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ABSTRACT
While existing data management solutions try to keep upwith novel
data formats and features, a myriad of valuable functionality is often
only accessible via programming language libraries. Particularly
for machine learning tasks, there is a wealth of pre-trained models
and easy-to-use libraries that allow a wide audience to harness
state-of-the-art machine learning. We propose the demonstration
of a highly modularized data processor for semi-structured data
that can be extended by means of plain Python scripts. Next to com-
monly supported user-defined functions, the deep decomposition
allows augmenting the core engine with additional index structures,
customized import and export routines, and custom aggregation
functions. For several use cases, we detail how user-defined mod-
ules can be quickly realized and invite the audience to write and
apply custom code, to tailor provided code snippets that we bring
along to own preferences to solve data analytics tasks involving
sentiment analysis of Twitter tweets.
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1 INTRODUCTION
Recent years have witnessed an unprecedented competition of
data management researchers and companies to provide solutions
to handle vast amounts of increasingly heterogeneous data. This
has spurred the development of novel data management solutions
(aka. NoSQL), tailored to specific data characteristics and query
languages, followed by the augmentation of traditional relational
database management systems to support novel features. How-
ever, many functionalities are provided solely in programming
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LOAD FROM FILE "twitter.json"
CHOOSE EXISTS (’/text’)
AS (’/sentiment’:SENTIMENT(’/text’)), (’/text’:’/text’)
STORE AS SQL_EXPORT "postgresql://... twitter_sentiment"

Listing 1: Sample JODA query with external function

language libraries, most prominently (complex) pre-trained mod-
els and toolkits around machine learning tasks (e.g., [16]). Such
features are difficult to integrate with existing systems without con-
siderable effort. In the proposed demonstration, we show that by
enabling user-defined modules, seemingly simple data processors
can combine the advantages of a multitude of systems to enable
new data processing pipelines that outperform existing solutions
in efficiency and usability. Our findings are based on a prototypical
modularized data processor adapted from our previous work on
JODA [10], where core parts of JODA have been rewritten to accept
Python scripts as implementations. While this adds versatility, the
high-performance, multi-thread core of JODA, written in C++17,
remains untouched. This combination offers blazing fast parsing
and processing of JSON data in a scalable fashion [11], combined
with the possibility to write extensions like user-defined functions,
custom indices, and support of additional data formats and I/O rou-
tines, provided in plain Python. Note that such extensions should be
employed only if the core functionality of JODA does not support
the required functionality as unnecessary calls of single-threaded
Python code are expected to be slower than native JODA routines.

2 CORE ARCHITECTURE AND MODULES
JODA [10] is an open-source, lightweight, multi-threaded JSON
document processor, designed to ease data pre-processing. It has
demonstrated superior performance for iterative query workloads
compared to MongoDB, PostgreSQL, Spark, and JQ [11].

We fully decomposed JODA into a set of independent modules
or tasks. Each task is defined as a class that can be executed, given
an input queue, an output queue, or both. Depending on the query,
tasks are added into a query execution pipelinewhere compatible
tasks are connected via I/O queues. The scheduler then executes
instances of each task using all available or a configured number
of CPU cores. A task may limit the number of instances that can
be executed in parallel. For example, a task that reads data from a
file system may limit the number of instances to one. A task may
stop its execution when the input queue and the task are finished,
the output queue is full (stalled), or the input queue is temporarily
empty (starved). Stalled and starved tasks are restarted at a later
time by the scheduler. Moving from a static query planner calling
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hard-coded functions to a dynamic query planner based on tasks
greatly improved flexibility. Based on user queries and optimization
rules, tasks can now be added, replaced, reordered, or removed.

While the data being transmitted between tasks can be of dif-
ferent formats, JODA mainly uses containers as atomic units of
data. A container bundles multiple JSON documents and supple-
mentary data structures like (cracking) indices, query caches, and
data synopses. This enables an (almost) entirely lock-free execution
of queries as the documents are passed through the pipeline with-
out requiring supporting centralized data. Listing 1 demonstrates a
JODA query using JODA native functions, user-defined function
for sentiment analysis and a customized PostgreSQL export.

Within the tasks that interact with specific parts of the docu-
ments, like filtering, transforming, and aggregating, we use values
as interfaces to the data. A value may be a simple pointer to a part
of the document or a function with parameters that uses inputs to
calculate a new value. All values in JODA are also implemented
as independent classes being loaded and dynamically added to the
internal query processing. They define their output type, howmany
parameters of which type they expect, and provide a function that
calculates the result, given a list of parameters. For instance, a value
calculating the length of the string defines its return type as int and
expects one parameter of type string. With JODA being decom-
posed into independent modules that are scheduled and connected
based on rules, we can easily extend the system. For instance, a fil-
ter task can now be added—and automatically connected—to every
other task that returns a container.

This enables the user to add new tasks to the system without
understanding or changing the core code. Unlike previous work,
through the modularized architecture, JODA allows the substitution
of every component of the systemwhilemaintaining the unmatched
fast parsing and processing of JSON documents.

2.1 User-Defined Modules
Modules enable users to extend the system. A module is a single
script file that can be loaded into JODA to provide some sort of
functionality. It has to provide specific functions and variables de-
pending on the feature it implements. We support the following
types of modules: (1) Import - Connects the processor to new data
sources that may previously not be supported. (2) Export - Exports
JSON documents into a user-supplied format or system. (3) Index -
Implements a new index for improving the filter performance of
JODA. (4) Agg - Supplies a new aggregation function that uses a
set of data to compute a single result. (5) Value - A typical user-de-
fined-function as known from other database systems. It provides
a single JSON value, given one or multiple parameters.

A ModuleRegistry is used that organizes a set of modules, de-
pending on the task to be solved. When a user supplies a new
module, the registry loads the given script and infers the type of
the module by the given functions. The module can be used when
querying until the user deregisters the module. The registry stores
a mapping of module names to script location such that the query
pipeline can find and invoke it. Internally, each module initializes a
task or value class which is stored in the registry.

During query parsing, the registry is accessed to find the user-
supplied module if an aggregation or a value function is referenced

but not found in JODA’s native function list. The value created from
the module is embedded into the internal query representation.
During query execution, the module is then invoked to compute
the result. Similarly, if the query contains an unknown import or
export statement, the registry is checked for an import or export
task to be added to the query pipeline. Indices form a special case, as
they are not directly referenced in queries but chosen by the query
planner. All internal and user-supplied indices are collected during
query planning, and the planner then chooses the best index using
an estimator given by the index. Given a query, the internal index
data, and a container, the index estimates how many documents
have to be reevaluated with the actual predicate if it is executed.

2.2 Connecting Scripts and System
A major aspect of executing user-supplied code is to enable an
efficient and versatile communication between scripts and the core
system itself. In JODA, data is stored internally as a dynamic in-
memory JSON data structure. As most languages have some kind
of support for JSON data or at least have third-party libraries that
provide such support, it would be possible to translate the internal
structure back into a JSON string-representation and pass it to
the user-supplied scripts. Then a language-specific function can
parse and interpret the JSON data. However, translating and parsing
such a document would cause significant overhead, especially if the
query deals with large amounts of documents. Hence, it is preferable
to immediately translate the internal data structure into a language-
specific one. Before a user function is executed, the system will
initialize a variable in the chosen language environment and call
the translation function of the implemented language.

As we use Python to write modules, we decided to map JSON
values into their Python-native counterpart by traversing the JSON
document depth-first. Basic data types like integer, float, null,
Boolean, and string are directly initialized in the Python environ-
ment. The composite array can also be directly converted to JSON,
as Python supports arrays with heterogeneous data types. Every
JSON object is converted into a Python dict. The functions in the
user-supplied script are then called with the translated variables
as parameters. The potential return values are translated back to
the JSON format using the inverse mapping of the previous step.
Most language APIs return a handle to the internal result, which
is translated by the system using the language-specific translate
function. As next, the language-specific result is uninitialized, and
the translated value is passed on to the internal query engine.

3 SAMPLE USE CASES
3.1 User-Defined Functions
JODA can be extended with user-defined functions that can be
used during querying. To supply the extension, a script following a
predefined template needs to be provided. We distinguish between
two different types of extensions, per record and for a collection of
records. For the per-record extension, the user needs to implement
the method get_value. For a feature that operates on a collection of
records, the user has to implement four functions. Initializations are
done in init_state. The function aggregate is executed over the
individual JSON partition assigned to different cores. The aggrega-
tion happens per-tuple with an aggregator storing the intermediate
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result. Merging of the per partition results is done in merge, and the
final result is computed in finalize. To extend JODA, we imple-
mented language detection, sentiment analysis, training and
evaluation of a learned model, and computation of number
statistics as extensions in Python.

Certain functions are common in specific languages and thus
incorporated in advanced libraries. By using them, one can avoid
recreating the same functionality in the native language of the used
system. Examples include machine learning libraries, i.e., language
detectors or sentiment analyzers. Enabling the loading of such a
model in JODA will produce the needed results with minimal effort.
model = fasttext.load_model(PRETRAINED_MODEL_PATH)

def get_value(arg1):

return model.predict(arg1).split('__label__ ')[1]

Listing 2: Language identification in Python

A script for extending JODA with language classification utilizing
the fastText [8] language classifier is shown in Listing 2. The regis-
tered function (LANG), can be used directly in the query language:
LOAD Twitter AS ('/t':'/text'),('/lang':{LANG('/t'));

As one example of an extension that operates on a collection of
records, we implemented the computation of simple statistics such
as average over a given attribute in Python (Listing 3).
def aggregate(state , num):

return [state [0]+num , state [1]+1]

def merge(state , other):

return [state [0]+ other[0], state [1]+ other [1]]

def finalize(state):

return (state [0] / state[1], state[0], state [1])

def init_state ():

return [0, 0]

Listing 3: Statistics computation in Python

Adding new capabilities to JODA can also simplify the handling
and improve the performance of existing code. For example, for
training a machine-learning model where the data is too large to be
stored in memory, the user will first need to load the data by taking
only the relevant parts for the approach and perform the required
pre-processing. However, JODA already provides an efficient mech-
anism to load and process data in batches. We consider training
a Stochastic Gradient Descent (SGD) Classifier, following the
extension template working over a collection of records. In the
init_state method, the model is initialized. If a model exists, it is
loaded for the current JSON partition. The input records are added
to the training batch in the aggregatemethod. If the batch reaches
the predefined size, the training of the model is invoked. The merge
method is necessary for considering remaining documents from
the covered JSON partition. These documents will be added to the
current data batch. In the finalize method, once the remaining
documents are used for training, the model will be saved. To use
the trained model, we realize the template for extension over single
records. Hence, in the get_value method, we use the model for
predicting over the input records. Native JODA features are used
to filter, clean, and scale the dataset before training the model.

3.2 Replacement and Augmentation
JODA also allows replacement of data structures and query process-
ing behavior. Consider the case of replacing existing membership

indices with more efficient ones. Often this warrants modification
of the system code, specifically where such structures are tightly
bound with the system. In JODA, one has to provide a replacement
script where the implementation logic will be realized through five
methods: The init_index method initializes the index with a per-
sistent state. The method estimate_usage estimates the remaining
work after a predicate from the query has been evaluated on the
index. For each container the execute_state function is called,
which may return a filtered document set, using only the state of
the index. If this is not possible, and the actual contents are needed,
None is returned, and the system calls the execute_docs method
to determine which of the given documents fulfill the predicate.
The method improve_index updates the index with the final query
results if they are suitable for the index. As a proof-of-concept, we
realized a Bloom filter and a query cache. The module for replacing
an existing index with a query cache is depicted in Listing 4.
def estimate_usage(predicate , state):

return 0 if predicate in state else None

def execute_state(predicate , state):

return (state[predicate], True)

def execute_docs(predicate , docs , state):

return None

def improve_index(predicate , state , doc_index):

state[predicate] = doc_index

def init_index ():

return dict()

Listing 4: Query cache in Python

This feature can be used to implement domain-specific indices
that are too specific to be implemented in a general-purpose data
processor. For example, if the user works with geospatial data, one
can implement a spatial index that is optimized for the data set.

3.3 Customized Data Import and Export
Consider the case where data is distributed over multiple files or
systems, e.g., a company employs a relational database of customers
and sales data, a key-value store for online shopping carts, and local
CSV files of access logs. Joint data processing over such data sources
is a tedious task and requires human-involved pre-processing, be-
fore the system of choice is able to execute the actual query. A
solution to this problem can be wishful thinking—to hope that the
developers add support for the required data. A more realistic so-
lution is to have the system provide simple means to extend the
import and export mechanisms. For many use cases, it is enough to
let the user specify how the data has to be transformed, read, and
written.
def init(param):

return <State >

def set_next(state , data):

export(transform(data))

def finalize(state):

pass

Listing 5: Data export module interface

Listing 5 shows our suggestion for a simple interface supporting
user-given export tasks. Like import modules, export modules work
with an internal state that can optionally represent a (stateful) re-
source to be used, like a file handle or an open database connection.
As a proof-of-concept, we implemented a CSV file and a PostgreSQL
table reader and writer.

4020



4 DEMONSTRATION DESCRIPTION
The goal of the system demonstration is to motivate the need for
extensible data processors and to show that custom extensions can
be plugged into JODA quite easily. The demonstration is centered
around performing data analysis tasks over Twitter tweets using
an external library for sentiment analysis. To ease the process of
adding user-defined modules, we provide a user-interface through
which the modules can be easily uploaded as scripts (Figure 1 part
1) and used as functions when querying (Figure 1 part 2).

Adding Functions: First, using the visual interface of JODA,
through a Python script we will automatically add the current date
and time to each tweet to keep track of the time of import. The
Python module supplying the custom datetime value will be briefly
explained, and then imported into the JODA data processor. The
added module will be utilized by a sample query through which the
value will be added to every document. We will additionally present
a more complex module, which imports a third-party sentiment-
analysis library. The module implementation will be showcased,
and then used in JODA to add a sentiment to each tweet. We will
analyze the performance of this sentiment analysis, by comparing
it to a native Python implementation.

Adding Aggregates: Using the same process, we will illustrate
how to execute custom aggregation functions in JODA. Employing
the previously introduced sentiment-analysis library we will write
an aggregation function, which calculates the average sentiment of
a group of texts. The user will be able to evaluate the usefulness of
the module by using it in a query, such as the one that calculates
the average sentiment of all tweets per user, and inspect the results
through the visual interface. In addition, we will display a common
scenario when working with geo data. The module will calculate
the minimum bounding rectangle of tweet coordinates.

Connecting Data Sources: We will further demonstrate how
JODA can be extended with a data export module. This module
will show the ease in which JODA can be extended to enable the
user to write JSON data to a specified PostgreSQL table. In our
presentation, we will filter out all users that have an aggregated
positive sentiment and add them to a PostgreSQL database.

5 RELATEDWORK
Gupta and Ramachandra [5] investigate the execution of procedural
extensions in an RDBMS. Friedman et al. [4] present a framework
to implement user-defined functions where they can be included
as SQL sub-queries. Crotty et al. [2] describe an architecture that
automatically compiles workflows of user-defined functions with
complex operations. Hellerstein et al. [6] present an open-source li-
brary incorporating SQL-based algorithms for ML and data mining
run within a database engine. Passing et al. [9] assess the inclusion
of data analytics, and allow integration of analytical operators di-
rectly in SQL, using novel user-defined lambda expressions. Schüle
et al. [12] use the PostgreSQL JIT compilation to allow user-written
lambda functions and they demonstrate combining them with data
mining algorithms. Others [3, 7] allow for interpretation of proce-
dural programs as subqueries by an SQL engine, by transforming
them to recursive CTEs. Sichert and Neumann [14] present user-
defined operators for the inclusion of algorithms from an arbitrary
programming language into an existing DBMS. Boehm et al. [1]

Figure 1: JODA’s interface for adding external functionality

introduce an open-source system for end-to-end execution of ML
models. Schüle et al. [13] use database systems for data inspec-
tion providing support for end-to-end pipelines including model
training and testing. Tuplex [15] focuses on producing optimized
end-to-end code for pipelines with Python UDFs. In an earlier JODA
demonstration [10], we presented the core concepts of the approach,
particularly the query language and runtime performance.
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