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ABSTRACT

Query rewriting is an important technique to optimize SQL per-

formance in databases. With the prevalent use of business intelli-

gence systems and object-relational mapping frameworks, existing

rewriting capabilities inside databases are insu�cient to optimize

machine-generated queries. In this paper, we propose a novel sys-

tem called “�eryBooster,” to support SQL query rewriting as a

cloud service. It provides a powerful and easy-to-use Web interface

for users to formulate rewriting rules via a language or express

rewriting intentions by providing example query pairs. It allows

multiple users to share rewriting knowledge and automatically

suggests shared rewriting rules for users. It requires no modi�ca-

tions or plugin installations to applications or databases. In this

demonstration, we use real-world applications and datasets to show

the user experience of�eryBooster to rewrite their application

queries and share rewriting knowledge.
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1 INTRODUCTION

System performance is critical in database applications where users

need answers quickly to make timely decisions. SQL query rewrit-

ing [5, 10] is an optimization technique that transforms an original

query to a rewritten one that computes the same answers with

higher performance. Although query rewriting has been studied

extensively as part of the query optimizer inside a database [5, 6], re-

cent works [3, 16] have shown that purely relying on the rewritings

inside traditional databases is insu�cient to optimize modern query

workloads. For instance, with the prevalent use of business intelli-

gence systems (e.g., Tableau and PowerBI) and Web applications de-

veloped using object-relational mapping (ORM) frameworks, these

machine-generated queries can be di�cult for databases to op-

timize [16] and domain-speci�c knowledge and human-crafted

rewriting rules are necessary to optimize workloads from di�erent
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applications [2, 11]. We can miss query rewriting opportunities

(e.g., rewritings shown in Figure 7) due to various reasons. For in-

stance, both the application and the database layers are black boxes

and cannot be modi�ed. Another reason is that existing rewriting

plugins of databases have limited expressive power for users to

express their rewriting needs.

In this paper, we demonstrate�eryBooster, a middleware-based

multi-user system to provide query rewriting between applications

and databases as a service. The service intercepts and rewrites an

original query from an application before it is sent to a backend

database. It provides a web-based interface, using which customers

manage their rewritings for di�erent applications and databases.

Users formulate rewriting rules using a language or by providing

examples. They can see the statistics of di�erent rewritings, such as

the number of queries rewritten using a rewriting and the query’s

performance before and after the rewriting. Since rewriting SQL

queries can be hard and time-consuming [17], instead of seeking

advice from online forums (e.g., StackOver�ow), users can also share

and access rewriting rules using�eryBooster. The service requires

no plugin installations to the user applications or databases. It also

ensures high security as no user data goes through a third-party

server. To summarize, �eryBooster has the following bene�ts.

(1) It is easy to use, as users can use the interface to formulate,

control, and monitor rewriting rules. (2) It enables users to share

their rewriting knowledge and bene�t from the wisdom of the

crowd. (3) It is non-intrusive, as it requires no plugin installations

to the user applications or databases.
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Figure 1: �eryBooster overview.

Related Work: Most databases such as AsterixDB, IBM DB2,

MS SQL Server, MySQL, Oracle, Postgres, Snow�ake, and Teradata

do not allow users to customize the rewritings of queries sent to

the database. To our best knowledge, only Postgres and MySQL

provide a plugin for users to de�ne rules to rewrite queries be-

fore sending them to the database. However, their rule-de�nition
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languages have too limited expressive power, as shown in [11].

Commercial systems also do query rewriting for applications on

top of databases. Keebo [8] uses machine learning and approximate

query processing (AQP) techniques to accelerate analytical queries.

It requires data to go through its server, which may introduce over-

head and cause security concerns. EverSQL [4] uses AI techniques

to recommend rewriting ideas for queries on MySQL and Postgres.

Other systems such as ApexSQL [1] and Toad [13] help database

developers analyze query performance bottlenecks. However, none

of these solutions allow users to formulate their own rewriting

rules to ful�ll their rewriting needs. There are also service models

such as database-as-a-service [7], function-as-a-service [12], etc.

Compared to these systems,�eryBooster is the �rst system that

supports equivalent query rewriting as a service.

2 QUERYBOOSTER SYSTEM OVERVIEW

Figure 2 shows the architecture of�eryBooster. Using theWeb UI,

users can log in to the system through theUser Manager andmanage

applications through the Application Manager. They can have dif-

ferent sets of rewriting rules for di�erent applications. Through the

Rule Manager that integrates the technique in [11], �eryBooster

provides a powerful interface for users to formulate rewriting rules.

It provides an expressive rule language (called VarSQL) for users

to de�ne rules. Users can easily express their rewriting needs by

specifying the query pattern and its replacement. They can specify

additional constraints and actions to express complex rewriting

details. In addition, the service allows users to express their rewrit-

ing intentions by providing examples, each of which includes an

original query and a rewritten one. �eryBooster automatically

suggests high-quality rewriting rules based on the examples. The

users can choose their desired rules and further modify suggested

rules as they want. Rewriting rules are stored in the Rule Base.
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Figure 2: �eryBooster system architecture.

�eryBooster provides database Connectors for users to down-

load. Without any application or database modi�cations, a user

replaces the original connector with a �eryBooster-provided con-

nector. The connector forwards an original query from the appli-

cation to the Query Rewriter, and sends the rewritten query to the

database. When the database returns the result of the new query,

the connector sends the query performance information back to

the Query Manager. Note that the connector does not send query

result to �eryBooster. All the query rewriting path and corre-

sponding performance information are stored in the Query Log. As

a background process, the Query Manager periodically runs rewrit-

ing rules shared by di�erent users against the workloads in the

query log and marks those queries with suggested rules useful to

the queries.

Connector License. The connector can be for either a JD-

BC/ODBC interface or a RESTful interface. Most database vendors

provide JDBC/ODBC drivers with an open source license (shown

in Table 1). For such drivers,�eryBooster provides a slightly mod-

i�ed version of the driver. For databases with redistribution restric-

tions on their drivers (e.g., Oracle JDBC driver [9]), �eryBooster

provides a software patch for users to compile the customized dri-

ver themselves. For applications and databases that communicate

through a RESTful interface,�eryBooster provides a proxy web

server that intercepts requests between them transparently. We

assume the RESTful API endpoint in the application is con�gurable,

i.e., we can switch the target database endpoint to our service.

Table 1: JDBC driver licenses for database vendors.

Database License Open source? Redistribution?

MS SQL Server MIT Yes Yes

MySQL GNU GPL V2 Yes Yes

Oracle Oracle Free Yes No

PostgreSQL BSD-2-Clause Yes Yes

Snow�ake Apache-2.0 Yes Yes

Privacy and security considerations. �eryBooster provides

di�erent levels of security guarantees based on the need of users. For

organizations that do not want to share their queries with external

service providers,�eryBooster can be installed in their intranet

behind their network �rewall so that no proprietary information

leaves their organizations. For organizations that are cost-sensitive

and are willing to share their queries and rewritings, they can

contribute rewriting rules to the�eryBooster’s free service and

bene�t from the shared rewriting knowledge from other users.

3 DEMONSTRATION SCENARIOS

In this section, we use real-world applications and Twi�er datasets

to demonstrate the experience of the �eryBooster service for

two users to rewrite their application queries and share rewriting

knowledge.

Suppose Alice is a database administrator who manages a Post-

greSQL database that stores tweet data to support a data analysis

team. The team uses Tableau to study the spatial and temporal dis-

tributions of keyword-related tweets. After creating a Tableau dash-

board on top of PostgreSQL, Alice tries a few visualization queries,

and the performance is not satisfying. Therefore, she uses�ery-

Booster to rewrite the queries for better performance. Through

�eryBooster’s Web UI, she creates an application and receives
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an application GUID (Global Unique Identi�er) generated from the

system. Then, she downloads the provided JDBC driver and places

it in the folder of Tableau connectors. Finally, she con�gures the

JDBC driver with the provided application GUID. Alice has now

completed setting up �eryBooster.

3.1 Formulating Rules through a Rule Language

To identify the queries with performance bottlenecks, Alice utilizes

�eryBooster’s query logging feature. She �rst tries the slow ana-

lytics operations on Tableau, and goes to the Query Logs page to

check the SQL queries sent from Tableau to PostgreSQL. Figure 3

shows the Web UI illustrating the information of one query formu-

lated by Tableau. It shows the query, its timestamp, latency, and

whether it has been rewritten or not.

Figure 3: The “Query Logs” page of �eryBooster shows in-

formation about queries from the application.

After investigating those queries, Alice identi�es a lot of type-

casting expressions (i.e., CAST(· · · AS TEXT)), as shown in the

query in Figure 3. Tableau adds those type-casting expressions

to prevent computational over�ow or datatype mismatching er-

rors [15]. Based on her knowledge of the tweet data schema, Alice

knows that the type-casting expressions are not necessary for the

queries. Thus, Alice wants to input a rewriting rule to remove

those type-castings from the queries. The VarSQL rule language is

easy-to-use, and Alice manually formulates the rule (called “Remove

Cast Text”) as shown in Figure 4.

CAST (<x> AS TEXT)
Pattern

<x>
Replacement

-->

Figure 4: Alice formulates a rule to remove CAST(· · · AS TEXT)

expressions using the VarSQL language [11]. In VarSQL’s syn-

tax, <x> is an element-variable that represents a table, col-

umn, value, expression, predicate, or sub-query.

With the “Remove Cast Text” rewriting rule enabled, Alice

tries the slow operations on Tableau again, but the performance is

not improved. However, the query’s rewriting path page (Figure 5)

shows that the rule is correctly triggered, and the rewritten query

is as expected. Therefore, Alice continues to optimize this query.

3.2 Formulating Rules by Providing Examples

After a deeper investigation into the query and some online search,

Alice �nds that a trigram index on the “tweets”.“text” attribute

in PostgreSQL supports wildcard �ltering predicates such as LIKE

and ILIKE. However, PostgreSQL fails to use this index because

the wildcard predicate formulated by Tableau is STRPOS( LOWER(

Query Rewriting Path

SELECT Sum(1) AS "cnt:tweets",
       tweets.state_name AS state_name 
  FROM public.tweets AS tweets
 WHERE STRPOS(CAST(Lower(
                     CAST(CAST(tweets.text AS TEXT) AS TEXT)
                   ) AS TEXT), 
              CAST('iphone' AS TEXT)) > 0
 GROUP BY 2 

CAST (<x> AS TEXT) <x>Remove Cast Text:

SELECT Sum(1) AS "cnt:tweets",
       tweets.state_name AS state_name 
  FROM public.tweets AS tweets
 WHERE STRPOS(Lower(CAST(CAST(tweets.text AS TEXT) AS TEXT)), 
              CAST('iphone' AS TEXT)) > 0
 GROUP BY 2 

CAST (<x> AS TEXT) <x>Remove Cast Text:
…

SELECT Sum(1) AS "cnt:tweets",
       tweets.state_name AS state_name 
  FROM public.tweets AS tweets
 WHERE STRPOS(Lower(tweets.text), 'iphone') > 0
 GROUP BY 2 

Figure 5: �eryBooster shows the rewriting path of a query.

“tweets”.“text”), ’iphone’) > 0, which is equivalent to

“tweets”.“text” ILIKE ’%iphone%’. Alice identi�es that replac-

ing the STRPOS()>0 predicate with the ILIKE predicate in the query

can produce a much more e�cient plan in PostgreSQL (as shown

in Figure 6). Thus, Alice wants to introduce another rewriting rule

that achieves this replacing logic. However, for this rewriting, Alice

is not sure about how to manually input the rewriting rule, so she

uses the �eryBooster’s rule-suggestion feature by providing a

rewriting example.

HashAggregate
by state_name

Bitmap Heap Scan
on tweets
duration: 7s 604ms

Bitmap Index Scan
using index on text

SELECT  Sum(1),
       state_name
  FROM tweets
 WHERE text ilike '%iphone%'
 GROUP BY 2

Gather Merge

Finalize GroupAggregate
by state_name

Partial HashAggregate
by state_name

Parellel Seq Scan
on tweets
duration: 37s 531ms

SELECT Sum(1),
       state_name 
  FROM tweets
 WHERE STRPOS(Lower(text),'iphone')>0
 GROUP BY 2 

Sort by state_name

Before Rewriting After Rewriting

Figure 6: Queries and plans before and after the rewriting of

replacing the STRPOS()>0 predicate with the ILIKE predicate.

After copying and pasting the original query to both the origi-

nal query and rewritten query text boxes on the Rule Formulator

page, Alice modi�es the rewritten query to her desired format and

clicks the “Formulate” button. Next,�eryBooster automatically

generalizes the example pair of queries into a rewriting rule that
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achieves the rewriting intention of Alice (as shown in Figure 7).

Finally, Alice saves the new rewriting rule to the system with the

name “STRPOS To ILIKE.”

Alice input

System auto-generate

Figure 7: �eryBooster suggests a rule given a rewriting ex-

ample.

With the two rewriting rules enabled, the query performance is

signi�cantly improved. For example, the original query takes 37.5

seconds, and the rewritten query only takes 7.6 seconds.

3.3 Suggesting Useful Rules from Other Users

Suppose Bob is a database administrator (DBA) and supports a

business team who wants to analyze the TPC-H [14] dataset using

Tableau on top of PostgreSQL. For one of the analytical queries in

Bob’s workload, �eryBooster identi�es the potential of boosting

the query performance by applying the two rewriting rules pro-

vided by Alice. �eryBooster automatically suggests the potential

rewriting of the query to Bob, as shown in Figure 8.

0.62

Figure 8: �eryBooster suggests Bob a rewriting for a query.

Bob inspects the rewritten query through the “Rewriting Sug-

gestion” page of �eryBooster (Figure 9) and decides to enable

these two rules for his application. Bob then returns to Tableau and

observes a signi�cant query performance improvement.

To this end, we demonstrate the powerful experience of using

the �eryBooster service to rewrite application queries and share

knowledge. The source code of the system will be available to the

public.
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