
ChainDash: An Ad-Hoc Blockchain Data Analytics System
Yushi Liu1,2,3, Liwei Yuan2, Zhihao Chen1,2,3, Yekai Yu1,2,3,

Zhao Zhang1,3∗, Cheqing Jin1,3, Ying Yan2
1School of Data Science and Engineering, East China Normal University

2Blockchain Platform Division, Ant Group
3Engineering Research Center of Blockchain Data Management, Ministry of Education

{ysliu, chenzh, ykyu}@stu.ecnu.edu.cn, {zhzhang, cqjin}@dase.ecnu.edu.cn
{yuanliwei.ylw, fuying.yy}@antgroup.com

ABSTRACT
The emergence of digital asset applications, driven by Web 3.0
and powered by blockchain technology, has led to a growing de-
mand for blockchain-specific graph analytics to unearth the insights.
However, current blockchain data analytics systems are unable to
perform efficient ad-hoc graph analytics over both live and past
time windows due to their inefficient data synchronization and
slow graph snapshots retrieval capability. To address these issues,
we propose ChainDash, a blockchain data analytics system that
dedicates a highly-parallelized data synchronization component
and a retrieval-optimized temporal graph store. By leveraging these
techniques, ChainDash supports efficient ad-hoc graph analytics
of smart contract activities over arbitrary time windows. In the
demonstration, we showcase the interactive visualization interfaces
of ChainDash, where attendees will execute customized queries for
ad-hoc graph analytics of blockchain data.

PVLDB Reference Format:
Yushi Liu, Liwei Yuan, Zhihao Chen, Yekai Yu, Zhao Zhang, Cheqing Jin,
and Ying Yan. ChainDash: An Ad-Hoc Blockchain Data Analytics System.
PVLDB, 16(12): 4022 - 4025, 2023.
doi:10.14778/3611540.3611611

1 INTRODUCTION
Web 3.0 [8] is dedicated to building the Internet of Value based on
blockchain technology, which significantly advances the digitiza-
tion of assets and related applications. The on-chain transactional
data, produced by user interactions with these applications, is trans-
parent and can be used for KYT (Know Your Transaction) services,
etc., thus having immense analytical value. Currently, it is practical
to synchronize on-chain data to off-chain stores for analytics. Still,
two requirements need to be fulfilled before enabling efficient ad-
hoc graph analytics over arbitrary time windows of interest: 1) high
data synchronization efficiency, which guarantees the freshness of
real-time data; 2) optimal graph snapshots retrieval performance,
which accelerates the ad-hoc graph query processing. To illustrate
the former, for example, Topnode 1 (known as Jingtan in Chinese)
is a digital collection platform supported by AntChain [2]. To fulfill
∗Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611611

1https://antchain.antgroup.com/products/acdc

massive blockchain data query requests, Topnode pulls on-chain
data to OceanBase 2 and retrieves query results through database in-
terfaces. The flash sale of digital collections on Topnode is a typical
scenario that requires highly efficient data synchronization, without
which users will suffer significant delays in obtaining real-time data,
ultimately affecting their experience. Regarding the latter, we illus-
trate KYT services utilized in public blockchain analytics scenarios.
The KYT service is a crucial tool to assist financial institutions and
exchanges to detect abnormal behaviors for anti-money laundering
and counter-terrorism financing, it requires ad-hoc graph analytics
to identify security incidents, which may involve a significant num-
ber of highly correlated abnormal transactions within a specific
period of time. In such scenarios, blockchain-specific analytics sys-
tems necessitate strong multi-versioned graph retrieval ability, as
such analytics needs to access graphs over arbitrary time windows.

However, existing blockchain data analytics systems [1, 5, 6, 9]
typically synchronize data in a sequential and blocked manner.
Transaction receipts are pulled block-by-block quiescently and
replayed one after another accordingly, thus failing to provide real-
time data freshness. In addition, prior works on multi-versioned
graph stores [4, 7, 10] rarely address the retrieval of graph snapshots
that are larger-than-memory. Retrieving out-of-core graphs from
unoptimized underlying storage causes significant overhead, pre-
cluding their use in ad-hoc graph analytics over historical windows.
To summarize, the inefficient data synchronization and limited
graph snapshots retrieval capability hinder the efficiency of ad-hoc
graph analytics over both live and past time windows.

To address the above limitations, we design and implement
ChainDash, a blockchain data analytics system that facilitates effi-
cient ad-hoc graph analytics of blockchain data. ChainDash func-
tions as a middleware system comprising two key building blocks: a
highly-parallelized data synchronization component and a retrieval-
optimized temporal graph store. The former is responsible for ex-
tracting transaction receipts from the blockchain, obtaining event
logs, and replaying these logs to produce consistent state transi-
tions of smart contracts with the blockchain. Meanwhile, we incor-
porate fine-grained optimizations for replaying to enable highly-
parallelized data synchronization. The synchronized states and their
interactions are then converted into user-defined graph representa-
tions and stored in the temporal graph store. The store balances fast
ingestion with efficient indexing for temporal blockchain data based
on an append-only storage layout. Within each epoch, an approxi-
mate index is built to improve the performance of multi-versioned
graph retrieval, thus serving ad-hoc graph queries efficiently. To the

2https://www.oceanbase.com/

4022



Figure 1: The Architecture of ChainDash Figure 2: Highly-Parallelized Data Synchronization

best of our knowledge, ChainDash is the first systematic solution
to support efficient ad-hoc graph analytics of blockchain data.

The main contributions of our work are summarized as follows:
• We propose ChainDash, an ad-hoc blockchain data ana-

lytics system that rapidly synchronizes on-chain data to
our meticulously designed off-chain graph store, allowing
users to perform efficient blockchain-specific graph analyt-
ics over arbitrary time windows.

• We present a highly-parallelized data synchronization com-
ponent combining parallel pulling and item-level parallel
replaying to ensure efficient off-chain data synchronization.
In addition, we design a retrieval-optimized temporal graph
store that exploits epoch-based indexing for effective graph
snapshots retrieval.

• We demonstrate how ChainDash leverages efficient graph
analytics capability to support the overview of on-chain
activities and the detection of abnormal behaviors.

In the remainder of the paper, we introduce the system architec-
ture and two key components of ChainDash in Section 2, demon-
strate the visualization interfaces and interaction options with two
scenarios in Section 3, and conclude with a summary in Section 4.

2 CHAINDASH OVERVIEW
2.1 System Architecture
The ChainDash architecture embraces a middleware design con-
sisting of two main components, as depicted in Figure 1.

Highly-Parallelized Data Synchronization. ChainDash de-
signs a highly-parallelized data synchronization component that
continuously pulls transaction receipts from trusted blockchain
nodes in a multi-threaded manner. The transaction receipts repre-
sent internal activities within smart contracts and contain event
logs that can be replayed to get the same on-chain state transitions
for the off-chain data store. ChainDash enables replaying at the
item-level granularity, which provides high parallelism while ensur-
ing block-level determinism and consistency. With this component,
ChainDash can efficiently synchronize blockchain data and ensure
real-time data freshness.

Retrieval-Optimized Temporal Graph Store. The states and
interactions are reorganized into the graph format, where each
vertex represents an address state and each edge represents their
interaction. For persistence, vertices and edges are encoded as key-
value pairs. Each key contains a vertex identifier and an embedded

block height, while the value holds the block-level state value and a
list of related edges in the same block. ChainDash uses an append-
only storage layout to persist the temporal data. Based on this
layout, ChainDash logically partitions files into epochs and builds
an approximate index structure for each epoch to quickly filter
and determine the existence of intra-epoch data, thereby providing
effective graph retrieval for window-based ad-hoc graph analytics.

2.2 Highly-Parallelized Data Synchronization
The highly-parallelized data synchronization component, as shown
in Figure 2, leverages parallelizing techniques to improve the effi-
ciency of two phases: 1) data pulling phase, and 2) state replaying
phase. ChainDash implements a multi-threaded parallel pulling
mechanism to optimize data pulling and furnish ample input data
for the next phase. During the state replaying phase, ChainDash
extracts event logs from transaction receipts, maps them into state
items, and subsequently replays the logs to produce block-level
state values of smart contracts involved in the block.

The conventional replaying approach sequentially replays trans-
action receipts, adhering to the order and dependency constraints
defined by each block. To break through this limitation, Chain-
Dash designs a DAG-based parallel replaying method. By analyzing
read-write dependencies and determining the serialization order
of conflicting receipts, ChainDash constructs a conflict graph to
achieve transaction-level parallel state replaying. Moreover, to guar-
antee robust replaying parallelism in high-contention scenarios,
ChainDash implements a finer-grained item-level parallel replaying,
which replays items (instead of transaction receipts) by relaxing the
transaction-level ACID requirements while setting synchronization
barriers to ensure the complementary block-level data consistency.
In particular, ChainDash classifies the state items into two cate-
gories: commutative and non-commutative (as exemplified by State
Items in Figure 2). For commutative items, they can be processed
in parallel and out-of-orderly since their effects do not depend on
the processing order and will not affect block-level consistency.
For non-commutative items, we ensure that they are processed in
the order specified by the conflict graph. The item-level parallel
replaying ensures high replaying parallelism while guaranteeing
off-chain data consistency and freshness.

For the empirical evaluation, we select 200K transfer events from
the USDT smart contract on Ethereum as data to be synchronized.
We measure cumulative data synchronization time (from data re-
playing/extracting to persistence, excluding asynchronous pulling)

4023



of ChainDash, The Graph [1] and Ethereum-ETL3 to evaluate the
performance of data synchronization. The results shown in Table 1
demonstrate that ChainDash achieves superior data synchroniza-
tion efficiency, saving up to 82.9% and 48.9% process time compared
to the other two synchronization solutions, respectively.

Table 1: Synchronization Efficiency

Method ChainDash The Graph Ethereum-ETL

Process Time (s) 9.1 53.1 17.8

2.3 Retrieval-Optimized Temporal Graph Store
The retrieval-optimized temporal graph store aims to support effi-
cient graph snapshots retrieval for ad-hoc graph queries. As shown
in Figure 3, the store comprises two key techniques: 1) an append-
only storage layout and 2) an epoch-based index structure. Regard-
ing the former, as blockchain-specific records include the block
height as a version prefix, they are naturally ordered and multi-
versioned. Therefore, ChainDash uses an append-only storage lay-
out to sequentially store the temporal data, without the need for
background compaction to merge redundant records and reorder.
Each file of the store holds temporal data within a specific block
height range, and multiple consecutive files logically belong to an
epoch. In addition, we design a built-in index for each epoch to
improve the performance of intra-epoch data indexing.

The window-based graph queries necessitate quickly determin-
ing the existence of neighbor vertices within the queried version
range. However, maintaining the filtering structure per file is ineffi-
cient for such queries, as the need to traverse each filter within the
window results in costly overhead. Therefore, as for the second key
technique, the store builds an index for each epoch, which adopts
a searching data structure [3] combining Count-Min Sketch and
Bloom Filter to support fast and space-efficient filtering with a low
false positive rate. The intra-epoch index is composed of 𝑅 tables,
and each table housing 𝐵 partitions, each of which contains a bloom
filter and a File_Ids set. To maintain the index for an epoch, the
newly-flushed file is mapped to a partition through a hash func-
tion. The existence information of all the involved vertices is then
recorded in the corresponding bloom filter, while the file identifier
is stored in the File_Ids set. This process is repeated 𝑅 times due
to the presence of 𝑅 tables. Based on this index structure, we can
efficiently search which files contain the queried vertex within the
epoch by traversing the bloom filters in the table, and obtain the
result file set by taking the union of the results returned by the
hit bloom filters. Then, we perform the same operation on the re-
maining 𝑅 − 1 tables and take the intersection of all File_Ids sets to
obtain the result more precisely. To summarize, by employing the
append-only store with epoch-based indexing, ChainDash enables
efficient graph snapshots retrieval, which is beneficial for ad-hoc
graph queries over arbitrary time windows.

To evaluate the performance of window-based graph queries,
we construct graphs comprising USDT transfer events from the
13th million block to the 17th million block on Ethereum within
ChainDash and compare it with Nebula 4, a commercial graph
3https://github.com/blockchain-etl/ethereum-etl/
4https://www.nebula-graph.io/

Figure 3: Retrieval-Optimized Temporal Graph Store

database utilizing RocksDB 5 as underlying storage. To ensure a
fair comparison, we deploy them with the same single-machine
configuration, andwemeasure the K-hop query performancewithin
the window size of 1000K blocks. The empirical results are shown
in Table 2, where p50 indicates the query latency that ranks at 50%
of the whole dataset (similarly for p90). ChainDash outperforms
Nebula, with an average latency saving of 34% for 1-hop queries,
and shows a more evident advantage with average latency savings
of 47% and 41% respectively for queries with 3-hop and 5-hop.

Table 2: K-hop Query Performance

K-hop
Queries

p50 (ms) / Result Size (K rows) p90 (ms) / Result Size (K rows)

Nebula ChainDash Nebula ChainDash

1-hop 7.2 / 2.6 4.8 / 2.1 27.7 / 10.8 18.2 / 11.3
3-hop 671.4 / 215.5 369.8 / 181.6 6.6K / 1000.3 3.3K / 1000.3
5-hop 77.0K / 8999.5 47.7K / 10227.4 176.1K / 13326.4 100.3K / 13033.4

3 DEMONSTRATION
In this demonstration, we showcase two scenarios. Scenario 1 is an
on-chain activity overview, where attendees execute K-hop graph
queries and obtain an overview of the on-chain internal activities
of an interested smart contract. Scenario 2 is the abnormal behavior
analytics, where attendees screen out abnormal behaviors among
on-chain activities and track the flow of funds step by step.

3.1 Scenario 1: On-Chain Activity Overview
Figure 4 shows the ChainDash visualization interfaces, which en-
able attendees to view statistical information from the dashboard
and execute customized graph queries by filling out the form. The
form contains several input fields, including "Address" for specify-
ing the address(es) to be queried, "K-hop Steps" for screening out
the data within k hops of the center address, "QueryWindow" for
constraining the time range, "Contract Address" for specifying
the monitored smart contract address(es), and "Filtering Rules"
for defining filtering conditions for anomaly detection. For instance,
given a starting vertex𝑎𝑑𝑑𝑟1, to query its𝑘-hop transaction network
graph related to 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡1, between 𝑠𝑡𝑎𝑟𝑡_𝑏𝑙𝑜𝑐𝑘 and 𝑒𝑛𝑑_𝑏𝑙𝑜𝑐𝑘 , the
following steps will be included: (i) Attendees first input the follow-
ing parameters: (𝑎𝑑𝑑𝑟1, 𝑘, 𝑠𝑡𝑎𝑟𝑡_𝑏𝑙𝑜𝑐𝑘, 𝑒𝑛𝑑_𝑏𝑙𝑜𝑐𝑘, 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡1), and
click the "Search" button; (ii) ChainDash executes the 𝑘-hop query
and generates an overview of internal smart contract activities in
5https://github.com/facebook/rocksdb

4024



Figure 4: On-Chain Activity Overview Figure 5: Abnormal Behavior Analytics

the "Overview" view; (iii) Attendees interact with the generated
graph to obtain specific information. As shown in Figure 4, the
queried result is represented as a network consisting of multiple
vertices and edges, where the vertices represent addresses and the
edges represent the activities between two addresses. In addition,
the pie chart in the bottom left corner of the view displays the dis-
tribution of vertices with different degrees (number of associated
activities) in the network.

3.2 Scenario 2: Abnormal Behavior Analytics
In the on-chain activity overview mentioned, we note that some
addresses have a high volume of transactional activities in a short
time, and more detailed analytics for them are required. In this case,
filtering rules enable customized anomaly detection from various
perspectives like time range and transfer amount. In Scenario 2, we
apply the "Filtering Rules" to an address identified as "hacker wallet"
(marked by ) on Ethereum to screen out abnormal activities within
k hops. Attendees can progressively experience it by following these
steps: (i) Attendees first define a filter (Δ𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟 ,Δ𝑣𝑎𝑙𝑢𝑒 ), and
activities meeting the criteria of receiving multiple assets and trans-
ferring them out within a block range of Δ𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟 , with a
difference between outgoing and incoming amounts not exceeding
Δ𝑣𝑎𝑙𝑢𝑒 , will be marked by the filter; (ii) Subsequently, by clicking
the "Search" button, an abnormal behavior network graph is gener-
ated in the "Analyze" view. Figure 5 presents the output of anomaly
detection on ETH and USDC transfer activities associated with the
"hacker wallet"; (iii) As different address types are marked with
different icons and transaction information is labeled, attendees can
easily observe the flow of funds. In Figure 5, the mark indicates
the wallet’s theft, the mark signifies the address flagged as the
hacker by our filtering rules, and the mark represents addresses
involved in abnormal activities whose identity is obscure. Overall,
the efficient versioned graph data retrieval and graph analytics
mechanisms supported by ChainDash contribute to the timely de-
tection of abnormal behaviors and tracking of fund flows. In some
illegal activities such as money laundering and fraud, this helps to
effectively intervene before funds are involved in coin mixing or
cross-chain transactions, thereby avoiding greater economic losses.

4 CONCLUSION
We propose ChainDash, a blockchain-specific data analytics system
that supports efficient ad-hoc graph analytics for applications like
KYT services. By parallelizing the data synchronization and optimiz-
ing the graph snapshots retrieval ability, ChainDash can effectively
meet the demands for ad-hoc graph analytics over arbitrary time
windows. In the demonstration, we showcase ChainDash with two
scenarios based on real-world data from Ethereum, where attendees
are able to query on-chain internal activities of smart contracts
through a visualization interface and further analyze abnormal
behaviors using ad-hoc graph analytics.

ACKNOWLEDGMENTS
This work was supported by National Science Foundation of China
(No. 61972152) and Program of Shanghai Academic/Technology
Research Leader (No. 23XD1401100).

REFERENCES
[1] The Graph. 2023. The Graph. https://thegraph.com/
[2] Ant Group. 2023. AntChain. https://antchain.antgroup.com/
[3] Gaurav Gupta, Minghao Yan, Benjamin Coleman, Bryce Kille, Ryan A. Leo

Elworth, Tharun Medini, Todd J. Treangen, and Anshumali Shrivastava. 2021.
Fast Processing and Querying of 170TB of Genomics Data via a Repeated And
Merged BloOm Filter (RAMBO). In SIGMOD Conference. ACM, 2226–2234.

[4] Xiaoen Ju, Dan Williams, Hani Jamjoom, and Kang G. Shin. 2016. Version
Traveler: Fast and Memory-Efficient Version Switching in Graph Processing
Systems. In USENIX Annual Technical Conference. USENIX Association, 523–536.

[5] Harry A. Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder, Martin Plattner,
Alishah Chator, and Arvind Narayanan. 2020. BlockSci: Design and applications
of a blockchain analysis platform. In 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020. USENIX Association, 2721–2738.

[6] Yang Li, Kai Zheng, Ying Yan, Qi Liu, and Xiaofang Zhou. 2017. EtherQL: A
Query Layer for Blockchain System. In DASFAA (2) (Lecture Notes in Computer
Science), Vol. 10178. Springer, 556–567.

[7] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer. 2015.
LLAMA: Efficient graph analytics using Large Multiversioned Arrays. In ICDE.
IEEE Computer Society, 363–374.

[8] Gavin Wood. 2017. ÐApps: What Web 3.0 Looks Like. https://gavwood.com/
dappsweb3.html

[9] Haotian Wu, Zhe Peng, Songtao Guo, Yuanyuan Yang, and Bin Xiao. 2021. VQL:
efficient and verifiable cloud query services for blockchain systems. IEEE Trans-
actions on Parallel and Distributed Systems 33, 6 (2021), 1393–1406.

[10] Xiaowei Zhu, Marco Serafini, Xiaosong Ma, Ashraf Aboulnaga, Wenguang Chen,
and Guanyu Feng. 2020. LiveGraph: A Transactional Graph Storage System with
Purely Sequential Adjacency List Scans. Proc. VLDB Endow. 13, 7, 1020–1034.

4025


	Abstract
	1 Introduction
	2 ChainDash Overview
	2.1 System Architecture
	2.2 Highly-Parallelized Data Synchronization
	2.3 Retrieval-Optimized Temporal Graph Store

	3 Demonstration
	3.1 Scenario 1: On-Chain Activity Overview
	3.2 Scenario 2: Abnormal Behavior Analytics

	4 Conclusion
	Acknowledgments
	References

