concurrency.
Rate Limit Handling. API endpoints usually post a request-per-
second (RPS) restriction on the client. This makes theWeb Connec-
tor engine at risk of violating the rate limit restriction.

Implementing a request engine that respects the rate limit re-
striction needs caution. This is because, applying a client-side RPS,
i.e. issue at most 𝑘 requests per second does not necessarily mean
that the server will see at most 𝑘 requests within any given second.

In order to satisfy the server-side RPS, theWebConnector engine
uses the window idea in Early Stopping.WebConnector keeps track
of the number of in-flight requests, denoted by 𝑎, and maintains the
𝑎 to be exactly 𝑘 until there is no more request to send.
Error Handling. If a rate limit is implicitly enforced, commonly
an API server will reject requests with the HTTP 429 error.

Web Connector leverages the exponential backoff idea [4] to
tackle this issue. Once any active request receives the 429 error,
Web Connector will decrease the current _concurrency setting
with exponential backoff.
3.4 API Description Generator
The process of writing an API description manually can be tedious
and error-prone. There are a number of pain points. Consider the
example in Figure 3. The first pain point is that in the “request”
block, the developer has to manually construct an API request in a
text editor. Second, in the “response” block, the developer has to
manually define JSONPath expressions. Third, during testing, the
API description may not work as expected.

In response, we propose the idea of generation by example, which
automatically generates an API description based on input API
request examples. The system UI, implemented as a Jupyter widget.
Users can generate an API description by first constructing an API
request example through filling in the blanks in the step-wise user
interface and then clicking the “Send Request” button to send the
request to the API server. If a response to the request is successfully
returned, the system will automatically generate an API description
based on the input request example and the corresponding output
response.

Our generation-by-example idea can address the three pain
points. For the first pain point, the API request is constructed via the
UI rather than a text editor. For the second one, JSONPath expres-
sions are automatically generated rather than manually entered.
For the third one, an API description will not be generated until it
passes a test case (e.g., a successful response is returned).

It is often not enough to use a single example to generate the
complete API description. Connector-Gen enables the developer
to build an API description progressively by multiple examples.
Specifically, the developer can load an existing API description,
which is generated from 𝑛 examples, into the system. Then, she
uses the (𝑛 + 1)-th example to generate a new API description. By
merging this new API description with the existing one, she finally
obtains an API description generated from 𝑛 + 1 examples.
4 CONCLUSION
In summary, the focus of our demo paper is to showcase the ca-
pabilities of Web Connector, a unified interface that simplifies
data collection through web APIs from a multitude of websites.
Web Connector achieves this by utilizing reusable settings that
are stored in API descriptions, with the added benefit of handling
parallelism, errors, and pagination automatically using the Web
Connector engine. Additionally, we introduce Connector-Gen, a
tool that effectively generates and updates API description files by
utilizing examples.

REFERENCES
[1] 2023. A Unified API Wrapper to Simplify Web Data Collection| PyData Global

2020. RetrievedMarch 16, 2023 from hhttps://www.youtube.com/watch?v=56qu-
0Ka-dA

[2] 2023. APIConnectors. Retrieved March 16, 2023 from https://github.com/sfu-
db/APIConnectors

[3] 2023. DBLP Search API. Retrieved March 16, 2023 from https://dblp.org/faq/
13501473.html

[4] 2023. Exponential backoff algorithm. Retrieved March 16, 2023 from https:
//en.wikipedia.org/wiki/Exponential_backoff

[5] 2023. JSONPath. Retrieved March 16, 2023 from https://github.com/json-
path/JsonPath

[6] 2023. Postman. Retrieved March 16, 2023 from https://www.postman.com/
[7] 2023. public-apis. Retrieved March 16, 2023 from https://github.com/public-

apis/public-apis
[8] 2023. Tableau Web Data Connector. Retrieved March 16, 2023 from https://help.

tableau.com/current/pro/desktop/en-us/examples_web_data_connector.htm
[9] 2023. Tweepy. Retrieved March 16, 2023 from https://www.tweepy.org/
[10] 2023. Web Connector Survey. Retrieved March 16, 2023 from https://github.

com/sfu-db/WebConnectorSurvey
[11] Tarfah Alrashed, Jumana Almahmoud, Amy X Zhang, and David R Karger. 2020.

ScrAPIr: Making Web Data APIs Accessible to End Users. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems. 1–12.

[12] Katrin Braunschweig, Julian Eberius, Maik Thiele, and Wolfgang Lehner. 2012.
The State of Open Data Limits of Current Open Data Platforms.

[13] César González-Mora, Cristina Barros, Irene Garrigós, Jose Zubcoff, Elena Lloret,
and Jose-Norberto Mazón. 2023. Improving open data web API documentation
through interactivity and natural language generation. Computer Standards &
Interfaces 83 (2023), 103657. https://doi.org/10.1016/j.csi.2022.103657

[14] Adam Marcus, Michael S. Bernstein, Osama Badar, David R. Karger, Samuel
Madden, and Robert C. Miller. 2011. Processing and visualizing the data in tweets.
SIGMOD Rec. 40, 4 (2011), 21–27. https://doi.org/10.1145/2094114.2094120

[15] Prabath Siriwardena. 2020. OAuth 2.0 Security. In Advanced API Security.
Springer, 287–304.

4045

hhttps://www.youtube.com/watch?v=56qu-0Ka-dA
hhttps://www.youtube.com/watch?v=56qu-0Ka-dA
https://github.com/sfu-db/APIConnectors
https://github.com/sfu-db/APIConnectors
https://dblp.org/faq/13501473.html
https://dblp.org/faq/13501473.html
https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Exponential_backoff
https://github.com/json-path/JsonPath
https://github.com/json-path/JsonPath
https://www.postman.com/
https://github.com/public-apis/public-apis
https://github.com/public-apis/public-apis
https://help.tableau.com/current/pro/desktop/en-us/examples_web_data_connector.htm
https://help.tableau.com/current/pro/desktop/en-us/examples_web_data_connector.htm
https://www.tweepy.org/
https://github.com/sfu-db/WebConnectorSurvey
https://github.com/sfu-db/WebConnectorSurvey
https://doi.org/10.1016/j.csi.2022.103657
https://doi.org/10.1145/2094114.2094120

	Abstract
	1 Introduction
	2 Using Web Connector
	2.1 A Unified Programming Interface
	2.2 Demonstration

	3 The Web Connector System
	3.1 System Architecture
	3.2 API Description
	3.3 Web Connector Engine
	3.4 API Description Generator

	4 Conclusion
	References

