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ABSTRACT

Visual Graph Query Interfaces (VQIs) empower non-programmers

to query graph data by constructing visual queries intuitively. De-

vising efficient technologies in Graph Query Engines (GQEs) for

interactive search and exploration has also been studied for years.

However, these two vibrant scientific fields are traditionally inde-

pendent of each other, causing a vast barrier for users who wish to

explore the full-stack operations of graph querying. In this demon-

stration, we propose a novel VQI system built upon Neo4j called

VisualNeo that facilities an efficient subgraph query in large graph

databases. VisualNeo inherits several advanced features from re-

cent advanced VQIs, which include the data-driven gui design and

canned pattern generation. Additionally, it embodies a database

manager module in order that users can connect to generic Neo4j

databases. It performs query processing through the Neo4j driver

and provides an aesthetic query result exploration.
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1 INTRODUCTION

Visual graph query interfaces (VQI) enable non-experts to compose

graph queries effortlessly without writing any textual query lan-

guage, which broadens the usability of graph querying frameworks.

Consequently, numerous academic and commercial frameworks for

querying large graph databases adopt VQIs for composing subgraph

queries. For example, PubChem [15] provides a VQI for researchers

in the chemistry domain to perform chemical compound searches.
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The gui of PubChem [15] includes a label panel containing a set

of chemical elements and a pattern panel with carboxyl groups, a

benzene ring, etc. However, the contents of the panel are typically

chosen manually by domain experts.

To address this challenge, data-driven VQI design has attracted

considerable attention in recent years [2, 5, 6, 11]. Given a graph

database 𝐷 , data-driven VQIs automatically populate panels (e.g.,

label panel, pattern panel) of the gui from 𝐷 . While the label and

property panels can be populated without many difficulties by

traversing the underlying databases, selecting useful patterns is an

NP-hard problem [4, 8, 9]. A few algorithms have been proposed to

conduct the selection of these patterns [3, 4]. TATTOO framework

[4] performs data-driven selection of canned patterns for large

networks while TED framework [3] works for a large collection of

small- or medium-size data graphs. Several data-driven VQI systems

have been developed as well [2, 11].

Despite the amount of progress made in the development of

data-driven VQIs, a potential direction is overlooked, which is the

connection between VQI and Graph Query Engines (GQEs). A GQE

acts as an abstraction layer between the user application and the

database. It receives database operations in the form of query lan-

guage and outputs specific data to the user application. Therefore,

VQI complements GQE in the way that it provides an easy-to-use in-

terface for non-professional users to construct their queries, which

are subsequently sent to GQE for processing and result exploration.

Traditional data-driven VQI design focus on efficient subgraph

query processing [12] and data-driven selection of canned patterns

[2, 11], but ignores the potential of GQEs in terms of abilities to

process queries.

In this demonstration, we present a novel data-driven visual

subgraph query system called VisualNeo. The system is built upon

Neo4j [14], a popular graph query engine. It possesses a Database

Manager module with which users can connect to local or remote

Neo4j graph databases by providing authentication information. It

supports generic Cypher query processing via Neo4j driver, which

includes nodes, relationships, labels, and properties. Therefore, Vi-

sualNeo builds a bridge between VQI and GQE, introducing a new

direction for these two scientific fields.
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Figure 1: The architecture of VisualNeo.

VisualNeo also inherits several state-of-the-art features from

recent data-driven VQI designs. First, it generates a set of diversified

patterns called TED patterns (i.e., Top-k Edge-Diversified patterns)

[3], which summarize the characteristics of the underlying database

and thus facilitate the query formulation. In particular, TED patterns

have a theoretical guarantee of the edge coverage approximation

ratio and its generation process requires limited memory. Second,

it embodies an aesthetic query results explorer which adopts the

Fruchterman-Reingold algorithm [7] to display the retrieved results.

VisualNeo embraces innovative features as well. To ensure user-

friendliness, VisualNeo provides adequate support during the query

formulation process. It displays metadata information of the under-

lying database and provides real-time query translation to guide

users to perform exploratory searches where users are unsure about

their initial goals or ways to achieve their goals.

2 SYSTEM ARCHITECTURE

Figure 1 shows the architecture of VisualNeo. It consists of five

modules, Database Manager, Pattern Recommender, Query Construc-

tor, Query Handler, and Result Explorer. The Database Manager

module first establishes a connection to a graph database server

with user authentications and displays its metadata obtained by the

Query Handler module. The Query Handler module also exports

the whole database such that the Pattern Recommender module

can then utilize METIS [13] (for graph partitioning) and TED [3]

(for pattern generation) to produce diversified and high-coverage

patterns. With the aid of these two modules, the Query Constructor

module enables the user to form visual query graphs effortlessly.

To integrate with the GQE (i.e., Neo4j), the query graphs are further

translated into formal query languages and fed to the Query Han-

dler module. Next, the Query Handler module instructs the GQE to

execute read transactions and retrieve the desired results. Finally,

the Result Explorer module converts the unprocessed results into

navigable visual graphs for the user to investigate.

Database Manager module. This module establishes a connec-

tion to a graph database server and displays its metadata. When the

user clicks the "Load Database" button shown in Figure 2 and spec-

ifies the authentication information, the Database Manager module

sends a connection request to the server. VisualNeo is compatible

with all standard Neo4j servers and only requires read authority.

Figure 2: The Query Constructor panel.

Figure 3: The Database Info panel.

After connection, the Query Handler module automatically exe-

cutes a sequence of queries to retrieve database metadata, including

node/relationship counts, node/relationship labels, node/relation-

ship property keys & data types, and the schema graph that defines

the topology among different classes of nodes and relationships.

These queries either directly access the Neo4j count store or invoke

database procedures. Therefore, such searches have𝑂 (1) time com-

plexity for each class/property. The metadata is then displayed in

the Database Information panel (Panel G) shown in Figure 3 and

is also used to facilitate query formulation by providing label and

property constraints in the Query Constructor module.

Pattern Recommender module. This module generates TED

patterns and populates the canned pattern panel when the user

clicks the łGenerate Patternž button shown in Figure 2 and specifies

the constraints of desired patterns.

Definition 2.1 (Top-k Edge-Diversified Patterns (TEDpatterns)).

Given a graph𝐺 and an integer 𝑘 , the top-𝑘 edge-diversified patterns

is the set of 𝑘 connected subgraphs P = {𝑝1, 𝑝2, . . . , 𝑝𝑖 , . . . 𝑝𝑘 } in 𝐺

such that the total coverage of P over 𝐺 (denoted by |𝐶𝑜𝑣 (P,𝐺) |),

i.e., | ∪𝑖 𝐶𝑜𝑣 (𝑝𝑖 ,𝐺) |, is maximized, where 𝐶𝑜𝑣 (𝑝𝑖 ,𝐺) is the cover set

of 𝑝𝑖 over 𝐺 ( i.e., the covered edges of 𝑝𝑖 over 𝐺).

The Pattern Recommender module consists of two components:

METIS graph partitioning [13] and TED pattern generation [3].

METIS partitions the large network into a large collection of small-

or medium-sized graphs (e.g., tens of nodes per graph). Next, the

TED algorithm greedily searches for a set of patterns with maxi-

mum edge coverage. Given a set of partitions 𝐷 = {𝐺1,𝐺2, ...𝐺𝑛}
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Figure 4: Indistinguishable patterns without node isomor-

phism (A and B) or relationship isomorphism (A and C).

and an integer 𝑘 , the TED algorithm first enumerates all 1-sized

subgraphs (i.e., edges) and appends them into the set P. Then, an

iterative process is performed to enumerate 𝜏-sized (𝜏 ≥ 2) sub-

graphs by performing the right-most extension [16] and appends

them into the set P. When the size of P is 𝑘 and a new subgraph 𝑔

is generated, a swapping-based process is developed to determine if

𝑔 should be swapped into P. In particular, it first calculates the loss

score (i.e., decreased coverage if 𝑝 is swapped out) for 𝑝 ∈ P and

then records the pattern 𝑝𝑡 and its pattern score Score𝐿 such that

𝑝𝑡 has the minimum loss score. The benefit score (i.e., increased

coverage if 𝑔 is swapped in) Score𝐵 of 𝑔 is also recorded. The sub-

graph 𝑔 is considered as a promising candidate and swapped into

P if Score𝐵 > (1 + 𝛼)Score𝐿 + (1 − 𝛼) |𝐶𝑜𝑣 (P, 𝐷) |/𝑘 is satisfied,

where 𝛼 ∈ [0, 1] is a swapping threshold for balancing loss score

Score𝐿 and the average coverage of patterns in P. The approxi-

mation ratio (w.r.t., total coverage) of patterns P is bounded by

|𝐶𝑜𝑣 (P, 𝐷) |/|𝐶𝑜𝑣 (P𝑜𝑝𝑡 , 𝐷) | ≥
1

4
where P𝑜𝑝𝑡 is the optimal solu-

tion, which can be obtained by enumerating all subgraphs and

generating all possible combinations of 𝑘 subgraphs.

Query Constructor module. This module provides the user

with a editor for visual query formulation and subsequently trans-

lates the visual graphs into Cypher queries. As shown in Figure 2,

it comprises five components: the Graph Editor panel (Panel A), the

Query View panel (Panel B), the Pattern View panel (Panel C), and

the Element Constraint panel (Panel D).

• Elements can be selected/added/removed in Panel A using

mouse-keyboard operations, with navigation and zoom

adjustment possible through dragging and scrolling.

• Panel B provides a real-time translation of the visual graphs

in Panel A to Cypher statements.

• Panel C displays TED patterns generated by the Pattern

Recommender module and basic patterns applicable to uni-

versal databases, which can be added to Panel A through

drag-over operations.

• Elements’ labels and properties can be viewed and edited

in Panel D.

• Upon completing the graph, clicking the "Exact Search"

button in Figure 2 sends the translated Cypher query to the

Query Handler module.

Following each step of building a visual query, the resulting

query is automatically translated into a formal Cypher query by

traversing all relevant relationships. For each relationship, the trans-

lator generates a corresponding line in the MATCH clause in the form

of (startNode)-[thisRelation]-(endNode). Nevertheless, this

approach is susceptible to isomorphic issue, meaning that the same

node/relationship may be returned more than once for each match-

ing record. For instance, if a user creates a visual query in the form

of (n2)-[r1]-(n1)-[r2]-(n3) (Pattern A in Figure 4), it may re-

sult in a mismatch with Patterns B or C if the translated query lacks

Figure 5: The Query Result panel.

appropriate isomorphic constraints. This highlights the need for

additional measures to ensure accurate and reliable query transla-

tion. In practice, Neo4j Cypher utilizes relationship isomorphism

for path matching, thereby preventing the same relationship from

being returned more than once within a single result record. How-

ever, it does not assert node isomorphism. While this matching

mechanism may assist programmers in managing complex queries,

inexperienced users may be misled, as demonstrated by the fact

that Pattern B in Figure 4 is considered a valid match for Pattern

A. Most existing Cypher-oriented VQI (e.g., Popoto.js [17]), do not

handle node isomorphism because they do not connect to a GQE

as a backend. To address this issue, we add additional inequality

constraints on each node pair in the WHERE clause to ensure node iso-

morphism. To further enhance query efficiency, we eliminate trivial

inequalities before feeding them into the constraints. For instance,

if two nodes have distinct labels or properties, the corresponding

inequality can be removed.

Query Handler module. This module’s features include exe-

cuting Cypher queries via the Neo4j driver, receiving query results,

extracting desired data from returned records, converting raw data

into Java-typed data, and boxing data into proper containers for

further processing. All sessions and transactions are read-only to

avoid modification and undesired authentication errors. Besides,

consecutive transactions (e.g., metadata queries) are bundled into a

single session to enhance efficiency.

Result Explorer Module This module is responsible for pro-

cessing query results and presenting them in an aesthetically pleas-

ing and navigable manner. It has two components: Panel E displays

the result graph, while Panel F lists all matching records. With a

click on an item in Panel F, Panel E immediately navigates to the

corresponding pattern and highlights it.

In cases where the query involves nodes with high centrality or

relationships with high betweenness, it is likely that the result con-

tain duplicate elements. This occurrence of redundant information

can cause high data transfer traffic and memory cost at the local

device. To avoid such inefficiencies, we generate an ID reference list

with Cypher for each query and only keep the information of dis-

tinct elements. This approach ensures that the final result is devoid

of any information loss, and simultaneously prevent unnecessary

data transfer or memory usage at the local device.

To arrange the results in an orderly manner, we employ a modi-

fied version of the Fruchterman-Reingold (FR) force-directed graph
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layout algorithm [7]. First, we prune self-loops and retain only

one relationship between each unordered pair of nodes to avoid

unnecessary computations and excessive proximity between heav-

ily connected nodes. Furthermore, we specify a constant optimal

distance between connected node pairs and remove boundaries

around the graph to enhance visual effects and reduce computation

cost. Additionally, we establish a maximum distance on repulsive

forces to prevent disjoint subgraphs from repelling each other to in-

finity. Finally, we center the centroid of all nodes at the origin after

the force simulation to cancel the universal offset. The additional

𝑂 ( |𝑉 |) computation cost for computing the centroid once for each

graph is negligible compared to the overall 𝑂 (𝐾 ( |𝑉 |2 + |𝐸 |)) time

complexity, where 𝐺 = (𝑉 , 𝐸) is the graph and 𝐾 is the number of

simulation iterations.

3 RELATED SYSTEMS AND NOVELTY

Graph Query Engines (GQEs) such as Neo4j [14] assume that a user

has programming and debugging expertise to formulate queries cor-

rectly with query languages (e.g.,Cypher). This assumptionmakes it

harder for non-programmers to take advantage of a graph querying

framework. Although existing Visual Query Interfaces (VQIs) such

as PLAYPEN [2] andVINCENT [11] can alleviate this problem by en-

abling users to visually formulate queries, they ignore the potential

of GQEs in terms of abilities to process queries. In contrast, Visu-

alNeo has the following advantages. First, VisualNeo supports

not only visual query formulation but also efficient graph query

processing by leveraging the strength of GQEs. That is, it bridges

the gap between VQIs and GQEs. Second, the patterns generated for

visual query formulation can achieve a guaranteed approximation

ratio of edge coverage and the generation process requires limited

memory. Third, in contrast to VINCENT’s hierarchical layout, Visu-

alNeo utilizes the Fruchterman-Reingold algorithm [7] to display a

force-directed graph drawing, which better suits general databases

whose structure is more uncertain. Lastly, VisualNeo supports

queries in an attributed graph and query translation, while both

PLAYPEN and VINCENT only support queries in a simple graph.

Existing VQI libraries for Neo4j such as Popotojs [17] and tools

such as Graphileon [18] only support iterative constructions of

edges one-at-a-time (i.e., edge-at-a-time mode), while VisualNeo

enables a user to construct multiple nodes and edges in a subgraph

query by performing a single click-and-drag action (i.e., pattern-at-

a-time mode) and thus facilitate efficient query formulations.

4 DEMONSTRATION OVERVIEW

VisualNeo is implemented in Java JDK 17 and JavaFX 19. In the

demonstration, it will be loaded with a few real-world databases

(e.g., Women’s World Cup 2019) from Neo4j Sandbox [1]. Example

query graphs that can be constructed using patterns will be pre-

sented for formulation. Users can write their own ad hoc queries

through our visual query editor as well. The key objective of the

demonstration is to lead users through the full-stack operations

of graph querying with the aid of data-driven VQIs and GQEs. In

particular, it enables the audience to experience the following:

Scenario 1: Database loading and metadata information

display. The łLoad Databasež button shown in Figure 2 enables the

audience to connect to local or remote databases. After the database

is loaded, the metadata information can be viewed in Figure 3. Users

can obtain a macroscopic understanding of the underlying database

by looking into the displayed node/relationship label table and

schema graph.

Scenario 2: Data-driven visual query formulation. Through

the łGenerate Patternž button shown in Figure 2, users can set the

hyperparameters for TED frameworks and launch the generation of

the TED patterns. The TED patterns will then be displayed in Panel

C. In the process of query formulation, users can create nodes/rela-

tionships directly or drag-and-drop basic patterns or TED patterns

from Panel C.

Scenario 3: Real-time query translation. VisualNeo sup-

ports real-time query translation for users’ reference. In the process

of visual query formulation, users can get familiar with formal

query languages by observing the translated Cypher query (see

Panel B) of the graph query (see Panel A). Consequently, users are

able to construct their desired queries effortlessly.

Scenario 4: Aesthetic query result exploration. After users

click the łExact Searchž button shown in Figure 2, VisualNeo will

start the query processing, display the result graphs in a force-

directed way in Panel E, and enable users to iterate through the

query results using matching records in Panel F.

A demonstration video is publicly available at https://youtu.be/

th0LqEK-S3s.
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