
AQUA: Automatic CollaborativeQuery Processing in Analytical
Database

Yuchen Peng
Zhejiang University

zjupengyc@zju.edu.cn

Ke Chen∗
Zhejiang University
chenk@zju.edu.cn

Lidan Shou
Zhejiang University
should@zju.edu.cn

Dawei Jiang
Zhejiang University
jiangdw@zju.edu.cn

Gang Chen
Zhejiang University

cg@zju.edu.cn

ABSTRACT
Data analysts nowadays are keen to have analytical capabilities
involving deep learning (DL). Collaborative queries, which employ
relational operations to process structured data and DL models to
process unstructured data, provide a powerful facility for DL-based
in-database analysis. The classical approach to support collabora-
tive queries in relational databases is to integrate DL models with
user-defined functions (UDFs) in a general-purpose language (e.g.,
C++) to process unstructured data. This approach suffers from sub-
optimal performance as the opaque UDFs preclude the generation
of an optimal query plan. A recent work, DL2SQL, addresses the
problem of collaborative query optimization by first converting DL
computations into SQL subqueries and then using a classical rela-
tional query optimizer to optimize the entire collaborative query.
However, the DL2SQL approach compromises usability by requiring
data analysts to manually manage DL-related data and tune query
performance. To this end, this paper introduces AQUA, an analyti-
cal database designed for efficient collaborative query processing.
Built on DL2SQL, AQUA automates translations from collaborative
queries into SQL queries. To enhance usability, AQUA introduces
two techniques: 1) a declarative scheme for DL-related data man-
agement, and 2) DL-specific optimizations for collaborative query
processing, eliminating the burden of manual data management and
performance tuning from the data analysts. We demonstrate the
key contributions of AQUA via a web APP that allows the audience
to perform collaborative queries on the CIFAR-10 dataset.

PVLDB Reference Format:
Yuchen Peng, Ke Chen, Lidan Shou, Dawei Jiang, and Gang Chen. AQUA:
Automatic Collaborative Query Processing in Analytical Database. PVLDB,
16(12): 4006 - 4009, 2023.
doi:10.14778/3611540.3611607

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dilab-zju/aqua.

∗Ke Chen is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611607

1 INTRODUCTION
Due to the popularity of deep learning (DL) in many applications
such as image classification and natural language processing [6],
there is an increasing interest in the database community to develop
collaborative query processing techniques that extend the query
processing capabilities of relational databases by integrating DL
models to process unstructured data. We define a collaborative
query as a query that employs relational operations to process
structured data and DL models to process unstructured data. The
classical collaborative query processing technique, known as the
loose-integration approach [3–5], adopts user-defined functions
(UDFs) to integrate DLmodels. Suppose we have a CIFAR-10 dataset
where each record is an image of a single object (e.g., bird, cat). Using
the loose-integration approach, we store the dataset in a CIFAR
table where structured information such as image creation time
is stored in a standard column and the raw binary image data is
stored in a special BLOB (Binary Large Object) column. To derive
the count of each red object in the image created in 2022, the data
analyst may submit the following collaborative query 𝑄1:

SELECT Object(C.image) as o, count(C.id) as c
FROM CIFAR as C
WHERE C.createDate >= `2022-01-01`

and C.createDate <= `2022-12-31`
and Color(C.image) = `red`

GROUP BY o

In 𝑄1, Object() and Color() are UDFs implemented in C++,
which employ pre-trained DL models for the corresponding classifi-
cation tasks. The loose-integration approach is easy to use. However,
its query performance tends to be sub-optimal. This is because C++
UDFs are opaque to the database engine. As a result, the query
optimizer cannot estimate the execution cost of these UDFs and
generate optimized query plans for the collaborative query.

DL2SQL[6] is a recent work to address the optimization chal-
lenges introduced by opaque UDFs. The main idea is that, instead of
storing raw image data in BLOB columns and using opaque UDFs
to integrate DL models, DL2SQL retrieves raw image data from
the CIFAR master table, transforms these raw data into features
that can be processed by the DL model, and stores the features in a
separate relational table (called a feature table). Similarly, DL2SQL
stores the DL model’s parameters in a set of parameter tables. With
the feature and parameter tables in hand, the computation of the
DL model (e.g., convolution) can be translated into standard sub-
queries on these tables. Finally, DL2SQL replaces the UDFs with the

4006

https://www.acm.org/publications/policies/artifact-review-and-badging-current


resulting sub-queries and converts the entire collaborative query
into a standard SQL query without UDFs for query optimization.

While DL2SQL tackles the query optimization challenge inher-
ent to the loose-integration approach, it compromises on usability,
a key strength of the loose-integration approach. First, DL2SQL
requires the data analysts to manage by hand the relational fea-
ture tables and parameter tables. For instance, a single pre-trained
ResNet model may require 152 tables to be created and manipulated,
not considering the additional model variants fine-tuned toward
the task-specific datasets. Although scripts may aid in generating
these tables, it is difficult, if not impossible, to completely eliminate
the burden of managing DL-related data without the support of a
database engine. Second, to achieve the desired query performance,
manual performance tuning is still essential, as current database
optimizers are not designed specifically for DL computations. As
an example, operator fusion, a common technique employed in
machine learning (ML) to speed up inference by merging consecu-
tive computations (e.g., convolution and its subsequent activation
computation), is not implemented by any open-source databases
we explored. Therefore, data analysts must tune SQL queries to
implement such optimizations, which is a tedious task.

This paper presents AQUA, a high-performance analytical data-
base for efficient collaborative query processing. AQUA builds upon
DL2SQL and improves its usability via two extensions. First, it in-
troduces a declarative scheme for DL-related data management. We
represent a dataset consisting of structured and unstructured data
as an instance of a collaborative relation, where structured data is
stored under normal relational columns and unstructured data is
stored in virtual columns. Data loaded into the virtual columns are
automatically converted into features and stored in a separate table.
Similarly, to handle unstructured data, the data analyst declares
a user-defined function (called an inference function) to wrap a
DL model. Unlike DL2SQL, our system stores features and model
parameters as arrays, allowing tensor computations directly in the
database, which is more efficient in terms of both storage and com-
putation. Our novel DL management scheme completely eliminates
the need to manually manage DL-related data.

Furthermore, we incorporate specific optimizations for collabo-
rative query processing to eliminate the requirement for manual
performance tuning. Our optimization consists of two parts. In the
offline part, we accelerate feature data access by tensor compres-
sion and optimize the DL computational graph by operator fusion.
During the online phase, we utilize a DL-aware optimizer that uses
a novel cost model to generate optimized query plans.

In the rest of the paper, we present the design and architecture in
Section 2, leaving the implementation details and empirical studies
for a separate research paper. We demonstrate the main contribu-
tions of AQUA, including declarative DL data management and
collaborative query processing, in Section 3.

2 SYSTEM OVERVIEW
This section provides an overview of AQUA in the following aspects:
the foundations of collaborative query processing (Section 2.1),
the system architecture and workflow (Section 2.2), and the core
components of AQUA (Section 2.3).

2.1 Foundations
We now present our data model behind AQUA, and formulate the
concept of inference function and collaborative query.

Datamodel.Wemodel a collection of records where each record
contains both structured and unstructured information as an in-
stance of a collaborative relation. We will also call such a relation
as a collaborative table (or cTable for short).

A collaborative relation 𝐷 is a relation with 𝑛 > 1 attributes
𝐴1, · · · , 𝐴𝑛 , where each attribute𝐴𝑖 is a standard relational attribute
or an unstructured attribute. We further require 𝐷 to satisfy two
additional requirements: 1) a collaborative relation must have at
least one relational attribute, and 2) key constraints can only be
imposed on relational attributes. That is, unstructured attributes
cannot be part of the key or primary key of a collaborative relation.
Listing 1 shows how to create the cTable CIFAR in AQUA. Note
that the column image with data type jpeg is declared as virtual,
meaning that the image column is an unstructured column that
will be stored separately. For unstructured attributes, we currently
only support images. Future versions of AQUA will support other
unstructured data types, such as audio and text.

Listing 1: A cTable Example
CREATE cTable CIFAR(

id int ,
createDate date ,
image jpeg virtual
...

) ;

Inference Function. Operations on collaborative tables are
standard relational operations (e.g., projection, selection, and join).
We introduce inference functions to enable these relational op-
erations to process unstructured columns. An inference function

(called nUDF) is a scalar function 𝑓 : 𝑥
𝑀−−→ 𝑦 that takes as input a

value 𝑥 in an unstructured column and applies a DL model𝑀 on
𝑥 to produce a result string 𝑦 as output (called label of 𝑥). That is,
an inference function is a user-defined function that wraps a DL
model to process unstructured data. In AQUA, the DL model 𝑀 ,
supported in ONNX format, is produced by an external machine
learning system. Listing 2 shows how to create a nUDF Color()
from a DL model serialized in a file. A nUDF can be plugged into
any relational operator that accepts a scalar value as an argument
and enables that operator to handle unstructured columns.

Listing 2: A nUDF Example
CREATE INFERENCE FUNCTION Color(JPEG image)
FROM MODEL in file "cnn.onnx"

Collaborative Query. Utilizing inference functions, we formu-
late a collaborative query (CQ) as a relational expression, in which
at least one of the relational operators takes inference functions
within its arguments. Our CQ formulation is consistent with the
loose-integration approach. That is, query composition using our
approach provides the same usability as that approach. The query
𝑄1 in Section 1 is an example of a CQ query that is accepted by
AQUA. To process CQs, the query processing engine of AQUA au-
tomatically translates a CQ into an SQL query and optimizes it for
execution. Therefore, our approach obviates the need for manual
query translation and optimization.

4007



2.2 System Architecture
Figure 1 depicts the system architecture of the AQUA. To support
declarative DL data management and inference functions, we ex-
tend a relational database with three components: a model loader,
a data loader, and a nUDF Processor. We further enhance the tra-
ditional relational query processing module with two additional
components: an offline optimizer and an online optimizer for col-
laborative query optimization.

• Model Loader is a component for loading model parameters
into the array storage.

• Data Loader converts unstructured data into features and
stores the generated features in the array store.

• nUDF Processor handles the DL model of the nUDF and
transforms the computational graph of the DL model into
a series of relational algebraic expressions for further opti-
mizations.

• Offline Optimizer applies techniques such as tensor com-
pression and operator fusion to optimize the storage of
DL-related data and the process of tensor computations
generated by the nUDF processor.

• Online Optimizer employs a novel cost model for online
query processing.

Parser

Catalog

Storage
Manager

Model Loader

Query
Executor

Query
Processing

Data Loader

Query Optimizer

Offline 
Optimizer

nUDF
Processor

Online 
Optimizer ResultCollaborative 

Queries

Model

Data
AQUA

Figure 1: The Architecture of AQUA

2.3 Components
1) Model Loader. Acting as the entrance to manage DL models, the
Model Loader enables users to upload arbitrary pre-trained models.
We have integrated the ONNX Runtime[2] into AQUA to load DL
models expressed in ONNX (or any format convertible to ONNX [1]).
A serialized DL model comprises two parts: a computational graph
that orchestrates the inference computation and the parameters
in the model. We store the computational graph of the DL model
as metadata, while the parameters of the model are maintained
as tensor tables in an array store. We implement a compression
scheme for extremely sparse parameters and store the compressed
parameters within the tensor table.

2) Data Loader. The Data Loader manages DL-related data.With
this component, users can insert records containing unstructured
data efficiently. The Data Loader transforms unstructured data into
features and stores the resulting features in a separate array-store
table, preserving the original shape of the features. Compared to
DL2SQL’s approach of storing features in relational tables, our array
storage approach saves more than 10 times the storage space and
enables data transformation during query execution.

3) nUDF Processor. The nUDF Processor converts the DL com-
putational graph in an inference function into a series of relational
algebraic operations, including tensor computations implemented
by relational operators. To do so, the nUDF processor traverses the
computational graph of the DL model in topological order, which
is typically a directed acyclic graph (DAG). Throughout the traver-
sal, operations natively supported by the array store (e.g., tensor
multiplication) are transformed into tensor computation functions.
Unsupported operations are turned into relational algebraic expres-
sions. To speed up certain tensor computations, We further imple-
ment specific data transformation functions, such as an im2col()
function before convolution. This function extracts patches of the
input tensor and rearranges these patches into a new tensor for
efficient Generalised Matrix Multiplication (GeMM), providing a
6-fold improvement in processing performance compared to the
trivial joins of tables.

4) Offline Optimizer. The Offline Optimizer applies three tech-
niques (i.e., operator fusion, tensor fusion, and tensor compression)
to optimize the DL-related data storage and relational expressions
generated by the nUDF Processor. These techniques are briefly
described below:

Operator Fusion. We implement operator fusion in AQUA, a key
optimization in many state-of-the-art DL systems [7]. Operator
fusion merges two or more DL operators into a single operator,
allowing these operators to be executed together without any ad-
ditional data transmission. We apply pre-defined fusion patterns
(e.g. merging an activation operator into its preceding operator)
to the DL computational graph and rewrite the relational algebra
expressions for the subgraphs that match our fusion patterns.

Tensor Fusion.We adopt Tensor Fusion to combine a sequence
of tensor operations into a single one for improving data locality.
For example, in the DL model loaded in Listing 2, tensor computa-
tion with several consecutive multiplications on the input tensor
𝑖𝑛𝑝𝑢𝑡_𝑓𝑚 is formulated as 𝑖𝑛𝑝𝑢𝑡_𝑓𝑚 ×𝑇1 ×𝑇2 ×𝑇3, where 𝑇𝑖 is a
kernel tensor. The multiplication of the parameter tensors can be
fused into a single tensor 𝑇𝑓 𝑢𝑠𝑒𝑑 , thereby reducing intermediate
results and improving performance.

Tensor Compression. To save storage space and speed up the com-
putation of sparse tensors whose proportion of non-zero elements
is less than our pre-defined threshold, we perform tensor compres-
sion on these sparse tensors by storing only the non-zero elements
and corresponding indices in compressed sparse row (CSR) format
in the array storage.

5) Online Optimizer. The online optimizer leverages DL knowl-
edge to generate an optimal execution plan for complex CQs, stream-
lining the previously cumbersome tuning process. We employ a
cost-based optimization scheme to produce the optimized query
plan of a CQ for online query processing. The details of the pro-
posed cost model will be presented in a separate research paper.
Briefly, we perform parallelized execution for certain tensor op-
erations in a nUDF. We also combine relational operations in a
nUDF with relational operations outside the nUDF in the CQ for
optimization whenever possible. We further define collaborative
optimization hints considering the dependency between the nUDFs
and non-nUDF parts in a CQ. For example, if a nUDF is plugged
in the select operator, the corresponding wrapped operations will
be evaluated at last. After all the cost-based query transformations

4008



have been performed, we finally generate the optimized query plan
for execution.

(a) The nUDF Creation Interface

(b) Offline Query Optimization

(c) Online Collaborative Query Processing

Figure 2: AQUA User Interface

3 DEMONSTRATION
We have developed a Web application to demonstrate the main
contributions of AQUA. The interface of the Web application is
presented in Figure 2. We will invite the audience to create a nUDF,
compose collaborative queries, and participate in query optimiza-
tion. The demonstration is planned as follows.

Environment. The web application and AQUA are hosted on a
cloud server with 187GB of RAM, an NVIDIA Quadro P5000 with
16GB of graphics memory, and an Intel(R) Xeon(R) 2.10GHz 32-
core CPU. We will use the CIFAR-10 dataset and pre-trained image
classification DL models in our demonstration.

nUDF Creation.We demonstrate how to create a nUDF with
ease of use (Figure 2(a)). As a nUDF takes a value in an unstructured
column as input, we pre-load a cTable CIFAR containing image data.
By examining the cTable schema and samples, users can gain a clear
understanding of how a virtual image column is separately stored.
To utilize DL models, users only need to upload their pre-trained
models. The system can complete the model transformation, and
display the established tables in milliseconds. With existing models,
users simply provide a few necessary parameters, allowing the
system to complete the remaining work.

Offline Query Optimization. Our interactive system empow-
ers users to quickly conduct offline optimization on a nUDF (Figure
2(b)). A nUDF is selected, and the desired optimization techniques
are set to apply in a staged progression. With each optimization
step, the query operator graph is updated and presented to the user,
where each node represents a physical structure (e.g., parameter ta-
ble) or a relational operator. In particular, the changes compared to
the previous graph are highlighted, implying a simplified relational
algebra expression and reduced storage space for better query per-
formance. For a deeper understanding, the user can click on the
graph to view detailed information on the optimization process.

Online Collaborative Query Processing. The user can input a
collaborative query with only a few lines to complete their analyti-
cal task (Figure 2(c)). After online optimization and query execution,
the user can view the query plan produced by AQUA to understand
how the operators beneath a nUDF interact with other relational
operators. To evaluate our proposed collaborative query process-
ing approach, our system allows the user to input hand-written
DL2SQL queries in native SQL syntax. The performance metrics,
including the execution time and the code length, are also displayed.
In our approach, the query execution can be 5 times faster than the
manual codes. We demonstrate that our approach provides better
query performance, and significantly improves usability in terms
of query composition compared to DL2SQL. Overall, our system is
both cost-effective and convenient, and improves the productivity
of data analysts who need collaborative query processing.

ACKNOWLEDGMENTS
This work is supported by the National Key R&D Program of China
(No.2022YFB3304100) and Fundamental Research Funds for the
Central Universities. The authors are supported by the State Key
Laboratory of Blockchain and Data Security, and Key Lab of Intelli-
gent Computing Based Big Data of Zhejiang Province.

REFERENCES
[1] 2019. ONNX. http://onnx.ai.
[2] 2019. ONNX Runtime. http://github.com/microsoft/oxxnruntime.
[3] A. Fard, A. Le, G. Larionov, W. Dhillon, and C. Bear. 2020. Vertica-ML: Distributed

Machine Learning in Vertica Database. In SIGMOD. 755–768.
[4] J. M. Hellerstein, . Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S.

Ng, C. Welton, X. Feng, K. Li, and A. Kumar. 2012. The MADlib Analytics Library:
Or MAD Skills, the SQL. Proc. VLDB Endow. 5, 12 (2012), 1700–1711.

[5] M. Jasny, T. Ziegler, T. Kraska, U. Roehm, and C. Binnig. 2020. DB4ML - An In-
Memory Database Kernel with Machine Learning Support. In SIGMOD. 159–173.

[6] Q. Lin, S. Wu, J. Zhao, J. Dai, F. Li, and G. Chen. 2022. A Comparative Study of
in-Database Inference Approaches. In ICDE. 1794–1807.

[7] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren. 2021. DNNFusion: Accelerating
Deep Neural Networks Execution with Advanced Operator Fusion. In SIGPLAN.
883–898.

4009


	Abstract
	1 Introduction
	2 System Overview
	2.1 Foundations
	2.2 System Architecture
	2.3 Components

	3 Demonstration
	Acknowledgments
	References

