BrewER: Entity Resolution On-Demand

Giovanni Simonini
University of Modena
and Reggio Emilia
Modena, Italy
simonini@unimore.it

Luca Zecchini
University of Modena
and Reggio Emilia
Modena, Italy
luca.zecchini@unimore.it

ABSTRACT

The task of entity resolution (ER) aims to detect multiple records
describing the same real-world entity in datasets and to consolidate
them into a single consistent record. ER plays a fundamental role
in guaranteeing good data quality, e.g., as input for data science
pipelines. Yet, the traditional approach to ER requires cleaning the
entire data before being able to run consistent queries on it; hence,
users struggle to tackle common scenarios with limited time or
resources (e.g., when the data changes frequently or the user is only
interested in a portion of the dataset for the task).

We previously introduced BrewER, a framework to evaluate SQL
SP queries on dirty data while progressively returning results as if
they were issued on cleaned data, according to a priority defined
by the user. In this demonstration, we show how BrewER can be
exploited to ease the burden of ER, allowing data scientists to save
a significant amount of resources for their tasks.

PVLDB Reference Format:
Luca Zecchini, Giovanni Simonini, Sonia Bergamaschi, and Felix Naumann.
BrewER: Entity Resolution On-Demand. PVLDB, 16(12): 4026 - 4029, 2023.
doi:10.14778/3611540.3611612

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dbmodena/brewer_demo.

1 ENTITY RESOLUTION ON-DEMAND

Entity Resolution (ER) [3], also known as duplicate detection or
record linkage, has the goal of detecting in a given dataset (or across
multiple datasets) the records describing the same real-world entity.
ER represents one of the core tasks of big data integration [5], thus
playing a key role in the data preparation pipelines [7] required in
every data science process to guarantee the successful extraction
of value from the collected input data.

The same real-world entity can be represented in several hetero-
geneous ways. It is often hard to correctly associate these repre-
sentations to the described entity, and therefore to identify them
as matches. Further, the naive solution for ER presents a quadratic
complexity, since it requires comparing all possible pairs of records
to determine if they match. Blocking techniques tackle this crucial
scalability issue, discarding as many obvious non-matches as possi-
ble and restricting comparisons to similar elements. Blocking and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
do0i:10.14778/3611540.3611612

4026

Felix Naumann
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
felix.naumann@hpi.de

Sonia Bergamaschi
University of Modena
and Reggio Emilia
Modena, Italy
sonia@unimore.it

matching therefore constitute the main bricks for ER pipelines in
big data scenarios. They are usually followed by a clustering step
to ensure the consistency of the matches. Finally, data fusion gen-
erates a single record from every cluster of matches, i.e., a unique,
resolved representation of the entity it refers to. Once all entities
have been resolved, the dataset can be queried without the worry of
producing duplicate results or inconsistencies. Thus, given a dirty
dataset, a user has to clean it entirely first (Figure 1a), and only
then a query can be issued (Figure 1b).

This traditional batch approach can be a significant burden in
terms of time and resources. For instance, state-of-the-art matchers
employ deep neural network models that can be resource-draining
when applied to large datasets [9]. Further, the batch approach is not
suitable to dynamic scenarios, where data changes frequently and
practitioners consuming it dispose of a finite amount of resources
and time to perform their tasks before the data becomes outdated.
For example, they might want to quickly run meaningful queries
to perform data exploration or to feed a BI dashboard: to clean the
entire data upfront when only a portion of it is actually needed
might not be affordable in terms of time (e.g., data has to be fresh)
and money (e.g., in case of pay-as-you-go contracts, very common
in cloud-based solutions).

To clean only the data useful to answer the user’s queries, we
previously presented BrewER [13], an algorithm and a framework
to perform ER in an on-demand fashion. BrewER evaluates SQL SP
(Selection and Projection) queries with ordering on the dirty data
and returns the results as if they were issued on the cleaned data.
BrewER performs ER only on the portion of the dataset needed to
answer the issued query (according to the conditions expressed by
the WHERE clause) and returns the cleaned entities satisfying the
query as soon as they are obtained. In addition, results are returned
in a progressive fashion, according to a priority defined by the
user through the ORDERBY clause (example in Figure 1c). The user
specifies how to clean the data within the query itself, selecting
the blocking and the matching functions to perform ER (BrewER is
agnostic towards them, so the user can exploit the ones that best fit
the scenario at hand) and the aggregation functions to create the
consolidated records from the clusters of detected matches.

Previous work had been proposed to perform ER at query time
or progressively, but BrewER is the first contribution to propose
a solution that combines the two [13]. In fact, query-driven ap-
proaches [1, 2] aim at performing ER only on the portion of the
dataset that is meaningful for answering the query, but they are not
designed to support the progressive emission of the results (thus,
they still operate in a batch way) and enable to use a limited range
of aggregation functions (e.g., the average or the mode cannot be
supported). On the other hand, progressive solutions [11, 12, 14] are
built to prioritize the comparisons of the most promising candidate

https://doi.org/10.14778/3611540.3611612
https://github.com/dbmodena/brewer_demo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611612
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Traditional ER Workflow + Query

ER On-Demand Workflow

Ghoase a malching uncion:) __ Ay The architecture
- J_customers DL_Transfer 1 & =~~~ =5 > p | | SELECT TOP 50 ! of BrewER
|- custaners_pr. tranater 2 | (smmmos vos 535 R voms(model), wxe), | |
|- W_electronics DL customn | . | FROM products | | VOTE (type), MIN(price) ! Dirty Data
} e | WHERE mp > 10 | |FROM products @
i |AND type LIKE ~¥slrs’ | \GROUP BY ENTITY WITH MATCHER J }Matchmgl SQe]
e Choose resolution functions: ! ‘ORDER BY price DESC | wHAVING MAX(mp) > 10 ! @ " Jupyter
i‘ ;u%()iMAJJ:OTiNGKmodelN 3 I ‘AND VOTE (type) LIKE ~%slrg” i natchod .
|| X2()=MAX(<mp>) ; / |ORDER BY MIN(prlce) DESC t Qe e
\ 103()=MAJ.VOTING (<type>) ! new data |\--------------eoo L ZCUTT] een AL
\ | @4 ()=MIN(<price>) ; Query & 3 . [non-natch] lzfgg
————————— | Y g g ! 1785
N V (e} o [E
"': N J comparisons 2 BrewER v,'a B anv
£ rew
< Batch ER u|=|v ° %ﬂ ------ /W Entity -
‘% v" X @ = =] [(@} 7O MatchingJ’Block;ng
progressive clean results vy
cleaned data cleaned data ~ clean results B spaCy il o riswk
(a) Offline ER (b) Query (c) Query w/ BrewER (d)

Figure 1: A traditional batch ER pipeline (a) needed to run the data scientist’s query (b); the same query executed with BrewER
on dirty data, but returning clean results, progressively (c); the architecture of BrewER (d).

pairs of records; thus, they do not guarantee to produce clean enti-
ties before the end of the ER process and do not allow the user to
define a priority on the results.

After providing an overview of BrewER in Section 2, in Section 3
we demonstrate how BrewER can be used by data scientists to
save a significant amount of resources while exploring the data or
preparing it for their downstream tasks.

2 AN OVERVIEW OF BREWER

BrewER is designed to address two main requirements: (i) when a
query is run on the dirty dataset, ER has to be performed only on
the portion of the dataset needed for answering the query; (ii) the
resulting entities have to be returned in a progressive fashion as
soon as they are obtained, according to the priority defined by the
user. The latter requirement is significantly challenging, since it
demands to correctly sort the entities even before they are generated
using data fusion, only relying on the original records that can
produce them. In this section, we give an overview of how BrewER
overcomes these challenges, while the detailed description of the
algorithm is provided in the research paper [13].

Firstly, BrewER builds on the candidate pairs of records detected
by the selected blocking function. BrewER considers the blocks of
records determined by these candidates and performs a preliminary
filtering of the blocks to maintain only the ones that can potentially
lead to the generation of one or more entities appearing in the
result of the query. This process is driven by the HAVING clause.

Say we want to query a camera dataset to retrieve the single-lens
reflex (SLR) cameras with a resolution greater than 10 megapixels.
In this case, the HAVING clause can be expressed as the conjunction
of two conditions, defined on the attributes expressing the type
(i.e., “type LIKE ‘%slr%’”) and the resolution (i.e., “mp > 10”) of
the camera, respectively. An entity is emitted as part of the result
only if the values of its attributes, obtained by aggregating the ones
of its matching records, comply with these conditions. It is possible
to know a priori if a block can generate entities able to satisfy the
query or not. In fact, if none of the records in the block presents
a resolution greater than 10 megapixels, it is impossible for the
generated entities to present a value that satisfies the query (same

4027

consideration for the type). In this preliminary phase, BrewER goes
through the blocks and maintains only the ones: (i) where every
condition is independently satisfied by at least one record, if the
conditions are conjunctive (i.e., connected by the AND operator);
(ii) where at least one of the conditions is satisfied by at least one
record, if they are disjunctive (i.e., connected by the OR operator).

Having detected the blocks to be preserved, BrewER inserts
their records into a priority queue, with the priority of a record
determined by its value for the attribute used in the ORDER BY clause
(i.e., the ordering key), according to the specified ordering mode. For
every record, we also keep track of its neighbors (i.e., the records
appearing together with it in a candidate pair).

BrewER operates in an iterative way, checking at every iteration
the head of the priority queue. If the head represents one of the
original dirty records, it is necessary to perform ER on it, using the
selected matcher to determine if its neighbors describe the same real-
world entity. Every time a match is detected, this check is repeated
recursively for the matching neighbor, obtaining an exhaustive
cluster of matches. We prevent useless or redundant comparisons
by tracking the pairs already evaluated and the records already
assigned to an entity in a previous iteration. Then, BrewER removes
from the priority queue the head and its matches, inserting the
consolidated record representing the entity, whose attribute values
are obtained using the selected aggregation functions (e.g., MIN for
the price, VOTE for the model, etc.). In particular, the aggregated
value for the ordering key determines the priority of the entity in
the next iterations.

When the head of the priority queue is already a consolidated
record (i.e., an entity obtained as described above), BrewER checks
if it satisfies the query. In this case, the entity is emitted as part
of the result, otherwise discarded. For the supported aggregation
functions (i.e., MIN, MAX, AVG, and VOTE), it is impossible for the
entities produced in the next iterations to present a higher priority
(since none of the remaining dirty records presents a value for
the ordering key greater than the one of the head), ensuring the
correctness of the emission order for the resulting entities.

BrewER is implemented as a Python library. Figure 1d depicts
its architecture and highlights that it can be seamlessly integrated

in Python workflows in Jupyter notebooks. BrewER is designed
to be extensible: users can combine it with blockers and matchers
from their favorite libraries. Although we focus on running queries
directly on the dirty dataset, representing the case where BrewER
has the greatest impact, it is possible to benefit from the previously
executed queries, constructing on their results to further lighten
the burden of ER. In fact, running a query allows us to collect the
classifications performed by the matcher, which can be maintained
in a SQLite database (the matchDB in Figure 1d) and used to prevent
repeated comparisons and overlook resolved entity records. Thus,
when running a new query using the same matcher, BrewER can
exploit these hints to further improve the performance.

3 DEMONSTRATION SCENARIOS

We introduce the two representative scenarios that we will cover in
the demonstration of BrewER!. For this purpose, we use a Python
Jupyter notebook running locally on a laptop. This simple and fa-
miliar setting allows the users to fully focus on the core feature of
BrewER: to benefit from this framework, it is enough to run on a
dirty dataset a basic SQL SP query, with the only additional effort
to specify how the dirty data must be cleaned. In each scenario,
besides showing some example queries to quickly introduce the
audience to the task at hand, we will allow the attendees to inter-
act with the notebook: they will be able to edit the queries and to
change the ER parameters (i.e., blocking, matching, and aggrega-
tion functions), exploring the results with the UI to appreciate the
benefits of BrewER and to experience the impact of their choices
on the ER process.

Datasets. We will provide users with a set of dirty datasets, com-
posed of the reference datasets used in the research paper [13] (i.e.,
cameras, USB sticks, and organizations) plus several additional
ones (e.g., an extended version of cameras and further datasets of
commercial products from the Alaska benchmark [4] and multiple
datasets from the Magellan Data Repository?). These datasets cover
different domains and are highly heterogeneous in terms of cleanli-
ness, number of attributes, and number of records, ranging from the
1K records of the smallest subset of USB sticks to the 29K records
of the full camera dataset, on which the batch approach would take
several hours to perform the entire cleaning process [13]. Each
dataset comes with its ground truth, so the users will be able to
assess the efficacy (precision/recall) of each step in the ER pipeline
and the correctness of the results of the given queries.

Blockers and Matchers. We will also provide all needed building
blocks for an ER pipeline: (i) a set of blockers, such as traditional
methods [8], manually devised solutions, and advanced unsuper-
vised (meta-)blocking techniques [6]; (ii) a set of matchers, including
rule-based matchers and state-of-the-art binary classifiers based on
machine learning [8] and deep learning [10] models.

3.1 Scenario 1: Querying Dirty Datasets

Ellen is a data analyst who needs to build a BI dashboard to ana-
lyze the price and the characteristics of cameras sold on several

!Please also see the accompanying demo video: https://youtu.be/nSd-_wAFkss
https://sites.google.com/site/anhaidgroup/useful- stuff/the- magellan- data-
repository

4028

popular e-commerce stores. She has been asked to consider only
SLR cameras, with a minimum resolution of 10 megapixels, and
to focus on those with the lowest price among them. Further, she
has been asked to extract the data with short notice and with a
strict deadline for a company business meeting. Fortunately, it is
very simple for Ellen, who knows SQL, to come up with a query
to find the cheapest SLR cameras with at least 10 megapixels in
resolution. Unfortunately, by issuing the SQL query on the dirty
data, she obtains inconsistent results. In fact, considering the results
depicted in Figure 2a, she notices the presence of duplicate records
(e.g., the two records describing the Sony a5000 camera) and other
data quality issues. Ellen already has some pre-trained matchers
from previous projects on dirty product datasets that she can try on
this new data—or she can exploit a pay-as-you-go LLM-based ser-
vice (e.g., GPT-3) as a binary matcher. She also knows that she can
employ some unsupervised blocking techniques to accelerate the
ER process, but it would still take hours and a significant amount
of resources to clean the entire dataset.

BrewER allows Ellen to overcome this situation and quickly ob-
tain a consistent result. As depicted in Figure 2b, she can write the
query in a dedicated text area of the notebook, generated using a
simple Jupyter widget. Within the query, she declares the matcher
to be used in the specific GROUP BY ENTITY clause and the aggrega-
tion functions for the attributes of interest (e.g., the minimum value
for the price). Then, after clicking on the green Run button, the
resulting cleaned entities will start to appear in the area below as
soon as they are obtained, one by one in a progressive fashion, cor-
rectly sorted by ascending price. The execution will automatically
stop after the emission of the number of entities required by Ellen.

As we can see in Figure 2b, the top cleaned entities are signifi-
cantly different from the results obtained on the dirty data shown
in Figure 2a. BrewER allows Ellen to analyze the produced entities
through the UL, to better understand what happened during the
ER process. In fact, by simply clicking on the row representing
the entity, she can expand the table and visualize the matching
records that were aggregated to produce it, understanding why an
attribute presents a certain value. Through this feature, Ellen can
discover the reasons behind the inconsistencies of the dirty results:
for instance, the record determining the price of the cheapest model
did not fulfil the condition defined on the type in the WHERE clause,
thus was erroneously discarded.

In this scenario, after introducing some relevant cases to give
the audience an insight on the benefits of BrewER for this task, the
attendees will be able to explore the dirty datasets according to
their interests, directly experiencing the key role of ER for obtaining
consistent results (e.g., to be served as input for training a machine
learning model) and how the choice of different aggregation criteria
impacts on the results of the query.

3.2 Scenario 2: ER Pipeline Debugging

BrewER can significantly speed up not only the access to the cleaned
results of queries issued on dirty datasets, but also the design of ER
pipelines. In fact, as shown in the previous scenario, the choice of
different aggregation functions, as well as different combinations
of blocking and matching functions, can lead to the production of
significantly different results.

https://youtu.be/nSd-_wAFkss
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository

View Run Kernel Tabs

| demo.ipynb X

Xoao
SELECT BRAND, MODEL,

FROM CAMERA
WHERE MP > 10

>» m C

ORDER BY PRICE ASC

AND TYPE LIKE '%SLR%"

Settings H.

» Code

TYPE, PRICE

BrewER: Entity Resolution On-Demand

import brever

SELECT VOTE(BRAND), VOTE(MODEL), VOTE(TYPE), MIN(PRICE)
FROM CAMERA

GROUP BY ENTITY WITH MATCHER BF_SPARKER_WNP_MF_GT
HAVING MAX(MP) > 10

AND VOTE(TYPE) LIKE '%SLR%'

ORDER BY MIN(PRICE) ASC

A - View Run Kemel Tobs Settings Help
demoipynb x
K © [» = C » Cod v & Python 3 (ipykern
brand model type price o n
it 10 Ir 27597
pentax q s Setup completed... let's go!
samsung NaN sl 37949 id brand model type price
canon B e 41331 (D [oo et e)
nwgosalecom/852 i 1800 point-and-shoot 15867
fujifilm x-el slr 413.97 ebay.com//41910 iifim 51800 1 digital s ’ NaN
3178 ujtim <1800 dighal i NaN
sony nex-f3 sl 413.99 o . .
- cluster of matching records
=P oy 5000 sl 41399 . e
sebay.com//54512 ujim <1800 Nall NaN
panasonic dmc-gf3 slr 41399 2 samsung NaN it 37949
sony nexBB sl 41399 3 canon o0 digital i 38535
4 fujfim xel digtal it a7
nikon d3000 slr 427.10
" lecom/1435 ujim xel A a9
v gosale.com/1489 ujim xel ar 55197
0 7 & Python 3 (ipykernel) .. M{ | o m 7 @ Pythons teykerne) [idle Mode: Command) Ln51,Col7_brewer

ew Run Kemel Tebs Setings Help e Run Kemel Tabs Setfings Help
oipb X opb X
BO»ECw» Cle v % Pton3pyeme] [© 1 » m C » Cke v # Pyihon3 (pykeme|
SELECT VOTE(BRAND), VOTE(HODEL), WIN(PRICE) SELECT VOTE(BRAAD), VOTE(HODEL), MIN(PRICE)
FRON CAMERA FROM CAMERA
GROUP BY ENTITY WITH MATCHER BF_SPARKER_WiP_NF_GT GROUP BY ENTITY WITH MATCHER BF _MAN L
HAVING WAX(HP) > 18 HAVING HAX(MP) > 10
D VOTE(BRAND) LIKE "SCANOIEY" AND VOTE(BRAND) LIKE 'HCANONS'
ORDER BY NIN(PRICE) DESC ORDER BY MIN(PRICE) DESC
4 4
Setup completed. .. let's go! Setup completed. .. let's go!
id brand el pice id brand model price
0 canon 1dx 469131 0 canon 1dx 469131
1 anon 1dmarkiii 4850 1 canon 1d markii 44850
2 anon 5d 3810 2 canon 5d 3810
3 canon 5d mark i 2431 3 canon 5d mark i U3
4 anon Sd markii 206931 4 canon 5d markii 206931
5 aanon P d 20010 5 aanon H 1790
6 aanon * 50d 11940 6 canon 50d 15180
1 anon 0 1940 1 aanon 4od 151797
8 canon * 50d 15180 8 canon 6d 44899
O 18 Phondppeeme)|ide Node:Command @ 1n377,Col23 brewerdd [0 [18 Pthon3pyheme|ide Mode:Command @ (n377,Col23 brever

(a) SQL on dirty data

(b) SQL with BrewER on dirty data

(c) BrewER with blocker1 (d) BrewER with blocker2

Figure 2: Demonstration scenarios: 1. Querying dirty datasets (a-b); 2. ER pipeline debugging (c-d).

Anna is a data engineer that employs BrewER to get quick in-
sights into the goodness of the ER pipeline she is designing at
a negligible cost compared to existing solutions. In fact, BrewER
automatically and dynamically selects a portion of the data to be
cleaned relevant for the task at hand—expressed through a query.
By assessing the quality of the ER pipeline on that portion, Anna
is more confident that it will be suited for the task compared to a
pipeline tuned on a random sample of the data. Further, by having
access to the entities in the result progressively as soon as they are
produced, Anna can quickly interrupt the ER process as soon as she
spots an issue, saving a significant amount of time and resources—
with a batch approach she would have to wait until the end of the
processing of the entire batch of data to spot the same issue.

BrewER perfectly supports exploratory top-k queries, allowing
to debug the designed ER pipeline during the cleaning process in a
stop-and-resume fashion. For instance, if a top-10 query produces
the results in Figure 2¢, Anna understands from the presence of
duplicates the inaccuracy of her pipeline and she can immediately
stop the cleaning process to solve the problem. The designed block-
ing technique was too aggressive and pruned some matches from
the candidate set, preventing the complete resolution of some enti-
ties. After changing the blocking settings, Anna can run her query
again: Figure 2d shows how the new setting solved the issue.

Since BrewER allows saving the status of the cleaning process
in case of early termination, this time Anna can simply click on
the Resume button to continue the cleaning process, running for
instance a further top-k query for inspecting more entities, then
resuming the process again for the complete emission of the results.

In this scenario, the attendees will be able to build an ER pipeline
interactively, selecting different blockers and matchers to combine

4029

with a SQL query of interest. By inspecting the cleaned results
returned progressively, they will be able to detect possible issues
with the current pipeline, and in this case modify it on the fly and
converge to a good solution.

In summary, BrewER is a highly interactive entity resolution
system that allows users to issue ad-hoc queries to dirty data as if
it was already cleaned.

REFERENCES

[1] Hotham Altwaijry et al. 2013. Query-Driven Approach to Entity Resolution.
PVLDB 6, 14 (2013), 1846-1857.

Hotham Altwaijry et al. 2015. QuERy: A Framework for Integrating Entity
Resolution with Query Processing. PVLDB 9, 3 (2015), 120-131.

Vassilis Christophides et al. 2021. An Overview of End-to-End Entity Resolution
for Big Data. CSUR 53, 6 (2021), 127:1-127:42.

Valter Crescenzi et al. 2021. Alaska: A Flexible Benchmark for Data Integration
Tasks. arXiv preprint arXiv:2101.11259.

Xin Luna Dong and Divesh Srivastava. 2015. Big Data Integration. Morgan &
Claypool Publishers.

Luca Gagliardelli et al. 2019. SparkER: Scaling Entity Resolution in Spark. In
EDBT. OpenProceedings.org, 602-605.

Mazhar Hameed and Felix Naumann. 2020. Data Preparation: A Survey of
Commercial Tools. SIGMOD Record 49, 3 (2020), 18-29.

Pradap Konda et al. 2016. Magellan: Toward Building Entity Matching Manage-
ment Systems. PVLDB 9, 12 (2016), 1197-1208.

Yuliang Li et al. 2020. Deep Entity Matching with Pre-Trained Language Models.
PVLDB 14, 1 (2020), 50-60.

[10] Sidharth Mudgal et al. 2018. Deep Learning for Entity Matching: A Design Space
Exploration. In SIGMOD. ACM, 19-34.

[11] Thorsten Papenbrock et al. 2015. Progressive Duplicate Detection. TKDE 27, 5
(2015), 1316-1329.

[12] Giovanni Simonini et al. 2018. Schema-agnostic Progressive Entity Resolution.
In ICDE. IEEE Computer Society, 53-64.

[13] Giovanni Simonini et al. 2022. Entity Resolution On-Demand. PVLDB 15, 7
(2022), 1506-1518.

[14] Steven Euijong Whang et al. 2013. Pay-As-You-Go Entity Resolution. TKDE 25,

5(2013), 1111-1124.

	Abstract
	1 Entity Resolution On-Demand
	2 An Overview of BrewER
	3 Demonstration Scenarios
	3.1 Scenario 1: Querying Dirty Datasets
	3.2 Scenario 2: ER Pipeline Debugging

	References

